2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
43 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
46 struct page *page = buf->page;
47 struct address_space *mapping;
51 mapping = page_mapping(page);
53 WARN_ON(!PageUptodate(page));
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
63 wait_on_page_writeback(page);
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
70 * If we succeeded in removing the mapping, set LRU flag
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
88 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
91 page_cache_release(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
99 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
102 struct page *page = buf->page;
105 if (!PageUptodate(page)) {
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
112 if (!page->mapping) {
118 * Uh oh, read-error from disk.
120 if (!PageUptodate(page)) {
126 * Page is ok afterall, we are done.
137 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139 .map = generic_pipe_buf_map,
140 .unmap = generic_pipe_buf_unmap,
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .steal = page_cache_pipe_buf_steal,
144 .get = generic_pipe_buf_get,
147 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_steal(pipe, buf);
157 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 .map = generic_pipe_buf_map,
160 .unmap = generic_pipe_buf_unmap,
161 .confirm = generic_pipe_buf_confirm,
162 .release = page_cache_pipe_buf_release,
163 .steal = user_page_pipe_buf_steal,
164 .get = generic_pipe_buf_get,
167 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
170 if (waitqueue_active(&pipe->wait))
171 wake_up_interruptible(&pipe->wait);
172 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
176 * splice_to_pipe - fill passed data into a pipe
177 * @pipe: pipe to fill
181 * @spd contains a map of pages and len/offset tuples, along with
182 * the struct pipe_buf_operations associated with these pages. This
183 * function will link that data to the pipe.
186 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
187 struct splice_pipe_desc *spd)
189 unsigned int spd_pages = spd->nr_pages;
190 int ret, do_wakeup, page_nr;
199 if (!pipe->readers) {
200 send_sig(SIGPIPE, current, 0);
206 if (pipe->nrbufs < pipe->buffers) {
207 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
208 struct pipe_buffer *buf = pipe->bufs + newbuf;
210 buf->page = spd->pages[page_nr];
211 buf->offset = spd->partial[page_nr].offset;
212 buf->len = spd->partial[page_nr].len;
213 buf->private = spd->partial[page_nr].private;
215 if (spd->flags & SPLICE_F_GIFT)
216 buf->flags |= PIPE_BUF_FLAG_GIFT;
225 if (!--spd->nr_pages)
227 if (pipe->nrbufs < pipe->buffers)
233 if (spd->flags & SPLICE_F_NONBLOCK) {
239 if (signal_pending(current)) {
247 if (waitqueue_active(&pipe->wait))
248 wake_up_interruptible_sync(&pipe->wait);
249 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
253 pipe->waiting_writers++;
255 pipe->waiting_writers--;
261 wakeup_pipe_readers(pipe);
263 while (page_nr < spd_pages)
264 spd->spd_release(spd, page_nr++);
269 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
271 page_cache_release(spd->pages[i]);
275 * Check if we need to grow the arrays holding pages and partial page
278 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
289 if (spd->pages && spd->partial)
297 void splice_shrink_spd(struct splice_pipe_desc *spd)
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
307 __generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
316 pgoff_t index, end_index;
319 struct splice_pipe_desc spd = {
322 .nr_pages_max = PIPE_DEF_BUFFERS,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
328 if (splice_grow_spd(pipe, &spd))
331 index = *ppos >> PAGE_CACHE_SHIFT;
332 loff = *ppos & ~PAGE_CACHE_MASK;
333 req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
337 * Lookup the (hopefully) full range of pages we need.
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
351 while (spd.nr_pages < nr_pages) {
353 * Page could be there, find_get_pages_contig() breaks on
356 page = find_get_page(mapping, index);
359 * page didn't exist, allocate one.
361 page = page_cache_alloc_cold(mapping);
365 error = add_to_page_cache_lru(page, mapping, index,
367 if (unlikely(error)) {
368 page_cache_release(page);
369 if (error == -EEXIST)
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
380 spd.pages[spd.nr_pages++] = page;
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
388 index = *ppos >> PAGE_CACHE_SHIFT;
389 nr_pages = spd.nr_pages;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
398 * this_len is the max we'll use from this page
400 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
401 page = spd.pages[page_nr];
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
408 * If the page isn't uptodate, we may need to start io on it
410 if (!PageUptodate(page)) {
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
419 if (!page->mapping) {
421 page = find_or_create_page(mapping, index,
422 mapping_gfp_mask(mapping));
428 page_cache_release(spd.pages[page_nr]);
429 spd.pages[page_nr] = page;
432 * page was already under io and is now done, great
434 if (PageUptodate(page)) {
440 * need to read in the page
442 error = mapping->a_ops->readpage(in, page);
443 if (unlikely(error)) {
445 * We really should re-lookup the page here,
446 * but it complicates things a lot. Instead
447 * lets just do what we already stored, and
448 * we'll get it the next time we are called.
450 if (error == AOP_TRUNCATED_PAGE)
458 * i_size must be checked after PageUptodate.
460 isize = i_size_read(mapping->host);
461 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
462 if (unlikely(!isize || index > end_index))
466 * if this is the last page, see if we need to shrink
467 * the length and stop
469 if (end_index == index) {
473 * max good bytes in this page
475 plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
480 * force quit after adding this page
482 this_len = min(this_len, plen - loff);
486 spd.partial[page_nr].offset = loff;
487 spd.partial[page_nr].len = this_len;
495 * Release any pages at the end, if we quit early. 'page_nr' is how far
496 * we got, 'nr_pages' is how many pages are in the map.
498 while (page_nr < nr_pages)
499 page_cache_release(spd.pages[page_nr++]);
500 in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
503 error = splice_to_pipe(pipe, &spd);
505 splice_shrink_spd(&spd);
510 * generic_file_splice_read - splice data from file to a pipe
511 * @in: file to splice from
512 * @ppos: position in @in
513 * @pipe: pipe to splice to
514 * @len: number of bytes to splice
515 * @flags: splice modifier flags
518 * Will read pages from given file and fill them into a pipe. Can be
519 * used as long as the address_space operations for the source implements
523 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
524 struct pipe_inode_info *pipe, size_t len,
530 isize = i_size_read(in->f_mapping->host);
531 if (unlikely(*ppos >= isize))
534 left = isize - *ppos;
535 if (unlikely(left < len))
538 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
546 EXPORT_SYMBOL(generic_file_splice_read);
548 static const struct pipe_buf_operations default_pipe_buf_ops = {
550 .map = generic_pipe_buf_map,
551 .unmap = generic_pipe_buf_unmap,
552 .confirm = generic_pipe_buf_confirm,
553 .release = generic_pipe_buf_release,
554 .steal = generic_pipe_buf_steal,
555 .get = generic_pipe_buf_get,
558 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
559 unsigned long vlen, loff_t offset)
567 /* The cast to a user pointer is valid due to the set_fs() */
568 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
574 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
588 EXPORT_SYMBOL(kernel_write);
590 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
591 struct pipe_inode_info *pipe, size_t len,
594 unsigned int nr_pages;
595 unsigned int nr_freed;
597 struct page *pages[PIPE_DEF_BUFFERS];
598 struct partial_page partial[PIPE_DEF_BUFFERS];
599 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
604 struct splice_pipe_desc spd = {
607 .nr_pages_max = PIPE_DEF_BUFFERS,
609 .ops = &default_pipe_buf_ops,
610 .spd_release = spd_release_page,
613 if (splice_grow_spd(pipe, &spd))
618 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
619 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
624 offset = *ppos & ~PAGE_CACHE_MASK;
625 nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
627 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
630 page = alloc_page(GFP_USER);
635 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
636 vec[i].iov_base = (void __user *) page_address(page);
637 vec[i].iov_len = this_len;
644 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
655 for (i = 0; i < spd.nr_pages; i++) {
656 this_len = min_t(size_t, vec[i].iov_len, res);
657 spd.partial[i].offset = 0;
658 spd.partial[i].len = this_len;
660 __free_page(spd.pages[i]);
666 spd.nr_pages -= nr_freed;
668 res = splice_to_pipe(pipe, &spd);
675 splice_shrink_spd(&spd);
679 for (i = 0; i < spd.nr_pages; i++)
680 __free_page(spd.pages[i]);
685 EXPORT_SYMBOL(default_file_splice_read);
688 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
689 * using sendpage(). Return the number of bytes sent.
691 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
692 struct pipe_buffer *buf, struct splice_desc *sd)
694 struct file *file = sd->u.file;
695 loff_t pos = sd->pos;
698 if (!likely(file->f_op && file->f_op->sendpage))
701 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
703 if (sd->len < sd->total_len && pipe->nrbufs > 1)
704 more |= MSG_SENDPAGE_NOTLAST;
706 return file->f_op->sendpage(file, buf->page, buf->offset,
707 sd->len, &pos, more);
711 * This is a little more tricky than the file -> pipe splicing. There are
712 * basically three cases:
714 * - Destination page already exists in the address space and there
715 * are users of it. For that case we have no other option that
716 * copying the data. Tough luck.
717 * - Destination page already exists in the address space, but there
718 * are no users of it. Make sure it's uptodate, then drop it. Fall
719 * through to last case.
720 * - Destination page does not exist, we can add the pipe page to
721 * the page cache and avoid the copy.
723 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
724 * sd->flags), we attempt to migrate pages from the pipe to the output
725 * file address space page cache. This is possible if no one else has
726 * the pipe page referenced outside of the pipe and page cache. If
727 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
728 * a new page in the output file page cache and fill/dirty that.
730 int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
731 struct splice_desc *sd)
733 struct file *file = sd->u.file;
734 struct address_space *mapping = file->f_mapping;
735 unsigned int offset, this_len;
740 offset = sd->pos & ~PAGE_CACHE_MASK;
743 if (this_len + offset > PAGE_CACHE_SIZE)
744 this_len = PAGE_CACHE_SIZE - offset;
746 ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
747 AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
751 if (buf->page != page) {
752 char *src = buf->ops->map(pipe, buf, 1);
753 char *dst = kmap_atomic(page);
755 memcpy(dst + offset, src + buf->offset, this_len);
756 flush_dcache_page(page);
758 buf->ops->unmap(pipe, buf, src);
760 ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
765 EXPORT_SYMBOL(pipe_to_file);
767 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
770 if (waitqueue_active(&pipe->wait))
771 wake_up_interruptible(&pipe->wait);
772 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
776 * splice_from_pipe_feed - feed available data from a pipe to a file
777 * @pipe: pipe to splice from
778 * @sd: information to @actor
779 * @actor: handler that splices the data
782 * This function loops over the pipe and calls @actor to do the
783 * actual moving of a single struct pipe_buffer to the desired
784 * destination. It returns when there's no more buffers left in
785 * the pipe or if the requested number of bytes (@sd->total_len)
786 * have been copied. It returns a positive number (one) if the
787 * pipe needs to be filled with more data, zero if the required
788 * number of bytes have been copied and -errno on error.
790 * This, together with splice_from_pipe_{begin,end,next}, may be
791 * used to implement the functionality of __splice_from_pipe() when
792 * locking is required around copying the pipe buffers to the
795 int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
800 while (pipe->nrbufs) {
801 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
802 const struct pipe_buf_operations *ops = buf->ops;
805 if (sd->len > sd->total_len)
806 sd->len = sd->total_len;
808 ret = buf->ops->confirm(pipe, buf);
815 ret = actor(pipe, buf, sd);
822 sd->num_spliced += ret;
825 sd->total_len -= ret;
829 ops->release(pipe, buf);
830 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
833 sd->need_wakeup = true;
842 EXPORT_SYMBOL(splice_from_pipe_feed);
845 * splice_from_pipe_next - wait for some data to splice from
846 * @pipe: pipe to splice from
847 * @sd: information about the splice operation
850 * This function will wait for some data and return a positive
851 * value (one) if pipe buffers are available. It will return zero
852 * or -errno if no more data needs to be spliced.
854 int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
856 while (!pipe->nrbufs) {
860 if (!pipe->waiting_writers && sd->num_spliced)
863 if (sd->flags & SPLICE_F_NONBLOCK)
866 if (signal_pending(current))
869 if (sd->need_wakeup) {
870 wakeup_pipe_writers(pipe);
871 sd->need_wakeup = false;
879 EXPORT_SYMBOL(splice_from_pipe_next);
882 * splice_from_pipe_begin - start splicing from pipe
883 * @sd: information about the splice operation
886 * This function should be called before a loop containing
887 * splice_from_pipe_next() and splice_from_pipe_feed() to
888 * initialize the necessary fields of @sd.
890 void splice_from_pipe_begin(struct splice_desc *sd)
893 sd->need_wakeup = false;
895 EXPORT_SYMBOL(splice_from_pipe_begin);
898 * splice_from_pipe_end - finish splicing from pipe
899 * @pipe: pipe to splice from
900 * @sd: information about the splice operation
903 * This function will wake up pipe writers if necessary. It should
904 * be called after a loop containing splice_from_pipe_next() and
905 * splice_from_pipe_feed().
907 void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
910 wakeup_pipe_writers(pipe);
912 EXPORT_SYMBOL(splice_from_pipe_end);
915 * __splice_from_pipe - splice data from a pipe to given actor
916 * @pipe: pipe to splice from
917 * @sd: information to @actor
918 * @actor: handler that splices the data
921 * This function does little more than loop over the pipe and call
922 * @actor to do the actual moving of a single struct pipe_buffer to
923 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
927 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
932 splice_from_pipe_begin(sd);
934 ret = splice_from_pipe_next(pipe, sd);
936 ret = splice_from_pipe_feed(pipe, sd, actor);
938 splice_from_pipe_end(pipe, sd);
940 return sd->num_spliced ? sd->num_spliced : ret;
942 EXPORT_SYMBOL(__splice_from_pipe);
945 * splice_from_pipe - splice data from a pipe to a file
946 * @pipe: pipe to splice from
947 * @out: file to splice to
948 * @ppos: position in @out
949 * @len: how many bytes to splice
950 * @flags: splice modifier flags
951 * @actor: handler that splices the data
954 * See __splice_from_pipe. This function locks the pipe inode,
955 * otherwise it's identical to __splice_from_pipe().
958 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
959 loff_t *ppos, size_t len, unsigned int flags,
963 struct splice_desc sd = {
971 ret = __splice_from_pipe(pipe, &sd, actor);
978 * generic_file_splice_write - splice data from a pipe to a file
980 * @out: file to write to
981 * @ppos: position in @out
982 * @len: number of bytes to splice
983 * @flags: splice modifier flags
986 * Will either move or copy pages (determined by @flags options) from
987 * the given pipe inode to the given file.
991 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
992 loff_t *ppos, size_t len, unsigned int flags)
994 struct address_space *mapping = out->f_mapping;
995 struct inode *inode = mapping->host;
996 struct splice_desc sd = {
1006 splice_from_pipe_begin(&sd);
1008 ret = splice_from_pipe_next(pipe, &sd);
1012 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1013 ret = file_remove_suid(out);
1015 ret = file_update_time(out);
1017 ret = splice_from_pipe_feed(pipe, &sd,
1020 mutex_unlock(&inode->i_mutex);
1022 splice_from_pipe_end(pipe, &sd);
1027 ret = sd.num_spliced;
1032 err = generic_write_sync(out, *ppos, ret);
1037 balance_dirty_pages_ratelimited(mapping);
1043 EXPORT_SYMBOL(generic_file_splice_write);
1045 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1046 struct splice_desc *sd)
1050 loff_t tmp = sd->pos;
1052 data = buf->ops->map(pipe, buf, 0);
1053 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1054 buf->ops->unmap(pipe, buf, data);
1059 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1060 struct file *out, loff_t *ppos,
1061 size_t len, unsigned int flags)
1065 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1073 * generic_splice_sendpage - splice data from a pipe to a socket
1074 * @pipe: pipe to splice from
1075 * @out: socket to write to
1076 * @ppos: position in @out
1077 * @len: number of bytes to splice
1078 * @flags: splice modifier flags
1081 * Will send @len bytes from the pipe to a network socket. No data copying
1085 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1086 loff_t *ppos, size_t len, unsigned int flags)
1088 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1091 EXPORT_SYMBOL(generic_splice_sendpage);
1094 * Attempt to initiate a splice from pipe to file.
1096 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1097 loff_t *ppos, size_t len, unsigned int flags)
1099 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1100 loff_t *, size_t, unsigned int);
1103 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1106 if (unlikely(out->f_flags & O_APPEND))
1109 ret = rw_verify_area(WRITE, out, ppos, len);
1110 if (unlikely(ret < 0))
1113 if (out->f_op && out->f_op->splice_write)
1114 splice_write = out->f_op->splice_write;
1116 splice_write = default_file_splice_write;
1118 file_start_write(out);
1119 ret = splice_write(pipe, out, ppos, len, flags);
1120 file_end_write(out);
1125 * Attempt to initiate a splice from a file to a pipe.
1127 static long do_splice_to(struct file *in, loff_t *ppos,
1128 struct pipe_inode_info *pipe, size_t len,
1131 ssize_t (*splice_read)(struct file *, loff_t *,
1132 struct pipe_inode_info *, size_t, unsigned int);
1135 if (unlikely(!(in->f_mode & FMODE_READ)))
1138 ret = rw_verify_area(READ, in, ppos, len);
1139 if (unlikely(ret < 0))
1142 if (in->f_op && in->f_op->splice_read)
1143 splice_read = in->f_op->splice_read;
1145 splice_read = default_file_splice_read;
1147 return splice_read(in, ppos, pipe, len, flags);
1151 * splice_direct_to_actor - splices data directly between two non-pipes
1152 * @in: file to splice from
1153 * @sd: actor information on where to splice to
1154 * @actor: handles the data splicing
1157 * This is a special case helper to splice directly between two
1158 * points, without requiring an explicit pipe. Internally an allocated
1159 * pipe is cached in the process, and reused during the lifetime of
1163 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1164 splice_direct_actor *actor)
1166 struct pipe_inode_info *pipe;
1173 * We require the input being a regular file, as we don't want to
1174 * randomly drop data for eg socket -> socket splicing. Use the
1175 * piped splicing for that!
1177 i_mode = file_inode(in)->i_mode;
1178 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1182 * neither in nor out is a pipe, setup an internal pipe attached to
1183 * 'out' and transfer the wanted data from 'in' to 'out' through that
1185 pipe = current->splice_pipe;
1186 if (unlikely(!pipe)) {
1187 pipe = alloc_pipe_info();
1192 * We don't have an immediate reader, but we'll read the stuff
1193 * out of the pipe right after the splice_to_pipe(). So set
1194 * PIPE_READERS appropriately.
1198 current->splice_pipe = pipe;
1206 len = sd->total_len;
1210 * Don't block on output, we have to drain the direct pipe.
1212 sd->flags &= ~SPLICE_F_NONBLOCK;
1216 loff_t pos = sd->pos, prev_pos = pos;
1218 ret = do_splice_to(in, &pos, pipe, len, flags);
1219 if (unlikely(ret <= 0))
1223 sd->total_len = read_len;
1226 * NOTE: nonblocking mode only applies to the input. We
1227 * must not do the output in nonblocking mode as then we
1228 * could get stuck data in the internal pipe:
1230 ret = actor(pipe, sd);
1231 if (unlikely(ret <= 0)) {
1240 if (ret < read_len) {
1241 sd->pos = prev_pos + ret;
1247 pipe->nrbufs = pipe->curbuf = 0;
1253 * If we did an incomplete transfer we must release
1254 * the pipe buffers in question:
1256 for (i = 0; i < pipe->buffers; i++) {
1257 struct pipe_buffer *buf = pipe->bufs + i;
1260 buf->ops->release(pipe, buf);
1270 EXPORT_SYMBOL(splice_direct_to_actor);
1272 static int direct_splice_actor(struct pipe_inode_info *pipe,
1273 struct splice_desc *sd)
1275 struct file *file = sd->u.file;
1277 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1282 * do_splice_direct - splices data directly between two files
1283 * @in: file to splice from
1284 * @ppos: input file offset
1285 * @out: file to splice to
1286 * @len: number of bytes to splice
1287 * @flags: splice modifier flags
1290 * For use by do_sendfile(). splice can easily emulate sendfile, but
1291 * doing it in the application would incur an extra system call
1292 * (splice in + splice out, as compared to just sendfile()). So this helper
1293 * can splice directly through a process-private pipe.
1296 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1297 loff_t *opos, size_t len, unsigned int flags)
1299 struct splice_desc sd = {
1309 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1316 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1317 struct pipe_inode_info *opipe,
1318 size_t len, unsigned int flags);
1321 * Determine where to splice to/from.
1323 static long do_splice(struct file *in, loff_t __user *off_in,
1324 struct file *out, loff_t __user *off_out,
1325 size_t len, unsigned int flags)
1327 struct pipe_inode_info *ipipe;
1328 struct pipe_inode_info *opipe;
1332 ipipe = get_pipe_info(in);
1333 opipe = get_pipe_info(out);
1335 if (ipipe && opipe) {
1336 if (off_in || off_out)
1339 if (!(in->f_mode & FMODE_READ))
1342 if (!(out->f_mode & FMODE_WRITE))
1345 /* Splicing to self would be fun, but... */
1349 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1356 if (!(out->f_mode & FMODE_PWRITE))
1358 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1361 offset = out->f_pos;
1364 ret = do_splice_from(ipipe, out, &offset, len, flags);
1367 out->f_pos = offset;
1368 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1378 if (!(in->f_mode & FMODE_PREAD))
1380 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1386 ret = do_splice_to(in, &offset, opipe, len, flags);
1390 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1400 * Map an iov into an array of pages and offset/length tupples. With the
1401 * partial_page structure, we can map several non-contiguous ranges into
1402 * our ones pages[] map instead of splitting that operation into pieces.
1403 * Could easily be exported as a generic helper for other users, in which
1404 * case one would probably want to add a 'max_nr_pages' parameter as well.
1406 static int get_iovec_page_array(const struct iovec __user *iov,
1407 unsigned int nr_vecs, struct page **pages,
1408 struct partial_page *partial, bool aligned,
1409 unsigned int pipe_buffers)
1411 int buffers = 0, error = 0;
1414 unsigned long off, npages;
1421 if (copy_from_user(&entry, iov, sizeof(entry)))
1424 base = entry.iov_base;
1425 len = entry.iov_len;
1428 * Sanity check this iovec. 0 read succeeds.
1434 if (!access_ok(VERIFY_READ, base, len))
1438 * Get this base offset and number of pages, then map
1439 * in the user pages.
1441 off = (unsigned long) base & ~PAGE_MASK;
1444 * If asked for alignment, the offset must be zero and the
1445 * length a multiple of the PAGE_SIZE.
1448 if (aligned && (off || len & ~PAGE_MASK))
1451 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1452 if (npages > pipe_buffers - buffers)
1453 npages = pipe_buffers - buffers;
1455 error = get_user_pages_fast((unsigned long)base, npages,
1456 0, &pages[buffers]);
1458 if (unlikely(error <= 0))
1462 * Fill this contiguous range into the partial page map.
1464 for (i = 0; i < error; i++) {
1465 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1467 partial[buffers].offset = off;
1468 partial[buffers].len = plen;
1476 * We didn't complete this iov, stop here since it probably
1477 * means we have to move some of this into a pipe to
1478 * be able to continue.
1484 * Don't continue if we mapped fewer pages than we asked for,
1485 * or if we mapped the max number of pages that we have
1488 if (error < npages || buffers == pipe_buffers)
1501 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1502 struct splice_desc *sd)
1508 * See if we can use the atomic maps, by prefaulting in the
1509 * pages and doing an atomic copy
1511 if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
1512 src = buf->ops->map(pipe, buf, 1);
1513 ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
1515 buf->ops->unmap(pipe, buf, src);
1523 * No dice, use slow non-atomic map and copy
1525 src = buf->ops->map(pipe, buf, 0);
1528 if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
1531 buf->ops->unmap(pipe, buf, src);
1534 sd->u.userptr += ret;
1539 * For lack of a better implementation, implement vmsplice() to userspace
1540 * as a simple copy of the pipes pages to the user iov.
1542 static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
1543 unsigned long nr_segs, unsigned int flags)
1545 struct pipe_inode_info *pipe;
1546 struct splice_desc sd;
1551 pipe = get_pipe_info(file);
1563 * Get user address base and length for this iovec.
1565 error = get_user(base, &iov->iov_base);
1566 if (unlikely(error))
1568 error = get_user(len, &iov->iov_len);
1569 if (unlikely(error))
1573 * Sanity check this iovec. 0 read succeeds.
1577 if (unlikely(!base)) {
1582 if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
1590 sd.u.userptr = base;
1593 size = __splice_from_pipe(pipe, &sd, pipe_to_user);
1619 * vmsplice splices a user address range into a pipe. It can be thought of
1620 * as splice-from-memory, where the regular splice is splice-from-file (or
1621 * to file). In both cases the output is a pipe, naturally.
1623 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1624 unsigned long nr_segs, unsigned int flags)
1626 struct pipe_inode_info *pipe;
1627 struct page *pages[PIPE_DEF_BUFFERS];
1628 struct partial_page partial[PIPE_DEF_BUFFERS];
1629 struct splice_pipe_desc spd = {
1632 .nr_pages_max = PIPE_DEF_BUFFERS,
1634 .ops = &user_page_pipe_buf_ops,
1635 .spd_release = spd_release_page,
1639 pipe = get_pipe_info(file);
1643 if (splice_grow_spd(pipe, &spd))
1646 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1649 if (spd.nr_pages <= 0)
1652 ret = splice_to_pipe(pipe, &spd);
1654 splice_shrink_spd(&spd);
1659 * Note that vmsplice only really supports true splicing _from_ user memory
1660 * to a pipe, not the other way around. Splicing from user memory is a simple
1661 * operation that can be supported without any funky alignment restrictions
1662 * or nasty vm tricks. We simply map in the user memory and fill them into
1663 * a pipe. The reverse isn't quite as easy, though. There are two possible
1664 * solutions for that:
1666 * - memcpy() the data internally, at which point we might as well just
1667 * do a regular read() on the buffer anyway.
1668 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1669 * has restriction limitations on both ends of the pipe).
1671 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1674 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1675 unsigned long, nr_segs, unsigned int, flags)
1680 if (unlikely(nr_segs > UIO_MAXIOV))
1682 else if (unlikely(!nr_segs))
1688 if (f.file->f_mode & FMODE_WRITE)
1689 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1690 else if (f.file->f_mode & FMODE_READ)
1691 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1699 #ifdef CONFIG_COMPAT
1700 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1701 unsigned int, nr_segs, unsigned int, flags)
1704 struct iovec __user *iov;
1705 if (nr_segs > UIO_MAXIOV)
1707 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1708 for (i = 0; i < nr_segs; i++) {
1709 struct compat_iovec v;
1710 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1711 get_user(v.iov_len, &iov32[i].iov_len) ||
1712 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1713 put_user(v.iov_len, &iov[i].iov_len))
1716 return sys_vmsplice(fd, iov, nr_segs, flags);
1720 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1721 int, fd_out, loff_t __user *, off_out,
1722 size_t, len, unsigned int, flags)
1733 if (in.file->f_mode & FMODE_READ) {
1734 out = fdget(fd_out);
1736 if (out.file->f_mode & FMODE_WRITE)
1737 error = do_splice(in.file, off_in,
1749 * Make sure there's data to read. Wait for input if we can, otherwise
1750 * return an appropriate error.
1752 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1757 * Check ->nrbufs without the inode lock first. This function
1758 * is speculative anyways, so missing one is ok.
1766 while (!pipe->nrbufs) {
1767 if (signal_pending(current)) {
1773 if (!pipe->waiting_writers) {
1774 if (flags & SPLICE_F_NONBLOCK) {
1787 * Make sure there's writeable room. Wait for room if we can, otherwise
1788 * return an appropriate error.
1790 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1795 * Check ->nrbufs without the inode lock first. This function
1796 * is speculative anyways, so missing one is ok.
1798 if (pipe->nrbufs < pipe->buffers)
1804 while (pipe->nrbufs >= pipe->buffers) {
1805 if (!pipe->readers) {
1806 send_sig(SIGPIPE, current, 0);
1810 if (flags & SPLICE_F_NONBLOCK) {
1814 if (signal_pending(current)) {
1818 pipe->waiting_writers++;
1820 pipe->waiting_writers--;
1828 * Splice contents of ipipe to opipe.
1830 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1831 struct pipe_inode_info *opipe,
1832 size_t len, unsigned int flags)
1834 struct pipe_buffer *ibuf, *obuf;
1836 bool input_wakeup = false;
1840 ret = ipipe_prep(ipipe, flags);
1844 ret = opipe_prep(opipe, flags);
1849 * Potential ABBA deadlock, work around it by ordering lock
1850 * grabbing by pipe info address. Otherwise two different processes
1851 * could deadlock (one doing tee from A -> B, the other from B -> A).
1853 pipe_double_lock(ipipe, opipe);
1856 if (!opipe->readers) {
1857 send_sig(SIGPIPE, current, 0);
1863 if (!ipipe->nrbufs && !ipipe->writers)
1867 * Cannot make any progress, because either the input
1868 * pipe is empty or the output pipe is full.
1870 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1871 /* Already processed some buffers, break */
1875 if (flags & SPLICE_F_NONBLOCK) {
1881 * We raced with another reader/writer and haven't
1882 * managed to process any buffers. A zero return
1883 * value means EOF, so retry instead.
1890 ibuf = ipipe->bufs + ipipe->curbuf;
1891 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1892 obuf = opipe->bufs + nbuf;
1894 if (len >= ibuf->len) {
1896 * Simply move the whole buffer from ipipe to opipe
1901 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1903 input_wakeup = true;
1906 * Get a reference to this pipe buffer,
1907 * so we can copy the contents over.
1909 ibuf->ops->get(ipipe, ibuf);
1913 * Don't inherit the gift flag, we need to
1914 * prevent multiple steals of this page.
1916 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1920 ibuf->offset += obuf->len;
1921 ibuf->len -= obuf->len;
1931 * If we put data in the output pipe, wakeup any potential readers.
1934 wakeup_pipe_readers(opipe);
1937 wakeup_pipe_writers(ipipe);
1943 * Link contents of ipipe to opipe.
1945 static int link_pipe(struct pipe_inode_info *ipipe,
1946 struct pipe_inode_info *opipe,
1947 size_t len, unsigned int flags)
1949 struct pipe_buffer *ibuf, *obuf;
1950 int ret = 0, i = 0, nbuf;
1953 * Potential ABBA deadlock, work around it by ordering lock
1954 * grabbing by pipe info address. Otherwise two different processes
1955 * could deadlock (one doing tee from A -> B, the other from B -> A).
1957 pipe_double_lock(ipipe, opipe);
1960 if (!opipe->readers) {
1961 send_sig(SIGPIPE, current, 0);
1968 * If we have iterated all input buffers or ran out of
1969 * output room, break.
1971 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1974 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1975 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1978 * Get a reference to this pipe buffer,
1979 * so we can copy the contents over.
1981 ibuf->ops->get(ipipe, ibuf);
1983 obuf = opipe->bufs + nbuf;
1987 * Don't inherit the gift flag, we need to
1988 * prevent multiple steals of this page.
1990 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1992 if (obuf->len > len)
2002 * return EAGAIN if we have the potential of some data in the
2003 * future, otherwise just return 0
2005 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
2012 * If we put data in the output pipe, wakeup any potential readers.
2015 wakeup_pipe_readers(opipe);
2021 * This is a tee(1) implementation that works on pipes. It doesn't copy
2022 * any data, it simply references the 'in' pages on the 'out' pipe.
2023 * The 'flags' used are the SPLICE_F_* variants, currently the only
2024 * applicable one is SPLICE_F_NONBLOCK.
2026 static long do_tee(struct file *in, struct file *out, size_t len,
2029 struct pipe_inode_info *ipipe = get_pipe_info(in);
2030 struct pipe_inode_info *opipe = get_pipe_info(out);
2034 * Duplicate the contents of ipipe to opipe without actually
2037 if (ipipe && opipe && ipipe != opipe) {
2039 * Keep going, unless we encounter an error. The ipipe/opipe
2040 * ordering doesn't really matter.
2042 ret = ipipe_prep(ipipe, flags);
2044 ret = opipe_prep(opipe, flags);
2046 ret = link_pipe(ipipe, opipe, len, flags);
2053 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2064 if (in.file->f_mode & FMODE_READ) {
2065 struct fd out = fdget(fdout);
2067 if (out.file->f_mode & FMODE_WRITE)
2068 error = do_tee(in.file, out.file,