ext4: move check under lock scope to close a race.
[platform/kernel/linux-starfive.git] / fs / splice.c
1 /*
2  * "splice": joining two ropes together by interweaving their strands.
3  *
4  * This is the "extended pipe" functionality, where a pipe is used as
5  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6  * buffer that you can use to transfer data from one end to the other.
7  *
8  * The traditional unix read/write is extended with a "splice()" operation
9  * that transfers data buffers to or from a pipe buffer.
10  *
11  * Named by Larry McVoy, original implementation from Linus, extended by
12  * Jens to support splicing to files, network, direct splicing, etc and
13  * fixing lots of bugs.
14  *
15  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18  *
19  */
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/splice.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm_inline.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/export.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
31 #include <linux/security.h>
32 #include <linux/gfp.h>
33 #include <linux/socket.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include "internal.h"
37
38 /*
39  * Attempt to steal a page from a pipe buffer. This should perhaps go into
40  * a vm helper function, it's already simplified quite a bit by the
41  * addition of remove_mapping(). If success is returned, the caller may
42  * attempt to reuse this page for another destination.
43  */
44 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
45                                      struct pipe_buffer *buf)
46 {
47         struct page *page = buf->page;
48         struct address_space *mapping;
49
50         lock_page(page);
51
52         mapping = page_mapping(page);
53         if (mapping) {
54                 WARN_ON(!PageUptodate(page));
55
56                 /*
57                  * At least for ext2 with nobh option, we need to wait on
58                  * writeback completing on this page, since we'll remove it
59                  * from the pagecache.  Otherwise truncate wont wait on the
60                  * page, allowing the disk blocks to be reused by someone else
61                  * before we actually wrote our data to them. fs corruption
62                  * ensues.
63                  */
64                 wait_on_page_writeback(page);
65
66                 if (page_has_private(page) &&
67                     !try_to_release_page(page, GFP_KERNEL))
68                         goto out_unlock;
69
70                 /*
71                  * If we succeeded in removing the mapping, set LRU flag
72                  * and return good.
73                  */
74                 if (remove_mapping(mapping, page)) {
75                         buf->flags |= PIPE_BUF_FLAG_LRU;
76                         return 0;
77                 }
78         }
79
80         /*
81          * Raced with truncate or failed to remove page from current
82          * address space, unlock and return failure.
83          */
84 out_unlock:
85         unlock_page(page);
86         return 1;
87 }
88
89 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
90                                         struct pipe_buffer *buf)
91 {
92         page_cache_release(buf->page);
93         buf->flags &= ~PIPE_BUF_FLAG_LRU;
94 }
95
96 /*
97  * Check whether the contents of buf is OK to access. Since the content
98  * is a page cache page, IO may be in flight.
99  */
100 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
101                                        struct pipe_buffer *buf)
102 {
103         struct page *page = buf->page;
104         int err;
105
106         if (!PageUptodate(page)) {
107                 lock_page(page);
108
109                 /*
110                  * Page got truncated/unhashed. This will cause a 0-byte
111                  * splice, if this is the first page.
112                  */
113                 if (!page->mapping) {
114                         err = -ENODATA;
115                         goto error;
116                 }
117
118                 /*
119                  * Uh oh, read-error from disk.
120                  */
121                 if (!PageUptodate(page)) {
122                         err = -EIO;
123                         goto error;
124                 }
125
126                 /*
127                  * Page is ok afterall, we are done.
128                  */
129                 unlock_page(page);
130         }
131
132         return 0;
133 error:
134         unlock_page(page);
135         return err;
136 }
137
138 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
139         .can_merge = 0,
140         .confirm = page_cache_pipe_buf_confirm,
141         .release = page_cache_pipe_buf_release,
142         .steal = page_cache_pipe_buf_steal,
143         .get = generic_pipe_buf_get,
144 };
145
146 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
147                                     struct pipe_buffer *buf)
148 {
149         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
150                 return 1;
151
152         buf->flags |= PIPE_BUF_FLAG_LRU;
153         return generic_pipe_buf_steal(pipe, buf);
154 }
155
156 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
157         .can_merge = 0,
158         .confirm = generic_pipe_buf_confirm,
159         .release = page_cache_pipe_buf_release,
160         .steal = user_page_pipe_buf_steal,
161         .get = generic_pipe_buf_get,
162 };
163
164 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165 {
166         smp_mb();
167         if (waitqueue_active(&pipe->wait))
168                 wake_up_interruptible(&pipe->wait);
169         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170 }
171
172 /**
173  * splice_to_pipe - fill passed data into a pipe
174  * @pipe:       pipe to fill
175  * @spd:        data to fill
176  *
177  * Description:
178  *    @spd contains a map of pages and len/offset tuples, along with
179  *    the struct pipe_buf_operations associated with these pages. This
180  *    function will link that data to the pipe.
181  *
182  */
183 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184                        struct splice_pipe_desc *spd)
185 {
186         unsigned int spd_pages = spd->nr_pages;
187         int ret, do_wakeup, page_nr;
188
189         ret = 0;
190         do_wakeup = 0;
191         page_nr = 0;
192
193         pipe_lock(pipe);
194
195         for (;;) {
196                 if (!pipe->readers) {
197                         send_sig(SIGPIPE, current, 0);
198                         if (!ret)
199                                 ret = -EPIPE;
200                         break;
201                 }
202
203                 if (pipe->nrbufs < pipe->buffers) {
204                         int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
205                         struct pipe_buffer *buf = pipe->bufs + newbuf;
206
207                         buf->page = spd->pages[page_nr];
208                         buf->offset = spd->partial[page_nr].offset;
209                         buf->len = spd->partial[page_nr].len;
210                         buf->private = spd->partial[page_nr].private;
211                         buf->ops = spd->ops;
212                         if (spd->flags & SPLICE_F_GIFT)
213                                 buf->flags |= PIPE_BUF_FLAG_GIFT;
214
215                         pipe->nrbufs++;
216                         page_nr++;
217                         ret += buf->len;
218
219                         if (pipe->files)
220                                 do_wakeup = 1;
221
222                         if (!--spd->nr_pages)
223                                 break;
224                         if (pipe->nrbufs < pipe->buffers)
225                                 continue;
226
227                         break;
228                 }
229
230                 if (spd->flags & SPLICE_F_NONBLOCK) {
231                         if (!ret)
232                                 ret = -EAGAIN;
233                         break;
234                 }
235
236                 if (signal_pending(current)) {
237                         if (!ret)
238                                 ret = -ERESTARTSYS;
239                         break;
240                 }
241
242                 if (do_wakeup) {
243                         smp_mb();
244                         if (waitqueue_active(&pipe->wait))
245                                 wake_up_interruptible_sync(&pipe->wait);
246                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
247                         do_wakeup = 0;
248                 }
249
250                 pipe->waiting_writers++;
251                 pipe_wait(pipe);
252                 pipe->waiting_writers--;
253         }
254
255         pipe_unlock(pipe);
256
257         if (do_wakeup)
258                 wakeup_pipe_readers(pipe);
259
260         while (page_nr < spd_pages)
261                 spd->spd_release(spd, page_nr++);
262
263         return ret;
264 }
265
266 void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
267 {
268         page_cache_release(spd->pages[i]);
269 }
270
271 /*
272  * Check if we need to grow the arrays holding pages and partial page
273  * descriptions.
274  */
275 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
276 {
277         unsigned int buffers = ACCESS_ONCE(pipe->buffers);
278
279         spd->nr_pages_max = buffers;
280         if (buffers <= PIPE_DEF_BUFFERS)
281                 return 0;
282
283         spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
284         spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
285
286         if (spd->pages && spd->partial)
287                 return 0;
288
289         kfree(spd->pages);
290         kfree(spd->partial);
291         return -ENOMEM;
292 }
293
294 void splice_shrink_spd(struct splice_pipe_desc *spd)
295 {
296         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
297                 return;
298
299         kfree(spd->pages);
300         kfree(spd->partial);
301 }
302
303 static int
304 __generic_file_splice_read(struct file *in, loff_t *ppos,
305                            struct pipe_inode_info *pipe, size_t len,
306                            unsigned int flags)
307 {
308         struct address_space *mapping = in->f_mapping;
309         unsigned int loff, nr_pages, req_pages;
310         struct page *pages[PIPE_DEF_BUFFERS];
311         struct partial_page partial[PIPE_DEF_BUFFERS];
312         struct page *page;
313         pgoff_t index, end_index;
314         loff_t isize;
315         int error, page_nr;
316         struct splice_pipe_desc spd = {
317                 .pages = pages,
318                 .partial = partial,
319                 .nr_pages_max = PIPE_DEF_BUFFERS,
320                 .flags = flags,
321                 .ops = &page_cache_pipe_buf_ops,
322                 .spd_release = spd_release_page,
323         };
324
325         if (splice_grow_spd(pipe, &spd))
326                 return -ENOMEM;
327
328         index = *ppos >> PAGE_CACHE_SHIFT;
329         loff = *ppos & ~PAGE_CACHE_MASK;
330         req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
331         nr_pages = min(req_pages, spd.nr_pages_max);
332
333         /*
334          * Lookup the (hopefully) full range of pages we need.
335          */
336         spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
337         index += spd.nr_pages;
338
339         /*
340          * If find_get_pages_contig() returned fewer pages than we needed,
341          * readahead/allocate the rest and fill in the holes.
342          */
343         if (spd.nr_pages < nr_pages)
344                 page_cache_sync_readahead(mapping, &in->f_ra, in,
345                                 index, req_pages - spd.nr_pages);
346
347         error = 0;
348         while (spd.nr_pages < nr_pages) {
349                 /*
350                  * Page could be there, find_get_pages_contig() breaks on
351                  * the first hole.
352                  */
353                 page = find_get_page(mapping, index);
354                 if (!page) {
355                         /*
356                          * page didn't exist, allocate one.
357                          */
358                         page = page_cache_alloc_cold(mapping);
359                         if (!page)
360                                 break;
361
362                         error = add_to_page_cache_lru(page, mapping, index,
363                                                 GFP_KERNEL);
364                         if (unlikely(error)) {
365                                 page_cache_release(page);
366                                 if (error == -EEXIST)
367                                         continue;
368                                 break;
369                         }
370                         /*
371                          * add_to_page_cache() locks the page, unlock it
372                          * to avoid convoluting the logic below even more.
373                          */
374                         unlock_page(page);
375                 }
376
377                 spd.pages[spd.nr_pages++] = page;
378                 index++;
379         }
380
381         /*
382          * Now loop over the map and see if we need to start IO on any
383          * pages, fill in the partial map, etc.
384          */
385         index = *ppos >> PAGE_CACHE_SHIFT;
386         nr_pages = spd.nr_pages;
387         spd.nr_pages = 0;
388         for (page_nr = 0; page_nr < nr_pages; page_nr++) {
389                 unsigned int this_len;
390
391                 if (!len)
392                         break;
393
394                 /*
395                  * this_len is the max we'll use from this page
396                  */
397                 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
398                 page = spd.pages[page_nr];
399
400                 if (PageReadahead(page))
401                         page_cache_async_readahead(mapping, &in->f_ra, in,
402                                         page, index, req_pages - page_nr);
403
404                 /*
405                  * If the page isn't uptodate, we may need to start io on it
406                  */
407                 if (!PageUptodate(page)) {
408                         lock_page(page);
409
410                         /*
411                          * Page was truncated, or invalidated by the
412                          * filesystem.  Redo the find/create, but this time the
413                          * page is kept locked, so there's no chance of another
414                          * race with truncate/invalidate.
415                          */
416                         if (!page->mapping) {
417                                 unlock_page(page);
418                                 page = find_or_create_page(mapping, index,
419                                                 mapping_gfp_mask(mapping));
420
421                                 if (!page) {
422                                         error = -ENOMEM;
423                                         break;
424                                 }
425                                 page_cache_release(spd.pages[page_nr]);
426                                 spd.pages[page_nr] = page;
427                         }
428                         /*
429                          * page was already under io and is now done, great
430                          */
431                         if (PageUptodate(page)) {
432                                 unlock_page(page);
433                                 goto fill_it;
434                         }
435
436                         /*
437                          * need to read in the page
438                          */
439                         error = mapping->a_ops->readpage(in, page);
440                         if (unlikely(error)) {
441                                 /*
442                                  * We really should re-lookup the page here,
443                                  * but it complicates things a lot. Instead
444                                  * lets just do what we already stored, and
445                                  * we'll get it the next time we are called.
446                                  */
447                                 if (error == AOP_TRUNCATED_PAGE)
448                                         error = 0;
449
450                                 break;
451                         }
452                 }
453 fill_it:
454                 /*
455                  * i_size must be checked after PageUptodate.
456                  */
457                 isize = i_size_read(mapping->host);
458                 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
459                 if (unlikely(!isize || index > end_index))
460                         break;
461
462                 /*
463                  * if this is the last page, see if we need to shrink
464                  * the length and stop
465                  */
466                 if (end_index == index) {
467                         unsigned int plen;
468
469                         /*
470                          * max good bytes in this page
471                          */
472                         plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
473                         if (plen <= loff)
474                                 break;
475
476                         /*
477                          * force quit after adding this page
478                          */
479                         this_len = min(this_len, plen - loff);
480                         len = this_len;
481                 }
482
483                 spd.partial[page_nr].offset = loff;
484                 spd.partial[page_nr].len = this_len;
485                 len -= this_len;
486                 loff = 0;
487                 spd.nr_pages++;
488                 index++;
489         }
490
491         /*
492          * Release any pages at the end, if we quit early. 'page_nr' is how far
493          * we got, 'nr_pages' is how many pages are in the map.
494          */
495         while (page_nr < nr_pages)
496                 page_cache_release(spd.pages[page_nr++]);
497         in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;
498
499         if (spd.nr_pages)
500                 error = splice_to_pipe(pipe, &spd);
501
502         splice_shrink_spd(&spd);
503         return error;
504 }
505
506 /**
507  * generic_file_splice_read - splice data from file to a pipe
508  * @in:         file to splice from
509  * @ppos:       position in @in
510  * @pipe:       pipe to splice to
511  * @len:        number of bytes to splice
512  * @flags:      splice modifier flags
513  *
514  * Description:
515  *    Will read pages from given file and fill them into a pipe. Can be
516  *    used as long as the address_space operations for the source implements
517  *    a readpage() hook.
518  *
519  */
520 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
521                                  struct pipe_inode_info *pipe, size_t len,
522                                  unsigned int flags)
523 {
524         loff_t isize, left;
525         int ret;
526
527         isize = i_size_read(in->f_mapping->host);
528         if (unlikely(*ppos >= isize))
529                 return 0;
530
531         left = isize - *ppos;
532         if (unlikely(left < len))
533                 len = left;
534
535         ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
536         if (ret > 0) {
537                 *ppos += ret;
538                 file_accessed(in);
539         }
540
541         return ret;
542 }
543 EXPORT_SYMBOL(generic_file_splice_read);
544
545 static const struct pipe_buf_operations default_pipe_buf_ops = {
546         .can_merge = 0,
547         .confirm = generic_pipe_buf_confirm,
548         .release = generic_pipe_buf_release,
549         .steal = generic_pipe_buf_steal,
550         .get = generic_pipe_buf_get,
551 };
552
553 static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
554                                     struct pipe_buffer *buf)
555 {
556         return 1;
557 }
558
559 /* Pipe buffer operations for a socket and similar. */
560 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
561         .can_merge = 0,
562         .confirm = generic_pipe_buf_confirm,
563         .release = generic_pipe_buf_release,
564         .steal = generic_pipe_buf_nosteal,
565         .get = generic_pipe_buf_get,
566 };
567 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
568
569 static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
570                             unsigned long vlen, loff_t offset)
571 {
572         mm_segment_t old_fs;
573         loff_t pos = offset;
574         ssize_t res;
575
576         old_fs = get_fs();
577         set_fs(get_ds());
578         /* The cast to a user pointer is valid due to the set_fs() */
579         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos);
580         set_fs(old_fs);
581
582         return res;
583 }
584
585 ssize_t kernel_write(struct file *file, const char *buf, size_t count,
586                             loff_t pos)
587 {
588         mm_segment_t old_fs;
589         ssize_t res;
590
591         old_fs = get_fs();
592         set_fs(get_ds());
593         /* The cast to a user pointer is valid due to the set_fs() */
594         res = vfs_write(file, (__force const char __user *)buf, count, &pos);
595         set_fs(old_fs);
596
597         return res;
598 }
599 EXPORT_SYMBOL(kernel_write);
600
601 ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
602                                  struct pipe_inode_info *pipe, size_t len,
603                                  unsigned int flags)
604 {
605         unsigned int nr_pages;
606         unsigned int nr_freed;
607         size_t offset;
608         struct page *pages[PIPE_DEF_BUFFERS];
609         struct partial_page partial[PIPE_DEF_BUFFERS];
610         struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
611         ssize_t res;
612         size_t this_len;
613         int error;
614         int i;
615         struct splice_pipe_desc spd = {
616                 .pages = pages,
617                 .partial = partial,
618                 .nr_pages_max = PIPE_DEF_BUFFERS,
619                 .flags = flags,
620                 .ops = &default_pipe_buf_ops,
621                 .spd_release = spd_release_page,
622         };
623
624         if (splice_grow_spd(pipe, &spd))
625                 return -ENOMEM;
626
627         res = -ENOMEM;
628         vec = __vec;
629         if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
630                 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
631                 if (!vec)
632                         goto shrink_ret;
633         }
634
635         offset = *ppos & ~PAGE_CACHE_MASK;
636         nr_pages = (len + offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
637
638         for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
639                 struct page *page;
640
641                 page = alloc_page(GFP_USER);
642                 error = -ENOMEM;
643                 if (!page)
644                         goto err;
645
646                 this_len = min_t(size_t, len, PAGE_CACHE_SIZE - offset);
647                 vec[i].iov_base = (void __user *) page_address(page);
648                 vec[i].iov_len = this_len;
649                 spd.pages[i] = page;
650                 spd.nr_pages++;
651                 len -= this_len;
652                 offset = 0;
653         }
654
655         res = kernel_readv(in, vec, spd.nr_pages, *ppos);
656         if (res < 0) {
657                 error = res;
658                 goto err;
659         }
660
661         error = 0;
662         if (!res)
663                 goto err;
664
665         nr_freed = 0;
666         for (i = 0; i < spd.nr_pages; i++) {
667                 this_len = min_t(size_t, vec[i].iov_len, res);
668                 spd.partial[i].offset = 0;
669                 spd.partial[i].len = this_len;
670                 if (!this_len) {
671                         __free_page(spd.pages[i]);
672                         spd.pages[i] = NULL;
673                         nr_freed++;
674                 }
675                 res -= this_len;
676         }
677         spd.nr_pages -= nr_freed;
678
679         res = splice_to_pipe(pipe, &spd);
680         if (res > 0)
681                 *ppos += res;
682
683 shrink_ret:
684         if (vec != __vec)
685                 kfree(vec);
686         splice_shrink_spd(&spd);
687         return res;
688
689 err:
690         for (i = 0; i < spd.nr_pages; i++)
691                 __free_page(spd.pages[i]);
692
693         res = error;
694         goto shrink_ret;
695 }
696 EXPORT_SYMBOL(default_file_splice_read);
697
698 /*
699  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
700  * using sendpage(). Return the number of bytes sent.
701  */
702 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
703                             struct pipe_buffer *buf, struct splice_desc *sd)
704 {
705         struct file *file = sd->u.file;
706         loff_t pos = sd->pos;
707         int more;
708
709         if (!likely(file->f_op->sendpage))
710                 return -EINVAL;
711
712         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
713
714         if (sd->len < sd->total_len && pipe->nrbufs > 1)
715                 more |= MSG_SENDPAGE_NOTLAST;
716
717         return file->f_op->sendpage(file, buf->page, buf->offset,
718                                     sd->len, &pos, more);
719 }
720
721 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
722 {
723         smp_mb();
724         if (waitqueue_active(&pipe->wait))
725                 wake_up_interruptible(&pipe->wait);
726         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
727 }
728
729 /**
730  * splice_from_pipe_feed - feed available data from a pipe to a file
731  * @pipe:       pipe to splice from
732  * @sd:         information to @actor
733  * @actor:      handler that splices the data
734  *
735  * Description:
736  *    This function loops over the pipe and calls @actor to do the
737  *    actual moving of a single struct pipe_buffer to the desired
738  *    destination.  It returns when there's no more buffers left in
739  *    the pipe or if the requested number of bytes (@sd->total_len)
740  *    have been copied.  It returns a positive number (one) if the
741  *    pipe needs to be filled with more data, zero if the required
742  *    number of bytes have been copied and -errno on error.
743  *
744  *    This, together with splice_from_pipe_{begin,end,next}, may be
745  *    used to implement the functionality of __splice_from_pipe() when
746  *    locking is required around copying the pipe buffers to the
747  *    destination.
748  */
749 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
750                           splice_actor *actor)
751 {
752         int ret;
753
754         while (pipe->nrbufs) {
755                 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
756                 const struct pipe_buf_operations *ops = buf->ops;
757
758                 sd->len = buf->len;
759                 if (sd->len > sd->total_len)
760                         sd->len = sd->total_len;
761
762                 ret = buf->ops->confirm(pipe, buf);
763                 if (unlikely(ret)) {
764                         if (ret == -ENODATA)
765                                 ret = 0;
766                         return ret;
767                 }
768
769                 ret = actor(pipe, buf, sd);
770                 if (ret <= 0)
771                         return ret;
772
773                 buf->offset += ret;
774                 buf->len -= ret;
775
776                 sd->num_spliced += ret;
777                 sd->len -= ret;
778                 sd->pos += ret;
779                 sd->total_len -= ret;
780
781                 if (!buf->len) {
782                         buf->ops = NULL;
783                         ops->release(pipe, buf);
784                         pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
785                         pipe->nrbufs--;
786                         if (pipe->files)
787                                 sd->need_wakeup = true;
788                 }
789
790                 if (!sd->total_len)
791                         return 0;
792         }
793
794         return 1;
795 }
796
797 /**
798  * splice_from_pipe_next - wait for some data to splice from
799  * @pipe:       pipe to splice from
800  * @sd:         information about the splice operation
801  *
802  * Description:
803  *    This function will wait for some data and return a positive
804  *    value (one) if pipe buffers are available.  It will return zero
805  *    or -errno if no more data needs to be spliced.
806  */
807 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
808 {
809         while (!pipe->nrbufs) {
810                 if (!pipe->writers)
811                         return 0;
812
813                 if (!pipe->waiting_writers && sd->num_spliced)
814                         return 0;
815
816                 if (sd->flags & SPLICE_F_NONBLOCK)
817                         return -EAGAIN;
818
819                 if (signal_pending(current))
820                         return -ERESTARTSYS;
821
822                 if (sd->need_wakeup) {
823                         wakeup_pipe_writers(pipe);
824                         sd->need_wakeup = false;
825                 }
826
827                 pipe_wait(pipe);
828         }
829
830         return 1;
831 }
832
833 /**
834  * splice_from_pipe_begin - start splicing from pipe
835  * @sd:         information about the splice operation
836  *
837  * Description:
838  *    This function should be called before a loop containing
839  *    splice_from_pipe_next() and splice_from_pipe_feed() to
840  *    initialize the necessary fields of @sd.
841  */
842 static void splice_from_pipe_begin(struct splice_desc *sd)
843 {
844         sd->num_spliced = 0;
845         sd->need_wakeup = false;
846 }
847
848 /**
849  * splice_from_pipe_end - finish splicing from pipe
850  * @pipe:       pipe to splice from
851  * @sd:         information about the splice operation
852  *
853  * Description:
854  *    This function will wake up pipe writers if necessary.  It should
855  *    be called after a loop containing splice_from_pipe_next() and
856  *    splice_from_pipe_feed().
857  */
858 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
859 {
860         if (sd->need_wakeup)
861                 wakeup_pipe_writers(pipe);
862 }
863
864 /**
865  * __splice_from_pipe - splice data from a pipe to given actor
866  * @pipe:       pipe to splice from
867  * @sd:         information to @actor
868  * @actor:      handler that splices the data
869  *
870  * Description:
871  *    This function does little more than loop over the pipe and call
872  *    @actor to do the actual moving of a single struct pipe_buffer to
873  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
874  *    pipe_to_user.
875  *
876  */
877 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
878                            splice_actor *actor)
879 {
880         int ret;
881
882         splice_from_pipe_begin(sd);
883         do {
884                 ret = splice_from_pipe_next(pipe, sd);
885                 if (ret > 0)
886                         ret = splice_from_pipe_feed(pipe, sd, actor);
887         } while (ret > 0);
888         splice_from_pipe_end(pipe, sd);
889
890         return sd->num_spliced ? sd->num_spliced : ret;
891 }
892 EXPORT_SYMBOL(__splice_from_pipe);
893
894 /**
895  * splice_from_pipe - splice data from a pipe to a file
896  * @pipe:       pipe to splice from
897  * @out:        file to splice to
898  * @ppos:       position in @out
899  * @len:        how many bytes to splice
900  * @flags:      splice modifier flags
901  * @actor:      handler that splices the data
902  *
903  * Description:
904  *    See __splice_from_pipe. This function locks the pipe inode,
905  *    otherwise it's identical to __splice_from_pipe().
906  *
907  */
908 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
909                          loff_t *ppos, size_t len, unsigned int flags,
910                          splice_actor *actor)
911 {
912         ssize_t ret;
913         struct splice_desc sd = {
914                 .total_len = len,
915                 .flags = flags,
916                 .pos = *ppos,
917                 .u.file = out,
918         };
919
920         pipe_lock(pipe);
921         ret = __splice_from_pipe(pipe, &sd, actor);
922         pipe_unlock(pipe);
923
924         return ret;
925 }
926
927 /**
928  * iter_file_splice_write - splice data from a pipe to a file
929  * @pipe:       pipe info
930  * @out:        file to write to
931  * @ppos:       position in @out
932  * @len:        number of bytes to splice
933  * @flags:      splice modifier flags
934  *
935  * Description:
936  *    Will either move or copy pages (determined by @flags options) from
937  *    the given pipe inode to the given file.
938  *    This one is ->write_iter-based.
939  *
940  */
941 ssize_t
942 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
943                           loff_t *ppos, size_t len, unsigned int flags)
944 {
945         struct splice_desc sd = {
946                 .total_len = len,
947                 .flags = flags,
948                 .pos = *ppos,
949                 .u.file = out,
950         };
951         int nbufs = pipe->buffers;
952         struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
953                                         GFP_KERNEL);
954         ssize_t ret;
955
956         if (unlikely(!array))
957                 return -ENOMEM;
958
959         pipe_lock(pipe);
960
961         splice_from_pipe_begin(&sd);
962         while (sd.total_len) {
963                 struct iov_iter from;
964                 size_t left;
965                 int n, idx;
966
967                 ret = splice_from_pipe_next(pipe, &sd);
968                 if (ret <= 0)
969                         break;
970
971                 if (unlikely(nbufs < pipe->buffers)) {
972                         kfree(array);
973                         nbufs = pipe->buffers;
974                         array = kcalloc(nbufs, sizeof(struct bio_vec),
975                                         GFP_KERNEL);
976                         if (!array) {
977                                 ret = -ENOMEM;
978                                 break;
979                         }
980                 }
981
982                 /* build the vector */
983                 left = sd.total_len;
984                 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
985                         struct pipe_buffer *buf = pipe->bufs + idx;
986                         size_t this_len = buf->len;
987
988                         if (this_len > left)
989                                 this_len = left;
990
991                         if (idx == pipe->buffers - 1)
992                                 idx = -1;
993
994                         ret = buf->ops->confirm(pipe, buf);
995                         if (unlikely(ret)) {
996                                 if (ret == -ENODATA)
997                                         ret = 0;
998                                 goto done;
999                         }
1000
1001                         array[n].bv_page = buf->page;
1002                         array[n].bv_len = this_len;
1003                         array[n].bv_offset = buf->offset;
1004                         left -= this_len;
1005                 }
1006
1007                 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1008                               sd.total_len - left);
1009                 ret = vfs_iter_write(out, &from, &sd.pos);
1010                 if (ret <= 0)
1011                         break;
1012
1013                 sd.num_spliced += ret;
1014                 sd.total_len -= ret;
1015                 *ppos = sd.pos;
1016
1017                 /* dismiss the fully eaten buffers, adjust the partial one */
1018                 while (ret) {
1019                         struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1020                         if (ret >= buf->len) {
1021                                 const struct pipe_buf_operations *ops = buf->ops;
1022                                 ret -= buf->len;
1023                                 buf->len = 0;
1024                                 buf->ops = NULL;
1025                                 ops->release(pipe, buf);
1026                                 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1027                                 pipe->nrbufs--;
1028                                 if (pipe->files)
1029                                         sd.need_wakeup = true;
1030                         } else {
1031                                 buf->offset += ret;
1032                                 buf->len -= ret;
1033                                 ret = 0;
1034                         }
1035                 }
1036         }
1037 done:
1038         kfree(array);
1039         splice_from_pipe_end(pipe, &sd);
1040
1041         pipe_unlock(pipe);
1042
1043         if (sd.num_spliced)
1044                 ret = sd.num_spliced;
1045
1046         return ret;
1047 }
1048
1049 EXPORT_SYMBOL(iter_file_splice_write);
1050
1051 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1052                           struct splice_desc *sd)
1053 {
1054         int ret;
1055         void *data;
1056         loff_t tmp = sd->pos;
1057
1058         data = kmap(buf->page);
1059         ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1060         kunmap(buf->page);
1061
1062         return ret;
1063 }
1064
1065 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1066                                          struct file *out, loff_t *ppos,
1067                                          size_t len, unsigned int flags)
1068 {
1069         ssize_t ret;
1070
1071         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1072         if (ret > 0)
1073                 *ppos += ret;
1074
1075         return ret;
1076 }
1077
1078 /**
1079  * generic_splice_sendpage - splice data from a pipe to a socket
1080  * @pipe:       pipe to splice from
1081  * @out:        socket to write to
1082  * @ppos:       position in @out
1083  * @len:        number of bytes to splice
1084  * @flags:      splice modifier flags
1085  *
1086  * Description:
1087  *    Will send @len bytes from the pipe to a network socket. No data copying
1088  *    is involved.
1089  *
1090  */
1091 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1092                                 loff_t *ppos, size_t len, unsigned int flags)
1093 {
1094         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1095 }
1096
1097 EXPORT_SYMBOL(generic_splice_sendpage);
1098
1099 /*
1100  * Attempt to initiate a splice from pipe to file.
1101  */
1102 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1103                            loff_t *ppos, size_t len, unsigned int flags)
1104 {
1105         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1106                                 loff_t *, size_t, unsigned int);
1107
1108         if (out->f_op->splice_write)
1109                 splice_write = out->f_op->splice_write;
1110         else
1111                 splice_write = default_file_splice_write;
1112
1113         return splice_write(pipe, out, ppos, len, flags);
1114 }
1115
1116 /*
1117  * Attempt to initiate a splice from a file to a pipe.
1118  */
1119 static long do_splice_to(struct file *in, loff_t *ppos,
1120                          struct pipe_inode_info *pipe, size_t len,
1121                          unsigned int flags)
1122 {
1123         ssize_t (*splice_read)(struct file *, loff_t *,
1124                                struct pipe_inode_info *, size_t, unsigned int);
1125         int ret;
1126
1127         if (unlikely(!(in->f_mode & FMODE_READ)))
1128                 return -EBADF;
1129
1130         ret = rw_verify_area(READ, in, ppos, len);
1131         if (unlikely(ret < 0))
1132                 return ret;
1133
1134         if (in->f_op->splice_read)
1135                 splice_read = in->f_op->splice_read;
1136         else
1137                 splice_read = default_file_splice_read;
1138
1139         return splice_read(in, ppos, pipe, len, flags);
1140 }
1141
1142 /**
1143  * splice_direct_to_actor - splices data directly between two non-pipes
1144  * @in:         file to splice from
1145  * @sd:         actor information on where to splice to
1146  * @actor:      handles the data splicing
1147  *
1148  * Description:
1149  *    This is a special case helper to splice directly between two
1150  *    points, without requiring an explicit pipe. Internally an allocated
1151  *    pipe is cached in the process, and reused during the lifetime of
1152  *    that process.
1153  *
1154  */
1155 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1156                                splice_direct_actor *actor)
1157 {
1158         struct pipe_inode_info *pipe;
1159         long ret, bytes;
1160         umode_t i_mode;
1161         size_t len;
1162         int i, flags;
1163
1164         /*
1165          * We require the input being a regular file, as we don't want to
1166          * randomly drop data for eg socket -> socket splicing. Use the
1167          * piped splicing for that!
1168          */
1169         i_mode = file_inode(in)->i_mode;
1170         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1171                 return -EINVAL;
1172
1173         /*
1174          * neither in nor out is a pipe, setup an internal pipe attached to
1175          * 'out' and transfer the wanted data from 'in' to 'out' through that
1176          */
1177         pipe = current->splice_pipe;
1178         if (unlikely(!pipe)) {
1179                 pipe = alloc_pipe_info();
1180                 if (!pipe)
1181                         return -ENOMEM;
1182
1183                 /*
1184                  * We don't have an immediate reader, but we'll read the stuff
1185                  * out of the pipe right after the splice_to_pipe(). So set
1186                  * PIPE_READERS appropriately.
1187                  */
1188                 pipe->readers = 1;
1189
1190                 current->splice_pipe = pipe;
1191         }
1192
1193         /*
1194          * Do the splice.
1195          */
1196         ret = 0;
1197         bytes = 0;
1198         len = sd->total_len;
1199         flags = sd->flags;
1200
1201         /*
1202          * Don't block on output, we have to drain the direct pipe.
1203          */
1204         sd->flags &= ~SPLICE_F_NONBLOCK;
1205
1206         while (len) {
1207                 size_t read_len;
1208                 loff_t pos = sd->pos, prev_pos = pos;
1209
1210                 ret = do_splice_to(in, &pos, pipe, len, flags);
1211                 if (unlikely(ret <= 0))
1212                         goto out_release;
1213
1214                 read_len = ret;
1215                 sd->total_len = read_len;
1216
1217                 /*
1218                  * NOTE: nonblocking mode only applies to the input. We
1219                  * must not do the output in nonblocking mode as then we
1220                  * could get stuck data in the internal pipe:
1221                  */
1222                 ret = actor(pipe, sd);
1223                 if (unlikely(ret <= 0)) {
1224                         sd->pos = prev_pos;
1225                         goto out_release;
1226                 }
1227
1228                 bytes += ret;
1229                 len -= ret;
1230                 sd->pos = pos;
1231
1232                 if (ret < read_len) {
1233                         sd->pos = prev_pos + ret;
1234                         goto out_release;
1235                 }
1236         }
1237
1238 done:
1239         pipe->nrbufs = pipe->curbuf = 0;
1240         file_accessed(in);
1241         return bytes;
1242
1243 out_release:
1244         /*
1245          * If we did an incomplete transfer we must release
1246          * the pipe buffers in question:
1247          */
1248         for (i = 0; i < pipe->buffers; i++) {
1249                 struct pipe_buffer *buf = pipe->bufs + i;
1250
1251                 if (buf->ops) {
1252                         buf->ops->release(pipe, buf);
1253                         buf->ops = NULL;
1254                 }
1255         }
1256
1257         if (!bytes)
1258                 bytes = ret;
1259
1260         goto done;
1261 }
1262 EXPORT_SYMBOL(splice_direct_to_actor);
1263
1264 static int direct_splice_actor(struct pipe_inode_info *pipe,
1265                                struct splice_desc *sd)
1266 {
1267         struct file *file = sd->u.file;
1268
1269         return do_splice_from(pipe, file, sd->opos, sd->total_len,
1270                               sd->flags);
1271 }
1272
1273 /**
1274  * do_splice_direct - splices data directly between two files
1275  * @in:         file to splice from
1276  * @ppos:       input file offset
1277  * @out:        file to splice to
1278  * @opos:       output file offset
1279  * @len:        number of bytes to splice
1280  * @flags:      splice modifier flags
1281  *
1282  * Description:
1283  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1284  *    doing it in the application would incur an extra system call
1285  *    (splice in + splice out, as compared to just sendfile()). So this helper
1286  *    can splice directly through a process-private pipe.
1287  *
1288  */
1289 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1290                       loff_t *opos, size_t len, unsigned int flags)
1291 {
1292         struct splice_desc sd = {
1293                 .len            = len,
1294                 .total_len      = len,
1295                 .flags          = flags,
1296                 .pos            = *ppos,
1297                 .u.file         = out,
1298                 .opos           = opos,
1299         };
1300         long ret;
1301
1302         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1303                 return -EBADF;
1304
1305         if (unlikely(out->f_flags & O_APPEND))
1306                 return -EINVAL;
1307
1308         ret = rw_verify_area(WRITE, out, opos, len);
1309         if (unlikely(ret < 0))
1310                 return ret;
1311
1312         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1313         if (ret > 0)
1314                 *ppos = sd.pos;
1315
1316         return ret;
1317 }
1318 EXPORT_SYMBOL(do_splice_direct);
1319
1320 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1321                                struct pipe_inode_info *opipe,
1322                                size_t len, unsigned int flags);
1323
1324 /*
1325  * Determine where to splice to/from.
1326  */
1327 static long do_splice(struct file *in, loff_t __user *off_in,
1328                       struct file *out, loff_t __user *off_out,
1329                       size_t len, unsigned int flags)
1330 {
1331         struct pipe_inode_info *ipipe;
1332         struct pipe_inode_info *opipe;
1333         loff_t offset;
1334         long ret;
1335
1336         ipipe = get_pipe_info(in);
1337         opipe = get_pipe_info(out);
1338
1339         if (ipipe && opipe) {
1340                 if (off_in || off_out)
1341                         return -ESPIPE;
1342
1343                 if (!(in->f_mode & FMODE_READ))
1344                         return -EBADF;
1345
1346                 if (!(out->f_mode & FMODE_WRITE))
1347                         return -EBADF;
1348
1349                 /* Splicing to self would be fun, but... */
1350                 if (ipipe == opipe)
1351                         return -EINVAL;
1352
1353                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1354         }
1355
1356         if (ipipe) {
1357                 if (off_in)
1358                         return -ESPIPE;
1359                 if (off_out) {
1360                         if (!(out->f_mode & FMODE_PWRITE))
1361                                 return -EINVAL;
1362                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1363                                 return -EFAULT;
1364                 } else {
1365                         offset = out->f_pos;
1366                 }
1367
1368                 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1369                         return -EBADF;
1370
1371                 if (unlikely(out->f_flags & O_APPEND))
1372                         return -EINVAL;
1373
1374                 ret = rw_verify_area(WRITE, out, &offset, len);
1375                 if (unlikely(ret < 0))
1376                         return ret;
1377
1378                 file_start_write(out);
1379                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1380                 file_end_write(out);
1381
1382                 if (!off_out)
1383                         out->f_pos = offset;
1384                 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1385                         ret = -EFAULT;
1386
1387                 return ret;
1388         }
1389
1390         if (opipe) {
1391                 if (off_out)
1392                         return -ESPIPE;
1393                 if (off_in) {
1394                         if (!(in->f_mode & FMODE_PREAD))
1395                                 return -EINVAL;
1396                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1397                                 return -EFAULT;
1398                 } else {
1399                         offset = in->f_pos;
1400                 }
1401
1402                 ret = do_splice_to(in, &offset, opipe, len, flags);
1403
1404                 if (!off_in)
1405                         in->f_pos = offset;
1406                 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1407                         ret = -EFAULT;
1408
1409                 return ret;
1410         }
1411
1412         return -EINVAL;
1413 }
1414
1415 /*
1416  * Map an iov into an array of pages and offset/length tupples. With the
1417  * partial_page structure, we can map several non-contiguous ranges into
1418  * our ones pages[] map instead of splitting that operation into pieces.
1419  * Could easily be exported as a generic helper for other users, in which
1420  * case one would probably want to add a 'max_nr_pages' parameter as well.
1421  */
1422 static int get_iovec_page_array(const struct iovec __user *iov,
1423                                 unsigned int nr_vecs, struct page **pages,
1424                                 struct partial_page *partial, bool aligned,
1425                                 unsigned int pipe_buffers)
1426 {
1427         int buffers = 0, error = 0;
1428
1429         while (nr_vecs) {
1430                 unsigned long off, npages;
1431                 struct iovec entry;
1432                 void __user *base;
1433                 size_t len;
1434                 int i;
1435
1436                 error = -EFAULT;
1437                 if (copy_from_user(&entry, iov, sizeof(entry)))
1438                         break;
1439
1440                 base = entry.iov_base;
1441                 len = entry.iov_len;
1442
1443                 /*
1444                  * Sanity check this iovec. 0 read succeeds.
1445                  */
1446                 error = 0;
1447                 if (unlikely(!len))
1448                         break;
1449                 error = -EFAULT;
1450                 if (!access_ok(VERIFY_READ, base, len))
1451                         break;
1452
1453                 /*
1454                  * Get this base offset and number of pages, then map
1455                  * in the user pages.
1456                  */
1457                 off = (unsigned long) base & ~PAGE_MASK;
1458
1459                 /*
1460                  * If asked for alignment, the offset must be zero and the
1461                  * length a multiple of the PAGE_SIZE.
1462                  */
1463                 error = -EINVAL;
1464                 if (aligned && (off || len & ~PAGE_MASK))
1465                         break;
1466
1467                 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1468                 if (npages > pipe_buffers - buffers)
1469                         npages = pipe_buffers - buffers;
1470
1471                 error = get_user_pages_fast((unsigned long)base, npages,
1472                                         0, &pages[buffers]);
1473
1474                 if (unlikely(error <= 0))
1475                         break;
1476
1477                 /*
1478                  * Fill this contiguous range into the partial page map.
1479                  */
1480                 for (i = 0; i < error; i++) {
1481                         const int plen = min_t(size_t, len, PAGE_SIZE - off);
1482
1483                         partial[buffers].offset = off;
1484                         partial[buffers].len = plen;
1485
1486                         off = 0;
1487                         len -= plen;
1488                         buffers++;
1489                 }
1490
1491                 /*
1492                  * We didn't complete this iov, stop here since it probably
1493                  * means we have to move some of this into a pipe to
1494                  * be able to continue.
1495                  */
1496                 if (len)
1497                         break;
1498
1499                 /*
1500                  * Don't continue if we mapped fewer pages than we asked for,
1501                  * or if we mapped the max number of pages that we have
1502                  * room for.
1503                  */
1504                 if (error < npages || buffers == pipe_buffers)
1505                         break;
1506
1507                 nr_vecs--;
1508                 iov++;
1509         }
1510
1511         if (buffers)
1512                 return buffers;
1513
1514         return error;
1515 }
1516
1517 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1518                         struct splice_desc *sd)
1519 {
1520         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1521         return n == sd->len ? n : -EFAULT;
1522 }
1523
1524 /*
1525  * For lack of a better implementation, implement vmsplice() to userspace
1526  * as a simple copy of the pipes pages to the user iov.
1527  */
1528 static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1529                              unsigned long nr_segs, unsigned int flags)
1530 {
1531         struct pipe_inode_info *pipe;
1532         struct splice_desc sd;
1533         long ret;
1534         struct iovec iovstack[UIO_FASTIOV];
1535         struct iovec *iov = iovstack;
1536         struct iov_iter iter;
1537         ssize_t count;
1538
1539         pipe = get_pipe_info(file);
1540         if (!pipe)
1541                 return -EBADF;
1542
1543         ret = rw_copy_check_uvector(READ, uiov, nr_segs,
1544                                     ARRAY_SIZE(iovstack), iovstack, &iov);
1545         if (ret <= 0)
1546                 goto out;
1547
1548         count = ret;
1549         iov_iter_init(&iter, READ, iov, nr_segs, count);
1550
1551         sd.len = 0;
1552         sd.total_len = count;
1553         sd.flags = flags;
1554         sd.u.data = &iter;
1555         sd.pos = 0;
1556
1557         pipe_lock(pipe);
1558         ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1559         pipe_unlock(pipe);
1560
1561 out:
1562         if (iov != iovstack)
1563                 kfree(iov);
1564
1565         return ret;
1566 }
1567
1568 /*
1569  * vmsplice splices a user address range into a pipe. It can be thought of
1570  * as splice-from-memory, where the regular splice is splice-from-file (or
1571  * to file). In both cases the output is a pipe, naturally.
1572  */
1573 static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1574                              unsigned long nr_segs, unsigned int flags)
1575 {
1576         struct pipe_inode_info *pipe;
1577         struct page *pages[PIPE_DEF_BUFFERS];
1578         struct partial_page partial[PIPE_DEF_BUFFERS];
1579         struct splice_pipe_desc spd = {
1580                 .pages = pages,
1581                 .partial = partial,
1582                 .nr_pages_max = PIPE_DEF_BUFFERS,
1583                 .flags = flags,
1584                 .ops = &user_page_pipe_buf_ops,
1585                 .spd_release = spd_release_page,
1586         };
1587         long ret;
1588
1589         pipe = get_pipe_info(file);
1590         if (!pipe)
1591                 return -EBADF;
1592
1593         if (splice_grow_spd(pipe, &spd))
1594                 return -ENOMEM;
1595
1596         spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1597                                             spd.partial, false,
1598                                             spd.nr_pages_max);
1599         if (spd.nr_pages <= 0)
1600                 ret = spd.nr_pages;
1601         else
1602                 ret = splice_to_pipe(pipe, &spd);
1603
1604         splice_shrink_spd(&spd);
1605         return ret;
1606 }
1607
1608 /*
1609  * Note that vmsplice only really supports true splicing _from_ user memory
1610  * to a pipe, not the other way around. Splicing from user memory is a simple
1611  * operation that can be supported without any funky alignment restrictions
1612  * or nasty vm tricks. We simply map in the user memory and fill them into
1613  * a pipe. The reverse isn't quite as easy, though. There are two possible
1614  * solutions for that:
1615  *
1616  *      - memcpy() the data internally, at which point we might as well just
1617  *        do a regular read() on the buffer anyway.
1618  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1619  *        has restriction limitations on both ends of the pipe).
1620  *
1621  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1622  *
1623  */
1624 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1625                 unsigned long, nr_segs, unsigned int, flags)
1626 {
1627         struct fd f;
1628         long error;
1629
1630         if (unlikely(nr_segs > UIO_MAXIOV))
1631                 return -EINVAL;
1632         else if (unlikely(!nr_segs))
1633                 return 0;
1634
1635         error = -EBADF;
1636         f = fdget(fd);
1637         if (f.file) {
1638                 if (f.file->f_mode & FMODE_WRITE)
1639                         error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1640                 else if (f.file->f_mode & FMODE_READ)
1641                         error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1642
1643                 fdput(f);
1644         }
1645
1646         return error;
1647 }
1648
1649 #ifdef CONFIG_COMPAT
1650 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1651                     unsigned int, nr_segs, unsigned int, flags)
1652 {
1653         unsigned i;
1654         struct iovec __user *iov;
1655         if (nr_segs > UIO_MAXIOV)
1656                 return -EINVAL;
1657         iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1658         for (i = 0; i < nr_segs; i++) {
1659                 struct compat_iovec v;
1660                 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1661                     get_user(v.iov_len, &iov32[i].iov_len) ||
1662                     put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1663                     put_user(v.iov_len, &iov[i].iov_len))
1664                         return -EFAULT;
1665         }
1666         return sys_vmsplice(fd, iov, nr_segs, flags);
1667 }
1668 #endif
1669
1670 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1671                 int, fd_out, loff_t __user *, off_out,
1672                 size_t, len, unsigned int, flags)
1673 {
1674         struct fd in, out;
1675         long error;
1676
1677         if (unlikely(!len))
1678                 return 0;
1679
1680         error = -EBADF;
1681         in = fdget(fd_in);
1682         if (in.file) {
1683                 if (in.file->f_mode & FMODE_READ) {
1684                         out = fdget(fd_out);
1685                         if (out.file) {
1686                                 if (out.file->f_mode & FMODE_WRITE)
1687                                         error = do_splice(in.file, off_in,
1688                                                           out.file, off_out,
1689                                                           len, flags);
1690                                 fdput(out);
1691                         }
1692                 }
1693                 fdput(in);
1694         }
1695         return error;
1696 }
1697
1698 /*
1699  * Make sure there's data to read. Wait for input if we can, otherwise
1700  * return an appropriate error.
1701  */
1702 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1703 {
1704         int ret;
1705
1706         /*
1707          * Check ->nrbufs without the inode lock first. This function
1708          * is speculative anyways, so missing one is ok.
1709          */
1710         if (pipe->nrbufs)
1711                 return 0;
1712
1713         ret = 0;
1714         pipe_lock(pipe);
1715
1716         while (!pipe->nrbufs) {
1717                 if (signal_pending(current)) {
1718                         ret = -ERESTARTSYS;
1719                         break;
1720                 }
1721                 if (!pipe->writers)
1722                         break;
1723                 if (!pipe->waiting_writers) {
1724                         if (flags & SPLICE_F_NONBLOCK) {
1725                                 ret = -EAGAIN;
1726                                 break;
1727                         }
1728                 }
1729                 pipe_wait(pipe);
1730         }
1731
1732         pipe_unlock(pipe);
1733         return ret;
1734 }
1735
1736 /*
1737  * Make sure there's writeable room. Wait for room if we can, otherwise
1738  * return an appropriate error.
1739  */
1740 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1741 {
1742         int ret;
1743
1744         /*
1745          * Check ->nrbufs without the inode lock first. This function
1746          * is speculative anyways, so missing one is ok.
1747          */
1748         if (pipe->nrbufs < pipe->buffers)
1749                 return 0;
1750
1751         ret = 0;
1752         pipe_lock(pipe);
1753
1754         while (pipe->nrbufs >= pipe->buffers) {
1755                 if (!pipe->readers) {
1756                         send_sig(SIGPIPE, current, 0);
1757                         ret = -EPIPE;
1758                         break;
1759                 }
1760                 if (flags & SPLICE_F_NONBLOCK) {
1761                         ret = -EAGAIN;
1762                         break;
1763                 }
1764                 if (signal_pending(current)) {
1765                         ret = -ERESTARTSYS;
1766                         break;
1767                 }
1768                 pipe->waiting_writers++;
1769                 pipe_wait(pipe);
1770                 pipe->waiting_writers--;
1771         }
1772
1773         pipe_unlock(pipe);
1774         return ret;
1775 }
1776
1777 /*
1778  * Splice contents of ipipe to opipe.
1779  */
1780 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1781                                struct pipe_inode_info *opipe,
1782                                size_t len, unsigned int flags)
1783 {
1784         struct pipe_buffer *ibuf, *obuf;
1785         int ret = 0, nbuf;
1786         bool input_wakeup = false;
1787
1788
1789 retry:
1790         ret = ipipe_prep(ipipe, flags);
1791         if (ret)
1792                 return ret;
1793
1794         ret = opipe_prep(opipe, flags);
1795         if (ret)
1796                 return ret;
1797
1798         /*
1799          * Potential ABBA deadlock, work around it by ordering lock
1800          * grabbing by pipe info address. Otherwise two different processes
1801          * could deadlock (one doing tee from A -> B, the other from B -> A).
1802          */
1803         pipe_double_lock(ipipe, opipe);
1804
1805         do {
1806                 if (!opipe->readers) {
1807                         send_sig(SIGPIPE, current, 0);
1808                         if (!ret)
1809                                 ret = -EPIPE;
1810                         break;
1811                 }
1812
1813                 if (!ipipe->nrbufs && !ipipe->writers)
1814                         break;
1815
1816                 /*
1817                  * Cannot make any progress, because either the input
1818                  * pipe is empty or the output pipe is full.
1819                  */
1820                 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1821                         /* Already processed some buffers, break */
1822                         if (ret)
1823                                 break;
1824
1825                         if (flags & SPLICE_F_NONBLOCK) {
1826                                 ret = -EAGAIN;
1827                                 break;
1828                         }
1829
1830                         /*
1831                          * We raced with another reader/writer and haven't
1832                          * managed to process any buffers.  A zero return
1833                          * value means EOF, so retry instead.
1834                          */
1835                         pipe_unlock(ipipe);
1836                         pipe_unlock(opipe);
1837                         goto retry;
1838                 }
1839
1840                 ibuf = ipipe->bufs + ipipe->curbuf;
1841                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1842                 obuf = opipe->bufs + nbuf;
1843
1844                 if (len >= ibuf->len) {
1845                         /*
1846                          * Simply move the whole buffer from ipipe to opipe
1847                          */
1848                         *obuf = *ibuf;
1849                         ibuf->ops = NULL;
1850                         opipe->nrbufs++;
1851                         ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1852                         ipipe->nrbufs--;
1853                         input_wakeup = true;
1854                 } else {
1855                         /*
1856                          * Get a reference to this pipe buffer,
1857                          * so we can copy the contents over.
1858                          */
1859                         ibuf->ops->get(ipipe, ibuf);
1860                         *obuf = *ibuf;
1861
1862                         /*
1863                          * Don't inherit the gift flag, we need to
1864                          * prevent multiple steals of this page.
1865                          */
1866                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1867
1868                         obuf->len = len;
1869                         opipe->nrbufs++;
1870                         ibuf->offset += obuf->len;
1871                         ibuf->len -= obuf->len;
1872                 }
1873                 ret += obuf->len;
1874                 len -= obuf->len;
1875         } while (len);
1876
1877         pipe_unlock(ipipe);
1878         pipe_unlock(opipe);
1879
1880         /*
1881          * If we put data in the output pipe, wakeup any potential readers.
1882          */
1883         if (ret > 0)
1884                 wakeup_pipe_readers(opipe);
1885
1886         if (input_wakeup)
1887                 wakeup_pipe_writers(ipipe);
1888
1889         return ret;
1890 }
1891
1892 /*
1893  * Link contents of ipipe to opipe.
1894  */
1895 static int link_pipe(struct pipe_inode_info *ipipe,
1896                      struct pipe_inode_info *opipe,
1897                      size_t len, unsigned int flags)
1898 {
1899         struct pipe_buffer *ibuf, *obuf;
1900         int ret = 0, i = 0, nbuf;
1901
1902         /*
1903          * Potential ABBA deadlock, work around it by ordering lock
1904          * grabbing by pipe info address. Otherwise two different processes
1905          * could deadlock (one doing tee from A -> B, the other from B -> A).
1906          */
1907         pipe_double_lock(ipipe, opipe);
1908
1909         do {
1910                 if (!opipe->readers) {
1911                         send_sig(SIGPIPE, current, 0);
1912                         if (!ret)
1913                                 ret = -EPIPE;
1914                         break;
1915                 }
1916
1917                 /*
1918                  * If we have iterated all input buffers or ran out of
1919                  * output room, break.
1920                  */
1921                 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1922                         break;
1923
1924                 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1925                 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1926
1927                 /*
1928                  * Get a reference to this pipe buffer,
1929                  * so we can copy the contents over.
1930                  */
1931                 ibuf->ops->get(ipipe, ibuf);
1932
1933                 obuf = opipe->bufs + nbuf;
1934                 *obuf = *ibuf;
1935
1936                 /*
1937                  * Don't inherit the gift flag, we need to
1938                  * prevent multiple steals of this page.
1939                  */
1940                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1941
1942                 if (obuf->len > len)
1943                         obuf->len = len;
1944
1945                 opipe->nrbufs++;
1946                 ret += obuf->len;
1947                 len -= obuf->len;
1948                 i++;
1949         } while (len);
1950
1951         /*
1952          * return EAGAIN if we have the potential of some data in the
1953          * future, otherwise just return 0
1954          */
1955         if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1956                 ret = -EAGAIN;
1957
1958         pipe_unlock(ipipe);
1959         pipe_unlock(opipe);
1960
1961         /*
1962          * If we put data in the output pipe, wakeup any potential readers.
1963          */
1964         if (ret > 0)
1965                 wakeup_pipe_readers(opipe);
1966
1967         return ret;
1968 }
1969
1970 /*
1971  * This is a tee(1) implementation that works on pipes. It doesn't copy
1972  * any data, it simply references the 'in' pages on the 'out' pipe.
1973  * The 'flags' used are the SPLICE_F_* variants, currently the only
1974  * applicable one is SPLICE_F_NONBLOCK.
1975  */
1976 static long do_tee(struct file *in, struct file *out, size_t len,
1977                    unsigned int flags)
1978 {
1979         struct pipe_inode_info *ipipe = get_pipe_info(in);
1980         struct pipe_inode_info *opipe = get_pipe_info(out);
1981         int ret = -EINVAL;
1982
1983         /*
1984          * Duplicate the contents of ipipe to opipe without actually
1985          * copying the data.
1986          */
1987         if (ipipe && opipe && ipipe != opipe) {
1988                 /*
1989                  * Keep going, unless we encounter an error. The ipipe/opipe
1990                  * ordering doesn't really matter.
1991                  */
1992                 ret = ipipe_prep(ipipe, flags);
1993                 if (!ret) {
1994                         ret = opipe_prep(opipe, flags);
1995                         if (!ret)
1996                                 ret = link_pipe(ipipe, opipe, len, flags);
1997                 }
1998         }
1999
2000         return ret;
2001 }
2002
2003 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2004 {
2005         struct fd in;
2006         int error;
2007
2008         if (unlikely(!len))
2009                 return 0;
2010
2011         error = -EBADF;
2012         in = fdget(fdin);
2013         if (in.file) {
2014                 if (in.file->f_mode & FMODE_READ) {
2015                         struct fd out = fdget(fdout);
2016                         if (out.file) {
2017                                 if (out.file->f_mode & FMODE_WRITE)
2018                                         error = do_tee(in.file, out.file,
2019                                                         len, flags);
2020                                 fdput(out);
2021                         }
2022                 }
2023                 fdput(in);
2024         }
2025
2026         return error;
2027 }