CIFS: Close cached root handle only if it has a lease
[platform/kernel/linux-starfive.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/security.h>
34 #include <linux/gfp.h>
35 #include <linux/socket.h>
36 #include <linux/compat.h>
37 #include <linux/sched/signal.h>
38
39 #include "internal.h"
40
41 /*
42  * Attempt to steal a page from a pipe buffer. This should perhaps go into
43  * a vm helper function, it's already simplified quite a bit by the
44  * addition of remove_mapping(). If success is returned, the caller may
45  * attempt to reuse this page for another destination.
46  */
47 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
48                                      struct pipe_buffer *buf)
49 {
50         struct page *page = buf->page;
51         struct address_space *mapping;
52
53         lock_page(page);
54
55         mapping = page_mapping(page);
56         if (mapping) {
57                 WARN_ON(!PageUptodate(page));
58
59                 /*
60                  * At least for ext2 with nobh option, we need to wait on
61                  * writeback completing on this page, since we'll remove it
62                  * from the pagecache.  Otherwise truncate wont wait on the
63                  * page, allowing the disk blocks to be reused by someone else
64                  * before we actually wrote our data to them. fs corruption
65                  * ensues.
66                  */
67                 wait_on_page_writeback(page);
68
69                 if (page_has_private(page) &&
70                     !try_to_release_page(page, GFP_KERNEL))
71                         goto out_unlock;
72
73                 /*
74                  * If we succeeded in removing the mapping, set LRU flag
75                  * and return good.
76                  */
77                 if (remove_mapping(mapping, page)) {
78                         buf->flags |= PIPE_BUF_FLAG_LRU;
79                         return 0;
80                 }
81         }
82
83         /*
84          * Raced with truncate or failed to remove page from current
85          * address space, unlock and return failure.
86          */
87 out_unlock:
88         unlock_page(page);
89         return 1;
90 }
91
92 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
93                                         struct pipe_buffer *buf)
94 {
95         put_page(buf->page);
96         buf->flags &= ~PIPE_BUF_FLAG_LRU;
97 }
98
99 /*
100  * Check whether the contents of buf is OK to access. Since the content
101  * is a page cache page, IO may be in flight.
102  */
103 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
104                                        struct pipe_buffer *buf)
105 {
106         struct page *page = buf->page;
107         int err;
108
109         if (!PageUptodate(page)) {
110                 lock_page(page);
111
112                 /*
113                  * Page got truncated/unhashed. This will cause a 0-byte
114                  * splice, if this is the first page.
115                  */
116                 if (!page->mapping) {
117                         err = -ENODATA;
118                         goto error;
119                 }
120
121                 /*
122                  * Uh oh, read-error from disk.
123                  */
124                 if (!PageUptodate(page)) {
125                         err = -EIO;
126                         goto error;
127                 }
128
129                 /*
130                  * Page is ok afterall, we are done.
131                  */
132                 unlock_page(page);
133         }
134
135         return 0;
136 error:
137         unlock_page(page);
138         return err;
139 }
140
141 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
142         .confirm = page_cache_pipe_buf_confirm,
143         .release = page_cache_pipe_buf_release,
144         .steal = page_cache_pipe_buf_steal,
145         .get = generic_pipe_buf_get,
146 };
147
148 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
149                                     struct pipe_buffer *buf)
150 {
151         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152                 return 1;
153
154         buf->flags |= PIPE_BUF_FLAG_LRU;
155         return generic_pipe_buf_steal(pipe, buf);
156 }
157
158 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159         .confirm = generic_pipe_buf_confirm,
160         .release = page_cache_pipe_buf_release,
161         .steal = user_page_pipe_buf_steal,
162         .get = generic_pipe_buf_get,
163 };
164
165 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
166 {
167         smp_mb();
168         if (waitqueue_active(&pipe->wait))
169                 wake_up_interruptible(&pipe->wait);
170         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
171 }
172
173 /**
174  * splice_to_pipe - fill passed data into a pipe
175  * @pipe:       pipe to fill
176  * @spd:        data to fill
177  *
178  * Description:
179  *    @spd contains a map of pages and len/offset tuples, along with
180  *    the struct pipe_buf_operations associated with these pages. This
181  *    function will link that data to the pipe.
182  *
183  */
184 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
185                        struct splice_pipe_desc *spd)
186 {
187         unsigned int spd_pages = spd->nr_pages;
188         unsigned int tail = pipe->tail;
189         unsigned int head = pipe->head;
190         unsigned int mask = pipe->ring_size - 1;
191         int ret = 0, page_nr = 0;
192
193         if (!spd_pages)
194                 return 0;
195
196         if (unlikely(!pipe->readers)) {
197                 send_sig(SIGPIPE, current, 0);
198                 ret = -EPIPE;
199                 goto out;
200         }
201
202         while (!pipe_full(head, tail, pipe->max_usage)) {
203                 struct pipe_buffer *buf = &pipe->bufs[head & mask];
204
205                 buf->page = spd->pages[page_nr];
206                 buf->offset = spd->partial[page_nr].offset;
207                 buf->len = spd->partial[page_nr].len;
208                 buf->private = spd->partial[page_nr].private;
209                 buf->ops = spd->ops;
210                 buf->flags = 0;
211
212                 head++;
213                 pipe->head = head;
214                 page_nr++;
215                 ret += buf->len;
216
217                 if (!--spd->nr_pages)
218                         break;
219         }
220
221         if (!ret)
222                 ret = -EAGAIN;
223
224 out:
225         while (page_nr < spd_pages)
226                 spd->spd_release(spd, page_nr++);
227
228         return ret;
229 }
230 EXPORT_SYMBOL_GPL(splice_to_pipe);
231
232 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
233 {
234         unsigned int head = pipe->head;
235         unsigned int tail = pipe->tail;
236         unsigned int mask = pipe->ring_size - 1;
237         int ret;
238
239         if (unlikely(!pipe->readers)) {
240                 send_sig(SIGPIPE, current, 0);
241                 ret = -EPIPE;
242         } else if (pipe_full(head, tail, pipe->max_usage)) {
243                 ret = -EAGAIN;
244         } else {
245                 pipe->bufs[head & mask] = *buf;
246                 pipe->head = head + 1;
247                 return buf->len;
248         }
249         pipe_buf_release(pipe, buf);
250         return ret;
251 }
252 EXPORT_SYMBOL(add_to_pipe);
253
254 /*
255  * Check if we need to grow the arrays holding pages and partial page
256  * descriptions.
257  */
258 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
259 {
260         unsigned int max_usage = READ_ONCE(pipe->max_usage);
261
262         spd->nr_pages_max = max_usage;
263         if (max_usage <= PIPE_DEF_BUFFERS)
264                 return 0;
265
266         spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
267         spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
268                                      GFP_KERNEL);
269
270         if (spd->pages && spd->partial)
271                 return 0;
272
273         kfree(spd->pages);
274         kfree(spd->partial);
275         return -ENOMEM;
276 }
277
278 void splice_shrink_spd(struct splice_pipe_desc *spd)
279 {
280         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
281                 return;
282
283         kfree(spd->pages);
284         kfree(spd->partial);
285 }
286
287 /**
288  * generic_file_splice_read - splice data from file to a pipe
289  * @in:         file to splice from
290  * @ppos:       position in @in
291  * @pipe:       pipe to splice to
292  * @len:        number of bytes to splice
293  * @flags:      splice modifier flags
294  *
295  * Description:
296  *    Will read pages from given file and fill them into a pipe. Can be
297  *    used as long as it has more or less sane ->read_iter().
298  *
299  */
300 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
301                                  struct pipe_inode_info *pipe, size_t len,
302                                  unsigned int flags)
303 {
304         struct iov_iter to;
305         struct kiocb kiocb;
306         unsigned int i_head;
307         int ret;
308
309         iov_iter_pipe(&to, READ, pipe, len);
310         i_head = to.head;
311         init_sync_kiocb(&kiocb, in);
312         kiocb.ki_pos = *ppos;
313         ret = call_read_iter(in, &kiocb, &to);
314         if (ret > 0) {
315                 *ppos = kiocb.ki_pos;
316                 file_accessed(in);
317         } else if (ret < 0) {
318                 to.head = i_head;
319                 to.iov_offset = 0;
320                 iov_iter_advance(&to, 0); /* to free what was emitted */
321                 /*
322                  * callers of ->splice_read() expect -EAGAIN on
323                  * "can't put anything in there", rather than -EFAULT.
324                  */
325                 if (ret == -EFAULT)
326                         ret = -EAGAIN;
327         }
328
329         return ret;
330 }
331 EXPORT_SYMBOL(generic_file_splice_read);
332
333 const struct pipe_buf_operations default_pipe_buf_ops = {
334         .confirm = generic_pipe_buf_confirm,
335         .release = generic_pipe_buf_release,
336         .steal = generic_pipe_buf_steal,
337         .get = generic_pipe_buf_get,
338 };
339
340 int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
341                              struct pipe_buffer *buf)
342 {
343         return 1;
344 }
345
346 /* Pipe buffer operations for a socket and similar. */
347 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
348         .confirm = generic_pipe_buf_confirm,
349         .release = generic_pipe_buf_release,
350         .steal = generic_pipe_buf_nosteal,
351         .get = generic_pipe_buf_get,
352 };
353 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
354
355 static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
356                             unsigned long vlen, loff_t offset)
357 {
358         mm_segment_t old_fs;
359         loff_t pos = offset;
360         ssize_t res;
361
362         old_fs = get_fs();
363         set_fs(KERNEL_DS);
364         /* The cast to a user pointer is valid due to the set_fs() */
365         res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
366         set_fs(old_fs);
367
368         return res;
369 }
370
371 static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
372                                  struct pipe_inode_info *pipe, size_t len,
373                                  unsigned int flags)
374 {
375         struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
376         struct iov_iter to;
377         struct page **pages;
378         unsigned int nr_pages;
379         unsigned int mask;
380         size_t offset, base, copied = 0;
381         ssize_t res;
382         int i;
383
384         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
385                 return -EAGAIN;
386
387         /*
388          * Try to keep page boundaries matching to source pagecache ones -
389          * it probably won't be much help, but...
390          */
391         offset = *ppos & ~PAGE_MASK;
392
393         iov_iter_pipe(&to, READ, pipe, len + offset);
394
395         res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
396         if (res <= 0)
397                 return -ENOMEM;
398
399         nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
400
401         vec = __vec;
402         if (nr_pages > PIPE_DEF_BUFFERS) {
403                 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL);
404                 if (unlikely(!vec)) {
405                         res = -ENOMEM;
406                         goto out;
407                 }
408         }
409
410         mask = pipe->ring_size - 1;
411         pipe->bufs[to.head & mask].offset = offset;
412         pipe->bufs[to.head & mask].len -= offset;
413
414         for (i = 0; i < nr_pages; i++) {
415                 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
416                 vec[i].iov_base = page_address(pages[i]) + offset;
417                 vec[i].iov_len = this_len;
418                 len -= this_len;
419                 offset = 0;
420         }
421
422         res = kernel_readv(in, vec, nr_pages, *ppos);
423         if (res > 0) {
424                 copied = res;
425                 *ppos += res;
426         }
427
428         if (vec != __vec)
429                 kfree(vec);
430 out:
431         for (i = 0; i < nr_pages; i++)
432                 put_page(pages[i]);
433         kvfree(pages);
434         iov_iter_advance(&to, copied);  /* truncates and discards */
435         return res;
436 }
437
438 /*
439  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
440  * using sendpage(). Return the number of bytes sent.
441  */
442 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
443                             struct pipe_buffer *buf, struct splice_desc *sd)
444 {
445         struct file *file = sd->u.file;
446         loff_t pos = sd->pos;
447         int more;
448
449         if (!likely(file->f_op->sendpage))
450                 return -EINVAL;
451
452         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
453
454         if (sd->len < sd->total_len &&
455             pipe_occupancy(pipe->head, pipe->tail) > 1)
456                 more |= MSG_SENDPAGE_NOTLAST;
457
458         return file->f_op->sendpage(file, buf->page, buf->offset,
459                                     sd->len, &pos, more);
460 }
461
462 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
463 {
464         smp_mb();
465         if (waitqueue_active(&pipe->wait))
466                 wake_up_interruptible(&pipe->wait);
467         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
468 }
469
470 /**
471  * splice_from_pipe_feed - feed available data from a pipe to a file
472  * @pipe:       pipe to splice from
473  * @sd:         information to @actor
474  * @actor:      handler that splices the data
475  *
476  * Description:
477  *    This function loops over the pipe and calls @actor to do the
478  *    actual moving of a single struct pipe_buffer to the desired
479  *    destination.  It returns when there's no more buffers left in
480  *    the pipe or if the requested number of bytes (@sd->total_len)
481  *    have been copied.  It returns a positive number (one) if the
482  *    pipe needs to be filled with more data, zero if the required
483  *    number of bytes have been copied and -errno on error.
484  *
485  *    This, together with splice_from_pipe_{begin,end,next}, may be
486  *    used to implement the functionality of __splice_from_pipe() when
487  *    locking is required around copying the pipe buffers to the
488  *    destination.
489  */
490 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
491                           splice_actor *actor)
492 {
493         unsigned int head = pipe->head;
494         unsigned int tail = pipe->tail;
495         unsigned int mask = pipe->ring_size - 1;
496         int ret;
497
498         while (!pipe_empty(head, tail)) {
499                 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
500
501                 sd->len = buf->len;
502                 if (sd->len > sd->total_len)
503                         sd->len = sd->total_len;
504
505                 ret = pipe_buf_confirm(pipe, buf);
506                 if (unlikely(ret)) {
507                         if (ret == -ENODATA)
508                                 ret = 0;
509                         return ret;
510                 }
511
512                 ret = actor(pipe, buf, sd);
513                 if (ret <= 0)
514                         return ret;
515
516                 buf->offset += ret;
517                 buf->len -= ret;
518
519                 sd->num_spliced += ret;
520                 sd->len -= ret;
521                 sd->pos += ret;
522                 sd->total_len -= ret;
523
524                 if (!buf->len) {
525                         pipe_buf_release(pipe, buf);
526                         tail++;
527                         pipe->tail = tail;
528                         if (pipe->files)
529                                 sd->need_wakeup = true;
530                 }
531
532                 if (!sd->total_len)
533                         return 0;
534         }
535
536         return 1;
537 }
538
539 /**
540  * splice_from_pipe_next - wait for some data to splice from
541  * @pipe:       pipe to splice from
542  * @sd:         information about the splice operation
543  *
544  * Description:
545  *    This function will wait for some data and return a positive
546  *    value (one) if pipe buffers are available.  It will return zero
547  *    or -errno if no more data needs to be spliced.
548  */
549 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
550 {
551         /*
552          * Check for signal early to make process killable when there are
553          * always buffers available
554          */
555         if (signal_pending(current))
556                 return -ERESTARTSYS;
557
558         while (pipe_empty(pipe->head, pipe->tail)) {
559                 if (!pipe->writers)
560                         return 0;
561
562                 if (sd->num_spliced)
563                         return 0;
564
565                 if (sd->flags & SPLICE_F_NONBLOCK)
566                         return -EAGAIN;
567
568                 if (signal_pending(current))
569                         return -ERESTARTSYS;
570
571                 if (sd->need_wakeup) {
572                         wakeup_pipe_writers(pipe);
573                         sd->need_wakeup = false;
574                 }
575
576                 pipe_wait(pipe);
577         }
578
579         return 1;
580 }
581
582 /**
583  * splice_from_pipe_begin - start splicing from pipe
584  * @sd:         information about the splice operation
585  *
586  * Description:
587  *    This function should be called before a loop containing
588  *    splice_from_pipe_next() and splice_from_pipe_feed() to
589  *    initialize the necessary fields of @sd.
590  */
591 static void splice_from_pipe_begin(struct splice_desc *sd)
592 {
593         sd->num_spliced = 0;
594         sd->need_wakeup = false;
595 }
596
597 /**
598  * splice_from_pipe_end - finish splicing from pipe
599  * @pipe:       pipe to splice from
600  * @sd:         information about the splice operation
601  *
602  * Description:
603  *    This function will wake up pipe writers if necessary.  It should
604  *    be called after a loop containing splice_from_pipe_next() and
605  *    splice_from_pipe_feed().
606  */
607 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
608 {
609         if (sd->need_wakeup)
610                 wakeup_pipe_writers(pipe);
611 }
612
613 /**
614  * __splice_from_pipe - splice data from a pipe to given actor
615  * @pipe:       pipe to splice from
616  * @sd:         information to @actor
617  * @actor:      handler that splices the data
618  *
619  * Description:
620  *    This function does little more than loop over the pipe and call
621  *    @actor to do the actual moving of a single struct pipe_buffer to
622  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
623  *    pipe_to_user.
624  *
625  */
626 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
627                            splice_actor *actor)
628 {
629         int ret;
630
631         splice_from_pipe_begin(sd);
632         do {
633                 cond_resched();
634                 ret = splice_from_pipe_next(pipe, sd);
635                 if (ret > 0)
636                         ret = splice_from_pipe_feed(pipe, sd, actor);
637         } while (ret > 0);
638         splice_from_pipe_end(pipe, sd);
639
640         return sd->num_spliced ? sd->num_spliced : ret;
641 }
642 EXPORT_SYMBOL(__splice_from_pipe);
643
644 /**
645  * splice_from_pipe - splice data from a pipe to a file
646  * @pipe:       pipe to splice from
647  * @out:        file to splice to
648  * @ppos:       position in @out
649  * @len:        how many bytes to splice
650  * @flags:      splice modifier flags
651  * @actor:      handler that splices the data
652  *
653  * Description:
654  *    See __splice_from_pipe. This function locks the pipe inode,
655  *    otherwise it's identical to __splice_from_pipe().
656  *
657  */
658 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
659                          loff_t *ppos, size_t len, unsigned int flags,
660                          splice_actor *actor)
661 {
662         ssize_t ret;
663         struct splice_desc sd = {
664                 .total_len = len,
665                 .flags = flags,
666                 .pos = *ppos,
667                 .u.file = out,
668         };
669
670         pipe_lock(pipe);
671         ret = __splice_from_pipe(pipe, &sd, actor);
672         pipe_unlock(pipe);
673
674         return ret;
675 }
676
677 /**
678  * iter_file_splice_write - splice data from a pipe to a file
679  * @pipe:       pipe info
680  * @out:        file to write to
681  * @ppos:       position in @out
682  * @len:        number of bytes to splice
683  * @flags:      splice modifier flags
684  *
685  * Description:
686  *    Will either move or copy pages (determined by @flags options) from
687  *    the given pipe inode to the given file.
688  *    This one is ->write_iter-based.
689  *
690  */
691 ssize_t
692 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
693                           loff_t *ppos, size_t len, unsigned int flags)
694 {
695         struct splice_desc sd = {
696                 .total_len = len,
697                 .flags = flags,
698                 .pos = *ppos,
699                 .u.file = out,
700         };
701         int nbufs = pipe->max_usage;
702         struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
703                                         GFP_KERNEL);
704         ssize_t ret;
705
706         if (unlikely(!array))
707                 return -ENOMEM;
708
709         pipe_lock(pipe);
710
711         splice_from_pipe_begin(&sd);
712         while (sd.total_len) {
713                 struct iov_iter from;
714                 unsigned int head, tail, mask;
715                 size_t left;
716                 int n;
717
718                 ret = splice_from_pipe_next(pipe, &sd);
719                 if (ret <= 0)
720                         break;
721
722                 if (unlikely(nbufs < pipe->max_usage)) {
723                         kfree(array);
724                         nbufs = pipe->max_usage;
725                         array = kcalloc(nbufs, sizeof(struct bio_vec),
726                                         GFP_KERNEL);
727                         if (!array) {
728                                 ret = -ENOMEM;
729                                 break;
730                         }
731                 }
732
733                 head = pipe->head;
734                 tail = pipe->tail;
735                 mask = pipe->ring_size - 1;
736
737                 /* build the vector */
738                 left = sd.total_len;
739                 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) {
740                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
741                         size_t this_len = buf->len;
742
743                         if (this_len > left)
744                                 this_len = left;
745
746                         ret = pipe_buf_confirm(pipe, buf);
747                         if (unlikely(ret)) {
748                                 if (ret == -ENODATA)
749                                         ret = 0;
750                                 goto done;
751                         }
752
753                         array[n].bv_page = buf->page;
754                         array[n].bv_len = this_len;
755                         array[n].bv_offset = buf->offset;
756                         left -= this_len;
757                 }
758
759                 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
760                 ret = vfs_iter_write(out, &from, &sd.pos, 0);
761                 if (ret <= 0)
762                         break;
763
764                 sd.num_spliced += ret;
765                 sd.total_len -= ret;
766                 *ppos = sd.pos;
767
768                 /* dismiss the fully eaten buffers, adjust the partial one */
769                 tail = pipe->tail;
770                 while (ret) {
771                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
772                         if (ret >= buf->len) {
773                                 ret -= buf->len;
774                                 buf->len = 0;
775                                 pipe_buf_release(pipe, buf);
776                                 tail++;
777                                 pipe->tail = tail;
778                                 if (pipe->files)
779                                         sd.need_wakeup = true;
780                         } else {
781                                 buf->offset += ret;
782                                 buf->len -= ret;
783                                 ret = 0;
784                         }
785                 }
786         }
787 done:
788         kfree(array);
789         splice_from_pipe_end(pipe, &sd);
790
791         pipe_unlock(pipe);
792
793         if (sd.num_spliced)
794                 ret = sd.num_spliced;
795
796         return ret;
797 }
798
799 EXPORT_SYMBOL(iter_file_splice_write);
800
801 static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
802                           struct splice_desc *sd)
803 {
804         int ret;
805         void *data;
806         loff_t tmp = sd->pos;
807
808         data = kmap(buf->page);
809         ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
810         kunmap(buf->page);
811
812         return ret;
813 }
814
815 static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
816                                          struct file *out, loff_t *ppos,
817                                          size_t len, unsigned int flags)
818 {
819         ssize_t ret;
820
821         ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
822         if (ret > 0)
823                 *ppos += ret;
824
825         return ret;
826 }
827
828 /**
829  * generic_splice_sendpage - splice data from a pipe to a socket
830  * @pipe:       pipe to splice from
831  * @out:        socket to write to
832  * @ppos:       position in @out
833  * @len:        number of bytes to splice
834  * @flags:      splice modifier flags
835  *
836  * Description:
837  *    Will send @len bytes from the pipe to a network socket. No data copying
838  *    is involved.
839  *
840  */
841 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
842                                 loff_t *ppos, size_t len, unsigned int flags)
843 {
844         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
845 }
846
847 EXPORT_SYMBOL(generic_splice_sendpage);
848
849 /*
850  * Attempt to initiate a splice from pipe to file.
851  */
852 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
853                            loff_t *ppos, size_t len, unsigned int flags)
854 {
855         ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
856                                 loff_t *, size_t, unsigned int);
857
858         if (out->f_op->splice_write)
859                 splice_write = out->f_op->splice_write;
860         else
861                 splice_write = default_file_splice_write;
862
863         return splice_write(pipe, out, ppos, len, flags);
864 }
865
866 /*
867  * Attempt to initiate a splice from a file to a pipe.
868  */
869 static long do_splice_to(struct file *in, loff_t *ppos,
870                          struct pipe_inode_info *pipe, size_t len,
871                          unsigned int flags)
872 {
873         ssize_t (*splice_read)(struct file *, loff_t *,
874                                struct pipe_inode_info *, size_t, unsigned int);
875         int ret;
876
877         if (unlikely(!(in->f_mode & FMODE_READ)))
878                 return -EBADF;
879
880         ret = rw_verify_area(READ, in, ppos, len);
881         if (unlikely(ret < 0))
882                 return ret;
883
884         if (unlikely(len > MAX_RW_COUNT))
885                 len = MAX_RW_COUNT;
886
887         if (in->f_op->splice_read)
888                 splice_read = in->f_op->splice_read;
889         else
890                 splice_read = default_file_splice_read;
891
892         return splice_read(in, ppos, pipe, len, flags);
893 }
894
895 /**
896  * splice_direct_to_actor - splices data directly between two non-pipes
897  * @in:         file to splice from
898  * @sd:         actor information on where to splice to
899  * @actor:      handles the data splicing
900  *
901  * Description:
902  *    This is a special case helper to splice directly between two
903  *    points, without requiring an explicit pipe. Internally an allocated
904  *    pipe is cached in the process, and reused during the lifetime of
905  *    that process.
906  *
907  */
908 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
909                                splice_direct_actor *actor)
910 {
911         struct pipe_inode_info *pipe;
912         long ret, bytes;
913         umode_t i_mode;
914         size_t len;
915         int i, flags, more;
916
917         /*
918          * We require the input being a regular file, as we don't want to
919          * randomly drop data for eg socket -> socket splicing. Use the
920          * piped splicing for that!
921          */
922         i_mode = file_inode(in)->i_mode;
923         if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
924                 return -EINVAL;
925
926         /*
927          * neither in nor out is a pipe, setup an internal pipe attached to
928          * 'out' and transfer the wanted data from 'in' to 'out' through that
929          */
930         pipe = current->splice_pipe;
931         if (unlikely(!pipe)) {
932                 pipe = alloc_pipe_info();
933                 if (!pipe)
934                         return -ENOMEM;
935
936                 /*
937                  * We don't have an immediate reader, but we'll read the stuff
938                  * out of the pipe right after the splice_to_pipe(). So set
939                  * PIPE_READERS appropriately.
940                  */
941                 pipe->readers = 1;
942
943                 current->splice_pipe = pipe;
944         }
945
946         /*
947          * Do the splice.
948          */
949         ret = 0;
950         bytes = 0;
951         len = sd->total_len;
952         flags = sd->flags;
953
954         /*
955          * Don't block on output, we have to drain the direct pipe.
956          */
957         sd->flags &= ~SPLICE_F_NONBLOCK;
958         more = sd->flags & SPLICE_F_MORE;
959
960         WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
961
962         while (len) {
963                 unsigned int p_space;
964                 size_t read_len;
965                 loff_t pos = sd->pos, prev_pos = pos;
966
967                 /* Don't try to read more the pipe has space for. */
968                 p_space = pipe->max_usage -
969                         pipe_occupancy(pipe->head, pipe->tail);
970                 read_len = min_t(size_t, len, p_space << PAGE_SHIFT);
971                 ret = do_splice_to(in, &pos, pipe, read_len, flags);
972                 if (unlikely(ret <= 0))
973                         goto out_release;
974
975                 read_len = ret;
976                 sd->total_len = read_len;
977
978                 /*
979                  * If more data is pending, set SPLICE_F_MORE
980                  * If this is the last data and SPLICE_F_MORE was not set
981                  * initially, clears it.
982                  */
983                 if (read_len < len)
984                         sd->flags |= SPLICE_F_MORE;
985                 else if (!more)
986                         sd->flags &= ~SPLICE_F_MORE;
987                 /*
988                  * NOTE: nonblocking mode only applies to the input. We
989                  * must not do the output in nonblocking mode as then we
990                  * could get stuck data in the internal pipe:
991                  */
992                 ret = actor(pipe, sd);
993                 if (unlikely(ret <= 0)) {
994                         sd->pos = prev_pos;
995                         goto out_release;
996                 }
997
998                 bytes += ret;
999                 len -= ret;
1000                 sd->pos = pos;
1001
1002                 if (ret < read_len) {
1003                         sd->pos = prev_pos + ret;
1004                         goto out_release;
1005                 }
1006         }
1007
1008 done:
1009         pipe->tail = pipe->head = 0;
1010         file_accessed(in);
1011         return bytes;
1012
1013 out_release:
1014         /*
1015          * If we did an incomplete transfer we must release
1016          * the pipe buffers in question:
1017          */
1018         for (i = 0; i < pipe->ring_size; i++) {
1019                 struct pipe_buffer *buf = &pipe->bufs[i];
1020
1021                 if (buf->ops)
1022                         pipe_buf_release(pipe, buf);
1023         }
1024
1025         if (!bytes)
1026                 bytes = ret;
1027
1028         goto done;
1029 }
1030 EXPORT_SYMBOL(splice_direct_to_actor);
1031
1032 static int direct_splice_actor(struct pipe_inode_info *pipe,
1033                                struct splice_desc *sd)
1034 {
1035         struct file *file = sd->u.file;
1036
1037         return do_splice_from(pipe, file, sd->opos, sd->total_len,
1038                               sd->flags);
1039 }
1040
1041 /**
1042  * do_splice_direct - splices data directly between two files
1043  * @in:         file to splice from
1044  * @ppos:       input file offset
1045  * @out:        file to splice to
1046  * @opos:       output file offset
1047  * @len:        number of bytes to splice
1048  * @flags:      splice modifier flags
1049  *
1050  * Description:
1051  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1052  *    doing it in the application would incur an extra system call
1053  *    (splice in + splice out, as compared to just sendfile()). So this helper
1054  *    can splice directly through a process-private pipe.
1055  *
1056  */
1057 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1058                       loff_t *opos, size_t len, unsigned int flags)
1059 {
1060         struct splice_desc sd = {
1061                 .len            = len,
1062                 .total_len      = len,
1063                 .flags          = flags,
1064                 .pos            = *ppos,
1065                 .u.file         = out,
1066                 .opos           = opos,
1067         };
1068         long ret;
1069
1070         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1071                 return -EBADF;
1072
1073         if (unlikely(out->f_flags & O_APPEND))
1074                 return -EINVAL;
1075
1076         ret = rw_verify_area(WRITE, out, opos, len);
1077         if (unlikely(ret < 0))
1078                 return ret;
1079
1080         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1081         if (ret > 0)
1082                 *ppos = sd.pos;
1083
1084         return ret;
1085 }
1086 EXPORT_SYMBOL(do_splice_direct);
1087
1088 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1089 {
1090         for (;;) {
1091                 if (unlikely(!pipe->readers)) {
1092                         send_sig(SIGPIPE, current, 0);
1093                         return -EPIPE;
1094                 }
1095                 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1096                         return 0;
1097                 if (flags & SPLICE_F_NONBLOCK)
1098                         return -EAGAIN;
1099                 if (signal_pending(current))
1100                         return -ERESTARTSYS;
1101                 pipe_wait(pipe);
1102         }
1103 }
1104
1105 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1106                                struct pipe_inode_info *opipe,
1107                                size_t len, unsigned int flags);
1108
1109 /*
1110  * Determine where to splice to/from.
1111  */
1112 static long do_splice(struct file *in, loff_t __user *off_in,
1113                       struct file *out, loff_t __user *off_out,
1114                       size_t len, unsigned int flags)
1115 {
1116         struct pipe_inode_info *ipipe;
1117         struct pipe_inode_info *opipe;
1118         loff_t offset;
1119         long ret;
1120
1121         ipipe = get_pipe_info(in);
1122         opipe = get_pipe_info(out);
1123
1124         if (ipipe && opipe) {
1125                 if (off_in || off_out)
1126                         return -ESPIPE;
1127
1128                 if (!(in->f_mode & FMODE_READ))
1129                         return -EBADF;
1130
1131                 if (!(out->f_mode & FMODE_WRITE))
1132                         return -EBADF;
1133
1134                 /* Splicing to self would be fun, but... */
1135                 if (ipipe == opipe)
1136                         return -EINVAL;
1137
1138                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1139                         flags |= SPLICE_F_NONBLOCK;
1140
1141                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1142         }
1143
1144         if (ipipe) {
1145                 if (off_in)
1146                         return -ESPIPE;
1147                 if (off_out) {
1148                         if (!(out->f_mode & FMODE_PWRITE))
1149                                 return -EINVAL;
1150                         if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1151                                 return -EFAULT;
1152                 } else {
1153                         offset = out->f_pos;
1154                 }
1155
1156                 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1157                         return -EBADF;
1158
1159                 if (unlikely(out->f_flags & O_APPEND))
1160                         return -EINVAL;
1161
1162                 ret = rw_verify_area(WRITE, out, &offset, len);
1163                 if (unlikely(ret < 0))
1164                         return ret;
1165
1166                 if (in->f_flags & O_NONBLOCK)
1167                         flags |= SPLICE_F_NONBLOCK;
1168
1169                 file_start_write(out);
1170                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1171                 file_end_write(out);
1172
1173                 if (!off_out)
1174                         out->f_pos = offset;
1175                 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1176                         ret = -EFAULT;
1177
1178                 return ret;
1179         }
1180
1181         if (opipe) {
1182                 if (off_out)
1183                         return -ESPIPE;
1184                 if (off_in) {
1185                         if (!(in->f_mode & FMODE_PREAD))
1186                                 return -EINVAL;
1187                         if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1188                                 return -EFAULT;
1189                 } else {
1190                         offset = in->f_pos;
1191                 }
1192
1193                 if (out->f_flags & O_NONBLOCK)
1194                         flags |= SPLICE_F_NONBLOCK;
1195
1196                 pipe_lock(opipe);
1197                 ret = wait_for_space(opipe, flags);
1198                 if (!ret) {
1199                         unsigned int p_space;
1200
1201                         /* Don't try to read more the pipe has space for. */
1202                         p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail);
1203                         len = min_t(size_t, len, p_space << PAGE_SHIFT);
1204
1205                         ret = do_splice_to(in, &offset, opipe, len, flags);
1206                 }
1207                 pipe_unlock(opipe);
1208                 if (ret > 0)
1209                         wakeup_pipe_readers(opipe);
1210                 if (!off_in)
1211                         in->f_pos = offset;
1212                 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1213                         ret = -EFAULT;
1214
1215                 return ret;
1216         }
1217
1218         return -EINVAL;
1219 }
1220
1221 static int iter_to_pipe(struct iov_iter *from,
1222                         struct pipe_inode_info *pipe,
1223                         unsigned flags)
1224 {
1225         struct pipe_buffer buf = {
1226                 .ops = &user_page_pipe_buf_ops,
1227                 .flags = flags
1228         };
1229         size_t total = 0;
1230         int ret = 0;
1231         bool failed = false;
1232
1233         while (iov_iter_count(from) && !failed) {
1234                 struct page *pages[16];
1235                 ssize_t copied;
1236                 size_t start;
1237                 int n;
1238
1239                 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1240                 if (copied <= 0) {
1241                         ret = copied;
1242                         break;
1243                 }
1244
1245                 for (n = 0; copied; n++, start = 0) {
1246                         int size = min_t(int, copied, PAGE_SIZE - start);
1247                         if (!failed) {
1248                                 buf.page = pages[n];
1249                                 buf.offset = start;
1250                                 buf.len = size;
1251                                 ret = add_to_pipe(pipe, &buf);
1252                                 if (unlikely(ret < 0)) {
1253                                         failed = true;
1254                                 } else {
1255                                         iov_iter_advance(from, ret);
1256                                         total += ret;
1257                                 }
1258                         } else {
1259                                 put_page(pages[n]);
1260                         }
1261                         copied -= size;
1262                 }
1263         }
1264         return total ? total : ret;
1265 }
1266
1267 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1268                         struct splice_desc *sd)
1269 {
1270         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1271         return n == sd->len ? n : -EFAULT;
1272 }
1273
1274 /*
1275  * For lack of a better implementation, implement vmsplice() to userspace
1276  * as a simple copy of the pipes pages to the user iov.
1277  */
1278 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1279                              unsigned int flags)
1280 {
1281         struct pipe_inode_info *pipe = get_pipe_info(file);
1282         struct splice_desc sd = {
1283                 .total_len = iov_iter_count(iter),
1284                 .flags = flags,
1285                 .u.data = iter
1286         };
1287         long ret = 0;
1288
1289         if (!pipe)
1290                 return -EBADF;
1291
1292         if (sd.total_len) {
1293                 pipe_lock(pipe);
1294                 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1295                 pipe_unlock(pipe);
1296         }
1297
1298         return ret;
1299 }
1300
1301 /*
1302  * vmsplice splices a user address range into a pipe. It can be thought of
1303  * as splice-from-memory, where the regular splice is splice-from-file (or
1304  * to file). In both cases the output is a pipe, naturally.
1305  */
1306 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1307                              unsigned int flags)
1308 {
1309         struct pipe_inode_info *pipe;
1310         long ret = 0;
1311         unsigned buf_flag = 0;
1312
1313         if (flags & SPLICE_F_GIFT)
1314                 buf_flag = PIPE_BUF_FLAG_GIFT;
1315
1316         pipe = get_pipe_info(file);
1317         if (!pipe)
1318                 return -EBADF;
1319
1320         pipe_lock(pipe);
1321         ret = wait_for_space(pipe, flags);
1322         if (!ret)
1323                 ret = iter_to_pipe(iter, pipe, buf_flag);
1324         pipe_unlock(pipe);
1325         if (ret > 0)
1326                 wakeup_pipe_readers(pipe);
1327         return ret;
1328 }
1329
1330 static int vmsplice_type(struct fd f, int *type)
1331 {
1332         if (!f.file)
1333                 return -EBADF;
1334         if (f.file->f_mode & FMODE_WRITE) {
1335                 *type = WRITE;
1336         } else if (f.file->f_mode & FMODE_READ) {
1337                 *type = READ;
1338         } else {
1339                 fdput(f);
1340                 return -EBADF;
1341         }
1342         return 0;
1343 }
1344
1345 /*
1346  * Note that vmsplice only really supports true splicing _from_ user memory
1347  * to a pipe, not the other way around. Splicing from user memory is a simple
1348  * operation that can be supported without any funky alignment restrictions
1349  * or nasty vm tricks. We simply map in the user memory and fill them into
1350  * a pipe. The reverse isn't quite as easy, though. There are two possible
1351  * solutions for that:
1352  *
1353  *      - memcpy() the data internally, at which point we might as well just
1354  *        do a regular read() on the buffer anyway.
1355  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1356  *        has restriction limitations on both ends of the pipe).
1357  *
1358  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1359  *
1360  */
1361 static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags)
1362 {
1363         if (unlikely(flags & ~SPLICE_F_ALL))
1364                 return -EINVAL;
1365
1366         if (!iov_iter_count(iter))
1367                 return 0;
1368
1369         if (iov_iter_rw(iter) == WRITE)
1370                 return vmsplice_to_pipe(f, iter, flags);
1371         else
1372                 return vmsplice_to_user(f, iter, flags);
1373 }
1374
1375 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1376                 unsigned long, nr_segs, unsigned int, flags)
1377 {
1378         struct iovec iovstack[UIO_FASTIOV];
1379         struct iovec *iov = iovstack;
1380         struct iov_iter iter;
1381         ssize_t error;
1382         struct fd f;
1383         int type;
1384
1385         f = fdget(fd);
1386         error = vmsplice_type(f, &type);
1387         if (error)
1388                 return error;
1389
1390         error = import_iovec(type, uiov, nr_segs,
1391                              ARRAY_SIZE(iovstack), &iov, &iter);
1392         if (error >= 0) {
1393                 error = do_vmsplice(f.file, &iter, flags);
1394                 kfree(iov);
1395         }
1396         fdput(f);
1397         return error;
1398 }
1399
1400 #ifdef CONFIG_COMPAT
1401 COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1402                     unsigned int, nr_segs, unsigned int, flags)
1403 {
1404         struct iovec iovstack[UIO_FASTIOV];
1405         struct iovec *iov = iovstack;
1406         struct iov_iter iter;
1407         ssize_t error;
1408         struct fd f;
1409         int type;
1410
1411         f = fdget(fd);
1412         error = vmsplice_type(f, &type);
1413         if (error)
1414                 return error;
1415
1416         error = compat_import_iovec(type, iov32, nr_segs,
1417                              ARRAY_SIZE(iovstack), &iov, &iter);
1418         if (error >= 0) {
1419                 error = do_vmsplice(f.file, &iter, flags);
1420                 kfree(iov);
1421         }
1422         fdput(f);
1423         return error;
1424 }
1425 #endif
1426
1427 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1428                 int, fd_out, loff_t __user *, off_out,
1429                 size_t, len, unsigned int, flags)
1430 {
1431         struct fd in, out;
1432         long error;
1433
1434         if (unlikely(!len))
1435                 return 0;
1436
1437         if (unlikely(flags & ~SPLICE_F_ALL))
1438                 return -EINVAL;
1439
1440         error = -EBADF;
1441         in = fdget(fd_in);
1442         if (in.file) {
1443                 if (in.file->f_mode & FMODE_READ) {
1444                         out = fdget(fd_out);
1445                         if (out.file) {
1446                                 if (out.file->f_mode & FMODE_WRITE)
1447                                         error = do_splice(in.file, off_in,
1448                                                           out.file, off_out,
1449                                                           len, flags);
1450                                 fdput(out);
1451                         }
1452                 }
1453                 fdput(in);
1454         }
1455         return error;
1456 }
1457
1458 /*
1459  * Make sure there's data to read. Wait for input if we can, otherwise
1460  * return an appropriate error.
1461  */
1462 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1463 {
1464         int ret;
1465
1466         /*
1467          * Check the pipe occupancy without the inode lock first. This function
1468          * is speculative anyways, so missing one is ok.
1469          */
1470         if (!pipe_empty(pipe->head, pipe->tail))
1471                 return 0;
1472
1473         ret = 0;
1474         pipe_lock(pipe);
1475
1476         while (pipe_empty(pipe->head, pipe->tail)) {
1477                 if (signal_pending(current)) {
1478                         ret = -ERESTARTSYS;
1479                         break;
1480                 }
1481                 if (!pipe->writers)
1482                         break;
1483                 if (flags & SPLICE_F_NONBLOCK) {
1484                         ret = -EAGAIN;
1485                         break;
1486                 }
1487                 pipe_wait(pipe);
1488         }
1489
1490         pipe_unlock(pipe);
1491         return ret;
1492 }
1493
1494 /*
1495  * Make sure there's writeable room. Wait for room if we can, otherwise
1496  * return an appropriate error.
1497  */
1498 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1499 {
1500         int ret;
1501
1502         /*
1503          * Check pipe occupancy without the inode lock first. This function
1504          * is speculative anyways, so missing one is ok.
1505          */
1506         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1507                 return 0;
1508
1509         ret = 0;
1510         pipe_lock(pipe);
1511
1512         while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1513                 if (!pipe->readers) {
1514                         send_sig(SIGPIPE, current, 0);
1515                         ret = -EPIPE;
1516                         break;
1517                 }
1518                 if (flags & SPLICE_F_NONBLOCK) {
1519                         ret = -EAGAIN;
1520                         break;
1521                 }
1522                 if (signal_pending(current)) {
1523                         ret = -ERESTARTSYS;
1524                         break;
1525                 }
1526                 pipe_wait(pipe);
1527         }
1528
1529         pipe_unlock(pipe);
1530         return ret;
1531 }
1532
1533 /*
1534  * Splice contents of ipipe to opipe.
1535  */
1536 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1537                                struct pipe_inode_info *opipe,
1538                                size_t len, unsigned int flags)
1539 {
1540         struct pipe_buffer *ibuf, *obuf;
1541         unsigned int i_head, o_head;
1542         unsigned int i_tail, o_tail;
1543         unsigned int i_mask, o_mask;
1544         int ret = 0;
1545         bool input_wakeup = false;
1546
1547
1548 retry:
1549         ret = ipipe_prep(ipipe, flags);
1550         if (ret)
1551                 return ret;
1552
1553         ret = opipe_prep(opipe, flags);
1554         if (ret)
1555                 return ret;
1556
1557         /*
1558          * Potential ABBA deadlock, work around it by ordering lock
1559          * grabbing by pipe info address. Otherwise two different processes
1560          * could deadlock (one doing tee from A -> B, the other from B -> A).
1561          */
1562         pipe_double_lock(ipipe, opipe);
1563
1564         i_tail = ipipe->tail;
1565         i_mask = ipipe->ring_size - 1;
1566         o_head = opipe->head;
1567         o_mask = opipe->ring_size - 1;
1568
1569         do {
1570                 size_t o_len;
1571
1572                 if (!opipe->readers) {
1573                         send_sig(SIGPIPE, current, 0);
1574                         if (!ret)
1575                                 ret = -EPIPE;
1576                         break;
1577                 }
1578
1579                 i_head = ipipe->head;
1580                 o_tail = opipe->tail;
1581
1582                 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1583                         break;
1584
1585                 /*
1586                  * Cannot make any progress, because either the input
1587                  * pipe is empty or the output pipe is full.
1588                  */
1589                 if (pipe_empty(i_head, i_tail) ||
1590                     pipe_full(o_head, o_tail, opipe->max_usage)) {
1591                         /* Already processed some buffers, break */
1592                         if (ret)
1593                                 break;
1594
1595                         if (flags & SPLICE_F_NONBLOCK) {
1596                                 ret = -EAGAIN;
1597                                 break;
1598                         }
1599
1600                         /*
1601                          * We raced with another reader/writer and haven't
1602                          * managed to process any buffers.  A zero return
1603                          * value means EOF, so retry instead.
1604                          */
1605                         pipe_unlock(ipipe);
1606                         pipe_unlock(opipe);
1607                         goto retry;
1608                 }
1609
1610                 ibuf = &ipipe->bufs[i_tail & i_mask];
1611                 obuf = &opipe->bufs[o_head & o_mask];
1612
1613                 if (len >= ibuf->len) {
1614                         /*
1615                          * Simply move the whole buffer from ipipe to opipe
1616                          */
1617                         *obuf = *ibuf;
1618                         ibuf->ops = NULL;
1619                         i_tail++;
1620                         ipipe->tail = i_tail;
1621                         input_wakeup = true;
1622                         o_len = obuf->len;
1623                         o_head++;
1624                         opipe->head = o_head;
1625                 } else {
1626                         /*
1627                          * Get a reference to this pipe buffer,
1628                          * so we can copy the contents over.
1629                          */
1630                         if (!pipe_buf_get(ipipe, ibuf)) {
1631                                 if (ret == 0)
1632                                         ret = -EFAULT;
1633                                 break;
1634                         }
1635                         *obuf = *ibuf;
1636
1637                         /*
1638                          * Don't inherit the gift flag, we need to
1639                          * prevent multiple steals of this page.
1640                          */
1641                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1642
1643                         pipe_buf_mark_unmergeable(obuf);
1644
1645                         obuf->len = len;
1646                         ibuf->offset += len;
1647                         ibuf->len -= len;
1648                         o_len = len;
1649                         o_head++;
1650                         opipe->head = o_head;
1651                 }
1652                 ret += o_len;
1653                 len -= o_len;
1654         } while (len);
1655
1656         pipe_unlock(ipipe);
1657         pipe_unlock(opipe);
1658
1659         /*
1660          * If we put data in the output pipe, wakeup any potential readers.
1661          */
1662         if (ret > 0)
1663                 wakeup_pipe_readers(opipe);
1664
1665         if (input_wakeup)
1666                 wakeup_pipe_writers(ipipe);
1667
1668         return ret;
1669 }
1670
1671 /*
1672  * Link contents of ipipe to opipe.
1673  */
1674 static int link_pipe(struct pipe_inode_info *ipipe,
1675                      struct pipe_inode_info *opipe,
1676                      size_t len, unsigned int flags)
1677 {
1678         struct pipe_buffer *ibuf, *obuf;
1679         unsigned int i_head, o_head;
1680         unsigned int i_tail, o_tail;
1681         unsigned int i_mask, o_mask;
1682         int ret = 0;
1683
1684         /*
1685          * Potential ABBA deadlock, work around it by ordering lock
1686          * grabbing by pipe info address. Otherwise two different processes
1687          * could deadlock (one doing tee from A -> B, the other from B -> A).
1688          */
1689         pipe_double_lock(ipipe, opipe);
1690
1691         i_tail = ipipe->tail;
1692         i_mask = ipipe->ring_size - 1;
1693         o_head = opipe->head;
1694         o_mask = opipe->ring_size - 1;
1695
1696         do {
1697                 if (!opipe->readers) {
1698                         send_sig(SIGPIPE, current, 0);
1699                         if (!ret)
1700                                 ret = -EPIPE;
1701                         break;
1702                 }
1703
1704                 i_head = ipipe->head;
1705                 o_tail = opipe->tail;
1706
1707                 /*
1708                  * If we have iterated all input buffers or run out of
1709                  * output room, break.
1710                  */
1711                 if (pipe_empty(i_head, i_tail) ||
1712                     pipe_full(o_head, o_tail, opipe->max_usage))
1713                         break;
1714
1715                 ibuf = &ipipe->bufs[i_tail & i_mask];
1716                 obuf = &opipe->bufs[o_head & o_mask];
1717
1718                 /*
1719                  * Get a reference to this pipe buffer,
1720                  * so we can copy the contents over.
1721                  */
1722                 if (!pipe_buf_get(ipipe, ibuf)) {
1723                         if (ret == 0)
1724                                 ret = -EFAULT;
1725                         break;
1726                 }
1727
1728                 *obuf = *ibuf;
1729
1730                 /*
1731                  * Don't inherit the gift flag, we need to
1732                  * prevent multiple steals of this page.
1733                  */
1734                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1735
1736                 pipe_buf_mark_unmergeable(obuf);
1737
1738                 if (obuf->len > len)
1739                         obuf->len = len;
1740                 ret += obuf->len;
1741                 len -= obuf->len;
1742
1743                 o_head++;
1744                 opipe->head = o_head;
1745                 i_tail++;
1746         } while (len);
1747
1748         pipe_unlock(ipipe);
1749         pipe_unlock(opipe);
1750
1751         /*
1752          * If we put data in the output pipe, wakeup any potential readers.
1753          */
1754         if (ret > 0)
1755                 wakeup_pipe_readers(opipe);
1756
1757         return ret;
1758 }
1759
1760 /*
1761  * This is a tee(1) implementation that works on pipes. It doesn't copy
1762  * any data, it simply references the 'in' pages on the 'out' pipe.
1763  * The 'flags' used are the SPLICE_F_* variants, currently the only
1764  * applicable one is SPLICE_F_NONBLOCK.
1765  */
1766 static long do_tee(struct file *in, struct file *out, size_t len,
1767                    unsigned int flags)
1768 {
1769         struct pipe_inode_info *ipipe = get_pipe_info(in);
1770         struct pipe_inode_info *opipe = get_pipe_info(out);
1771         int ret = -EINVAL;
1772
1773         /*
1774          * Duplicate the contents of ipipe to opipe without actually
1775          * copying the data.
1776          */
1777         if (ipipe && opipe && ipipe != opipe) {
1778                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1779                         flags |= SPLICE_F_NONBLOCK;
1780
1781                 /*
1782                  * Keep going, unless we encounter an error. The ipipe/opipe
1783                  * ordering doesn't really matter.
1784                  */
1785                 ret = ipipe_prep(ipipe, flags);
1786                 if (!ret) {
1787                         ret = opipe_prep(opipe, flags);
1788                         if (!ret)
1789                                 ret = link_pipe(ipipe, opipe, len, flags);
1790                 }
1791         }
1792
1793         return ret;
1794 }
1795
1796 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1797 {
1798         struct fd in;
1799         int error;
1800
1801         if (unlikely(flags & ~SPLICE_F_ALL))
1802                 return -EINVAL;
1803
1804         if (unlikely(!len))
1805                 return 0;
1806
1807         error = -EBADF;
1808         in = fdget(fdin);
1809         if (in.file) {
1810                 if (in.file->f_mode & FMODE_READ) {
1811                         struct fd out = fdget(fdout);
1812                         if (out.file) {
1813                                 if (out.file->f_mode & FMODE_WRITE)
1814                                         error = do_tee(in.file, out.file,
1815                                                         len, flags);
1816                                 fdput(out);
1817                         }
1818                 }
1819                 fdput(in);
1820         }
1821
1822         return error;
1823 }