Merge tag 'input-for-v6.6-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor...
[platform/kernel/linux-rpi.git] / fs / smb / client / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38
39 unsigned int
40 _get_xid(void)
41 {
42         unsigned int xid;
43
44         spin_lock(&GlobalMid_Lock);
45         GlobalTotalActiveXid++;
46
47         /* keep high water mark for number of simultaneous ops in filesystem */
48         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49                 GlobalMaxActiveXid = GlobalTotalActiveXid;
50         if (GlobalTotalActiveXid > 65000)
51                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52         xid = GlobalCurrentXid++;
53         spin_unlock(&GlobalMid_Lock);
54         return xid;
55 }
56
57 void
58 _free_xid(unsigned int xid)
59 {
60         spin_lock(&GlobalMid_Lock);
61         /* if (GlobalTotalActiveXid == 0)
62                 BUG(); */
63         GlobalTotalActiveXid--;
64         spin_unlock(&GlobalMid_Lock);
65 }
66
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70         struct cifs_ses *ret_buf;
71
72         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73         if (ret_buf) {
74                 atomic_inc(&sesInfoAllocCount);
75                 spin_lock_init(&ret_buf->ses_lock);
76                 ret_buf->ses_status = SES_NEW;
77                 ++ret_buf->ses_count;
78                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79                 INIT_LIST_HEAD(&ret_buf->tcon_list);
80                 mutex_init(&ret_buf->session_mutex);
81                 spin_lock_init(&ret_buf->iface_lock);
82                 INIT_LIST_HEAD(&ret_buf->iface_list);
83                 spin_lock_init(&ret_buf->chan_lock);
84         }
85         return ret_buf;
86 }
87
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91         struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93         if (buf_to_free == NULL) {
94                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95                 return;
96         }
97
98         unload_nls(buf_to_free->local_nls);
99         atomic_dec(&sesInfoAllocCount);
100         kfree(buf_to_free->serverOS);
101         kfree(buf_to_free->serverDomain);
102         kfree(buf_to_free->serverNOS);
103         kfree_sensitive(buf_to_free->password);
104         kfree(buf_to_free->user_name);
105         kfree(buf_to_free->domainName);
106         kfree_sensitive(buf_to_free->auth_key.response);
107         spin_lock(&buf_to_free->iface_lock);
108         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109                                  iface_head)
110                 kref_put(&iface->refcount, release_iface);
111         spin_unlock(&buf_to_free->iface_lock);
112         kfree_sensitive(buf_to_free);
113 }
114
115 struct cifs_tcon *
116 tcon_info_alloc(bool dir_leases_enabled)
117 {
118         struct cifs_tcon *ret_buf;
119
120         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121         if (!ret_buf)
122                 return NULL;
123
124         if (dir_leases_enabled == true) {
125                 ret_buf->cfids = init_cached_dirs();
126                 if (!ret_buf->cfids) {
127                         kfree(ret_buf);
128                         return NULL;
129                 }
130         }
131         /* else ret_buf->cfids is already set to NULL above */
132
133         atomic_inc(&tconInfoAllocCount);
134         ret_buf->status = TID_NEW;
135         ++ret_buf->tc_count;
136         spin_lock_init(&ret_buf->tc_lock);
137         INIT_LIST_HEAD(&ret_buf->openFileList);
138         INIT_LIST_HEAD(&ret_buf->tcon_list);
139         spin_lock_init(&ret_buf->open_file_lock);
140         spin_lock_init(&ret_buf->stat_lock);
141         atomic_set(&ret_buf->num_local_opens, 0);
142         atomic_set(&ret_buf->num_remote_opens, 0);
143 #ifdef CONFIG_CIFS_DFS_UPCALL
144         INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
145 #endif
146
147         return ret_buf;
148 }
149
150 void
151 tconInfoFree(struct cifs_tcon *tcon)
152 {
153         if (tcon == NULL) {
154                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
155                 return;
156         }
157         free_cached_dirs(tcon->cfids);
158         atomic_dec(&tconInfoAllocCount);
159         kfree(tcon->nativeFileSystem);
160         kfree_sensitive(tcon->password);
161 #ifdef CONFIG_CIFS_DFS_UPCALL
162         dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
163 #endif
164         kfree(tcon->origin_fullpath);
165         kfree(tcon);
166 }
167
168 struct smb_hdr *
169 cifs_buf_get(void)
170 {
171         struct smb_hdr *ret_buf = NULL;
172         /*
173          * SMB2 header is bigger than CIFS one - no problems to clean some
174          * more bytes for CIFS.
175          */
176         size_t buf_size = sizeof(struct smb2_hdr);
177
178         /*
179          * We could use negotiated size instead of max_msgsize -
180          * but it may be more efficient to always alloc same size
181          * albeit slightly larger than necessary and maxbuffersize
182          * defaults to this and can not be bigger.
183          */
184         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185
186         /* clear the first few header bytes */
187         /* for most paths, more is cleared in header_assemble */
188         memset(ret_buf, 0, buf_size + 3);
189         atomic_inc(&buf_alloc_count);
190 #ifdef CONFIG_CIFS_STATS2
191         atomic_inc(&total_buf_alloc_count);
192 #endif /* CONFIG_CIFS_STATS2 */
193
194         return ret_buf;
195 }
196
197 void
198 cifs_buf_release(void *buf_to_free)
199 {
200         if (buf_to_free == NULL) {
201                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202                 return;
203         }
204         mempool_free(buf_to_free, cifs_req_poolp);
205
206         atomic_dec(&buf_alloc_count);
207         return;
208 }
209
210 struct smb_hdr *
211 cifs_small_buf_get(void)
212 {
213         struct smb_hdr *ret_buf = NULL;
214
215 /* We could use negotiated size instead of max_msgsize -
216    but it may be more efficient to always alloc same size
217    albeit slightly larger than necessary and maxbuffersize
218    defaults to this and can not be bigger */
219         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220         /* No need to clear memory here, cleared in header assemble */
221         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222         atomic_inc(&small_buf_alloc_count);
223 #ifdef CONFIG_CIFS_STATS2
224         atomic_inc(&total_small_buf_alloc_count);
225 #endif /* CONFIG_CIFS_STATS2 */
226
227         return ret_buf;
228 }
229
230 void
231 cifs_small_buf_release(void *buf_to_free)
232 {
233
234         if (buf_to_free == NULL) {
235                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236                 return;
237         }
238         mempool_free(buf_to_free, cifs_sm_req_poolp);
239
240         atomic_dec(&small_buf_alloc_count);
241         return;
242 }
243
244 void
245 free_rsp_buf(int resp_buftype, void *rsp)
246 {
247         if (resp_buftype == CIFS_SMALL_BUFFER)
248                 cifs_small_buf_release(rsp);
249         else if (resp_buftype == CIFS_LARGE_BUFFER)
250                 cifs_buf_release(rsp);
251 }
252
253 /* NB: MID can not be set if treeCon not passed in, in that
254    case it is responsbility of caller to set the mid */
255 void
256 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257                 const struct cifs_tcon *treeCon, int word_count
258                 /* length of fixed section (word count) in two byte units  */)
259 {
260         char *temp = (char *) buffer;
261
262         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263
264         buffer->smb_buf_length = cpu_to_be32(
265             (2 * word_count) + sizeof(struct smb_hdr) -
266             4 /*  RFC 1001 length field does not count */  +
267             2 /* for bcc field itself */) ;
268
269         buffer->Protocol[0] = 0xFF;
270         buffer->Protocol[1] = 'S';
271         buffer->Protocol[2] = 'M';
272         buffer->Protocol[3] = 'B';
273         buffer->Command = smb_command;
274         buffer->Flags = 0x00;   /* case sensitive */
275         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276         buffer->Pid = cpu_to_le16((__u16)current->tgid);
277         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278         if (treeCon) {
279                 buffer->Tid = treeCon->tid;
280                 if (treeCon->ses) {
281                         if (treeCon->ses->capabilities & CAP_UNICODE)
282                                 buffer->Flags2 |= SMBFLG2_UNICODE;
283                         if (treeCon->ses->capabilities & CAP_STATUS32)
284                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285
286                         /* Uid is not converted */
287                         buffer->Uid = treeCon->ses->Suid;
288                         if (treeCon->ses->server)
289                                 buffer->Mid = get_next_mid(treeCon->ses->server);
290                 }
291                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292                         buffer->Flags2 |= SMBFLG2_DFS;
293                 if (treeCon->nocase)
294                         buffer->Flags  |= SMBFLG_CASELESS;
295                 if ((treeCon->ses) && (treeCon->ses->server))
296                         if (treeCon->ses->server->sign)
297                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298         }
299
300 /*  endian conversion of flags is now done just before sending */
301         buffer->WordCount = (char) word_count;
302         return;
303 }
304
305 static int
306 check_smb_hdr(struct smb_hdr *smb)
307 {
308         /* does it have the right SMB "signature" ? */
309         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311                          *(unsigned int *)smb->Protocol);
312                 return 1;
313         }
314
315         /* if it's a response then accept */
316         if (smb->Flags & SMBFLG_RESPONSE)
317                 return 0;
318
319         /* only one valid case where server sends us request */
320         if (smb->Command == SMB_COM_LOCKING_ANDX)
321                 return 0;
322
323         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324                  get_mid(smb));
325         return 1;
326 }
327
328 int
329 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330 {
331         struct smb_hdr *smb = (struct smb_hdr *)buf;
332         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333         __u32 clc_len;  /* calculated length */
334         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335                  total_read, rfclen);
336
337         /* is this frame too small to even get to a BCC? */
338         if (total_read < 2 + sizeof(struct smb_hdr)) {
339                 if ((total_read >= sizeof(struct smb_hdr) - 1)
340                             && (smb->Status.CifsError != 0)) {
341                         /* it's an error return */
342                         smb->WordCount = 0;
343                         /* some error cases do not return wct and bcc */
344                         return 0;
345                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346                                 (smb->WordCount == 0)) {
347                         char *tmp = (char *)smb;
348                         /* Need to work around a bug in two servers here */
349                         /* First, check if the part of bcc they sent was zero */
350                         if (tmp[sizeof(struct smb_hdr)] == 0) {
351                                 /* some servers return only half of bcc
352                                  * on simple responses (wct, bcc both zero)
353                                  * in particular have seen this on
354                                  * ulogoffX and FindClose. This leaves
355                                  * one byte of bcc potentially unitialized
356                                  */
357                                 /* zero rest of bcc */
358                                 tmp[sizeof(struct smb_hdr)+1] = 0;
359                                 return 0;
360                         }
361                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362                 } else {
363                         cifs_dbg(VFS, "Length less than smb header size\n");
364                 }
365                 return -EIO;
366         }
367
368         /* otherwise, there is enough to get to the BCC */
369         if (check_smb_hdr(smb))
370                 return -EIO;
371         clc_len = smbCalcSize(smb);
372
373         if (4 + rfclen != total_read) {
374                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
375                          rfclen);
376                 return -EIO;
377         }
378
379         if (4 + rfclen != clc_len) {
380                 __u16 mid = get_mid(smb);
381                 /* check if bcc wrapped around for large read responses */
382                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
383                         /* check if lengths match mod 64K */
384                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
385                                 return 0; /* bcc wrapped */
386                 }
387                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
388                          clc_len, 4 + rfclen, mid);
389
390                 if (4 + rfclen < clc_len) {
391                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
392                                  rfclen, mid);
393                         return -EIO;
394                 } else if (rfclen > clc_len + 512) {
395                         /*
396                          * Some servers (Windows XP in particular) send more
397                          * data than the lengths in the SMB packet would
398                          * indicate on certain calls (byte range locks and
399                          * trans2 find first calls in particular). While the
400                          * client can handle such a frame by ignoring the
401                          * trailing data, we choose limit the amount of extra
402                          * data to 512 bytes.
403                          */
404                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
405                                  rfclen, mid);
406                         return -EIO;
407                 }
408         }
409         return 0;
410 }
411
412 bool
413 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
414 {
415         struct smb_hdr *buf = (struct smb_hdr *)buffer;
416         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
417         struct TCP_Server_Info *pserver;
418         struct cifs_ses *ses;
419         struct cifs_tcon *tcon;
420         struct cifsInodeInfo *pCifsInode;
421         struct cifsFileInfo *netfile;
422
423         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
424         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
425            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
426                 struct smb_com_transaction_change_notify_rsp *pSMBr =
427                         (struct smb_com_transaction_change_notify_rsp *)buf;
428                 struct file_notify_information *pnotify;
429                 __u32 data_offset = 0;
430                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
431
432                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
433                         data_offset = le32_to_cpu(pSMBr->DataOffset);
434
435                         if (data_offset >
436                             len - sizeof(struct file_notify_information)) {
437                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
438                                          data_offset);
439                                 return true;
440                         }
441                         pnotify = (struct file_notify_information *)
442                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
443                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
444                                  pnotify->FileName, pnotify->Action);
445                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
446                                 sizeof(struct smb_hdr)+60); */
447                         return true;
448                 }
449                 if (pSMBr->hdr.Status.CifsError) {
450                         cifs_dbg(FYI, "notify err 0x%x\n",
451                                  pSMBr->hdr.Status.CifsError);
452                         return true;
453                 }
454                 return false;
455         }
456         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
457                 return false;
458         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
459                 /* no sense logging error on invalid handle on oplock
460                    break - harmless race between close request and oplock
461                    break response is expected from time to time writing out
462                    large dirty files cached on the client */
463                 if ((NT_STATUS_INVALID_HANDLE) ==
464                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
465                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
466                         return true;
467                 } else if (ERRbadfid ==
468                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
469                         return true;
470                 } else {
471                         return false; /* on valid oplock brk we get "request" */
472                 }
473         }
474         if (pSMB->hdr.WordCount != 8)
475                 return false;
476
477         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
478                  pSMB->LockType, pSMB->OplockLevel);
479         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
480                 return false;
481
482         /* If server is a channel, select the primary channel */
483         pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
484
485         /* look up tcon based on tid & uid */
486         spin_lock(&cifs_tcp_ses_lock);
487         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
488                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
489                         if (tcon->tid != buf->Tid)
490                                 continue;
491
492                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
493                         spin_lock(&tcon->open_file_lock);
494                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
495                                 if (pSMB->Fid != netfile->fid.netfid)
496                                         continue;
497
498                                 cifs_dbg(FYI, "file id match, oplock break\n");
499                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
500
501                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
502                                         &pCifsInode->flags);
503
504                                 netfile->oplock_epoch = 0;
505                                 netfile->oplock_level = pSMB->OplockLevel;
506                                 netfile->oplock_break_cancelled = false;
507                                 cifs_queue_oplock_break(netfile);
508
509                                 spin_unlock(&tcon->open_file_lock);
510                                 spin_unlock(&cifs_tcp_ses_lock);
511                                 return true;
512                         }
513                         spin_unlock(&tcon->open_file_lock);
514                         spin_unlock(&cifs_tcp_ses_lock);
515                         cifs_dbg(FYI, "No matching file for oplock break\n");
516                         return true;
517                 }
518         }
519         spin_unlock(&cifs_tcp_ses_lock);
520         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
521         return true;
522 }
523
524 void
525 dump_smb(void *buf, int smb_buf_length)
526 {
527         if (traceSMB == 0)
528                 return;
529
530         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
531                        smb_buf_length, true);
532 }
533
534 void
535 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
536 {
537         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
538                 struct cifs_tcon *tcon = NULL;
539
540                 if (cifs_sb->master_tlink)
541                         tcon = cifs_sb_master_tcon(cifs_sb);
542
543                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
544                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
545                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
546                          tcon ? tcon->tree_name : "new server");
547                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
548                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
549
550         }
551 }
552
553 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
554 {
555         oplock &= 0xF;
556
557         if (oplock == OPLOCK_EXCLUSIVE) {
558                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
559                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
560                          &cinode->netfs.inode);
561         } else if (oplock == OPLOCK_READ) {
562                 cinode->oplock = CIFS_CACHE_READ_FLG;
563                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
564                          &cinode->netfs.inode);
565         } else
566                 cinode->oplock = 0;
567 }
568
569 /*
570  * We wait for oplock breaks to be processed before we attempt to perform
571  * writes.
572  */
573 int cifs_get_writer(struct cifsInodeInfo *cinode)
574 {
575         int rc;
576
577 start:
578         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
579                          TASK_KILLABLE);
580         if (rc)
581                 return rc;
582
583         spin_lock(&cinode->writers_lock);
584         if (!cinode->writers)
585                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
586         cinode->writers++;
587         /* Check to see if we have started servicing an oplock break */
588         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
589                 cinode->writers--;
590                 if (cinode->writers == 0) {
591                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
592                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
593                 }
594                 spin_unlock(&cinode->writers_lock);
595                 goto start;
596         }
597         spin_unlock(&cinode->writers_lock);
598         return 0;
599 }
600
601 void cifs_put_writer(struct cifsInodeInfo *cinode)
602 {
603         spin_lock(&cinode->writers_lock);
604         cinode->writers--;
605         if (cinode->writers == 0) {
606                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
607                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
608         }
609         spin_unlock(&cinode->writers_lock);
610 }
611
612 /**
613  * cifs_queue_oplock_break - queue the oplock break handler for cfile
614  * @cfile: The file to break the oplock on
615  *
616  * This function is called from the demultiplex thread when it
617  * receives an oplock break for @cfile.
618  *
619  * Assumes the tcon->open_file_lock is held.
620  * Assumes cfile->file_info_lock is NOT held.
621  */
622 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
623 {
624         /*
625          * Bump the handle refcount now while we hold the
626          * open_file_lock to enforce the validity of it for the oplock
627          * break handler. The matching put is done at the end of the
628          * handler.
629          */
630         cifsFileInfo_get(cfile);
631
632         queue_work(cifsoplockd_wq, &cfile->oplock_break);
633 }
634
635 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
636 {
637         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
638         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
639 }
640
641 bool
642 backup_cred(struct cifs_sb_info *cifs_sb)
643 {
644         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
645                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
646                         return true;
647         }
648         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
649                 if (in_group_p(cifs_sb->ctx->backupgid))
650                         return true;
651         }
652
653         return false;
654 }
655
656 void
657 cifs_del_pending_open(struct cifs_pending_open *open)
658 {
659         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
660         list_del(&open->olist);
661         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
662 }
663
664 void
665 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
666                              struct cifs_pending_open *open)
667 {
668         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
669         open->oplock = CIFS_OPLOCK_NO_CHANGE;
670         open->tlink = tlink;
671         fid->pending_open = open;
672         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
673 }
674
675 void
676 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
677                       struct cifs_pending_open *open)
678 {
679         spin_lock(&tlink_tcon(tlink)->open_file_lock);
680         cifs_add_pending_open_locked(fid, tlink, open);
681         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
682 }
683
684 /*
685  * Critical section which runs after acquiring deferred_lock.
686  * As there is no reference count on cifs_deferred_close, pdclose
687  * should not be used outside deferred_lock.
688  */
689 bool
690 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
691 {
692         struct cifs_deferred_close *dclose;
693
694         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
695                 if ((dclose->netfid == cfile->fid.netfid) &&
696                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
697                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
698                         *pdclose = dclose;
699                         return true;
700                 }
701         }
702         return false;
703 }
704
705 /*
706  * Critical section which runs after acquiring deferred_lock.
707  */
708 void
709 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
710 {
711         bool is_deferred = false;
712         struct cifs_deferred_close *pdclose;
713
714         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
715         if (is_deferred) {
716                 kfree(dclose);
717                 return;
718         }
719
720         dclose->tlink = cfile->tlink;
721         dclose->netfid = cfile->fid.netfid;
722         dclose->persistent_fid = cfile->fid.persistent_fid;
723         dclose->volatile_fid = cfile->fid.volatile_fid;
724         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
725 }
726
727 /*
728  * Critical section which runs after acquiring deferred_lock.
729  */
730 void
731 cifs_del_deferred_close(struct cifsFileInfo *cfile)
732 {
733         bool is_deferred = false;
734         struct cifs_deferred_close *dclose;
735
736         is_deferred = cifs_is_deferred_close(cfile, &dclose);
737         if (!is_deferred)
738                 return;
739         list_del(&dclose->dlist);
740         kfree(dclose);
741 }
742
743 void
744 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
745 {
746         struct cifsFileInfo *cfile = NULL;
747         struct file_list *tmp_list, *tmp_next_list;
748         struct list_head file_head;
749
750         if (cifs_inode == NULL)
751                 return;
752
753         INIT_LIST_HEAD(&file_head);
754         spin_lock(&cifs_inode->open_file_lock);
755         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
756                 if (delayed_work_pending(&cfile->deferred)) {
757                         if (cancel_delayed_work(&cfile->deferred)) {
758                                 spin_lock(&cifs_inode->deferred_lock);
759                                 cifs_del_deferred_close(cfile);
760                                 spin_unlock(&cifs_inode->deferred_lock);
761
762                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
763                                 if (tmp_list == NULL)
764                                         break;
765                                 tmp_list->cfile = cfile;
766                                 list_add_tail(&tmp_list->list, &file_head);
767                         }
768                 }
769         }
770         spin_unlock(&cifs_inode->open_file_lock);
771
772         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
773                 _cifsFileInfo_put(tmp_list->cfile, false, false);
774                 list_del(&tmp_list->list);
775                 kfree(tmp_list);
776         }
777 }
778
779 void
780 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
781 {
782         struct cifsFileInfo *cfile;
783         struct file_list *tmp_list, *tmp_next_list;
784         struct list_head file_head;
785
786         INIT_LIST_HEAD(&file_head);
787         spin_lock(&tcon->open_file_lock);
788         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
789                 if (delayed_work_pending(&cfile->deferred)) {
790                         if (cancel_delayed_work(&cfile->deferred)) {
791                                 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
792                                 cifs_del_deferred_close(cfile);
793                                 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
794
795                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
796                                 if (tmp_list == NULL)
797                                         break;
798                                 tmp_list->cfile = cfile;
799                                 list_add_tail(&tmp_list->list, &file_head);
800                         }
801                 }
802         }
803         spin_unlock(&tcon->open_file_lock);
804
805         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
806                 _cifsFileInfo_put(tmp_list->cfile, true, false);
807                 list_del(&tmp_list->list);
808                 kfree(tmp_list);
809         }
810 }
811 void
812 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
813 {
814         struct cifsFileInfo *cfile;
815         struct file_list *tmp_list, *tmp_next_list;
816         struct list_head file_head;
817         void *page;
818         const char *full_path;
819
820         INIT_LIST_HEAD(&file_head);
821         page = alloc_dentry_path();
822         spin_lock(&tcon->open_file_lock);
823         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
824                 full_path = build_path_from_dentry(cfile->dentry, page);
825                 if (strstr(full_path, path)) {
826                         if (delayed_work_pending(&cfile->deferred)) {
827                                 if (cancel_delayed_work(&cfile->deferred)) {
828                                         spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
829                                         cifs_del_deferred_close(cfile);
830                                         spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
831
832                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
833                                         if (tmp_list == NULL)
834                                                 break;
835                                         tmp_list->cfile = cfile;
836                                         list_add_tail(&tmp_list->list, &file_head);
837                                 }
838                         }
839                 }
840         }
841         spin_unlock(&tcon->open_file_lock);
842
843         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
844                 _cifsFileInfo_put(tmp_list->cfile, true, false);
845                 list_del(&tmp_list->list);
846                 kfree(tmp_list);
847         }
848         free_dentry_path(page);
849 }
850
851 /* parses DFS referral V3 structure
852  * caller is responsible for freeing target_nodes
853  * returns:
854  * - on success - 0
855  * - on failure - errno
856  */
857 int
858 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
859                     unsigned int *num_of_nodes,
860                     struct dfs_info3_param **target_nodes,
861                     const struct nls_table *nls_codepage, int remap,
862                     const char *searchName, bool is_unicode)
863 {
864         int i, rc = 0;
865         char *data_end;
866         struct dfs_referral_level_3 *ref;
867
868         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
869
870         if (*num_of_nodes < 1) {
871                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
872                          *num_of_nodes);
873                 rc = -EINVAL;
874                 goto parse_DFS_referrals_exit;
875         }
876
877         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
878         if (ref->VersionNumber != cpu_to_le16(3)) {
879                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
880                          le16_to_cpu(ref->VersionNumber));
881                 rc = -EINVAL;
882                 goto parse_DFS_referrals_exit;
883         }
884
885         /* get the upper boundary of the resp buffer */
886         data_end = (char *)rsp + rsp_size;
887
888         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
889                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
890
891         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
892                                 GFP_KERNEL);
893         if (*target_nodes == NULL) {
894                 rc = -ENOMEM;
895                 goto parse_DFS_referrals_exit;
896         }
897
898         /* collect necessary data from referrals */
899         for (i = 0; i < *num_of_nodes; i++) {
900                 char *temp;
901                 int max_len;
902                 struct dfs_info3_param *node = (*target_nodes)+i;
903
904                 node->flags = le32_to_cpu(rsp->DFSFlags);
905                 if (is_unicode) {
906                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
907                                                 GFP_KERNEL);
908                         if (tmp == NULL) {
909                                 rc = -ENOMEM;
910                                 goto parse_DFS_referrals_exit;
911                         }
912                         cifsConvertToUTF16((__le16 *) tmp, searchName,
913                                            PATH_MAX, nls_codepage, remap);
914                         node->path_consumed = cifs_utf16_bytes(tmp,
915                                         le16_to_cpu(rsp->PathConsumed),
916                                         nls_codepage);
917                         kfree(tmp);
918                 } else
919                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
920
921                 node->server_type = le16_to_cpu(ref->ServerType);
922                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
923
924                 /* copy DfsPath */
925                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
926                 max_len = data_end - temp;
927                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
928                                                 is_unicode, nls_codepage);
929                 if (!node->path_name) {
930                         rc = -ENOMEM;
931                         goto parse_DFS_referrals_exit;
932                 }
933
934                 /* copy link target UNC */
935                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
936                 max_len = data_end - temp;
937                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
938                                                 is_unicode, nls_codepage);
939                 if (!node->node_name) {
940                         rc = -ENOMEM;
941                         goto parse_DFS_referrals_exit;
942                 }
943
944                 node->ttl = le32_to_cpu(ref->TimeToLive);
945
946                 ref++;
947         }
948
949 parse_DFS_referrals_exit:
950         if (rc) {
951                 free_dfs_info_array(*target_nodes, *num_of_nodes);
952                 *target_nodes = NULL;
953                 *num_of_nodes = 0;
954         }
955         return rc;
956 }
957
958 struct cifs_aio_ctx *
959 cifs_aio_ctx_alloc(void)
960 {
961         struct cifs_aio_ctx *ctx;
962
963         /*
964          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
965          * to false so that we know when we have to unreference pages within
966          * cifs_aio_ctx_release()
967          */
968         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
969         if (!ctx)
970                 return NULL;
971
972         INIT_LIST_HEAD(&ctx->list);
973         mutex_init(&ctx->aio_mutex);
974         init_completion(&ctx->done);
975         kref_init(&ctx->refcount);
976         return ctx;
977 }
978
979 void
980 cifs_aio_ctx_release(struct kref *refcount)
981 {
982         struct cifs_aio_ctx *ctx = container_of(refcount,
983                                         struct cifs_aio_ctx, refcount);
984
985         cifsFileInfo_put(ctx->cfile);
986
987         /*
988          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
989          * which means that iov_iter_extract_pages() was a success and thus
990          * that we may have references or pins on pages that we need to
991          * release.
992          */
993         if (ctx->bv) {
994                 if (ctx->should_dirty || ctx->bv_need_unpin) {
995                         unsigned int i;
996
997                         for (i = 0; i < ctx->nr_pinned_pages; i++) {
998                                 struct page *page = ctx->bv[i].bv_page;
999
1000                                 if (ctx->should_dirty)
1001                                         set_page_dirty(page);
1002                                 if (ctx->bv_need_unpin)
1003                                         unpin_user_page(page);
1004                         }
1005                 }
1006                 kvfree(ctx->bv);
1007         }
1008
1009         kfree(ctx);
1010 }
1011
1012 /**
1013  * cifs_alloc_hash - allocate hash and hash context together
1014  * @name: The name of the crypto hash algo
1015  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1016  *
1017  * The caller has to make sure @sdesc is initialized to either NULL or
1018  * a valid context. It can be freed via cifs_free_hash().
1019  */
1020 int
1021 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1022 {
1023         int rc = 0;
1024         struct crypto_shash *alg = NULL;
1025
1026         if (*sdesc)
1027                 return 0;
1028
1029         alg = crypto_alloc_shash(name, 0, 0);
1030         if (IS_ERR(alg)) {
1031                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1032                 rc = PTR_ERR(alg);
1033                 *sdesc = NULL;
1034                 return rc;
1035         }
1036
1037         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1038         if (*sdesc == NULL) {
1039                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1040                 crypto_free_shash(alg);
1041                 return -ENOMEM;
1042         }
1043
1044         (*sdesc)->tfm = alg;
1045         return 0;
1046 }
1047
1048 /**
1049  * cifs_free_hash - free hash and hash context together
1050  * @sdesc: Where to find the pointer to the hash TFM
1051  *
1052  * Freeing a NULL descriptor is safe.
1053  */
1054 void
1055 cifs_free_hash(struct shash_desc **sdesc)
1056 {
1057         if (unlikely(!sdesc) || !*sdesc)
1058                 return;
1059
1060         if ((*sdesc)->tfm) {
1061                 crypto_free_shash((*sdesc)->tfm);
1062                 (*sdesc)->tfm = NULL;
1063         }
1064
1065         kfree_sensitive(*sdesc);
1066         *sdesc = NULL;
1067 }
1068
1069 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1070 {
1071         const char *end;
1072
1073         /* skip initial slashes */
1074         while (*unc && (*unc == '\\' || *unc == '/'))
1075                 unc++;
1076
1077         end = unc;
1078
1079         while (*end && !(*end == '\\' || *end == '/'))
1080                 end++;
1081
1082         *h = unc;
1083         *len = end - unc;
1084 }
1085
1086 /**
1087  * copy_path_name - copy src path to dst, possibly truncating
1088  * @dst: The destination buffer
1089  * @src: The source name
1090  *
1091  * returns number of bytes written (including trailing nul)
1092  */
1093 int copy_path_name(char *dst, const char *src)
1094 {
1095         int name_len;
1096
1097         /*
1098          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1099          * will truncate and strlen(dst) will be PATH_MAX-1
1100          */
1101         name_len = strscpy(dst, src, PATH_MAX);
1102         if (WARN_ON_ONCE(name_len < 0))
1103                 name_len = PATH_MAX-1;
1104
1105         /* we count the trailing nul */
1106         name_len++;
1107         return name_len;
1108 }
1109
1110 struct super_cb_data {
1111         void *data;
1112         struct super_block *sb;
1113 };
1114
1115 static void tcon_super_cb(struct super_block *sb, void *arg)
1116 {
1117         struct super_cb_data *sd = arg;
1118         struct cifs_sb_info *cifs_sb;
1119         struct cifs_tcon *t1 = sd->data, *t2;
1120
1121         if (sd->sb)
1122                 return;
1123
1124         cifs_sb = CIFS_SB(sb);
1125         t2 = cifs_sb_master_tcon(cifs_sb);
1126
1127         spin_lock(&t2->tc_lock);
1128         if (t1->ses == t2->ses &&
1129             t1->ses->server == t2->ses->server &&
1130             t2->origin_fullpath &&
1131             dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1132                 sd->sb = sb;
1133         spin_unlock(&t2->tc_lock);
1134 }
1135
1136 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1137                                             void *data)
1138 {
1139         struct super_cb_data sd = {
1140                 .data = data,
1141                 .sb = NULL,
1142         };
1143         struct file_system_type **fs_type = (struct file_system_type *[]) {
1144                 &cifs_fs_type, &smb3_fs_type, NULL,
1145         };
1146
1147         for (; *fs_type; fs_type++) {
1148                 iterate_supers_type(*fs_type, f, &sd);
1149                 if (sd.sb) {
1150                         /*
1151                          * Grab an active reference in order to prevent automounts (DFS links)
1152                          * of expiring and then freeing up our cifs superblock pointer while
1153                          * we're doing failover.
1154                          */
1155                         cifs_sb_active(sd.sb);
1156                         return sd.sb;
1157                 }
1158         }
1159         pr_warn_once("%s: could not find dfs superblock\n", __func__);
1160         return ERR_PTR(-EINVAL);
1161 }
1162
1163 static void __cifs_put_super(struct super_block *sb)
1164 {
1165         if (!IS_ERR_OR_NULL(sb))
1166                 cifs_sb_deactive(sb);
1167 }
1168
1169 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1170 {
1171         spin_lock(&tcon->tc_lock);
1172         if (!tcon->origin_fullpath) {
1173                 spin_unlock(&tcon->tc_lock);
1174                 return ERR_PTR(-ENOENT);
1175         }
1176         spin_unlock(&tcon->tc_lock);
1177         return __cifs_get_super(tcon_super_cb, tcon);
1178 }
1179
1180 void cifs_put_tcp_super(struct super_block *sb)
1181 {
1182         __cifs_put_super(sb);
1183 }
1184
1185 #ifdef CONFIG_CIFS_DFS_UPCALL
1186 int match_target_ip(struct TCP_Server_Info *server,
1187                     const char *share, size_t share_len,
1188                     bool *result)
1189 {
1190         int rc;
1191         char *target;
1192         struct sockaddr_storage ss;
1193
1194         *result = false;
1195
1196         target = kzalloc(share_len + 3, GFP_KERNEL);
1197         if (!target)
1198                 return -ENOMEM;
1199
1200         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1201
1202         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1203
1204         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1205         kfree(target);
1206
1207         if (rc < 0)
1208                 return rc;
1209
1210         spin_lock(&server->srv_lock);
1211         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1212         spin_unlock(&server->srv_lock);
1213         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1214         return 0;
1215 }
1216
1217 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1218 {
1219         int rc;
1220
1221         kfree(cifs_sb->prepath);
1222         cifs_sb->prepath = NULL;
1223
1224         if (prefix && *prefix) {
1225                 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1226                 if (IS_ERR(cifs_sb->prepath)) {
1227                         rc = PTR_ERR(cifs_sb->prepath);
1228                         cifs_sb->prepath = NULL;
1229                         return rc;
1230                 }
1231                 if (cifs_sb->prepath)
1232                         convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1233         }
1234
1235         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1236         return 0;
1237 }
1238
1239 /*
1240  * Handle weird Windows SMB server behaviour. It responds with
1241  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1242  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1243  * non-ASCII unicode symbols.
1244  */
1245 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1246                                    struct cifs_tcon *tcon,
1247                                    struct cifs_sb_info *cifs_sb,
1248                                    const char *full_path,
1249                                    bool *islink)
1250 {
1251         struct cifs_ses *ses = tcon->ses;
1252         size_t len;
1253         char *path;
1254         char *ref_path;
1255
1256         *islink = false;
1257
1258         /*
1259          * Fast path - skip check when @full_path doesn't have a prefix path to
1260          * look up or tcon is not DFS.
1261          */
1262         if (strlen(full_path) < 2 || !cifs_sb ||
1263             (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1264             !is_tcon_dfs(tcon))
1265                 return 0;
1266
1267         spin_lock(&tcon->tc_lock);
1268         if (!tcon->origin_fullpath) {
1269                 spin_unlock(&tcon->tc_lock);
1270                 return 0;
1271         }
1272         spin_unlock(&tcon->tc_lock);
1273
1274         /*
1275          * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1276          * to get a referral to figure out whether it is an DFS link.
1277          */
1278         len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1279         path = kmalloc(len, GFP_KERNEL);
1280         if (!path)
1281                 return -ENOMEM;
1282
1283         scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1284         ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1285                                             cifs_remap(cifs_sb));
1286         kfree(path);
1287
1288         if (IS_ERR(ref_path)) {
1289                 if (PTR_ERR(ref_path) != -EINVAL)
1290                         return PTR_ERR(ref_path);
1291         } else {
1292                 struct dfs_info3_param *refs = NULL;
1293                 int num_refs = 0;
1294
1295                 /*
1296                  * XXX: we are not using dfs_cache_find() here because we might
1297                  * end up filling all the DFS cache and thus potentially
1298                  * removing cached DFS targets that the client would eventually
1299                  * need during failover.
1300                  */
1301                 ses = CIFS_DFS_ROOT_SES(ses);
1302                 if (ses->server->ops->get_dfs_refer &&
1303                     !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1304                                                      &num_refs, cifs_sb->local_nls,
1305                                                      cifs_remap(cifs_sb)))
1306                         *islink = refs[0].server_type == DFS_TYPE_LINK;
1307                 free_dfs_info_array(refs, num_refs);
1308                 kfree(ref_path);
1309         }
1310         return 0;
1311 }
1312 #endif
1313
1314 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1315 {
1316         int timeout = 10;
1317         int rc;
1318
1319         spin_lock(&server->srv_lock);
1320         if (server->tcpStatus != CifsNeedReconnect) {
1321                 spin_unlock(&server->srv_lock);
1322                 return 0;
1323         }
1324         timeout *= server->nr_targets;
1325         spin_unlock(&server->srv_lock);
1326
1327         /*
1328          * Give demultiplex thread up to 10 seconds to each target available for
1329          * reconnect -- should be greater than cifs socket timeout which is 7
1330          * seconds.
1331          *
1332          * On "soft" mounts we wait once. Hard mounts keep retrying until
1333          * process is killed or server comes back on-line.
1334          */
1335         do {
1336                 rc = wait_event_interruptible_timeout(server->response_q,
1337                                                       (server->tcpStatus != CifsNeedReconnect),
1338                                                       timeout * HZ);
1339                 if (rc < 0) {
1340                         cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1341                                  __func__);
1342                         return -ERESTARTSYS;
1343                 }
1344
1345                 /* are we still trying to reconnect? */
1346                 spin_lock(&server->srv_lock);
1347                 if (server->tcpStatus != CifsNeedReconnect) {
1348                         spin_unlock(&server->srv_lock);
1349                         return 0;
1350                 }
1351                 spin_unlock(&server->srv_lock);
1352         } while (retry);
1353
1354         cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1355         return -EHOSTDOWN;
1356 }