ksmbd: Remove unused field in ksmbd_user struct
[platform/kernel/linux-rpi.git] / fs / smb / client / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38
39 unsigned int
40 _get_xid(void)
41 {
42         unsigned int xid;
43
44         spin_lock(&GlobalMid_Lock);
45         GlobalTotalActiveXid++;
46
47         /* keep high water mark for number of simultaneous ops in filesystem */
48         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49                 GlobalMaxActiveXid = GlobalTotalActiveXid;
50         if (GlobalTotalActiveXid > 65000)
51                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52         xid = GlobalCurrentXid++;
53         spin_unlock(&GlobalMid_Lock);
54         return xid;
55 }
56
57 void
58 _free_xid(unsigned int xid)
59 {
60         spin_lock(&GlobalMid_Lock);
61         /* if (GlobalTotalActiveXid == 0)
62                 BUG(); */
63         GlobalTotalActiveXid--;
64         spin_unlock(&GlobalMid_Lock);
65 }
66
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70         struct cifs_ses *ret_buf;
71
72         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73         if (ret_buf) {
74                 atomic_inc(&sesInfoAllocCount);
75                 spin_lock_init(&ret_buf->ses_lock);
76                 ret_buf->ses_status = SES_NEW;
77                 ++ret_buf->ses_count;
78                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79                 INIT_LIST_HEAD(&ret_buf->tcon_list);
80                 mutex_init(&ret_buf->session_mutex);
81                 spin_lock_init(&ret_buf->iface_lock);
82                 INIT_LIST_HEAD(&ret_buf->iface_list);
83                 spin_lock_init(&ret_buf->chan_lock);
84         }
85         return ret_buf;
86 }
87
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91         struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93         if (buf_to_free == NULL) {
94                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95                 return;
96         }
97
98         unload_nls(buf_to_free->local_nls);
99         atomic_dec(&sesInfoAllocCount);
100         kfree(buf_to_free->serverOS);
101         kfree(buf_to_free->serverDomain);
102         kfree(buf_to_free->serverNOS);
103         kfree_sensitive(buf_to_free->password);
104         kfree(buf_to_free->user_name);
105         kfree(buf_to_free->domainName);
106         kfree_sensitive(buf_to_free->auth_key.response);
107         spin_lock(&buf_to_free->iface_lock);
108         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109                                  iface_head)
110                 kref_put(&iface->refcount, release_iface);
111         spin_unlock(&buf_to_free->iface_lock);
112         kfree_sensitive(buf_to_free);
113 }
114
115 struct cifs_tcon *
116 tcon_info_alloc(bool dir_leases_enabled)
117 {
118         struct cifs_tcon *ret_buf;
119
120         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121         if (!ret_buf)
122                 return NULL;
123
124         if (dir_leases_enabled == true) {
125                 ret_buf->cfids = init_cached_dirs();
126                 if (!ret_buf->cfids) {
127                         kfree(ret_buf);
128                         return NULL;
129                 }
130         }
131         /* else ret_buf->cfids is already set to NULL above */
132
133         atomic_inc(&tconInfoAllocCount);
134         ret_buf->status = TID_NEW;
135         ++ret_buf->tc_count;
136         spin_lock_init(&ret_buf->tc_lock);
137         INIT_LIST_HEAD(&ret_buf->openFileList);
138         INIT_LIST_HEAD(&ret_buf->tcon_list);
139         spin_lock_init(&ret_buf->open_file_lock);
140         spin_lock_init(&ret_buf->stat_lock);
141         atomic_set(&ret_buf->num_local_opens, 0);
142         atomic_set(&ret_buf->num_remote_opens, 0);
143 #ifdef CONFIG_CIFS_DFS_UPCALL
144         INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
145 #endif
146
147         return ret_buf;
148 }
149
150 void
151 tconInfoFree(struct cifs_tcon *tcon)
152 {
153         if (tcon == NULL) {
154                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
155                 return;
156         }
157         free_cached_dirs(tcon->cfids);
158         atomic_dec(&tconInfoAllocCount);
159         kfree(tcon->nativeFileSystem);
160         kfree_sensitive(tcon->password);
161 #ifdef CONFIG_CIFS_DFS_UPCALL
162         dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
163 #endif
164         kfree(tcon->origin_fullpath);
165         kfree(tcon);
166 }
167
168 struct smb_hdr *
169 cifs_buf_get(void)
170 {
171         struct smb_hdr *ret_buf = NULL;
172         /*
173          * SMB2 header is bigger than CIFS one - no problems to clean some
174          * more bytes for CIFS.
175          */
176         size_t buf_size = sizeof(struct smb2_hdr);
177
178         /*
179          * We could use negotiated size instead of max_msgsize -
180          * but it may be more efficient to always alloc same size
181          * albeit slightly larger than necessary and maxbuffersize
182          * defaults to this and can not be bigger.
183          */
184         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
185
186         /* clear the first few header bytes */
187         /* for most paths, more is cleared in header_assemble */
188         memset(ret_buf, 0, buf_size + 3);
189         atomic_inc(&buf_alloc_count);
190 #ifdef CONFIG_CIFS_STATS2
191         atomic_inc(&total_buf_alloc_count);
192 #endif /* CONFIG_CIFS_STATS2 */
193
194         return ret_buf;
195 }
196
197 void
198 cifs_buf_release(void *buf_to_free)
199 {
200         if (buf_to_free == NULL) {
201                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
202                 return;
203         }
204         mempool_free(buf_to_free, cifs_req_poolp);
205
206         atomic_dec(&buf_alloc_count);
207         return;
208 }
209
210 struct smb_hdr *
211 cifs_small_buf_get(void)
212 {
213         struct smb_hdr *ret_buf = NULL;
214
215 /* We could use negotiated size instead of max_msgsize -
216    but it may be more efficient to always alloc same size
217    albeit slightly larger than necessary and maxbuffersize
218    defaults to this and can not be bigger */
219         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
220         /* No need to clear memory here, cleared in header assemble */
221         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
222         atomic_inc(&small_buf_alloc_count);
223 #ifdef CONFIG_CIFS_STATS2
224         atomic_inc(&total_small_buf_alloc_count);
225 #endif /* CONFIG_CIFS_STATS2 */
226
227         return ret_buf;
228 }
229
230 void
231 cifs_small_buf_release(void *buf_to_free)
232 {
233
234         if (buf_to_free == NULL) {
235                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
236                 return;
237         }
238         mempool_free(buf_to_free, cifs_sm_req_poolp);
239
240         atomic_dec(&small_buf_alloc_count);
241         return;
242 }
243
244 void
245 free_rsp_buf(int resp_buftype, void *rsp)
246 {
247         if (resp_buftype == CIFS_SMALL_BUFFER)
248                 cifs_small_buf_release(rsp);
249         else if (resp_buftype == CIFS_LARGE_BUFFER)
250                 cifs_buf_release(rsp);
251 }
252
253 /* NB: MID can not be set if treeCon not passed in, in that
254    case it is responsbility of caller to set the mid */
255 void
256 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
257                 const struct cifs_tcon *treeCon, int word_count
258                 /* length of fixed section (word count) in two byte units  */)
259 {
260         char *temp = (char *) buffer;
261
262         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
263
264         buffer->smb_buf_length = cpu_to_be32(
265             (2 * word_count) + sizeof(struct smb_hdr) -
266             4 /*  RFC 1001 length field does not count */  +
267             2 /* for bcc field itself */) ;
268
269         buffer->Protocol[0] = 0xFF;
270         buffer->Protocol[1] = 'S';
271         buffer->Protocol[2] = 'M';
272         buffer->Protocol[3] = 'B';
273         buffer->Command = smb_command;
274         buffer->Flags = 0x00;   /* case sensitive */
275         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
276         buffer->Pid = cpu_to_le16((__u16)current->tgid);
277         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
278         if (treeCon) {
279                 buffer->Tid = treeCon->tid;
280                 if (treeCon->ses) {
281                         if (treeCon->ses->capabilities & CAP_UNICODE)
282                                 buffer->Flags2 |= SMBFLG2_UNICODE;
283                         if (treeCon->ses->capabilities & CAP_STATUS32)
284                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
285
286                         /* Uid is not converted */
287                         buffer->Uid = treeCon->ses->Suid;
288                         if (treeCon->ses->server)
289                                 buffer->Mid = get_next_mid(treeCon->ses->server);
290                 }
291                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
292                         buffer->Flags2 |= SMBFLG2_DFS;
293                 if (treeCon->nocase)
294                         buffer->Flags  |= SMBFLG_CASELESS;
295                 if ((treeCon->ses) && (treeCon->ses->server))
296                         if (treeCon->ses->server->sign)
297                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
298         }
299
300 /*  endian conversion of flags is now done just before sending */
301         buffer->WordCount = (char) word_count;
302         return;
303 }
304
305 static int
306 check_smb_hdr(struct smb_hdr *smb)
307 {
308         /* does it have the right SMB "signature" ? */
309         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
310                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
311                          *(unsigned int *)smb->Protocol);
312                 return 1;
313         }
314
315         /* if it's a response then accept */
316         if (smb->Flags & SMBFLG_RESPONSE)
317                 return 0;
318
319         /* only one valid case where server sends us request */
320         if (smb->Command == SMB_COM_LOCKING_ANDX)
321                 return 0;
322
323         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
324                  get_mid(smb));
325         return 1;
326 }
327
328 int
329 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
330 {
331         struct smb_hdr *smb = (struct smb_hdr *)buf;
332         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
333         __u32 clc_len;  /* calculated length */
334         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
335                  total_read, rfclen);
336
337         /* is this frame too small to even get to a BCC? */
338         if (total_read < 2 + sizeof(struct smb_hdr)) {
339                 if ((total_read >= sizeof(struct smb_hdr) - 1)
340                             && (smb->Status.CifsError != 0)) {
341                         /* it's an error return */
342                         smb->WordCount = 0;
343                         /* some error cases do not return wct and bcc */
344                         return 0;
345                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
346                                 (smb->WordCount == 0)) {
347                         char *tmp = (char *)smb;
348                         /* Need to work around a bug in two servers here */
349                         /* First, check if the part of bcc they sent was zero */
350                         if (tmp[sizeof(struct smb_hdr)] == 0) {
351                                 /* some servers return only half of bcc
352                                  * on simple responses (wct, bcc both zero)
353                                  * in particular have seen this on
354                                  * ulogoffX and FindClose. This leaves
355                                  * one byte of bcc potentially unitialized
356                                  */
357                                 /* zero rest of bcc */
358                                 tmp[sizeof(struct smb_hdr)+1] = 0;
359                                 return 0;
360                         }
361                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
362                 } else {
363                         cifs_dbg(VFS, "Length less than smb header size\n");
364                 }
365                 return -EIO;
366         } else if (total_read < sizeof(*smb) + 2 * smb->WordCount) {
367                 cifs_dbg(VFS, "%s: can't read BCC due to invalid WordCount(%u)\n",
368                          __func__, smb->WordCount);
369                 return -EIO;
370         }
371
372         /* otherwise, there is enough to get to the BCC */
373         if (check_smb_hdr(smb))
374                 return -EIO;
375         clc_len = smbCalcSize(smb);
376
377         if (4 + rfclen != total_read) {
378                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
379                          rfclen);
380                 return -EIO;
381         }
382
383         if (4 + rfclen != clc_len) {
384                 __u16 mid = get_mid(smb);
385                 /* check if bcc wrapped around for large read responses */
386                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
387                         /* check if lengths match mod 64K */
388                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
389                                 return 0; /* bcc wrapped */
390                 }
391                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
392                          clc_len, 4 + rfclen, mid);
393
394                 if (4 + rfclen < clc_len) {
395                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
396                                  rfclen, mid);
397                         return -EIO;
398                 } else if (rfclen > clc_len + 512) {
399                         /*
400                          * Some servers (Windows XP in particular) send more
401                          * data than the lengths in the SMB packet would
402                          * indicate on certain calls (byte range locks and
403                          * trans2 find first calls in particular). While the
404                          * client can handle such a frame by ignoring the
405                          * trailing data, we choose limit the amount of extra
406                          * data to 512 bytes.
407                          */
408                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
409                                  rfclen, mid);
410                         return -EIO;
411                 }
412         }
413         return 0;
414 }
415
416 bool
417 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
418 {
419         struct smb_hdr *buf = (struct smb_hdr *)buffer;
420         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
421         struct TCP_Server_Info *pserver;
422         struct cifs_ses *ses;
423         struct cifs_tcon *tcon;
424         struct cifsInodeInfo *pCifsInode;
425         struct cifsFileInfo *netfile;
426
427         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
428         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
429            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
430                 struct smb_com_transaction_change_notify_rsp *pSMBr =
431                         (struct smb_com_transaction_change_notify_rsp *)buf;
432                 struct file_notify_information *pnotify;
433                 __u32 data_offset = 0;
434                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
435
436                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
437                         data_offset = le32_to_cpu(pSMBr->DataOffset);
438
439                         if (data_offset >
440                             len - sizeof(struct file_notify_information)) {
441                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
442                                          data_offset);
443                                 return true;
444                         }
445                         pnotify = (struct file_notify_information *)
446                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
447                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
448                                  pnotify->FileName, pnotify->Action);
449                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
450                                 sizeof(struct smb_hdr)+60); */
451                         return true;
452                 }
453                 if (pSMBr->hdr.Status.CifsError) {
454                         cifs_dbg(FYI, "notify err 0x%x\n",
455                                  pSMBr->hdr.Status.CifsError);
456                         return true;
457                 }
458                 return false;
459         }
460         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
461                 return false;
462         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
463                 /* no sense logging error on invalid handle on oplock
464                    break - harmless race between close request and oplock
465                    break response is expected from time to time writing out
466                    large dirty files cached on the client */
467                 if ((NT_STATUS_INVALID_HANDLE) ==
468                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
469                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
470                         return true;
471                 } else if (ERRbadfid ==
472                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
473                         return true;
474                 } else {
475                         return false; /* on valid oplock brk we get "request" */
476                 }
477         }
478         if (pSMB->hdr.WordCount != 8)
479                 return false;
480
481         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
482                  pSMB->LockType, pSMB->OplockLevel);
483         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
484                 return false;
485
486         /* If server is a channel, select the primary channel */
487         pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
488
489         /* look up tcon based on tid & uid */
490         spin_lock(&cifs_tcp_ses_lock);
491         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
492                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
493                         if (tcon->tid != buf->Tid)
494                                 continue;
495
496                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
497                         spin_lock(&tcon->open_file_lock);
498                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
499                                 if (pSMB->Fid != netfile->fid.netfid)
500                                         continue;
501
502                                 cifs_dbg(FYI, "file id match, oplock break\n");
503                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
504
505                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
506                                         &pCifsInode->flags);
507
508                                 netfile->oplock_epoch = 0;
509                                 netfile->oplock_level = pSMB->OplockLevel;
510                                 netfile->oplock_break_cancelled = false;
511                                 cifs_queue_oplock_break(netfile);
512
513                                 spin_unlock(&tcon->open_file_lock);
514                                 spin_unlock(&cifs_tcp_ses_lock);
515                                 return true;
516                         }
517                         spin_unlock(&tcon->open_file_lock);
518                         spin_unlock(&cifs_tcp_ses_lock);
519                         cifs_dbg(FYI, "No matching file for oplock break\n");
520                         return true;
521                 }
522         }
523         spin_unlock(&cifs_tcp_ses_lock);
524         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
525         return true;
526 }
527
528 void
529 dump_smb(void *buf, int smb_buf_length)
530 {
531         if (traceSMB == 0)
532                 return;
533
534         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
535                        smb_buf_length, true);
536 }
537
538 void
539 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
540 {
541         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
542                 struct cifs_tcon *tcon = NULL;
543
544                 if (cifs_sb->master_tlink)
545                         tcon = cifs_sb_master_tcon(cifs_sb);
546
547                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
548                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
549                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
550                          tcon ? tcon->tree_name : "new server");
551                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
552                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
553
554         }
555 }
556
557 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
558 {
559         oplock &= 0xF;
560
561         if (oplock == OPLOCK_EXCLUSIVE) {
562                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
563                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
564                          &cinode->netfs.inode);
565         } else if (oplock == OPLOCK_READ) {
566                 cinode->oplock = CIFS_CACHE_READ_FLG;
567                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
568                          &cinode->netfs.inode);
569         } else
570                 cinode->oplock = 0;
571 }
572
573 /*
574  * We wait for oplock breaks to be processed before we attempt to perform
575  * writes.
576  */
577 int cifs_get_writer(struct cifsInodeInfo *cinode)
578 {
579         int rc;
580
581 start:
582         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
583                          TASK_KILLABLE);
584         if (rc)
585                 return rc;
586
587         spin_lock(&cinode->writers_lock);
588         if (!cinode->writers)
589                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
590         cinode->writers++;
591         /* Check to see if we have started servicing an oplock break */
592         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
593                 cinode->writers--;
594                 if (cinode->writers == 0) {
595                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
596                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
597                 }
598                 spin_unlock(&cinode->writers_lock);
599                 goto start;
600         }
601         spin_unlock(&cinode->writers_lock);
602         return 0;
603 }
604
605 void cifs_put_writer(struct cifsInodeInfo *cinode)
606 {
607         spin_lock(&cinode->writers_lock);
608         cinode->writers--;
609         if (cinode->writers == 0) {
610                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
611                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
612         }
613         spin_unlock(&cinode->writers_lock);
614 }
615
616 /**
617  * cifs_queue_oplock_break - queue the oplock break handler for cfile
618  * @cfile: The file to break the oplock on
619  *
620  * This function is called from the demultiplex thread when it
621  * receives an oplock break for @cfile.
622  *
623  * Assumes the tcon->open_file_lock is held.
624  * Assumes cfile->file_info_lock is NOT held.
625  */
626 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
627 {
628         /*
629          * Bump the handle refcount now while we hold the
630          * open_file_lock to enforce the validity of it for the oplock
631          * break handler. The matching put is done at the end of the
632          * handler.
633          */
634         cifsFileInfo_get(cfile);
635
636         queue_work(cifsoplockd_wq, &cfile->oplock_break);
637 }
638
639 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
640 {
641         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
642         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
643 }
644
645 bool
646 backup_cred(struct cifs_sb_info *cifs_sb)
647 {
648         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
649                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
650                         return true;
651         }
652         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
653                 if (in_group_p(cifs_sb->ctx->backupgid))
654                         return true;
655         }
656
657         return false;
658 }
659
660 void
661 cifs_del_pending_open(struct cifs_pending_open *open)
662 {
663         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
664         list_del(&open->olist);
665         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
666 }
667
668 void
669 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
670                              struct cifs_pending_open *open)
671 {
672         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
673         open->oplock = CIFS_OPLOCK_NO_CHANGE;
674         open->tlink = tlink;
675         fid->pending_open = open;
676         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
677 }
678
679 void
680 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
681                       struct cifs_pending_open *open)
682 {
683         spin_lock(&tlink_tcon(tlink)->open_file_lock);
684         cifs_add_pending_open_locked(fid, tlink, open);
685         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
686 }
687
688 /*
689  * Critical section which runs after acquiring deferred_lock.
690  * As there is no reference count on cifs_deferred_close, pdclose
691  * should not be used outside deferred_lock.
692  */
693 bool
694 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
695 {
696         struct cifs_deferred_close *dclose;
697
698         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
699                 if ((dclose->netfid == cfile->fid.netfid) &&
700                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
701                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
702                         *pdclose = dclose;
703                         return true;
704                 }
705         }
706         return false;
707 }
708
709 /*
710  * Critical section which runs after acquiring deferred_lock.
711  */
712 void
713 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
714 {
715         bool is_deferred = false;
716         struct cifs_deferred_close *pdclose;
717
718         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
719         if (is_deferred) {
720                 kfree(dclose);
721                 return;
722         }
723
724         dclose->tlink = cfile->tlink;
725         dclose->netfid = cfile->fid.netfid;
726         dclose->persistent_fid = cfile->fid.persistent_fid;
727         dclose->volatile_fid = cfile->fid.volatile_fid;
728         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
729 }
730
731 /*
732  * Critical section which runs after acquiring deferred_lock.
733  */
734 void
735 cifs_del_deferred_close(struct cifsFileInfo *cfile)
736 {
737         bool is_deferred = false;
738         struct cifs_deferred_close *dclose;
739
740         is_deferred = cifs_is_deferred_close(cfile, &dclose);
741         if (!is_deferred)
742                 return;
743         list_del(&dclose->dlist);
744         kfree(dclose);
745 }
746
747 void
748 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
749 {
750         struct cifsFileInfo *cfile = NULL;
751         struct file_list *tmp_list, *tmp_next_list;
752         struct list_head file_head;
753
754         if (cifs_inode == NULL)
755                 return;
756
757         INIT_LIST_HEAD(&file_head);
758         spin_lock(&cifs_inode->open_file_lock);
759         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
760                 if (delayed_work_pending(&cfile->deferred)) {
761                         if (cancel_delayed_work(&cfile->deferred)) {
762                                 spin_lock(&cifs_inode->deferred_lock);
763                                 cifs_del_deferred_close(cfile);
764                                 spin_unlock(&cifs_inode->deferred_lock);
765
766                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
767                                 if (tmp_list == NULL)
768                                         break;
769                                 tmp_list->cfile = cfile;
770                                 list_add_tail(&tmp_list->list, &file_head);
771                         }
772                 }
773         }
774         spin_unlock(&cifs_inode->open_file_lock);
775
776         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
777                 _cifsFileInfo_put(tmp_list->cfile, false, false);
778                 list_del(&tmp_list->list);
779                 kfree(tmp_list);
780         }
781 }
782
783 void
784 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
785 {
786         struct cifsFileInfo *cfile;
787         struct file_list *tmp_list, *tmp_next_list;
788         struct list_head file_head;
789
790         INIT_LIST_HEAD(&file_head);
791         spin_lock(&tcon->open_file_lock);
792         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
793                 if (delayed_work_pending(&cfile->deferred)) {
794                         if (cancel_delayed_work(&cfile->deferred)) {
795                                 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
796                                 cifs_del_deferred_close(cfile);
797                                 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
798
799                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
800                                 if (tmp_list == NULL)
801                                         break;
802                                 tmp_list->cfile = cfile;
803                                 list_add_tail(&tmp_list->list, &file_head);
804                         }
805                 }
806         }
807         spin_unlock(&tcon->open_file_lock);
808
809         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
810                 _cifsFileInfo_put(tmp_list->cfile, true, false);
811                 list_del(&tmp_list->list);
812                 kfree(tmp_list);
813         }
814 }
815 void
816 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
817 {
818         struct cifsFileInfo *cfile;
819         struct file_list *tmp_list, *tmp_next_list;
820         struct list_head file_head;
821         void *page;
822         const char *full_path;
823
824         INIT_LIST_HEAD(&file_head);
825         page = alloc_dentry_path();
826         spin_lock(&tcon->open_file_lock);
827         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
828                 full_path = build_path_from_dentry(cfile->dentry, page);
829                 if (strstr(full_path, path)) {
830                         if (delayed_work_pending(&cfile->deferred)) {
831                                 if (cancel_delayed_work(&cfile->deferred)) {
832                                         spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
833                                         cifs_del_deferred_close(cfile);
834                                         spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
835
836                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
837                                         if (tmp_list == NULL)
838                                                 break;
839                                         tmp_list->cfile = cfile;
840                                         list_add_tail(&tmp_list->list, &file_head);
841                                 }
842                         }
843                 }
844         }
845         spin_unlock(&tcon->open_file_lock);
846
847         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
848                 _cifsFileInfo_put(tmp_list->cfile, true, false);
849                 list_del(&tmp_list->list);
850                 kfree(tmp_list);
851         }
852         free_dentry_path(page);
853 }
854
855 /* parses DFS referral V3 structure
856  * caller is responsible for freeing target_nodes
857  * returns:
858  * - on success - 0
859  * - on failure - errno
860  */
861 int
862 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
863                     unsigned int *num_of_nodes,
864                     struct dfs_info3_param **target_nodes,
865                     const struct nls_table *nls_codepage, int remap,
866                     const char *searchName, bool is_unicode)
867 {
868         int i, rc = 0;
869         char *data_end;
870         struct dfs_referral_level_3 *ref;
871
872         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
873
874         if (*num_of_nodes < 1) {
875                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
876                          *num_of_nodes);
877                 rc = -EINVAL;
878                 goto parse_DFS_referrals_exit;
879         }
880
881         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
882         if (ref->VersionNumber != cpu_to_le16(3)) {
883                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
884                          le16_to_cpu(ref->VersionNumber));
885                 rc = -EINVAL;
886                 goto parse_DFS_referrals_exit;
887         }
888
889         /* get the upper boundary of the resp buffer */
890         data_end = (char *)rsp + rsp_size;
891
892         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
893                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
894
895         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
896                                 GFP_KERNEL);
897         if (*target_nodes == NULL) {
898                 rc = -ENOMEM;
899                 goto parse_DFS_referrals_exit;
900         }
901
902         /* collect necessary data from referrals */
903         for (i = 0; i < *num_of_nodes; i++) {
904                 char *temp;
905                 int max_len;
906                 struct dfs_info3_param *node = (*target_nodes)+i;
907
908                 node->flags = le32_to_cpu(rsp->DFSFlags);
909                 if (is_unicode) {
910                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
911                                                 GFP_KERNEL);
912                         if (tmp == NULL) {
913                                 rc = -ENOMEM;
914                                 goto parse_DFS_referrals_exit;
915                         }
916                         cifsConvertToUTF16((__le16 *) tmp, searchName,
917                                            PATH_MAX, nls_codepage, remap);
918                         node->path_consumed = cifs_utf16_bytes(tmp,
919                                         le16_to_cpu(rsp->PathConsumed),
920                                         nls_codepage);
921                         kfree(tmp);
922                 } else
923                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
924
925                 node->server_type = le16_to_cpu(ref->ServerType);
926                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
927
928                 /* copy DfsPath */
929                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
930                 max_len = data_end - temp;
931                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
932                                                 is_unicode, nls_codepage);
933                 if (!node->path_name) {
934                         rc = -ENOMEM;
935                         goto parse_DFS_referrals_exit;
936                 }
937
938                 /* copy link target UNC */
939                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
940                 max_len = data_end - temp;
941                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
942                                                 is_unicode, nls_codepage);
943                 if (!node->node_name) {
944                         rc = -ENOMEM;
945                         goto parse_DFS_referrals_exit;
946                 }
947
948                 node->ttl = le32_to_cpu(ref->TimeToLive);
949
950                 ref++;
951         }
952
953 parse_DFS_referrals_exit:
954         if (rc) {
955                 free_dfs_info_array(*target_nodes, *num_of_nodes);
956                 *target_nodes = NULL;
957                 *num_of_nodes = 0;
958         }
959         return rc;
960 }
961
962 struct cifs_aio_ctx *
963 cifs_aio_ctx_alloc(void)
964 {
965         struct cifs_aio_ctx *ctx;
966
967         /*
968          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
969          * to false so that we know when we have to unreference pages within
970          * cifs_aio_ctx_release()
971          */
972         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
973         if (!ctx)
974                 return NULL;
975
976         INIT_LIST_HEAD(&ctx->list);
977         mutex_init(&ctx->aio_mutex);
978         init_completion(&ctx->done);
979         kref_init(&ctx->refcount);
980         return ctx;
981 }
982
983 void
984 cifs_aio_ctx_release(struct kref *refcount)
985 {
986         struct cifs_aio_ctx *ctx = container_of(refcount,
987                                         struct cifs_aio_ctx, refcount);
988
989         cifsFileInfo_put(ctx->cfile);
990
991         /*
992          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
993          * which means that iov_iter_extract_pages() was a success and thus
994          * that we may have references or pins on pages that we need to
995          * release.
996          */
997         if (ctx->bv) {
998                 if (ctx->should_dirty || ctx->bv_need_unpin) {
999                         unsigned int i;
1000
1001                         for (i = 0; i < ctx->nr_pinned_pages; i++) {
1002                                 struct page *page = ctx->bv[i].bv_page;
1003
1004                                 if (ctx->should_dirty)
1005                                         set_page_dirty(page);
1006                                 if (ctx->bv_need_unpin)
1007                                         unpin_user_page(page);
1008                         }
1009                 }
1010                 kvfree(ctx->bv);
1011         }
1012
1013         kfree(ctx);
1014 }
1015
1016 /**
1017  * cifs_alloc_hash - allocate hash and hash context together
1018  * @name: The name of the crypto hash algo
1019  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1020  *
1021  * The caller has to make sure @sdesc is initialized to either NULL or
1022  * a valid context. It can be freed via cifs_free_hash().
1023  */
1024 int
1025 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1026 {
1027         int rc = 0;
1028         struct crypto_shash *alg = NULL;
1029
1030         if (*sdesc)
1031                 return 0;
1032
1033         alg = crypto_alloc_shash(name, 0, 0);
1034         if (IS_ERR(alg)) {
1035                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1036                 rc = PTR_ERR(alg);
1037                 *sdesc = NULL;
1038                 return rc;
1039         }
1040
1041         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1042         if (*sdesc == NULL) {
1043                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1044                 crypto_free_shash(alg);
1045                 return -ENOMEM;
1046         }
1047
1048         (*sdesc)->tfm = alg;
1049         return 0;
1050 }
1051
1052 /**
1053  * cifs_free_hash - free hash and hash context together
1054  * @sdesc: Where to find the pointer to the hash TFM
1055  *
1056  * Freeing a NULL descriptor is safe.
1057  */
1058 void
1059 cifs_free_hash(struct shash_desc **sdesc)
1060 {
1061         if (unlikely(!sdesc) || !*sdesc)
1062                 return;
1063
1064         if ((*sdesc)->tfm) {
1065                 crypto_free_shash((*sdesc)->tfm);
1066                 (*sdesc)->tfm = NULL;
1067         }
1068
1069         kfree_sensitive(*sdesc);
1070         *sdesc = NULL;
1071 }
1072
1073 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1074 {
1075         const char *end;
1076
1077         /* skip initial slashes */
1078         while (*unc && (*unc == '\\' || *unc == '/'))
1079                 unc++;
1080
1081         end = unc;
1082
1083         while (*end && !(*end == '\\' || *end == '/'))
1084                 end++;
1085
1086         *h = unc;
1087         *len = end - unc;
1088 }
1089
1090 /**
1091  * copy_path_name - copy src path to dst, possibly truncating
1092  * @dst: The destination buffer
1093  * @src: The source name
1094  *
1095  * returns number of bytes written (including trailing nul)
1096  */
1097 int copy_path_name(char *dst, const char *src)
1098 {
1099         int name_len;
1100
1101         /*
1102          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1103          * will truncate and strlen(dst) will be PATH_MAX-1
1104          */
1105         name_len = strscpy(dst, src, PATH_MAX);
1106         if (WARN_ON_ONCE(name_len < 0))
1107                 name_len = PATH_MAX-1;
1108
1109         /* we count the trailing nul */
1110         name_len++;
1111         return name_len;
1112 }
1113
1114 struct super_cb_data {
1115         void *data;
1116         struct super_block *sb;
1117 };
1118
1119 static void tcon_super_cb(struct super_block *sb, void *arg)
1120 {
1121         struct super_cb_data *sd = arg;
1122         struct cifs_sb_info *cifs_sb;
1123         struct cifs_tcon *t1 = sd->data, *t2;
1124
1125         if (sd->sb)
1126                 return;
1127
1128         cifs_sb = CIFS_SB(sb);
1129         t2 = cifs_sb_master_tcon(cifs_sb);
1130
1131         spin_lock(&t2->tc_lock);
1132         if (t1->ses == t2->ses &&
1133             t1->ses->server == t2->ses->server &&
1134             t2->origin_fullpath &&
1135             dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1136                 sd->sb = sb;
1137         spin_unlock(&t2->tc_lock);
1138 }
1139
1140 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1141                                             void *data)
1142 {
1143         struct super_cb_data sd = {
1144                 .data = data,
1145                 .sb = NULL,
1146         };
1147         struct file_system_type **fs_type = (struct file_system_type *[]) {
1148                 &cifs_fs_type, &smb3_fs_type, NULL,
1149         };
1150
1151         for (; *fs_type; fs_type++) {
1152                 iterate_supers_type(*fs_type, f, &sd);
1153                 if (sd.sb) {
1154                         /*
1155                          * Grab an active reference in order to prevent automounts (DFS links)
1156                          * of expiring and then freeing up our cifs superblock pointer while
1157                          * we're doing failover.
1158                          */
1159                         cifs_sb_active(sd.sb);
1160                         return sd.sb;
1161                 }
1162         }
1163         pr_warn_once("%s: could not find dfs superblock\n", __func__);
1164         return ERR_PTR(-EINVAL);
1165 }
1166
1167 static void __cifs_put_super(struct super_block *sb)
1168 {
1169         if (!IS_ERR_OR_NULL(sb))
1170                 cifs_sb_deactive(sb);
1171 }
1172
1173 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1174 {
1175         spin_lock(&tcon->tc_lock);
1176         if (!tcon->origin_fullpath) {
1177                 spin_unlock(&tcon->tc_lock);
1178                 return ERR_PTR(-ENOENT);
1179         }
1180         spin_unlock(&tcon->tc_lock);
1181         return __cifs_get_super(tcon_super_cb, tcon);
1182 }
1183
1184 void cifs_put_tcp_super(struct super_block *sb)
1185 {
1186         __cifs_put_super(sb);
1187 }
1188
1189 #ifdef CONFIG_CIFS_DFS_UPCALL
1190 int match_target_ip(struct TCP_Server_Info *server,
1191                     const char *share, size_t share_len,
1192                     bool *result)
1193 {
1194         int rc;
1195         char *target;
1196         struct sockaddr_storage ss;
1197
1198         *result = false;
1199
1200         target = kzalloc(share_len + 3, GFP_KERNEL);
1201         if (!target)
1202                 return -ENOMEM;
1203
1204         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1205
1206         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1207
1208         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1209         kfree(target);
1210
1211         if (rc < 0)
1212                 return rc;
1213
1214         spin_lock(&server->srv_lock);
1215         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1216         spin_unlock(&server->srv_lock);
1217         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1218         return 0;
1219 }
1220
1221 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1222 {
1223         int rc;
1224
1225         kfree(cifs_sb->prepath);
1226         cifs_sb->prepath = NULL;
1227
1228         if (prefix && *prefix) {
1229                 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1230                 if (IS_ERR(cifs_sb->prepath)) {
1231                         rc = PTR_ERR(cifs_sb->prepath);
1232                         cifs_sb->prepath = NULL;
1233                         return rc;
1234                 }
1235                 if (cifs_sb->prepath)
1236                         convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1237         }
1238
1239         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1240         return 0;
1241 }
1242
1243 /*
1244  * Handle weird Windows SMB server behaviour. It responds with
1245  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1246  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1247  * non-ASCII unicode symbols.
1248  */
1249 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1250                                    struct cifs_tcon *tcon,
1251                                    struct cifs_sb_info *cifs_sb,
1252                                    const char *full_path,
1253                                    bool *islink)
1254 {
1255         struct cifs_ses *ses = tcon->ses;
1256         size_t len;
1257         char *path;
1258         char *ref_path;
1259
1260         *islink = false;
1261
1262         /*
1263          * Fast path - skip check when @full_path doesn't have a prefix path to
1264          * look up or tcon is not DFS.
1265          */
1266         if (strlen(full_path) < 2 || !cifs_sb ||
1267             (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1268             !is_tcon_dfs(tcon))
1269                 return 0;
1270
1271         spin_lock(&tcon->tc_lock);
1272         if (!tcon->origin_fullpath) {
1273                 spin_unlock(&tcon->tc_lock);
1274                 return 0;
1275         }
1276         spin_unlock(&tcon->tc_lock);
1277
1278         /*
1279          * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1280          * to get a referral to figure out whether it is an DFS link.
1281          */
1282         len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1283         path = kmalloc(len, GFP_KERNEL);
1284         if (!path)
1285                 return -ENOMEM;
1286
1287         scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1288         ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1289                                             cifs_remap(cifs_sb));
1290         kfree(path);
1291
1292         if (IS_ERR(ref_path)) {
1293                 if (PTR_ERR(ref_path) != -EINVAL)
1294                         return PTR_ERR(ref_path);
1295         } else {
1296                 struct dfs_info3_param *refs = NULL;
1297                 int num_refs = 0;
1298
1299                 /*
1300                  * XXX: we are not using dfs_cache_find() here because we might
1301                  * end up filling all the DFS cache and thus potentially
1302                  * removing cached DFS targets that the client would eventually
1303                  * need during failover.
1304                  */
1305                 ses = CIFS_DFS_ROOT_SES(ses);
1306                 if (ses->server->ops->get_dfs_refer &&
1307                     !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1308                                                      &num_refs, cifs_sb->local_nls,
1309                                                      cifs_remap(cifs_sb)))
1310                         *islink = refs[0].server_type == DFS_TYPE_LINK;
1311                 free_dfs_info_array(refs, num_refs);
1312                 kfree(ref_path);
1313         }
1314         return 0;
1315 }
1316 #endif
1317
1318 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1319 {
1320         int timeout = 10;
1321         int rc;
1322
1323         spin_lock(&server->srv_lock);
1324         if (server->tcpStatus != CifsNeedReconnect) {
1325                 spin_unlock(&server->srv_lock);
1326                 return 0;
1327         }
1328         timeout *= server->nr_targets;
1329         spin_unlock(&server->srv_lock);
1330
1331         /*
1332          * Give demultiplex thread up to 10 seconds to each target available for
1333          * reconnect -- should be greater than cifs socket timeout which is 7
1334          * seconds.
1335          *
1336          * On "soft" mounts we wait once. Hard mounts keep retrying until
1337          * process is killed or server comes back on-line.
1338          */
1339         do {
1340                 rc = wait_event_interruptible_timeout(server->response_q,
1341                                                       (server->tcpStatus != CifsNeedReconnect),
1342                                                       timeout * HZ);
1343                 if (rc < 0) {
1344                         cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1345                                  __func__);
1346                         return -ERESTARTSYS;
1347                 }
1348
1349                 /* are we still trying to reconnect? */
1350                 spin_lock(&server->srv_lock);
1351                 if (server->tcpStatus != CifsNeedReconnect) {
1352                         spin_unlock(&server->srv_lock);
1353                         return 0;
1354                 }
1355                 spin_unlock(&server->srv_lock);
1356         } while (retry);
1357
1358         cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1359         return -EHOSTDOWN;
1360 }