powerpc/mm: Avoid calling arch_enter/leave_lazy_mmu() in set_ptes
[platform/kernel/linux-starfive.git] / fs / smb / client / misc.c
1 // SPDX-License-Identifier: LGPL-2.1
2 /*
3  *
4  *   Copyright (C) International Business Machines  Corp., 2002,2008
5  *   Author(s): Steve French (sfrench@us.ibm.com)
6  *
7  */
8
9 #include <linux/slab.h>
10 #include <linux/ctype.h>
11 #include <linux/mempool.h>
12 #include <linux/vmalloc.h>
13 #include "cifspdu.h"
14 #include "cifsglob.h"
15 #include "cifsproto.h"
16 #include "cifs_debug.h"
17 #include "smberr.h"
18 #include "nterr.h"
19 #include "cifs_unicode.h"
20 #include "smb2pdu.h"
21 #include "cifsfs.h"
22 #ifdef CONFIG_CIFS_DFS_UPCALL
23 #include "dns_resolve.h"
24 #include "dfs_cache.h"
25 #include "dfs.h"
26 #endif
27 #include "fs_context.h"
28 #include "cached_dir.h"
29
30 extern mempool_t *cifs_sm_req_poolp;
31 extern mempool_t *cifs_req_poolp;
32
33 /* The xid serves as a useful identifier for each incoming vfs request,
34    in a similar way to the mid which is useful to track each sent smb,
35    and CurrentXid can also provide a running counter (although it
36    will eventually wrap past zero) of the total vfs operations handled
37    since the cifs fs was mounted */
38
39 unsigned int
40 _get_xid(void)
41 {
42         unsigned int xid;
43
44         spin_lock(&GlobalMid_Lock);
45         GlobalTotalActiveXid++;
46
47         /* keep high water mark for number of simultaneous ops in filesystem */
48         if (GlobalTotalActiveXid > GlobalMaxActiveXid)
49                 GlobalMaxActiveXid = GlobalTotalActiveXid;
50         if (GlobalTotalActiveXid > 65000)
51                 cifs_dbg(FYI, "warning: more than 65000 requests active\n");
52         xid = GlobalCurrentXid++;
53         spin_unlock(&GlobalMid_Lock);
54         return xid;
55 }
56
57 void
58 _free_xid(unsigned int xid)
59 {
60         spin_lock(&GlobalMid_Lock);
61         /* if (GlobalTotalActiveXid == 0)
62                 BUG(); */
63         GlobalTotalActiveXid--;
64         spin_unlock(&GlobalMid_Lock);
65 }
66
67 struct cifs_ses *
68 sesInfoAlloc(void)
69 {
70         struct cifs_ses *ret_buf;
71
72         ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
73         if (ret_buf) {
74                 atomic_inc(&sesInfoAllocCount);
75                 spin_lock_init(&ret_buf->ses_lock);
76                 ret_buf->ses_status = SES_NEW;
77                 ++ret_buf->ses_count;
78                 INIT_LIST_HEAD(&ret_buf->smb_ses_list);
79                 INIT_LIST_HEAD(&ret_buf->tcon_list);
80                 mutex_init(&ret_buf->session_mutex);
81                 spin_lock_init(&ret_buf->iface_lock);
82                 INIT_LIST_HEAD(&ret_buf->iface_list);
83                 spin_lock_init(&ret_buf->chan_lock);
84         }
85         return ret_buf;
86 }
87
88 void
89 sesInfoFree(struct cifs_ses *buf_to_free)
90 {
91         struct cifs_server_iface *iface = NULL, *niface = NULL;
92
93         if (buf_to_free == NULL) {
94                 cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
95                 return;
96         }
97
98         unload_nls(buf_to_free->local_nls);
99         atomic_dec(&sesInfoAllocCount);
100         kfree(buf_to_free->serverOS);
101         kfree(buf_to_free->serverDomain);
102         kfree(buf_to_free->serverNOS);
103         kfree_sensitive(buf_to_free->password);
104         kfree(buf_to_free->user_name);
105         kfree(buf_to_free->domainName);
106         kfree_sensitive(buf_to_free->auth_key.response);
107         spin_lock(&buf_to_free->iface_lock);
108         list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
109                                  iface_head)
110                 kref_put(&iface->refcount, release_iface);
111         spin_unlock(&buf_to_free->iface_lock);
112         kfree_sensitive(buf_to_free);
113 }
114
115 struct cifs_tcon *
116 tconInfoAlloc(void)
117 {
118         struct cifs_tcon *ret_buf;
119
120         ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
121         if (!ret_buf)
122                 return NULL;
123         ret_buf->cfids = init_cached_dirs();
124         if (!ret_buf->cfids) {
125                 kfree(ret_buf);
126                 return NULL;
127         }
128
129         atomic_inc(&tconInfoAllocCount);
130         ret_buf->status = TID_NEW;
131         ++ret_buf->tc_count;
132         spin_lock_init(&ret_buf->tc_lock);
133         INIT_LIST_HEAD(&ret_buf->openFileList);
134         INIT_LIST_HEAD(&ret_buf->tcon_list);
135         spin_lock_init(&ret_buf->open_file_lock);
136         spin_lock_init(&ret_buf->stat_lock);
137         atomic_set(&ret_buf->num_local_opens, 0);
138         atomic_set(&ret_buf->num_remote_opens, 0);
139 #ifdef CONFIG_CIFS_DFS_UPCALL
140         INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
141 #endif
142
143         return ret_buf;
144 }
145
146 void
147 tconInfoFree(struct cifs_tcon *tcon)
148 {
149         if (tcon == NULL) {
150                 cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
151                 return;
152         }
153         free_cached_dirs(tcon->cfids);
154         atomic_dec(&tconInfoAllocCount);
155         kfree(tcon->nativeFileSystem);
156         kfree_sensitive(tcon->password);
157 #ifdef CONFIG_CIFS_DFS_UPCALL
158         dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
159 #endif
160         kfree(tcon->origin_fullpath);
161         kfree(tcon);
162 }
163
164 struct smb_hdr *
165 cifs_buf_get(void)
166 {
167         struct smb_hdr *ret_buf = NULL;
168         /*
169          * SMB2 header is bigger than CIFS one - no problems to clean some
170          * more bytes for CIFS.
171          */
172         size_t buf_size = sizeof(struct smb2_hdr);
173
174         /*
175          * We could use negotiated size instead of max_msgsize -
176          * but it may be more efficient to always alloc same size
177          * albeit slightly larger than necessary and maxbuffersize
178          * defaults to this and can not be bigger.
179          */
180         ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
181
182         /* clear the first few header bytes */
183         /* for most paths, more is cleared in header_assemble */
184         memset(ret_buf, 0, buf_size + 3);
185         atomic_inc(&buf_alloc_count);
186 #ifdef CONFIG_CIFS_STATS2
187         atomic_inc(&total_buf_alloc_count);
188 #endif /* CONFIG_CIFS_STATS2 */
189
190         return ret_buf;
191 }
192
193 void
194 cifs_buf_release(void *buf_to_free)
195 {
196         if (buf_to_free == NULL) {
197                 /* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
198                 return;
199         }
200         mempool_free(buf_to_free, cifs_req_poolp);
201
202         atomic_dec(&buf_alloc_count);
203         return;
204 }
205
206 struct smb_hdr *
207 cifs_small_buf_get(void)
208 {
209         struct smb_hdr *ret_buf = NULL;
210
211 /* We could use negotiated size instead of max_msgsize -
212    but it may be more efficient to always alloc same size
213    albeit slightly larger than necessary and maxbuffersize
214    defaults to this and can not be bigger */
215         ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
216         /* No need to clear memory here, cleared in header assemble */
217         /*      memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
218         atomic_inc(&small_buf_alloc_count);
219 #ifdef CONFIG_CIFS_STATS2
220         atomic_inc(&total_small_buf_alloc_count);
221 #endif /* CONFIG_CIFS_STATS2 */
222
223         return ret_buf;
224 }
225
226 void
227 cifs_small_buf_release(void *buf_to_free)
228 {
229
230         if (buf_to_free == NULL) {
231                 cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
232                 return;
233         }
234         mempool_free(buf_to_free, cifs_sm_req_poolp);
235
236         atomic_dec(&small_buf_alloc_count);
237         return;
238 }
239
240 void
241 free_rsp_buf(int resp_buftype, void *rsp)
242 {
243         if (resp_buftype == CIFS_SMALL_BUFFER)
244                 cifs_small_buf_release(rsp);
245         else if (resp_buftype == CIFS_LARGE_BUFFER)
246                 cifs_buf_release(rsp);
247 }
248
249 /* NB: MID can not be set if treeCon not passed in, in that
250    case it is responsbility of caller to set the mid */
251 void
252 header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
253                 const struct cifs_tcon *treeCon, int word_count
254                 /* length of fixed section (word count) in two byte units  */)
255 {
256         char *temp = (char *) buffer;
257
258         memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
259
260         buffer->smb_buf_length = cpu_to_be32(
261             (2 * word_count) + sizeof(struct smb_hdr) -
262             4 /*  RFC 1001 length field does not count */  +
263             2 /* for bcc field itself */) ;
264
265         buffer->Protocol[0] = 0xFF;
266         buffer->Protocol[1] = 'S';
267         buffer->Protocol[2] = 'M';
268         buffer->Protocol[3] = 'B';
269         buffer->Command = smb_command;
270         buffer->Flags = 0x00;   /* case sensitive */
271         buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
272         buffer->Pid = cpu_to_le16((__u16)current->tgid);
273         buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
274         if (treeCon) {
275                 buffer->Tid = treeCon->tid;
276                 if (treeCon->ses) {
277                         if (treeCon->ses->capabilities & CAP_UNICODE)
278                                 buffer->Flags2 |= SMBFLG2_UNICODE;
279                         if (treeCon->ses->capabilities & CAP_STATUS32)
280                                 buffer->Flags2 |= SMBFLG2_ERR_STATUS;
281
282                         /* Uid is not converted */
283                         buffer->Uid = treeCon->ses->Suid;
284                         if (treeCon->ses->server)
285                                 buffer->Mid = get_next_mid(treeCon->ses->server);
286                 }
287                 if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
288                         buffer->Flags2 |= SMBFLG2_DFS;
289                 if (treeCon->nocase)
290                         buffer->Flags  |= SMBFLG_CASELESS;
291                 if ((treeCon->ses) && (treeCon->ses->server))
292                         if (treeCon->ses->server->sign)
293                                 buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
294         }
295
296 /*  endian conversion of flags is now done just before sending */
297         buffer->WordCount = (char) word_count;
298         return;
299 }
300
301 static int
302 check_smb_hdr(struct smb_hdr *smb)
303 {
304         /* does it have the right SMB "signature" ? */
305         if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
306                 cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
307                          *(unsigned int *)smb->Protocol);
308                 return 1;
309         }
310
311         /* if it's a response then accept */
312         if (smb->Flags & SMBFLG_RESPONSE)
313                 return 0;
314
315         /* only one valid case where server sends us request */
316         if (smb->Command == SMB_COM_LOCKING_ANDX)
317                 return 0;
318
319         cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
320                  get_mid(smb));
321         return 1;
322 }
323
324 int
325 checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
326 {
327         struct smb_hdr *smb = (struct smb_hdr *)buf;
328         __u32 rfclen = be32_to_cpu(smb->smb_buf_length);
329         __u32 clc_len;  /* calculated length */
330         cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
331                  total_read, rfclen);
332
333         /* is this frame too small to even get to a BCC? */
334         if (total_read < 2 + sizeof(struct smb_hdr)) {
335                 if ((total_read >= sizeof(struct smb_hdr) - 1)
336                             && (smb->Status.CifsError != 0)) {
337                         /* it's an error return */
338                         smb->WordCount = 0;
339                         /* some error cases do not return wct and bcc */
340                         return 0;
341                 } else if ((total_read == sizeof(struct smb_hdr) + 1) &&
342                                 (smb->WordCount == 0)) {
343                         char *tmp = (char *)smb;
344                         /* Need to work around a bug in two servers here */
345                         /* First, check if the part of bcc they sent was zero */
346                         if (tmp[sizeof(struct smb_hdr)] == 0) {
347                                 /* some servers return only half of bcc
348                                  * on simple responses (wct, bcc both zero)
349                                  * in particular have seen this on
350                                  * ulogoffX and FindClose. This leaves
351                                  * one byte of bcc potentially unitialized
352                                  */
353                                 /* zero rest of bcc */
354                                 tmp[sizeof(struct smb_hdr)+1] = 0;
355                                 return 0;
356                         }
357                         cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
358                 } else {
359                         cifs_dbg(VFS, "Length less than smb header size\n");
360                 }
361                 return -EIO;
362         }
363
364         /* otherwise, there is enough to get to the BCC */
365         if (check_smb_hdr(smb))
366                 return -EIO;
367         clc_len = smbCalcSize(smb);
368
369         if (4 + rfclen != total_read) {
370                 cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
371                          rfclen);
372                 return -EIO;
373         }
374
375         if (4 + rfclen != clc_len) {
376                 __u16 mid = get_mid(smb);
377                 /* check if bcc wrapped around for large read responses */
378                 if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
379                         /* check if lengths match mod 64K */
380                         if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
381                                 return 0; /* bcc wrapped */
382                 }
383                 cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
384                          clc_len, 4 + rfclen, mid);
385
386                 if (4 + rfclen < clc_len) {
387                         cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
388                                  rfclen, mid);
389                         return -EIO;
390                 } else if (rfclen > clc_len + 512) {
391                         /*
392                          * Some servers (Windows XP in particular) send more
393                          * data than the lengths in the SMB packet would
394                          * indicate on certain calls (byte range locks and
395                          * trans2 find first calls in particular). While the
396                          * client can handle such a frame by ignoring the
397                          * trailing data, we choose limit the amount of extra
398                          * data to 512 bytes.
399                          */
400                         cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
401                                  rfclen, mid);
402                         return -EIO;
403                 }
404         }
405         return 0;
406 }
407
408 bool
409 is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
410 {
411         struct smb_hdr *buf = (struct smb_hdr *)buffer;
412         struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
413         struct TCP_Server_Info *pserver;
414         struct cifs_ses *ses;
415         struct cifs_tcon *tcon;
416         struct cifsInodeInfo *pCifsInode;
417         struct cifsFileInfo *netfile;
418
419         cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
420         if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
421            (pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
422                 struct smb_com_transaction_change_notify_rsp *pSMBr =
423                         (struct smb_com_transaction_change_notify_rsp *)buf;
424                 struct file_notify_information *pnotify;
425                 __u32 data_offset = 0;
426                 size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
427
428                 if (get_bcc(buf) > sizeof(struct file_notify_information)) {
429                         data_offset = le32_to_cpu(pSMBr->DataOffset);
430
431                         if (data_offset >
432                             len - sizeof(struct file_notify_information)) {
433                                 cifs_dbg(FYI, "Invalid data_offset %u\n",
434                                          data_offset);
435                                 return true;
436                         }
437                         pnotify = (struct file_notify_information *)
438                                 ((char *)&pSMBr->hdr.Protocol + data_offset);
439                         cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
440                                  pnotify->FileName, pnotify->Action);
441                         /*   cifs_dump_mem("Rcvd notify Data: ",buf,
442                                 sizeof(struct smb_hdr)+60); */
443                         return true;
444                 }
445                 if (pSMBr->hdr.Status.CifsError) {
446                         cifs_dbg(FYI, "notify err 0x%x\n",
447                                  pSMBr->hdr.Status.CifsError);
448                         return true;
449                 }
450                 return false;
451         }
452         if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
453                 return false;
454         if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
455                 /* no sense logging error on invalid handle on oplock
456                    break - harmless race between close request and oplock
457                    break response is expected from time to time writing out
458                    large dirty files cached on the client */
459                 if ((NT_STATUS_INVALID_HANDLE) ==
460                    le32_to_cpu(pSMB->hdr.Status.CifsError)) {
461                         cifs_dbg(FYI, "Invalid handle on oplock break\n");
462                         return true;
463                 } else if (ERRbadfid ==
464                    le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
465                         return true;
466                 } else {
467                         return false; /* on valid oplock brk we get "request" */
468                 }
469         }
470         if (pSMB->hdr.WordCount != 8)
471                 return false;
472
473         cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
474                  pSMB->LockType, pSMB->OplockLevel);
475         if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
476                 return false;
477
478         /* If server is a channel, select the primary channel */
479         pserver = SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
480
481         /* look up tcon based on tid & uid */
482         spin_lock(&cifs_tcp_ses_lock);
483         list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
484                 list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
485                         if (tcon->tid != buf->Tid)
486                                 continue;
487
488                         cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
489                         spin_lock(&tcon->open_file_lock);
490                         list_for_each_entry(netfile, &tcon->openFileList, tlist) {
491                                 if (pSMB->Fid != netfile->fid.netfid)
492                                         continue;
493
494                                 cifs_dbg(FYI, "file id match, oplock break\n");
495                                 pCifsInode = CIFS_I(d_inode(netfile->dentry));
496
497                                 set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
498                                         &pCifsInode->flags);
499
500                                 netfile->oplock_epoch = 0;
501                                 netfile->oplock_level = pSMB->OplockLevel;
502                                 netfile->oplock_break_cancelled = false;
503                                 cifs_queue_oplock_break(netfile);
504
505                                 spin_unlock(&tcon->open_file_lock);
506                                 spin_unlock(&cifs_tcp_ses_lock);
507                                 return true;
508                         }
509                         spin_unlock(&tcon->open_file_lock);
510                         spin_unlock(&cifs_tcp_ses_lock);
511                         cifs_dbg(FYI, "No matching file for oplock break\n");
512                         return true;
513                 }
514         }
515         spin_unlock(&cifs_tcp_ses_lock);
516         cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
517         return true;
518 }
519
520 void
521 dump_smb(void *buf, int smb_buf_length)
522 {
523         if (traceSMB == 0)
524                 return;
525
526         print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
527                        smb_buf_length, true);
528 }
529
530 void
531 cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
532 {
533         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
534                 struct cifs_tcon *tcon = NULL;
535
536                 if (cifs_sb->master_tlink)
537                         tcon = cifs_sb_master_tcon(cifs_sb);
538
539                 cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
540                 cifs_sb->mnt_cifs_serverino_autodisabled = true;
541                 cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
542                          tcon ? tcon->tree_name : "new server");
543                 cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
544                 cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
545
546         }
547 }
548
549 void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
550 {
551         oplock &= 0xF;
552
553         if (oplock == OPLOCK_EXCLUSIVE) {
554                 cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
555                 cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
556                          &cinode->netfs.inode);
557         } else if (oplock == OPLOCK_READ) {
558                 cinode->oplock = CIFS_CACHE_READ_FLG;
559                 cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
560                          &cinode->netfs.inode);
561         } else
562                 cinode->oplock = 0;
563 }
564
565 /*
566  * We wait for oplock breaks to be processed before we attempt to perform
567  * writes.
568  */
569 int cifs_get_writer(struct cifsInodeInfo *cinode)
570 {
571         int rc;
572
573 start:
574         rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
575                          TASK_KILLABLE);
576         if (rc)
577                 return rc;
578
579         spin_lock(&cinode->writers_lock);
580         if (!cinode->writers)
581                 set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
582         cinode->writers++;
583         /* Check to see if we have started servicing an oplock break */
584         if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
585                 cinode->writers--;
586                 if (cinode->writers == 0) {
587                         clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
588                         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
589                 }
590                 spin_unlock(&cinode->writers_lock);
591                 goto start;
592         }
593         spin_unlock(&cinode->writers_lock);
594         return 0;
595 }
596
597 void cifs_put_writer(struct cifsInodeInfo *cinode)
598 {
599         spin_lock(&cinode->writers_lock);
600         cinode->writers--;
601         if (cinode->writers == 0) {
602                 clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
603                 wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
604         }
605         spin_unlock(&cinode->writers_lock);
606 }
607
608 /**
609  * cifs_queue_oplock_break - queue the oplock break handler for cfile
610  * @cfile: The file to break the oplock on
611  *
612  * This function is called from the demultiplex thread when it
613  * receives an oplock break for @cfile.
614  *
615  * Assumes the tcon->open_file_lock is held.
616  * Assumes cfile->file_info_lock is NOT held.
617  */
618 void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
619 {
620         /*
621          * Bump the handle refcount now while we hold the
622          * open_file_lock to enforce the validity of it for the oplock
623          * break handler. The matching put is done at the end of the
624          * handler.
625          */
626         cifsFileInfo_get(cfile);
627
628         queue_work(cifsoplockd_wq, &cfile->oplock_break);
629 }
630
631 void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
632 {
633         clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
634         wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
635 }
636
637 bool
638 backup_cred(struct cifs_sb_info *cifs_sb)
639 {
640         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
641                 if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
642                         return true;
643         }
644         if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
645                 if (in_group_p(cifs_sb->ctx->backupgid))
646                         return true;
647         }
648
649         return false;
650 }
651
652 void
653 cifs_del_pending_open(struct cifs_pending_open *open)
654 {
655         spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
656         list_del(&open->olist);
657         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
658 }
659
660 void
661 cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
662                              struct cifs_pending_open *open)
663 {
664         memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
665         open->oplock = CIFS_OPLOCK_NO_CHANGE;
666         open->tlink = tlink;
667         fid->pending_open = open;
668         list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
669 }
670
671 void
672 cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
673                       struct cifs_pending_open *open)
674 {
675         spin_lock(&tlink_tcon(tlink)->open_file_lock);
676         cifs_add_pending_open_locked(fid, tlink, open);
677         spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
678 }
679
680 /*
681  * Critical section which runs after acquiring deferred_lock.
682  * As there is no reference count on cifs_deferred_close, pdclose
683  * should not be used outside deferred_lock.
684  */
685 bool
686 cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
687 {
688         struct cifs_deferred_close *dclose;
689
690         list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
691                 if ((dclose->netfid == cfile->fid.netfid) &&
692                         (dclose->persistent_fid == cfile->fid.persistent_fid) &&
693                         (dclose->volatile_fid == cfile->fid.volatile_fid)) {
694                         *pdclose = dclose;
695                         return true;
696                 }
697         }
698         return false;
699 }
700
701 /*
702  * Critical section which runs after acquiring deferred_lock.
703  */
704 void
705 cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
706 {
707         bool is_deferred = false;
708         struct cifs_deferred_close *pdclose;
709
710         is_deferred = cifs_is_deferred_close(cfile, &pdclose);
711         if (is_deferred) {
712                 kfree(dclose);
713                 return;
714         }
715
716         dclose->tlink = cfile->tlink;
717         dclose->netfid = cfile->fid.netfid;
718         dclose->persistent_fid = cfile->fid.persistent_fid;
719         dclose->volatile_fid = cfile->fid.volatile_fid;
720         list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
721 }
722
723 /*
724  * Critical section which runs after acquiring deferred_lock.
725  */
726 void
727 cifs_del_deferred_close(struct cifsFileInfo *cfile)
728 {
729         bool is_deferred = false;
730         struct cifs_deferred_close *dclose;
731
732         is_deferred = cifs_is_deferred_close(cfile, &dclose);
733         if (!is_deferred)
734                 return;
735         list_del(&dclose->dlist);
736         kfree(dclose);
737 }
738
739 void
740 cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
741 {
742         struct cifsFileInfo *cfile = NULL;
743         struct file_list *tmp_list, *tmp_next_list;
744         struct list_head file_head;
745
746         if (cifs_inode == NULL)
747                 return;
748
749         INIT_LIST_HEAD(&file_head);
750         spin_lock(&cifs_inode->open_file_lock);
751         list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
752                 if (delayed_work_pending(&cfile->deferred)) {
753                         if (cancel_delayed_work(&cfile->deferred)) {
754                                 spin_lock(&cifs_inode->deferred_lock);
755                                 cifs_del_deferred_close(cfile);
756                                 spin_unlock(&cifs_inode->deferred_lock);
757
758                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
759                                 if (tmp_list == NULL)
760                                         break;
761                                 tmp_list->cfile = cfile;
762                                 list_add_tail(&tmp_list->list, &file_head);
763                         }
764                 }
765         }
766         spin_unlock(&cifs_inode->open_file_lock);
767
768         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
769                 _cifsFileInfo_put(tmp_list->cfile, false, false);
770                 list_del(&tmp_list->list);
771                 kfree(tmp_list);
772         }
773 }
774
775 void
776 cifs_close_all_deferred_files(struct cifs_tcon *tcon)
777 {
778         struct cifsFileInfo *cfile;
779         struct file_list *tmp_list, *tmp_next_list;
780         struct list_head file_head;
781
782         INIT_LIST_HEAD(&file_head);
783         spin_lock(&tcon->open_file_lock);
784         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
785                 if (delayed_work_pending(&cfile->deferred)) {
786                         if (cancel_delayed_work(&cfile->deferred)) {
787                                 spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
788                                 cifs_del_deferred_close(cfile);
789                                 spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
790
791                                 tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
792                                 if (tmp_list == NULL)
793                                         break;
794                                 tmp_list->cfile = cfile;
795                                 list_add_tail(&tmp_list->list, &file_head);
796                         }
797                 }
798         }
799         spin_unlock(&tcon->open_file_lock);
800
801         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
802                 _cifsFileInfo_put(tmp_list->cfile, true, false);
803                 list_del(&tmp_list->list);
804                 kfree(tmp_list);
805         }
806 }
807 void
808 cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
809 {
810         struct cifsFileInfo *cfile;
811         struct file_list *tmp_list, *tmp_next_list;
812         struct list_head file_head;
813         void *page;
814         const char *full_path;
815
816         INIT_LIST_HEAD(&file_head);
817         page = alloc_dentry_path();
818         spin_lock(&tcon->open_file_lock);
819         list_for_each_entry(cfile, &tcon->openFileList, tlist) {
820                 full_path = build_path_from_dentry(cfile->dentry, page);
821                 if (strstr(full_path, path)) {
822                         if (delayed_work_pending(&cfile->deferred)) {
823                                 if (cancel_delayed_work(&cfile->deferred)) {
824                                         spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
825                                         cifs_del_deferred_close(cfile);
826                                         spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
827
828                                         tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
829                                         if (tmp_list == NULL)
830                                                 break;
831                                         tmp_list->cfile = cfile;
832                                         list_add_tail(&tmp_list->list, &file_head);
833                                 }
834                         }
835                 }
836         }
837         spin_unlock(&tcon->open_file_lock);
838
839         list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
840                 _cifsFileInfo_put(tmp_list->cfile, true, false);
841                 list_del(&tmp_list->list);
842                 kfree(tmp_list);
843         }
844         free_dentry_path(page);
845 }
846
847 /* parses DFS referral V3 structure
848  * caller is responsible for freeing target_nodes
849  * returns:
850  * - on success - 0
851  * - on failure - errno
852  */
853 int
854 parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
855                     unsigned int *num_of_nodes,
856                     struct dfs_info3_param **target_nodes,
857                     const struct nls_table *nls_codepage, int remap,
858                     const char *searchName, bool is_unicode)
859 {
860         int i, rc = 0;
861         char *data_end;
862         struct dfs_referral_level_3 *ref;
863
864         *num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
865
866         if (*num_of_nodes < 1) {
867                 cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
868                          *num_of_nodes);
869                 rc = -EINVAL;
870                 goto parse_DFS_referrals_exit;
871         }
872
873         ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
874         if (ref->VersionNumber != cpu_to_le16(3)) {
875                 cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
876                          le16_to_cpu(ref->VersionNumber));
877                 rc = -EINVAL;
878                 goto parse_DFS_referrals_exit;
879         }
880
881         /* get the upper boundary of the resp buffer */
882         data_end = (char *)rsp + rsp_size;
883
884         cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
885                  *num_of_nodes, le32_to_cpu(rsp->DFSFlags));
886
887         *target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
888                                 GFP_KERNEL);
889         if (*target_nodes == NULL) {
890                 rc = -ENOMEM;
891                 goto parse_DFS_referrals_exit;
892         }
893
894         /* collect necessary data from referrals */
895         for (i = 0; i < *num_of_nodes; i++) {
896                 char *temp;
897                 int max_len;
898                 struct dfs_info3_param *node = (*target_nodes)+i;
899
900                 node->flags = le32_to_cpu(rsp->DFSFlags);
901                 if (is_unicode) {
902                         __le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
903                                                 GFP_KERNEL);
904                         if (tmp == NULL) {
905                                 rc = -ENOMEM;
906                                 goto parse_DFS_referrals_exit;
907                         }
908                         cifsConvertToUTF16((__le16 *) tmp, searchName,
909                                            PATH_MAX, nls_codepage, remap);
910                         node->path_consumed = cifs_utf16_bytes(tmp,
911                                         le16_to_cpu(rsp->PathConsumed),
912                                         nls_codepage);
913                         kfree(tmp);
914                 } else
915                         node->path_consumed = le16_to_cpu(rsp->PathConsumed);
916
917                 node->server_type = le16_to_cpu(ref->ServerType);
918                 node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
919
920                 /* copy DfsPath */
921                 temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
922                 max_len = data_end - temp;
923                 node->path_name = cifs_strndup_from_utf16(temp, max_len,
924                                                 is_unicode, nls_codepage);
925                 if (!node->path_name) {
926                         rc = -ENOMEM;
927                         goto parse_DFS_referrals_exit;
928                 }
929
930                 /* copy link target UNC */
931                 temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
932                 max_len = data_end - temp;
933                 node->node_name = cifs_strndup_from_utf16(temp, max_len,
934                                                 is_unicode, nls_codepage);
935                 if (!node->node_name) {
936                         rc = -ENOMEM;
937                         goto parse_DFS_referrals_exit;
938                 }
939
940                 node->ttl = le32_to_cpu(ref->TimeToLive);
941
942                 ref++;
943         }
944
945 parse_DFS_referrals_exit:
946         if (rc) {
947                 free_dfs_info_array(*target_nodes, *num_of_nodes);
948                 *target_nodes = NULL;
949                 *num_of_nodes = 0;
950         }
951         return rc;
952 }
953
954 struct cifs_aio_ctx *
955 cifs_aio_ctx_alloc(void)
956 {
957         struct cifs_aio_ctx *ctx;
958
959         /*
960          * Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
961          * to false so that we know when we have to unreference pages within
962          * cifs_aio_ctx_release()
963          */
964         ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
965         if (!ctx)
966                 return NULL;
967
968         INIT_LIST_HEAD(&ctx->list);
969         mutex_init(&ctx->aio_mutex);
970         init_completion(&ctx->done);
971         kref_init(&ctx->refcount);
972         return ctx;
973 }
974
975 void
976 cifs_aio_ctx_release(struct kref *refcount)
977 {
978         struct cifs_aio_ctx *ctx = container_of(refcount,
979                                         struct cifs_aio_ctx, refcount);
980
981         cifsFileInfo_put(ctx->cfile);
982
983         /*
984          * ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
985          * which means that iov_iter_extract_pages() was a success and thus
986          * that we may have references or pins on pages that we need to
987          * release.
988          */
989         if (ctx->bv) {
990                 if (ctx->should_dirty || ctx->bv_need_unpin) {
991                         unsigned int i;
992
993                         for (i = 0; i < ctx->nr_pinned_pages; i++) {
994                                 struct page *page = ctx->bv[i].bv_page;
995
996                                 if (ctx->should_dirty)
997                                         set_page_dirty(page);
998                                 if (ctx->bv_need_unpin)
999                                         unpin_user_page(page);
1000                         }
1001                 }
1002                 kvfree(ctx->bv);
1003         }
1004
1005         kfree(ctx);
1006 }
1007
1008 /**
1009  * cifs_alloc_hash - allocate hash and hash context together
1010  * @name: The name of the crypto hash algo
1011  * @sdesc: SHASH descriptor where to put the pointer to the hash TFM
1012  *
1013  * The caller has to make sure @sdesc is initialized to either NULL or
1014  * a valid context. It can be freed via cifs_free_hash().
1015  */
1016 int
1017 cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
1018 {
1019         int rc = 0;
1020         struct crypto_shash *alg = NULL;
1021
1022         if (*sdesc)
1023                 return 0;
1024
1025         alg = crypto_alloc_shash(name, 0, 0);
1026         if (IS_ERR(alg)) {
1027                 cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
1028                 rc = PTR_ERR(alg);
1029                 *sdesc = NULL;
1030                 return rc;
1031         }
1032
1033         *sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
1034         if (*sdesc == NULL) {
1035                 cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
1036                 crypto_free_shash(alg);
1037                 return -ENOMEM;
1038         }
1039
1040         (*sdesc)->tfm = alg;
1041         return 0;
1042 }
1043
1044 /**
1045  * cifs_free_hash - free hash and hash context together
1046  * @sdesc: Where to find the pointer to the hash TFM
1047  *
1048  * Freeing a NULL descriptor is safe.
1049  */
1050 void
1051 cifs_free_hash(struct shash_desc **sdesc)
1052 {
1053         if (unlikely(!sdesc) || !*sdesc)
1054                 return;
1055
1056         if ((*sdesc)->tfm) {
1057                 crypto_free_shash((*sdesc)->tfm);
1058                 (*sdesc)->tfm = NULL;
1059         }
1060
1061         kfree_sensitive(*sdesc);
1062         *sdesc = NULL;
1063 }
1064
1065 void extract_unc_hostname(const char *unc, const char **h, size_t *len)
1066 {
1067         const char *end;
1068
1069         /* skip initial slashes */
1070         while (*unc && (*unc == '\\' || *unc == '/'))
1071                 unc++;
1072
1073         end = unc;
1074
1075         while (*end && !(*end == '\\' || *end == '/'))
1076                 end++;
1077
1078         *h = unc;
1079         *len = end - unc;
1080 }
1081
1082 /**
1083  * copy_path_name - copy src path to dst, possibly truncating
1084  * @dst: The destination buffer
1085  * @src: The source name
1086  *
1087  * returns number of bytes written (including trailing nul)
1088  */
1089 int copy_path_name(char *dst, const char *src)
1090 {
1091         int name_len;
1092
1093         /*
1094          * PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
1095          * will truncate and strlen(dst) will be PATH_MAX-1
1096          */
1097         name_len = strscpy(dst, src, PATH_MAX);
1098         if (WARN_ON_ONCE(name_len < 0))
1099                 name_len = PATH_MAX-1;
1100
1101         /* we count the trailing nul */
1102         name_len++;
1103         return name_len;
1104 }
1105
1106 struct super_cb_data {
1107         void *data;
1108         struct super_block *sb;
1109 };
1110
1111 static void tcon_super_cb(struct super_block *sb, void *arg)
1112 {
1113         struct super_cb_data *sd = arg;
1114         struct cifs_sb_info *cifs_sb;
1115         struct cifs_tcon *t1 = sd->data, *t2;
1116
1117         if (sd->sb)
1118                 return;
1119
1120         cifs_sb = CIFS_SB(sb);
1121         t2 = cifs_sb_master_tcon(cifs_sb);
1122
1123         spin_lock(&t2->tc_lock);
1124         if (t1->ses == t2->ses &&
1125             t1->ses->server == t2->ses->server &&
1126             t2->origin_fullpath &&
1127             dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
1128                 sd->sb = sb;
1129         spin_unlock(&t2->tc_lock);
1130 }
1131
1132 static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
1133                                             void *data)
1134 {
1135         struct super_cb_data sd = {
1136                 .data = data,
1137                 .sb = NULL,
1138         };
1139         struct file_system_type **fs_type = (struct file_system_type *[]) {
1140                 &cifs_fs_type, &smb3_fs_type, NULL,
1141         };
1142
1143         for (; *fs_type; fs_type++) {
1144                 iterate_supers_type(*fs_type, f, &sd);
1145                 if (sd.sb) {
1146                         /*
1147                          * Grab an active reference in order to prevent automounts (DFS links)
1148                          * of expiring and then freeing up our cifs superblock pointer while
1149                          * we're doing failover.
1150                          */
1151                         cifs_sb_active(sd.sb);
1152                         return sd.sb;
1153                 }
1154         }
1155         pr_warn_once("%s: could not find dfs superblock\n", __func__);
1156         return ERR_PTR(-EINVAL);
1157 }
1158
1159 static void __cifs_put_super(struct super_block *sb)
1160 {
1161         if (!IS_ERR_OR_NULL(sb))
1162                 cifs_sb_deactive(sb);
1163 }
1164
1165 struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
1166 {
1167         spin_lock(&tcon->tc_lock);
1168         if (!tcon->origin_fullpath) {
1169                 spin_unlock(&tcon->tc_lock);
1170                 return ERR_PTR(-ENOENT);
1171         }
1172         spin_unlock(&tcon->tc_lock);
1173         return __cifs_get_super(tcon_super_cb, tcon);
1174 }
1175
1176 void cifs_put_tcp_super(struct super_block *sb)
1177 {
1178         __cifs_put_super(sb);
1179 }
1180
1181 #ifdef CONFIG_CIFS_DFS_UPCALL
1182 int match_target_ip(struct TCP_Server_Info *server,
1183                     const char *share, size_t share_len,
1184                     bool *result)
1185 {
1186         int rc;
1187         char *target;
1188         struct sockaddr_storage ss;
1189
1190         *result = false;
1191
1192         target = kzalloc(share_len + 3, GFP_KERNEL);
1193         if (!target)
1194                 return -ENOMEM;
1195
1196         scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
1197
1198         cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
1199
1200         rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
1201         kfree(target);
1202
1203         if (rc < 0)
1204                 return rc;
1205
1206         spin_lock(&server->srv_lock);
1207         *result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
1208         spin_unlock(&server->srv_lock);
1209         cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
1210         return 0;
1211 }
1212
1213 int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
1214 {
1215         int rc;
1216
1217         kfree(cifs_sb->prepath);
1218         cifs_sb->prepath = NULL;
1219
1220         if (prefix && *prefix) {
1221                 cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
1222                 if (IS_ERR(cifs_sb->prepath)) {
1223                         rc = PTR_ERR(cifs_sb->prepath);
1224                         cifs_sb->prepath = NULL;
1225                         return rc;
1226                 }
1227                 if (cifs_sb->prepath)
1228                         convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
1229         }
1230
1231         cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
1232         return 0;
1233 }
1234
1235 /*
1236  * Handle weird Windows SMB server behaviour. It responds with
1237  * STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
1238  * "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
1239  * non-ASCII unicode symbols.
1240  */
1241 int cifs_inval_name_dfs_link_error(const unsigned int xid,
1242                                    struct cifs_tcon *tcon,
1243                                    struct cifs_sb_info *cifs_sb,
1244                                    const char *full_path,
1245                                    bool *islink)
1246 {
1247         struct cifs_ses *ses = tcon->ses;
1248         size_t len;
1249         char *path;
1250         char *ref_path;
1251
1252         *islink = false;
1253
1254         /*
1255          * Fast path - skip check when @full_path doesn't have a prefix path to
1256          * look up or tcon is not DFS.
1257          */
1258         if (strlen(full_path) < 2 || !cifs_sb ||
1259             (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
1260             !is_tcon_dfs(tcon))
1261                 return 0;
1262
1263         spin_lock(&tcon->tc_lock);
1264         if (!tcon->origin_fullpath) {
1265                 spin_unlock(&tcon->tc_lock);
1266                 return 0;
1267         }
1268         spin_unlock(&tcon->tc_lock);
1269
1270         /*
1271          * Slow path - tcon is DFS and @full_path has prefix path, so attempt
1272          * to get a referral to figure out whether it is an DFS link.
1273          */
1274         len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
1275         path = kmalloc(len, GFP_KERNEL);
1276         if (!path)
1277                 return -ENOMEM;
1278
1279         scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
1280         ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
1281                                             cifs_remap(cifs_sb));
1282         kfree(path);
1283
1284         if (IS_ERR(ref_path)) {
1285                 if (PTR_ERR(ref_path) != -EINVAL)
1286                         return PTR_ERR(ref_path);
1287         } else {
1288                 struct dfs_info3_param *refs = NULL;
1289                 int num_refs = 0;
1290
1291                 /*
1292                  * XXX: we are not using dfs_cache_find() here because we might
1293                  * end up filling all the DFS cache and thus potentially
1294                  * removing cached DFS targets that the client would eventually
1295                  * need during failover.
1296                  */
1297                 ses = CIFS_DFS_ROOT_SES(ses);
1298                 if (ses->server->ops->get_dfs_refer &&
1299                     !ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
1300                                                      &num_refs, cifs_sb->local_nls,
1301                                                      cifs_remap(cifs_sb)))
1302                         *islink = refs[0].server_type == DFS_TYPE_LINK;
1303                 free_dfs_info_array(refs, num_refs);
1304                 kfree(ref_path);
1305         }
1306         return 0;
1307 }
1308 #endif
1309
1310 int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
1311 {
1312         int timeout = 10;
1313         int rc;
1314
1315         spin_lock(&server->srv_lock);
1316         if (server->tcpStatus != CifsNeedReconnect) {
1317                 spin_unlock(&server->srv_lock);
1318                 return 0;
1319         }
1320         timeout *= server->nr_targets;
1321         spin_unlock(&server->srv_lock);
1322
1323         /*
1324          * Give demultiplex thread up to 10 seconds to each target available for
1325          * reconnect -- should be greater than cifs socket timeout which is 7
1326          * seconds.
1327          *
1328          * On "soft" mounts we wait once. Hard mounts keep retrying until
1329          * process is killed or server comes back on-line.
1330          */
1331         do {
1332                 rc = wait_event_interruptible_timeout(server->response_q,
1333                                                       (server->tcpStatus != CifsNeedReconnect),
1334                                                       timeout * HZ);
1335                 if (rc < 0) {
1336                         cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
1337                                  __func__);
1338                         return -ERESTARTSYS;
1339                 }
1340
1341                 /* are we still trying to reconnect? */
1342                 spin_lock(&server->srv_lock);
1343                 if (server->tcpStatus != CifsNeedReconnect) {
1344                         spin_unlock(&server->srv_lock);
1345                         return 0;
1346                 }
1347                 spin_unlock(&server->srv_lock);
1348         } while (retry);
1349
1350         cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
1351         return -EHOSTDOWN;
1352 }