Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penber...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / reiserfs / ibalance.c
1 /*
2  * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
3  */
4
5 #include <asm/uaccess.h>
6 #include <linux/string.h>
7 #include <linux/time.h>
8 #include "reiserfs.h"
9 #include <linux/buffer_head.h>
10
11 /* this is one and only function that is used outside (do_balance.c) */
12 int balance_internal(struct tree_balance *,
13                      int, int, struct item_head *, struct buffer_head **);
14
15 /* modes of internal_shift_left, internal_shift_right and internal_insert_childs */
16 #define INTERNAL_SHIFT_FROM_S_TO_L 0
17 #define INTERNAL_SHIFT_FROM_R_TO_S 1
18 #define INTERNAL_SHIFT_FROM_L_TO_S 2
19 #define INTERNAL_SHIFT_FROM_S_TO_R 3
20 #define INTERNAL_INSERT_TO_S 4
21 #define INTERNAL_INSERT_TO_L 5
22 #define INTERNAL_INSERT_TO_R 6
23
24 static void internal_define_dest_src_infos(int shift_mode,
25                                            struct tree_balance *tb,
26                                            int h,
27                                            struct buffer_info *dest_bi,
28                                            struct buffer_info *src_bi,
29                                            int *d_key, struct buffer_head **cf)
30 {
31         memset(dest_bi, 0, sizeof(struct buffer_info));
32         memset(src_bi, 0, sizeof(struct buffer_info));
33         /* define dest, src, dest parent, dest position */
34         switch (shift_mode) {
35         case INTERNAL_SHIFT_FROM_S_TO_L:        /* used in internal_shift_left */
36                 src_bi->tb = tb;
37                 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
38                 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
39                 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
40                 dest_bi->tb = tb;
41                 dest_bi->bi_bh = tb->L[h];
42                 dest_bi->bi_parent = tb->FL[h];
43                 dest_bi->bi_position = get_left_neighbor_position(tb, h);
44                 *d_key = tb->lkey[h];
45                 *cf = tb->CFL[h];
46                 break;
47         case INTERNAL_SHIFT_FROM_L_TO_S:
48                 src_bi->tb = tb;
49                 src_bi->bi_bh = tb->L[h];
50                 src_bi->bi_parent = tb->FL[h];
51                 src_bi->bi_position = get_left_neighbor_position(tb, h);
52                 dest_bi->tb = tb;
53                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
54                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
55                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);     /* dest position is analog of dest->b_item_order */
56                 *d_key = tb->lkey[h];
57                 *cf = tb->CFL[h];
58                 break;
59
60         case INTERNAL_SHIFT_FROM_R_TO_S:        /* used in internal_shift_left */
61                 src_bi->tb = tb;
62                 src_bi->bi_bh = tb->R[h];
63                 src_bi->bi_parent = tb->FR[h];
64                 src_bi->bi_position = get_right_neighbor_position(tb, h);
65                 dest_bi->tb = tb;
66                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
67                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
68                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
69                 *d_key = tb->rkey[h];
70                 *cf = tb->CFR[h];
71                 break;
72
73         case INTERNAL_SHIFT_FROM_S_TO_R:
74                 src_bi->tb = tb;
75                 src_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
76                 src_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
77                 src_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
78                 dest_bi->tb = tb;
79                 dest_bi->bi_bh = tb->R[h];
80                 dest_bi->bi_parent = tb->FR[h];
81                 dest_bi->bi_position = get_right_neighbor_position(tb, h);
82                 *d_key = tb->rkey[h];
83                 *cf = tb->CFR[h];
84                 break;
85
86         case INTERNAL_INSERT_TO_L:
87                 dest_bi->tb = tb;
88                 dest_bi->bi_bh = tb->L[h];
89                 dest_bi->bi_parent = tb->FL[h];
90                 dest_bi->bi_position = get_left_neighbor_position(tb, h);
91                 break;
92
93         case INTERNAL_INSERT_TO_S:
94                 dest_bi->tb = tb;
95                 dest_bi->bi_bh = PATH_H_PBUFFER(tb->tb_path, h);
96                 dest_bi->bi_parent = PATH_H_PPARENT(tb->tb_path, h);
97                 dest_bi->bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
98                 break;
99
100         case INTERNAL_INSERT_TO_R:
101                 dest_bi->tb = tb;
102                 dest_bi->bi_bh = tb->R[h];
103                 dest_bi->bi_parent = tb->FR[h];
104                 dest_bi->bi_position = get_right_neighbor_position(tb, h);
105                 break;
106
107         default:
108                 reiserfs_panic(tb->tb_sb, "ibalance-1",
109                                "shift type is unknown (%d)",
110                                shift_mode);
111         }
112 }
113
114 /* Insert count node pointers into buffer cur before position to + 1.
115  * Insert count items into buffer cur before position to.
116  * Items and node pointers are specified by inserted and bh respectively.
117  */
118 static void internal_insert_childs(struct buffer_info *cur_bi,
119                                    int to, int count,
120                                    struct item_head *inserted,
121                                    struct buffer_head **bh)
122 {
123         struct buffer_head *cur = cur_bi->bi_bh;
124         struct block_head *blkh;
125         int nr;
126         struct reiserfs_key *ih;
127         struct disk_child new_dc[2];
128         struct disk_child *dc;
129         int i;
130
131         if (count <= 0)
132                 return;
133
134         blkh = B_BLK_HEAD(cur);
135         nr = blkh_nr_item(blkh);
136
137         RFALSE(count > 2, "too many children (%d) are to be inserted", count);
138         RFALSE(B_FREE_SPACE(cur) < count * (KEY_SIZE + DC_SIZE),
139                "no enough free space (%d), needed %d bytes",
140                B_FREE_SPACE(cur), count * (KEY_SIZE + DC_SIZE));
141
142         /* prepare space for count disk_child */
143         dc = B_N_CHILD(cur, to + 1);
144
145         memmove(dc + count, dc, (nr + 1 - (to + 1)) * DC_SIZE);
146
147         /* copy to_be_insert disk children */
148         for (i = 0; i < count; i++) {
149                 put_dc_size(&(new_dc[i]),
150                             MAX_CHILD_SIZE(bh[i]) - B_FREE_SPACE(bh[i]));
151                 put_dc_block_number(&(new_dc[i]), bh[i]->b_blocknr);
152         }
153         memcpy(dc, new_dc, DC_SIZE * count);
154
155         /* prepare space for count items  */
156         ih = B_N_PDELIM_KEY(cur, ((to == -1) ? 0 : to));
157
158         memmove(ih + count, ih,
159                 (nr - to) * KEY_SIZE + (nr + 1 + count) * DC_SIZE);
160
161         /* copy item headers (keys) */
162         memcpy(ih, inserted, KEY_SIZE);
163         if (count > 1)
164                 memcpy(ih + 1, inserted + 1, KEY_SIZE);
165
166         /* sizes, item number */
167         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + count);
168         set_blkh_free_space(blkh,
169                             blkh_free_space(blkh) - count * (DC_SIZE +
170                                                              KEY_SIZE));
171
172         do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
173
174         /*&&&&&&&&&&&&&&&&&&&&&&&& */
175         check_internal(cur);
176         /*&&&&&&&&&&&&&&&&&&&&&&&& */
177
178         if (cur_bi->bi_parent) {
179                 struct disk_child *t_dc =
180                     B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
181                 put_dc_size(t_dc,
182                             dc_size(t_dc) + (count * (DC_SIZE + KEY_SIZE)));
183                 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
184                                                0);
185
186                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
187                 check_internal(cur_bi->bi_parent);
188                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
189         }
190
191 }
192
193 /* Delete del_num items and node pointers from buffer cur starting from *
194  * the first_i'th item and first_p'th pointers respectively.            */
195 static void internal_delete_pointers_items(struct buffer_info *cur_bi,
196                                            int first_p,
197                                            int first_i, int del_num)
198 {
199         struct buffer_head *cur = cur_bi->bi_bh;
200         int nr;
201         struct block_head *blkh;
202         struct reiserfs_key *key;
203         struct disk_child *dc;
204
205         RFALSE(cur == NULL, "buffer is 0");
206         RFALSE(del_num < 0,
207                "negative number of items (%d) can not be deleted", del_num);
208         RFALSE(first_p < 0 || first_p + del_num > B_NR_ITEMS(cur) + 1
209                || first_i < 0,
210                "first pointer order (%d) < 0 or "
211                "no so many pointers (%d), only (%d) or "
212                "first key order %d < 0", first_p, first_p + del_num,
213                B_NR_ITEMS(cur) + 1, first_i);
214         if (del_num == 0)
215                 return;
216
217         blkh = B_BLK_HEAD(cur);
218         nr = blkh_nr_item(blkh);
219
220         if (first_p == 0 && del_num == nr + 1) {
221                 RFALSE(first_i != 0,
222                        "1st deleted key must have order 0, not %d", first_i);
223                 make_empty_node(cur_bi);
224                 return;
225         }
226
227         RFALSE(first_i + del_num > B_NR_ITEMS(cur),
228                "first_i = %d del_num = %d "
229                "no so many keys (%d) in the node (%b)(%z)",
230                first_i, del_num, first_i + del_num, cur, cur);
231
232         /* deleting */
233         dc = B_N_CHILD(cur, first_p);
234
235         memmove(dc, dc + del_num, (nr + 1 - first_p - del_num) * DC_SIZE);
236         key = B_N_PDELIM_KEY(cur, first_i);
237         memmove(key, key + del_num,
238                 (nr - first_i - del_num) * KEY_SIZE + (nr + 1 -
239                                                        del_num) * DC_SIZE);
240
241         /* sizes, item number */
242         set_blkh_nr_item(blkh, blkh_nr_item(blkh) - del_num);
243         set_blkh_free_space(blkh,
244                             blkh_free_space(blkh) +
245                             (del_num * (KEY_SIZE + DC_SIZE)));
246
247         do_balance_mark_internal_dirty(cur_bi->tb, cur, 0);
248         /*&&&&&&&&&&&&&&&&&&&&&&& */
249         check_internal(cur);
250         /*&&&&&&&&&&&&&&&&&&&&&&& */
251
252         if (cur_bi->bi_parent) {
253                 struct disk_child *t_dc;
254                 t_dc = B_N_CHILD(cur_bi->bi_parent, cur_bi->bi_position);
255                 put_dc_size(t_dc,
256                             dc_size(t_dc) - (del_num * (KEY_SIZE + DC_SIZE)));
257
258                 do_balance_mark_internal_dirty(cur_bi->tb, cur_bi->bi_parent,
259                                                0);
260                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
261                 check_internal(cur_bi->bi_parent);
262                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
263         }
264 }
265
266 /* delete n node pointers and items starting from given position */
267 static void internal_delete_childs(struct buffer_info *cur_bi, int from, int n)
268 {
269         int i_from;
270
271         i_from = (from == 0) ? from : from - 1;
272
273         /* delete n pointers starting from `from' position in CUR;
274            delete n keys starting from 'i_from' position in CUR;
275          */
276         internal_delete_pointers_items(cur_bi, from, i_from, n);
277 }
278
279 /* copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest
280 * last_first == FIRST_TO_LAST means, that we copy first items from src to tail of dest
281  * last_first == LAST_TO_FIRST means, that we copy last items from src to head of dest
282  */
283 static void internal_copy_pointers_items(struct buffer_info *dest_bi,
284                                          struct buffer_head *src,
285                                          int last_first, int cpy_num)
286 {
287         /* ATTENTION! Number of node pointers in DEST is equal to number of items in DEST *
288          * as delimiting key have already inserted to buffer dest.*/
289         struct buffer_head *dest = dest_bi->bi_bh;
290         int nr_dest, nr_src;
291         int dest_order, src_order;
292         struct block_head *blkh;
293         struct reiserfs_key *key;
294         struct disk_child *dc;
295
296         nr_src = B_NR_ITEMS(src);
297
298         RFALSE(dest == NULL || src == NULL,
299                "src (%p) or dest (%p) buffer is 0", src, dest);
300         RFALSE(last_first != FIRST_TO_LAST && last_first != LAST_TO_FIRST,
301                "invalid last_first parameter (%d)", last_first);
302         RFALSE(nr_src < cpy_num - 1,
303                "no so many items (%d) in src (%d)", cpy_num, nr_src);
304         RFALSE(cpy_num < 0, "cpy_num less than 0 (%d)", cpy_num);
305         RFALSE(cpy_num - 1 + B_NR_ITEMS(dest) > (int)MAX_NR_KEY(dest),
306                "cpy_num (%d) + item number in dest (%d) can not be > MAX_NR_KEY(%d)",
307                cpy_num, B_NR_ITEMS(dest), MAX_NR_KEY(dest));
308
309         if (cpy_num == 0)
310                 return;
311
312         /* coping */
313         blkh = B_BLK_HEAD(dest);
314         nr_dest = blkh_nr_item(blkh);
315
316         /*dest_order = (last_first == LAST_TO_FIRST) ? 0 : nr_dest; */
317         /*src_order = (last_first == LAST_TO_FIRST) ? (nr_src - cpy_num + 1) : 0; */
318         (last_first == LAST_TO_FIRST) ? (dest_order = 0, src_order =
319                                          nr_src - cpy_num + 1) : (dest_order =
320                                                                   nr_dest,
321                                                                   src_order =
322                                                                   0);
323
324         /* prepare space for cpy_num pointers */
325         dc = B_N_CHILD(dest, dest_order);
326
327         memmove(dc + cpy_num, dc, (nr_dest - dest_order) * DC_SIZE);
328
329         /* insert pointers */
330         memcpy(dc, B_N_CHILD(src, src_order), DC_SIZE * cpy_num);
331
332         /* prepare space for cpy_num - 1 item headers */
333         key = B_N_PDELIM_KEY(dest, dest_order);
334         memmove(key + cpy_num - 1, key,
335                 KEY_SIZE * (nr_dest - dest_order) + DC_SIZE * (nr_dest +
336                                                                cpy_num));
337
338         /* insert headers */
339         memcpy(key, B_N_PDELIM_KEY(src, src_order), KEY_SIZE * (cpy_num - 1));
340
341         /* sizes, item number */
342         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + (cpy_num - 1));
343         set_blkh_free_space(blkh,
344                             blkh_free_space(blkh) - (KEY_SIZE * (cpy_num - 1) +
345                                                      DC_SIZE * cpy_num));
346
347         do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
348
349         /*&&&&&&&&&&&&&&&&&&&&&&&& */
350         check_internal(dest);
351         /*&&&&&&&&&&&&&&&&&&&&&&&& */
352
353         if (dest_bi->bi_parent) {
354                 struct disk_child *t_dc;
355                 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
356                 put_dc_size(t_dc,
357                             dc_size(t_dc) + (KEY_SIZE * (cpy_num - 1) +
358                                              DC_SIZE * cpy_num));
359
360                 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
361                                                0);
362                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
363                 check_internal(dest_bi->bi_parent);
364                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
365         }
366
367 }
368
369 /* Copy cpy_num node pointers and cpy_num - 1 items from buffer src to buffer dest.
370  * Delete cpy_num - del_par items and node pointers from buffer src.
371  * last_first == FIRST_TO_LAST means, that we copy/delete first items from src.
372  * last_first == LAST_TO_FIRST means, that we copy/delete last items from src.
373  */
374 static void internal_move_pointers_items(struct buffer_info *dest_bi,
375                                          struct buffer_info *src_bi,
376                                          int last_first, int cpy_num,
377                                          int del_par)
378 {
379         int first_pointer;
380         int first_item;
381
382         internal_copy_pointers_items(dest_bi, src_bi->bi_bh, last_first,
383                                      cpy_num);
384
385         if (last_first == FIRST_TO_LAST) {      /* shift_left occurs */
386                 first_pointer = 0;
387                 first_item = 0;
388                 /* delete cpy_num - del_par pointers and keys starting for pointers with first_pointer,
389                    for key - with first_item */
390                 internal_delete_pointers_items(src_bi, first_pointer,
391                                                first_item, cpy_num - del_par);
392         } else {                /* shift_right occurs */
393                 int i, j;
394
395                 i = (cpy_num - del_par ==
396                      (j =
397                       B_NR_ITEMS(src_bi->bi_bh)) + 1) ? 0 : j - cpy_num +
398                     del_par;
399
400                 internal_delete_pointers_items(src_bi,
401                                                j + 1 - cpy_num + del_par, i,
402                                                cpy_num - del_par);
403         }
404 }
405
406 /* Insert n_src'th key of buffer src before n_dest'th key of buffer dest. */
407 static void internal_insert_key(struct buffer_info *dest_bi, int dest_position_before,  /* insert key before key with n_dest number */
408                                 struct buffer_head *src, int src_position)
409 {
410         struct buffer_head *dest = dest_bi->bi_bh;
411         int nr;
412         struct block_head *blkh;
413         struct reiserfs_key *key;
414
415         RFALSE(dest == NULL || src == NULL,
416                "source(%p) or dest(%p) buffer is 0", src, dest);
417         RFALSE(dest_position_before < 0 || src_position < 0,
418                "source(%d) or dest(%d) key number less than 0",
419                src_position, dest_position_before);
420         RFALSE(dest_position_before > B_NR_ITEMS(dest) ||
421                src_position >= B_NR_ITEMS(src),
422                "invalid position in dest (%d (key number %d)) or in src (%d (key number %d))",
423                dest_position_before, B_NR_ITEMS(dest),
424                src_position, B_NR_ITEMS(src));
425         RFALSE(B_FREE_SPACE(dest) < KEY_SIZE,
426                "no enough free space (%d) in dest buffer", B_FREE_SPACE(dest));
427
428         blkh = B_BLK_HEAD(dest);
429         nr = blkh_nr_item(blkh);
430
431         /* prepare space for inserting key */
432         key = B_N_PDELIM_KEY(dest, dest_position_before);
433         memmove(key + 1, key,
434                 (nr - dest_position_before) * KEY_SIZE + (nr + 1) * DC_SIZE);
435
436         /* insert key */
437         memcpy(key, B_N_PDELIM_KEY(src, src_position), KEY_SIZE);
438
439         /* Change dirt, free space, item number fields. */
440
441         set_blkh_nr_item(blkh, blkh_nr_item(blkh) + 1);
442         set_blkh_free_space(blkh, blkh_free_space(blkh) - KEY_SIZE);
443
444         do_balance_mark_internal_dirty(dest_bi->tb, dest, 0);
445
446         if (dest_bi->bi_parent) {
447                 struct disk_child *t_dc;
448                 t_dc = B_N_CHILD(dest_bi->bi_parent, dest_bi->bi_position);
449                 put_dc_size(t_dc, dc_size(t_dc) + KEY_SIZE);
450
451                 do_balance_mark_internal_dirty(dest_bi->tb, dest_bi->bi_parent,
452                                                0);
453         }
454 }
455
456 /* Insert d_key'th (delimiting) key from buffer cfl to tail of dest.
457  * Copy pointer_amount node pointers and pointer_amount - 1 items from buffer src to buffer dest.
458  * Replace  d_key'th key in buffer cfl.
459  * Delete pointer_amount items and node pointers from buffer src.
460  */
461 /* this can be invoked both to shift from S to L and from R to S */
462 static void internal_shift_left(int mode,       /* INTERNAL_FROM_S_TO_L | INTERNAL_FROM_R_TO_S */
463                                 struct tree_balance *tb,
464                                 int h, int pointer_amount)
465 {
466         struct buffer_info dest_bi, src_bi;
467         struct buffer_head *cf;
468         int d_key_position;
469
470         internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
471                                        &d_key_position, &cf);
472
473         /*printk("pointer_amount = %d\n",pointer_amount); */
474
475         if (pointer_amount) {
476                 /* insert delimiting key from common father of dest and src to node dest into position B_NR_ITEM(dest) */
477                 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
478                                     d_key_position);
479
480                 if (B_NR_ITEMS(src_bi.bi_bh) == pointer_amount - 1) {
481                         if (src_bi.bi_position /*src->b_item_order */  == 0)
482                                 replace_key(tb, cf, d_key_position,
483                                             src_bi.
484                                             bi_parent /*src->b_parent */ , 0);
485                 } else
486                         replace_key(tb, cf, d_key_position, src_bi.bi_bh,
487                                     pointer_amount - 1);
488         }
489         /* last parameter is del_parameter */
490         internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
491                                      pointer_amount, 0);
492
493 }
494
495 /* Insert delimiting key to L[h].
496  * Copy n node pointers and n - 1 items from buffer S[h] to L[h].
497  * Delete n - 1 items and node pointers from buffer S[h].
498  */
499 /* it always shifts from S[h] to L[h] */
500 static void internal_shift1_left(struct tree_balance *tb,
501                                  int h, int pointer_amount)
502 {
503         struct buffer_info dest_bi, src_bi;
504         struct buffer_head *cf;
505         int d_key_position;
506
507         internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
508                                        &dest_bi, &src_bi, &d_key_position, &cf);
509
510         if (pointer_amount > 0) /* insert lkey[h]-th key  from CFL[h] to left neighbor L[h] */
511                 internal_insert_key(&dest_bi, B_NR_ITEMS(dest_bi.bi_bh), cf,
512                                     d_key_position);
513         /*            internal_insert_key (tb->L[h], B_NR_ITEM(tb->L[h]), tb->CFL[h], tb->lkey[h]); */
514
515         /* last parameter is del_parameter */
516         internal_move_pointers_items(&dest_bi, &src_bi, FIRST_TO_LAST,
517                                      pointer_amount, 1);
518         /*    internal_move_pointers_items (tb->L[h], tb->S[h], FIRST_TO_LAST, pointer_amount, 1); */
519 }
520
521 /* Insert d_key'th (delimiting) key from buffer cfr to head of dest.
522  * Copy n node pointers and n - 1 items from buffer src to buffer dest.
523  * Replace  d_key'th key in buffer cfr.
524  * Delete n items and node pointers from buffer src.
525  */
526 static void internal_shift_right(int mode,      /* INTERNAL_FROM_S_TO_R | INTERNAL_FROM_L_TO_S */
527                                  struct tree_balance *tb,
528                                  int h, int pointer_amount)
529 {
530         struct buffer_info dest_bi, src_bi;
531         struct buffer_head *cf;
532         int d_key_position;
533         int nr;
534
535         internal_define_dest_src_infos(mode, tb, h, &dest_bi, &src_bi,
536                                        &d_key_position, &cf);
537
538         nr = B_NR_ITEMS(src_bi.bi_bh);
539
540         if (pointer_amount > 0) {
541                 /* insert delimiting key from common father of dest and src to dest node into position 0 */
542                 internal_insert_key(&dest_bi, 0, cf, d_key_position);
543                 if (nr == pointer_amount - 1) {
544                         RFALSE(src_bi.bi_bh != PATH_H_PBUFFER(tb->tb_path, h) /*tb->S[h] */ ||
545                                dest_bi.bi_bh != tb->R[h],
546                                "src (%p) must be == tb->S[h](%p) when it disappears",
547                                src_bi.bi_bh, PATH_H_PBUFFER(tb->tb_path, h));
548                         /* when S[h] disappers replace left delemiting key as well */
549                         if (tb->CFL[h])
550                                 replace_key(tb, cf, d_key_position, tb->CFL[h],
551                                             tb->lkey[h]);
552                 } else
553                         replace_key(tb, cf, d_key_position, src_bi.bi_bh,
554                                     nr - pointer_amount);
555         }
556
557         /* last parameter is del_parameter */
558         internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
559                                      pointer_amount, 0);
560 }
561
562 /* Insert delimiting key to R[h].
563  * Copy n node pointers and n - 1 items from buffer S[h] to R[h].
564  * Delete n - 1 items and node pointers from buffer S[h].
565  */
566 /* it always shift from S[h] to R[h] */
567 static void internal_shift1_right(struct tree_balance *tb,
568                                   int h, int pointer_amount)
569 {
570         struct buffer_info dest_bi, src_bi;
571         struct buffer_head *cf;
572         int d_key_position;
573
574         internal_define_dest_src_infos(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
575                                        &dest_bi, &src_bi, &d_key_position, &cf);
576
577         if (pointer_amount > 0) /* insert rkey from CFR[h] to right neighbor R[h] */
578                 internal_insert_key(&dest_bi, 0, cf, d_key_position);
579         /*            internal_insert_key (tb->R[h], 0, tb->CFR[h], tb->rkey[h]); */
580
581         /* last parameter is del_parameter */
582         internal_move_pointers_items(&dest_bi, &src_bi, LAST_TO_FIRST,
583                                      pointer_amount, 1);
584         /*    internal_move_pointers_items (tb->R[h], tb->S[h], LAST_TO_FIRST, pointer_amount, 1); */
585 }
586
587 /* Delete insert_num node pointers together with their left items
588  * and balance current node.*/
589 static void balance_internal_when_delete(struct tree_balance *tb,
590                                          int h, int child_pos)
591 {
592         int insert_num;
593         int n;
594         struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
595         struct buffer_info bi;
596
597         insert_num = tb->insert_size[h] / ((int)(DC_SIZE + KEY_SIZE));
598
599         /* delete child-node-pointer(s) together with their left item(s) */
600         bi.tb = tb;
601         bi.bi_bh = tbSh;
602         bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
603         bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
604
605         internal_delete_childs(&bi, child_pos, -insert_num);
606
607         RFALSE(tb->blknum[h] > 1,
608                "tb->blknum[%d]=%d when insert_size < 0", h, tb->blknum[h]);
609
610         n = B_NR_ITEMS(tbSh);
611
612         if (tb->lnum[h] == 0 && tb->rnum[h] == 0) {
613                 if (tb->blknum[h] == 0) {
614                         /* node S[h] (root of the tree) is empty now */
615                         struct buffer_head *new_root;
616
617                         RFALSE(n
618                                || B_FREE_SPACE(tbSh) !=
619                                MAX_CHILD_SIZE(tbSh) - DC_SIZE,
620                                "buffer must have only 0 keys (%d)", n);
621                         RFALSE(bi.bi_parent, "root has parent (%p)",
622                                bi.bi_parent);
623
624                         /* choose a new root */
625                         if (!tb->L[h - 1] || !B_NR_ITEMS(tb->L[h - 1]))
626                                 new_root = tb->R[h - 1];
627                         else
628                                 new_root = tb->L[h - 1];
629                         /* switch super block's tree root block number to the new value */
630                         PUT_SB_ROOT_BLOCK(tb->tb_sb, new_root->b_blocknr);
631                         //REISERFS_SB(tb->tb_sb)->s_rs->s_tree_height --;
632                         PUT_SB_TREE_HEIGHT(tb->tb_sb,
633                                            SB_TREE_HEIGHT(tb->tb_sb) - 1);
634
635                         do_balance_mark_sb_dirty(tb,
636                                                  REISERFS_SB(tb->tb_sb)->s_sbh,
637                                                  1);
638                         /*&&&&&&&&&&&&&&&&&&&&&& */
639                         if (h > 1)
640                                 /* use check_internal if new root is an internal node */
641                                 check_internal(new_root);
642                         /*&&&&&&&&&&&&&&&&&&&&&& */
643
644                         /* do what is needed for buffer thrown from tree */
645                         reiserfs_invalidate_buffer(tb, tbSh);
646                         return;
647                 }
648                 return;
649         }
650
651         if (tb->L[h] && tb->lnum[h] == -B_NR_ITEMS(tb->L[h]) - 1) {     /* join S[h] with L[h] */
652
653                 RFALSE(tb->rnum[h] != 0,
654                        "invalid tb->rnum[%d]==%d when joining S[h] with L[h]",
655                        h, tb->rnum[h]);
656
657                 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, n + 1);
658                 reiserfs_invalidate_buffer(tb, tbSh);
659
660                 return;
661         }
662
663         if (tb->R[h] && tb->rnum[h] == -B_NR_ITEMS(tb->R[h]) - 1) {     /* join S[h] with R[h] */
664                 RFALSE(tb->lnum[h] != 0,
665                        "invalid tb->lnum[%d]==%d when joining S[h] with R[h]",
666                        h, tb->lnum[h]);
667
668                 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h, n + 1);
669
670                 reiserfs_invalidate_buffer(tb, tbSh);
671                 return;
672         }
673
674         if (tb->lnum[h] < 0) {  /* borrow from left neighbor L[h] */
675                 RFALSE(tb->rnum[h] != 0,
676                        "wrong tb->rnum[%d]==%d when borrow from L[h]", h,
677                        tb->rnum[h]);
678                 /*internal_shift_right (tb, h, tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], -tb->lnum[h]); */
679                 internal_shift_right(INTERNAL_SHIFT_FROM_L_TO_S, tb, h,
680                                      -tb->lnum[h]);
681                 return;
682         }
683
684         if (tb->rnum[h] < 0) {  /* borrow from right neighbor R[h] */
685                 RFALSE(tb->lnum[h] != 0,
686                        "invalid tb->lnum[%d]==%d when borrow from R[h]",
687                        h, tb->lnum[h]);
688                 internal_shift_left(INTERNAL_SHIFT_FROM_R_TO_S, tb, h, -tb->rnum[h]);   /*tb->S[h], tb->CFR[h], tb->rkey[h], tb->R[h], -tb->rnum[h]); */
689                 return;
690         }
691
692         if (tb->lnum[h] > 0) {  /* split S[h] into two parts and put them into neighbors */
693                 RFALSE(tb->rnum[h] == 0 || tb->lnum[h] + tb->rnum[h] != n + 1,
694                        "invalid tb->lnum[%d]==%d or tb->rnum[%d]==%d when S[h](item number == %d) is split between them",
695                        h, tb->lnum[h], h, tb->rnum[h], n);
696
697                 internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h, tb->lnum[h]);    /*tb->L[h], tb->CFL[h], tb->lkey[h], tb->S[h], tb->lnum[h]); */
698                 internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
699                                      tb->rnum[h]);
700
701                 reiserfs_invalidate_buffer(tb, tbSh);
702
703                 return;
704         }
705         reiserfs_panic(tb->tb_sb, "ibalance-2",
706                        "unexpected tb->lnum[%d]==%d or tb->rnum[%d]==%d",
707                        h, tb->lnum[h], h, tb->rnum[h]);
708 }
709
710 /* Replace delimiting key of buffers L[h] and S[h] by the given key.*/
711 static void replace_lkey(struct tree_balance *tb, int h, struct item_head *key)
712 {
713         RFALSE(tb->L[h] == NULL || tb->CFL[h] == NULL,
714                "L[h](%p) and CFL[h](%p) must exist in replace_lkey",
715                tb->L[h], tb->CFL[h]);
716
717         if (B_NR_ITEMS(PATH_H_PBUFFER(tb->tb_path, h)) == 0)
718                 return;
719
720         memcpy(B_N_PDELIM_KEY(tb->CFL[h], tb->lkey[h]), key, KEY_SIZE);
721
722         do_balance_mark_internal_dirty(tb, tb->CFL[h], 0);
723 }
724
725 /* Replace delimiting key of buffers S[h] and R[h] by the given key.*/
726 static void replace_rkey(struct tree_balance *tb, int h, struct item_head *key)
727 {
728         RFALSE(tb->R[h] == NULL || tb->CFR[h] == NULL,
729                "R[h](%p) and CFR[h](%p) must exist in replace_rkey",
730                tb->R[h], tb->CFR[h]);
731         RFALSE(B_NR_ITEMS(tb->R[h]) == 0,
732                "R[h] can not be empty if it exists (item number=%d)",
733                B_NR_ITEMS(tb->R[h]));
734
735         memcpy(B_N_PDELIM_KEY(tb->CFR[h], tb->rkey[h]), key, KEY_SIZE);
736
737         do_balance_mark_internal_dirty(tb, tb->CFR[h], 0);
738 }
739
740 int balance_internal(struct tree_balance *tb,   /* tree_balance structure               */
741                      int h,     /* level of the tree                    */
742                      int child_pos, struct item_head *insert_key,       /* key for insertion on higher level    */
743                      struct buffer_head **insert_ptr    /* node for insertion on higher level */
744     )
745     /* if inserting/pasting
746        {
747        child_pos is the position of the node-pointer in S[h] that        *
748        pointed to S[h-1] before balancing of the h-1 level;              *
749        this means that new pointers and items must be inserted AFTER *
750        child_pos
751        }
752        else
753        {
754        it is the position of the leftmost pointer that must be deleted (together with
755        its corresponding key to the left of the pointer)
756        as a result of the previous level's balancing.
757        }
758      */
759 {
760         struct buffer_head *tbSh = PATH_H_PBUFFER(tb->tb_path, h);
761         struct buffer_info bi;
762         int order;              /* we return this: it is 0 if there is no S[h], else it is tb->S[h]->b_item_order */
763         int insert_num, n, k;
764         struct buffer_head *S_new;
765         struct item_head new_insert_key;
766         struct buffer_head *new_insert_ptr = NULL;
767         struct item_head *new_insert_key_addr = insert_key;
768
769         RFALSE(h < 1, "h (%d) can not be < 1 on internal level", h);
770
771         PROC_INFO_INC(tb->tb_sb, balance_at[h]);
772
773         order =
774             (tbSh) ? PATH_H_POSITION(tb->tb_path,
775                                      h + 1) /*tb->S[h]->b_item_order */ : 0;
776
777         /* Using insert_size[h] calculate the number insert_num of items
778            that must be inserted to or deleted from S[h]. */
779         insert_num = tb->insert_size[h] / ((int)(KEY_SIZE + DC_SIZE));
780
781         /* Check whether insert_num is proper * */
782         RFALSE(insert_num < -2 || insert_num > 2,
783                "incorrect number of items inserted to the internal node (%d)",
784                insert_num);
785         RFALSE(h > 1 && (insert_num > 1 || insert_num < -1),
786                "incorrect number of items (%d) inserted to the internal node on a level (h=%d) higher than last internal level",
787                insert_num, h);
788
789         /* Make balance in case insert_num < 0 */
790         if (insert_num < 0) {
791                 balance_internal_when_delete(tb, h, child_pos);
792                 return order;
793         }
794
795         k = 0;
796         if (tb->lnum[h] > 0) {
797                 /* shift lnum[h] items from S[h] to the left neighbor L[h].
798                    check how many of new items fall into L[h] or CFL[h] after
799                    shifting */
800                 n = B_NR_ITEMS(tb->L[h]);       /* number of items in L[h] */
801                 if (tb->lnum[h] <= child_pos) {
802                         /* new items don't fall into L[h] or CFL[h] */
803                         internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
804                                             tb->lnum[h]);
805                         /*internal_shift_left (tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,tb->lnum[h]); */
806                         child_pos -= tb->lnum[h];
807                 } else if (tb->lnum[h] > child_pos + insert_num) {
808                         /* all new items fall into L[h] */
809                         internal_shift_left(INTERNAL_SHIFT_FROM_S_TO_L, tb, h,
810                                             tb->lnum[h] - insert_num);
811                         /*                  internal_shift_left(tb->L[h],tb->CFL[h],tb->lkey[h],tbSh,
812                            tb->lnum[h]-insert_num);
813                          */
814                         /* insert insert_num keys and node-pointers into L[h] */
815                         bi.tb = tb;
816                         bi.bi_bh = tb->L[h];
817                         bi.bi_parent = tb->FL[h];
818                         bi.bi_position = get_left_neighbor_position(tb, h);
819                         internal_insert_childs(&bi,
820                                                /*tb->L[h], tb->S[h-1]->b_next */
821                                                n + child_pos + 1,
822                                                insert_num, insert_key,
823                                                insert_ptr);
824
825                         insert_num = 0;
826                 } else {
827                         struct disk_child *dc;
828
829                         /* some items fall into L[h] or CFL[h], but some don't fall */
830                         internal_shift1_left(tb, h, child_pos + 1);
831                         /* calculate number of new items that fall into L[h] */
832                         k = tb->lnum[h] - child_pos - 1;
833                         bi.tb = tb;
834                         bi.bi_bh = tb->L[h];
835                         bi.bi_parent = tb->FL[h];
836                         bi.bi_position = get_left_neighbor_position(tb, h);
837                         internal_insert_childs(&bi,
838                                                /*tb->L[h], tb->S[h-1]->b_next, */
839                                                n + child_pos + 1, k,
840                                                insert_key, insert_ptr);
841
842                         replace_lkey(tb, h, insert_key + k);
843
844                         /* replace the first node-ptr in S[h] by node-ptr to insert_ptr[k] */
845                         dc = B_N_CHILD(tbSh, 0);
846                         put_dc_size(dc,
847                                     MAX_CHILD_SIZE(insert_ptr[k]) -
848                                     B_FREE_SPACE(insert_ptr[k]));
849                         put_dc_block_number(dc, insert_ptr[k]->b_blocknr);
850
851                         do_balance_mark_internal_dirty(tb, tbSh, 0);
852
853                         k++;
854                         insert_key += k;
855                         insert_ptr += k;
856                         insert_num -= k;
857                         child_pos = 0;
858                 }
859         }
860         /* tb->lnum[h] > 0 */
861         if (tb->rnum[h] > 0) {
862                 /*shift rnum[h] items from S[h] to the right neighbor R[h] */
863                 /* check how many of new items fall into R or CFR after shifting */
864                 n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
865                 if (n - tb->rnum[h] >= child_pos)
866                         /* new items fall into S[h] */
867                         /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],tb->rnum[h]); */
868                         internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
869                                              tb->rnum[h]);
870                 else if (n + insert_num - tb->rnum[h] < child_pos) {
871                         /* all new items fall into R[h] */
872                         /*internal_shift_right(tb,h,tbSh,tb->CFR[h],tb->rkey[h],tb->R[h],
873                            tb->rnum[h] - insert_num); */
874                         internal_shift_right(INTERNAL_SHIFT_FROM_S_TO_R, tb, h,
875                                              tb->rnum[h] - insert_num);
876
877                         /* insert insert_num keys and node-pointers into R[h] */
878                         bi.tb = tb;
879                         bi.bi_bh = tb->R[h];
880                         bi.bi_parent = tb->FR[h];
881                         bi.bi_position = get_right_neighbor_position(tb, h);
882                         internal_insert_childs(&bi,
883                                                /*tb->R[h],tb->S[h-1]->b_next */
884                                                child_pos - n - insert_num +
885                                                tb->rnum[h] - 1,
886                                                insert_num, insert_key,
887                                                insert_ptr);
888                         insert_num = 0;
889                 } else {
890                         struct disk_child *dc;
891
892                         /* one of the items falls into CFR[h] */
893                         internal_shift1_right(tb, h, n - child_pos + 1);
894                         /* calculate number of new items that fall into R[h] */
895                         k = tb->rnum[h] - n + child_pos - 1;
896                         bi.tb = tb;
897                         bi.bi_bh = tb->R[h];
898                         bi.bi_parent = tb->FR[h];
899                         bi.bi_position = get_right_neighbor_position(tb, h);
900                         internal_insert_childs(&bi,
901                                                /*tb->R[h], tb->R[h]->b_child, */
902                                                0, k, insert_key + 1,
903                                                insert_ptr + 1);
904
905                         replace_rkey(tb, h, insert_key + insert_num - k - 1);
906
907                         /* replace the first node-ptr in R[h] by node-ptr insert_ptr[insert_num-k-1] */
908                         dc = B_N_CHILD(tb->R[h], 0);
909                         put_dc_size(dc,
910                                     MAX_CHILD_SIZE(insert_ptr
911                                                    [insert_num - k - 1]) -
912                                     B_FREE_SPACE(insert_ptr
913                                                  [insert_num - k - 1]));
914                         put_dc_block_number(dc,
915                                             insert_ptr[insert_num - k -
916                                                        1]->b_blocknr);
917
918                         do_balance_mark_internal_dirty(tb, tb->R[h], 0);
919
920                         insert_num -= (k + 1);
921                 }
922         }
923
924     /** Fill new node that appears instead of S[h] **/
925         RFALSE(tb->blknum[h] > 2, "blknum can not be > 2 for internal level");
926         RFALSE(tb->blknum[h] < 0, "blknum can not be < 0");
927
928         if (!tb->blknum[h]) {   /* node S[h] is empty now */
929                 RFALSE(!tbSh, "S[h] is equal NULL");
930
931                 /* do what is needed for buffer thrown from tree */
932                 reiserfs_invalidate_buffer(tb, tbSh);
933                 return order;
934         }
935
936         if (!tbSh) {
937                 /* create new root */
938                 struct disk_child *dc;
939                 struct buffer_head *tbSh_1 = PATH_H_PBUFFER(tb->tb_path, h - 1);
940                 struct block_head *blkh;
941
942                 if (tb->blknum[h] != 1)
943                         reiserfs_panic(NULL, "ibalance-3", "One new node "
944                                        "required for creating the new root");
945                 /* S[h] = empty buffer from the list FEB. */
946                 tbSh = get_FEB(tb);
947                 blkh = B_BLK_HEAD(tbSh);
948                 set_blkh_level(blkh, h + 1);
949
950                 /* Put the unique node-pointer to S[h] that points to S[h-1]. */
951
952                 dc = B_N_CHILD(tbSh, 0);
953                 put_dc_block_number(dc, tbSh_1->b_blocknr);
954                 put_dc_size(dc,
955                             (MAX_CHILD_SIZE(tbSh_1) - B_FREE_SPACE(tbSh_1)));
956
957                 tb->insert_size[h] -= DC_SIZE;
958                 set_blkh_free_space(blkh, blkh_free_space(blkh) - DC_SIZE);
959
960                 do_balance_mark_internal_dirty(tb, tbSh, 0);
961
962                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
963                 check_internal(tbSh);
964                 /*&&&&&&&&&&&&&&&&&&&&&&&& */
965
966                 /* put new root into path structure */
967                 PATH_OFFSET_PBUFFER(tb->tb_path, ILLEGAL_PATH_ELEMENT_OFFSET) =
968                     tbSh;
969
970                 /* Change root in structure super block. */
971                 PUT_SB_ROOT_BLOCK(tb->tb_sb, tbSh->b_blocknr);
972                 PUT_SB_TREE_HEIGHT(tb->tb_sb, SB_TREE_HEIGHT(tb->tb_sb) + 1);
973                 do_balance_mark_sb_dirty(tb, REISERFS_SB(tb->tb_sb)->s_sbh, 1);
974         }
975
976         if (tb->blknum[h] == 2) {
977                 int snum;
978                 struct buffer_info dest_bi, src_bi;
979
980                 /* S_new = free buffer from list FEB */
981                 S_new = get_FEB(tb);
982
983                 set_blkh_level(B_BLK_HEAD(S_new), h + 1);
984
985                 dest_bi.tb = tb;
986                 dest_bi.bi_bh = S_new;
987                 dest_bi.bi_parent = NULL;
988                 dest_bi.bi_position = 0;
989                 src_bi.tb = tb;
990                 src_bi.bi_bh = tbSh;
991                 src_bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
992                 src_bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
993
994                 n = B_NR_ITEMS(tbSh);   /* number of items in S[h] */
995                 snum = (insert_num + n + 1) / 2;
996                 if (n - snum >= child_pos) {
997                         /* new items don't fall into S_new */
998                         /*  store the delimiting key for the next level */
999                         /* new_insert_key = (n - snum)'th key in S[h] */
1000                         memcpy(&new_insert_key, B_N_PDELIM_KEY(tbSh, n - snum),
1001                                KEY_SIZE);
1002                         /* last parameter is del_par */
1003                         internal_move_pointers_items(&dest_bi, &src_bi,
1004                                                      LAST_TO_FIRST, snum, 0);
1005                         /*            internal_move_pointers_items(S_new, tbSh, LAST_TO_FIRST, snum, 0); */
1006                 } else if (n + insert_num - snum < child_pos) {
1007                         /* all new items fall into S_new */
1008                         /*  store the delimiting key for the next level */
1009                         /* new_insert_key = (n + insert_item - snum)'th key in S[h] */
1010                         memcpy(&new_insert_key,
1011                                B_N_PDELIM_KEY(tbSh, n + insert_num - snum),
1012                                KEY_SIZE);
1013                         /* last parameter is del_par */
1014                         internal_move_pointers_items(&dest_bi, &src_bi,
1015                                                      LAST_TO_FIRST,
1016                                                      snum - insert_num, 0);
1017                         /*                  internal_move_pointers_items(S_new,tbSh,1,snum - insert_num,0); */
1018
1019                         /* insert insert_num keys and node-pointers into S_new */
1020                         internal_insert_childs(&dest_bi,
1021                                                /*S_new,tb->S[h-1]->b_next, */
1022                                                child_pos - n - insert_num +
1023                                                snum - 1,
1024                                                insert_num, insert_key,
1025                                                insert_ptr);
1026
1027                         insert_num = 0;
1028                 } else {
1029                         struct disk_child *dc;
1030
1031                         /* some items fall into S_new, but some don't fall */
1032                         /* last parameter is del_par */
1033                         internal_move_pointers_items(&dest_bi, &src_bi,
1034                                                      LAST_TO_FIRST,
1035                                                      n - child_pos + 1, 1);
1036                         /*                  internal_move_pointers_items(S_new,tbSh,1,n - child_pos + 1,1); */
1037                         /* calculate number of new items that fall into S_new */
1038                         k = snum - n + child_pos - 1;
1039
1040                         internal_insert_childs(&dest_bi, /*S_new, */ 0, k,
1041                                                insert_key + 1, insert_ptr + 1);
1042
1043                         /* new_insert_key = insert_key[insert_num - k - 1] */
1044                         memcpy(&new_insert_key, insert_key + insert_num - k - 1,
1045                                KEY_SIZE);
1046                         /* replace first node-ptr in S_new by node-ptr to insert_ptr[insert_num-k-1] */
1047
1048                         dc = B_N_CHILD(S_new, 0);
1049                         put_dc_size(dc,
1050                                     (MAX_CHILD_SIZE
1051                                      (insert_ptr[insert_num - k - 1]) -
1052                                      B_FREE_SPACE(insert_ptr
1053                                                   [insert_num - k - 1])));
1054                         put_dc_block_number(dc,
1055                                             insert_ptr[insert_num - k -
1056                                                        1]->b_blocknr);
1057
1058                         do_balance_mark_internal_dirty(tb, S_new, 0);
1059
1060                         insert_num -= (k + 1);
1061                 }
1062                 /* new_insert_ptr = node_pointer to S_new */
1063                 new_insert_ptr = S_new;
1064
1065                 RFALSE(!buffer_journaled(S_new) || buffer_journal_dirty(S_new)
1066                        || buffer_dirty(S_new), "cm-00001: bad S_new (%b)",
1067                        S_new);
1068
1069                 // S_new is released in unfix_nodes
1070         }
1071
1072         n = B_NR_ITEMS(tbSh);   /*number of items in S[h] */
1073
1074         if (0 <= child_pos && child_pos <= n && insert_num > 0) {
1075                 bi.tb = tb;
1076                 bi.bi_bh = tbSh;
1077                 bi.bi_parent = PATH_H_PPARENT(tb->tb_path, h);
1078                 bi.bi_position = PATH_H_POSITION(tb->tb_path, h + 1);
1079                 internal_insert_childs(&bi,     /*tbSh, */
1080                                        /*          ( tb->S[h-1]->b_parent == tb->S[h] ) ? tb->S[h-1]->b_next :  tb->S[h]->b_child->b_next, */
1081                                        child_pos, insert_num, insert_key,
1082                                        insert_ptr);
1083         }
1084
1085         memcpy(new_insert_key_addr, &new_insert_key, KEY_SIZE);
1086         insert_ptr[0] = new_insert_ptr;
1087
1088         return order;
1089 }