2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/mmu_notifier.h>
17 #include <asm/uaccess.h>
18 #include <asm/tlbflush.h>
21 void task_mem(struct seq_file *m, struct mm_struct *mm)
23 unsigned long data, text, lib, swap;
24 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
27 * Note: to minimize their overhead, mm maintains hiwater_vm and
28 * hiwater_rss only when about to *lower* total_vm or rss. Any
29 * collector of these hiwater stats must therefore get total_vm
30 * and rss too, which will usually be the higher. Barriers? not
31 * worth the effort, such snapshots can always be inconsistent.
33 hiwater_vm = total_vm = mm->total_vm;
34 if (hiwater_vm < mm->hiwater_vm)
35 hiwater_vm = mm->hiwater_vm;
36 hiwater_rss = total_rss = get_mm_rss(mm);
37 if (hiwater_rss < mm->hiwater_rss)
38 hiwater_rss = mm->hiwater_rss;
40 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
41 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
42 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
43 swap = get_mm_counter(mm, MM_SWAPENTS);
57 hiwater_vm << (PAGE_SHIFT-10),
58 total_vm << (PAGE_SHIFT-10),
59 mm->locked_vm << (PAGE_SHIFT-10),
60 mm->pinned_vm << (PAGE_SHIFT-10),
61 hiwater_rss << (PAGE_SHIFT-10),
62 total_rss << (PAGE_SHIFT-10),
63 data << (PAGE_SHIFT-10),
64 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
65 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
66 swap << (PAGE_SHIFT-10));
69 unsigned long task_vsize(struct mm_struct *mm)
71 return PAGE_SIZE * mm->total_vm;
74 unsigned long task_statm(struct mm_struct *mm,
75 unsigned long *shared, unsigned long *text,
76 unsigned long *data, unsigned long *resident)
78 *shared = get_mm_counter(mm, MM_FILEPAGES);
79 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
81 *data = mm->total_vm - mm->shared_vm;
82 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
86 static void pad_len_spaces(struct seq_file *m, int len)
88 len = 25 + sizeof(void*) * 6 - len;
91 seq_printf(m, "%*c", len, ' ');
96 * These functions are for numa_maps but called in generic **maps seq_file
97 * ->start(), ->stop() ops.
99 * numa_maps scans all vmas under mmap_sem and checks their mempolicy.
100 * Each mempolicy object is controlled by reference counting. The problem here
101 * is how to avoid accessing dead mempolicy object.
103 * Because we're holding mmap_sem while reading seq_file, it's safe to access
104 * each vma's mempolicy, no vma objects will never drop refs to mempolicy.
106 * A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
107 * is set and replaced under mmap_sem but unrefed and cleared under task_lock().
108 * So, without task_lock(), we cannot trust get_vma_policy() because we cannot
109 * gurantee the task never exits under us. But taking task_lock() around
110 * get_vma_plicy() causes lock order problem.
112 * To access task->mempolicy without lock, we hold a reference count of an
113 * object pointed by task->mempolicy and remember it. This will guarantee
114 * that task->mempolicy points to an alive object or NULL in numa_maps accesses.
116 static void hold_task_mempolicy(struct proc_maps_private *priv)
118 struct task_struct *task = priv->task;
121 priv->task_mempolicy = task->mempolicy;
122 mpol_get(priv->task_mempolicy);
125 static void release_task_mempolicy(struct proc_maps_private *priv)
127 mpol_put(priv->task_mempolicy);
130 static void hold_task_mempolicy(struct proc_maps_private *priv)
133 static void release_task_mempolicy(struct proc_maps_private *priv)
138 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
140 if (vma && vma != priv->tail_vma) {
141 struct mm_struct *mm = vma->vm_mm;
142 release_task_mempolicy(priv);
143 up_read(&mm->mmap_sem);
148 static void *m_start(struct seq_file *m, loff_t *pos)
150 struct proc_maps_private *priv = m->private;
151 unsigned long last_addr = m->version;
152 struct mm_struct *mm;
153 struct vm_area_struct *vma, *tail_vma = NULL;
156 /* Clear the per syscall fields in priv */
158 priv->tail_vma = NULL;
161 * We remember last_addr rather than next_addr to hit with
162 * mmap_cache most of the time. We have zero last_addr at
163 * the beginning and also after lseek. We will have -1 last_addr
164 * after the end of the vmas.
167 if (last_addr == -1UL)
170 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
172 return ERR_PTR(-ESRCH);
174 mm = mm_access(priv->task, PTRACE_MODE_READ);
175 if (!mm || IS_ERR(mm))
177 down_read(&mm->mmap_sem);
179 tail_vma = get_gate_vma(priv->task->mm);
180 priv->tail_vma = tail_vma;
181 hold_task_mempolicy(priv);
182 /* Start with last addr hint */
183 vma = find_vma(mm, last_addr);
184 if (last_addr && vma) {
190 * Check the vma index is within the range and do
191 * sequential scan until m_index.
194 if ((unsigned long)l < mm->map_count) {
201 if (l != mm->map_count)
202 tail_vma = NULL; /* After gate vma */
208 release_task_mempolicy(priv);
209 /* End of vmas has been reached */
210 m->version = (tail_vma != NULL)? 0: -1UL;
211 up_read(&mm->mmap_sem);
216 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
218 struct proc_maps_private *priv = m->private;
219 struct vm_area_struct *vma = v;
220 struct vm_area_struct *tail_vma = priv->tail_vma;
223 if (vma && (vma != tail_vma) && vma->vm_next)
226 return (vma != tail_vma)? tail_vma: NULL;
229 static void m_stop(struct seq_file *m, void *v)
231 struct proc_maps_private *priv = m->private;
232 struct vm_area_struct *vma = v;
237 put_task_struct(priv->task);
240 static int do_maps_open(struct inode *inode, struct file *file,
241 const struct seq_operations *ops)
243 struct proc_maps_private *priv;
245 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
247 priv->pid = proc_pid(inode);
248 ret = seq_open(file, ops);
250 struct seq_file *m = file->private_data;
260 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
262 struct mm_struct *mm = vma->vm_mm;
263 struct file *file = vma->vm_file;
264 struct proc_maps_private *priv = m->private;
265 struct task_struct *task = priv->task;
266 vm_flags_t flags = vma->vm_flags;
267 unsigned long ino = 0;
268 unsigned long long pgoff = 0;
269 unsigned long start, end;
272 const char *name = NULL;
275 struct inode *inode = file_inode(vma->vm_file);
276 dev = inode->i_sb->s_dev;
278 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
281 /* We don't show the stack guard page in /proc/maps */
282 start = vma->vm_start;
283 if (stack_guard_page_start(vma, start))
286 if (stack_guard_page_end(vma, end))
289 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
292 flags & VM_READ ? 'r' : '-',
293 flags & VM_WRITE ? 'w' : '-',
294 flags & VM_EXEC ? 'x' : '-',
295 flags & VM_MAYSHARE ? 's' : 'p',
297 MAJOR(dev), MINOR(dev), ino, &len);
300 * Print the dentry name for named mappings, and a
301 * special [heap] marker for the heap:
304 pad_len_spaces(m, len);
305 seq_path(m, &file->f_path, "\n");
309 name = arch_vma_name(vma);
318 if (vma->vm_start <= mm->brk &&
319 vma->vm_end >= mm->start_brk) {
324 tid = vm_is_stack(task, vma, is_pid);
328 * Thread stack in /proc/PID/task/TID/maps or
329 * the main process stack.
331 if (!is_pid || (vma->vm_start <= mm->start_stack &&
332 vma->vm_end >= mm->start_stack)) {
335 /* Thread stack in /proc/PID/maps */
336 pad_len_spaces(m, len);
337 seq_printf(m, "[stack:%d]", tid);
344 pad_len_spaces(m, len);
350 static int show_map(struct seq_file *m, void *v, int is_pid)
352 struct vm_area_struct *vma = v;
353 struct proc_maps_private *priv = m->private;
354 struct task_struct *task = priv->task;
356 show_map_vma(m, vma, is_pid);
358 if (m->count < m->size) /* vma is copied successfully */
359 m->version = (vma != get_gate_vma(task->mm))
364 static int show_pid_map(struct seq_file *m, void *v)
366 return show_map(m, v, 1);
369 static int show_tid_map(struct seq_file *m, void *v)
371 return show_map(m, v, 0);
374 static const struct seq_operations proc_pid_maps_op = {
381 static const struct seq_operations proc_tid_maps_op = {
388 static int pid_maps_open(struct inode *inode, struct file *file)
390 return do_maps_open(inode, file, &proc_pid_maps_op);
393 static int tid_maps_open(struct inode *inode, struct file *file)
395 return do_maps_open(inode, file, &proc_tid_maps_op);
398 const struct file_operations proc_pid_maps_operations = {
399 .open = pid_maps_open,
402 .release = seq_release_private,
405 const struct file_operations proc_tid_maps_operations = {
406 .open = tid_maps_open,
409 .release = seq_release_private,
413 * Proportional Set Size(PSS): my share of RSS.
415 * PSS of a process is the count of pages it has in memory, where each
416 * page is divided by the number of processes sharing it. So if a
417 * process has 1000 pages all to itself, and 1000 shared with one other
418 * process, its PSS will be 1500.
420 * To keep (accumulated) division errors low, we adopt a 64bit
421 * fixed-point pss counter to minimize division errors. So (pss >>
422 * PSS_SHIFT) would be the real byte count.
424 * A shift of 12 before division means (assuming 4K page size):
425 * - 1M 3-user-pages add up to 8KB errors;
426 * - supports mapcount up to 2^24, or 16M;
427 * - supports PSS up to 2^52 bytes, or 4PB.
431 #ifdef CONFIG_PROC_PAGE_MONITOR
432 struct mem_size_stats {
433 struct vm_area_struct *vma;
434 unsigned long resident;
435 unsigned long shared_clean;
436 unsigned long shared_dirty;
437 unsigned long private_clean;
438 unsigned long private_dirty;
439 unsigned long referenced;
440 unsigned long anonymous;
441 unsigned long anonymous_thp;
443 unsigned long nonlinear;
448 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
449 unsigned long ptent_size, struct mm_walk *walk)
451 struct mem_size_stats *mss = walk->private;
452 struct vm_area_struct *vma = mss->vma;
453 pgoff_t pgoff = linear_page_index(vma, addr);
454 struct page *page = NULL;
457 if (pte_present(ptent)) {
458 page = vm_normal_page(vma, addr, ptent);
459 } else if (is_swap_pte(ptent)) {
460 swp_entry_t swpent = pte_to_swp_entry(ptent);
462 if (!non_swap_entry(swpent))
463 mss->swap += ptent_size;
464 else if (is_migration_entry(swpent))
465 page = migration_entry_to_page(swpent);
466 } else if (pte_file(ptent)) {
467 if (pte_to_pgoff(ptent) != pgoff)
468 mss->nonlinear += ptent_size;
475 mss->anonymous += ptent_size;
477 if (page->index != pgoff)
478 mss->nonlinear += ptent_size;
480 mss->resident += ptent_size;
481 /* Accumulate the size in pages that have been accessed. */
482 if (pte_young(ptent) || PageReferenced(page))
483 mss->referenced += ptent_size;
484 mapcount = page_mapcount(page);
486 if (pte_dirty(ptent) || PageDirty(page))
487 mss->shared_dirty += ptent_size;
489 mss->shared_clean += ptent_size;
490 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
492 if (pte_dirty(ptent) || PageDirty(page))
493 mss->private_dirty += ptent_size;
495 mss->private_clean += ptent_size;
496 mss->pss += (ptent_size << PSS_SHIFT);
500 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
501 struct mm_walk *walk)
503 struct mem_size_stats *mss = walk->private;
504 struct vm_area_struct *vma = mss->vma;
508 if (pmd_trans_huge_lock(pmd, vma) == 1) {
509 smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
510 spin_unlock(&walk->mm->page_table_lock);
511 mss->anonymous_thp += HPAGE_PMD_SIZE;
515 if (pmd_trans_unstable(pmd))
518 * The mmap_sem held all the way back in m_start() is what
519 * keeps khugepaged out of here and from collapsing things
522 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
523 for (; addr != end; pte++, addr += PAGE_SIZE)
524 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
525 pte_unmap_unlock(pte - 1, ptl);
530 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
533 * Don't forget to update Documentation/ on changes.
535 static const char mnemonics[BITS_PER_LONG][2] = {
537 * In case if we meet a flag we don't know about.
539 [0 ... (BITS_PER_LONG-1)] = "??",
541 [ilog2(VM_READ)] = "rd",
542 [ilog2(VM_WRITE)] = "wr",
543 [ilog2(VM_EXEC)] = "ex",
544 [ilog2(VM_SHARED)] = "sh",
545 [ilog2(VM_MAYREAD)] = "mr",
546 [ilog2(VM_MAYWRITE)] = "mw",
547 [ilog2(VM_MAYEXEC)] = "me",
548 [ilog2(VM_MAYSHARE)] = "ms",
549 [ilog2(VM_GROWSDOWN)] = "gd",
550 [ilog2(VM_PFNMAP)] = "pf",
551 [ilog2(VM_DENYWRITE)] = "dw",
552 [ilog2(VM_LOCKED)] = "lo",
553 [ilog2(VM_IO)] = "io",
554 [ilog2(VM_SEQ_READ)] = "sr",
555 [ilog2(VM_RAND_READ)] = "rr",
556 [ilog2(VM_DONTCOPY)] = "dc",
557 [ilog2(VM_DONTEXPAND)] = "de",
558 [ilog2(VM_ACCOUNT)] = "ac",
559 [ilog2(VM_NORESERVE)] = "nr",
560 [ilog2(VM_HUGETLB)] = "ht",
561 [ilog2(VM_NONLINEAR)] = "nl",
562 [ilog2(VM_ARCH_1)] = "ar",
563 [ilog2(VM_DONTDUMP)] = "dd",
564 #ifdef CONFIG_MEM_SOFT_DIRTY
565 [ilog2(VM_SOFTDIRTY)] = "sd",
567 [ilog2(VM_MIXEDMAP)] = "mm",
568 [ilog2(VM_HUGEPAGE)] = "hg",
569 [ilog2(VM_NOHUGEPAGE)] = "nh",
570 [ilog2(VM_MERGEABLE)] = "mg",
574 seq_puts(m, "VmFlags: ");
575 for (i = 0; i < BITS_PER_LONG; i++) {
576 if (vma->vm_flags & (1UL << i)) {
577 seq_printf(m, "%c%c ",
578 mnemonics[i][0], mnemonics[i][1]);
584 static int show_smap(struct seq_file *m, void *v, int is_pid)
586 struct proc_maps_private *priv = m->private;
587 struct task_struct *task = priv->task;
588 struct vm_area_struct *vma = v;
589 struct mem_size_stats mss;
590 struct mm_walk smaps_walk = {
591 .pmd_entry = smaps_pte_range,
596 memset(&mss, 0, sizeof mss);
598 /* mmap_sem is held in m_start */
599 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
600 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
602 show_map_vma(m, vma, is_pid);
608 "Shared_Clean: %8lu kB\n"
609 "Shared_Dirty: %8lu kB\n"
610 "Private_Clean: %8lu kB\n"
611 "Private_Dirty: %8lu kB\n"
612 "Referenced: %8lu kB\n"
613 "Anonymous: %8lu kB\n"
614 "AnonHugePages: %8lu kB\n"
616 "KernelPageSize: %8lu kB\n"
617 "MMUPageSize: %8lu kB\n"
619 (vma->vm_end - vma->vm_start) >> 10,
621 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
622 mss.shared_clean >> 10,
623 mss.shared_dirty >> 10,
624 mss.private_clean >> 10,
625 mss.private_dirty >> 10,
626 mss.referenced >> 10,
628 mss.anonymous_thp >> 10,
630 vma_kernel_pagesize(vma) >> 10,
631 vma_mmu_pagesize(vma) >> 10,
632 (vma->vm_flags & VM_LOCKED) ?
633 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
635 if (vma->vm_flags & VM_NONLINEAR)
636 seq_printf(m, "Nonlinear: %8lu kB\n",
637 mss.nonlinear >> 10);
639 show_smap_vma_flags(m, vma);
641 if (m->count < m->size) /* vma is copied successfully */
642 m->version = (vma != get_gate_vma(task->mm))
647 static int show_pid_smap(struct seq_file *m, void *v)
649 return show_smap(m, v, 1);
652 static int show_tid_smap(struct seq_file *m, void *v)
654 return show_smap(m, v, 0);
657 static const struct seq_operations proc_pid_smaps_op = {
661 .show = show_pid_smap
664 static const struct seq_operations proc_tid_smaps_op = {
668 .show = show_tid_smap
671 static int pid_smaps_open(struct inode *inode, struct file *file)
673 return do_maps_open(inode, file, &proc_pid_smaps_op);
676 static int tid_smaps_open(struct inode *inode, struct file *file)
678 return do_maps_open(inode, file, &proc_tid_smaps_op);
681 const struct file_operations proc_pid_smaps_operations = {
682 .open = pid_smaps_open,
685 .release = seq_release_private,
688 const struct file_operations proc_tid_smaps_operations = {
689 .open = tid_smaps_open,
692 .release = seq_release_private,
696 * We do not want to have constant page-shift bits sitting in
697 * pagemap entries and are about to reuse them some time soon.
699 * Here's the "migration strategy":
700 * 1. when the system boots these bits remain what they are,
701 * but a warning about future change is printed in log;
702 * 2. once anyone clears soft-dirty bits via clear_refs file,
703 * these flag is set to denote, that user is aware of the
704 * new API and those page-shift bits change their meaning.
705 * The respective warning is printed in dmesg;
706 * 3. In a couple of releases we will remove all the mentions
707 * of page-shift in pagemap entries.
710 static bool soft_dirty_cleared __read_mostly;
712 enum clear_refs_types {
716 CLEAR_REFS_SOFT_DIRTY,
720 struct clear_refs_private {
721 struct vm_area_struct *vma;
722 enum clear_refs_types type;
725 static inline void clear_soft_dirty(struct vm_area_struct *vma,
726 unsigned long addr, pte_t *pte)
728 #ifdef CONFIG_MEM_SOFT_DIRTY
730 * The soft-dirty tracker uses #PF-s to catch writes
731 * to pages, so write-protect the pte as well. See the
732 * Documentation/vm/soft-dirty.txt for full description
733 * of how soft-dirty works.
737 if (pte_present(ptent)) {
738 ptent = pte_wrprotect(ptent);
739 ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
740 } else if (is_swap_pte(ptent)) {
741 ptent = pte_swp_clear_soft_dirty(ptent);
742 } else if (pte_file(ptent)) {
743 ptent = pte_file_clear_soft_dirty(ptent);
746 if (vma->vm_flags & VM_SOFTDIRTY)
747 vma->vm_flags &= ~VM_SOFTDIRTY;
749 set_pte_at(vma->vm_mm, addr, pte, ptent);
753 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
754 unsigned long end, struct mm_walk *walk)
756 struct clear_refs_private *cp = walk->private;
757 struct vm_area_struct *vma = cp->vma;
762 split_huge_page_pmd(vma, addr, pmd);
763 if (pmd_trans_unstable(pmd))
766 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
767 for (; addr != end; pte++, addr += PAGE_SIZE) {
770 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
771 clear_soft_dirty(vma, addr, pte);
775 if (!pte_present(ptent))
778 page = vm_normal_page(vma, addr, ptent);
782 /* Clear accessed and referenced bits. */
783 ptep_test_and_clear_young(vma, addr, pte);
784 ClearPageReferenced(page);
786 pte_unmap_unlock(pte - 1, ptl);
791 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
792 size_t count, loff_t *ppos)
794 struct task_struct *task;
795 char buffer[PROC_NUMBUF];
796 struct mm_struct *mm;
797 struct vm_area_struct *vma;
798 enum clear_refs_types type;
802 memset(buffer, 0, sizeof(buffer));
803 if (count > sizeof(buffer) - 1)
804 count = sizeof(buffer) - 1;
805 if (copy_from_user(buffer, buf, count))
807 rv = kstrtoint(strstrip(buffer), 10, &itype);
810 type = (enum clear_refs_types)itype;
811 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
814 if (type == CLEAR_REFS_SOFT_DIRTY) {
815 soft_dirty_cleared = true;
816 pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
817 "See the linux/Documentation/vm/pagemap.txt for details.\n");
820 task = get_proc_task(file_inode(file));
823 mm = get_task_mm(task);
825 struct clear_refs_private cp = {
828 struct mm_walk clear_refs_walk = {
829 .pmd_entry = clear_refs_pte_range,
833 down_read(&mm->mmap_sem);
834 if (type == CLEAR_REFS_SOFT_DIRTY)
835 mmu_notifier_invalidate_range_start(mm, 0, -1);
836 for (vma = mm->mmap; vma; vma = vma->vm_next) {
838 if (is_vm_hugetlb_page(vma))
841 * Writing 1 to /proc/pid/clear_refs affects all pages.
843 * Writing 2 to /proc/pid/clear_refs only affects
846 * Writing 3 to /proc/pid/clear_refs only affects file
849 if (type == CLEAR_REFS_ANON && vma->vm_file)
851 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
853 walk_page_range(vma->vm_start, vma->vm_end,
856 if (type == CLEAR_REFS_SOFT_DIRTY)
857 mmu_notifier_invalidate_range_end(mm, 0, -1);
859 up_read(&mm->mmap_sem);
862 put_task_struct(task);
867 const struct file_operations proc_clear_refs_operations = {
868 .write = clear_refs_write,
869 .llseek = noop_llseek,
877 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
878 pagemap_entry_t *buffer;
882 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
883 #define PAGEMAP_WALK_MASK (PMD_MASK)
885 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
886 #define PM_STATUS_BITS 3
887 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
888 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
889 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
890 #define PM_PSHIFT_BITS 6
891 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
892 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
893 #define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
894 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
895 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
896 /* in "new" pagemap pshift bits are occupied with more status bits */
897 #define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
899 #define __PM_SOFT_DIRTY (1LL)
900 #define PM_PRESENT PM_STATUS(4LL)
901 #define PM_SWAP PM_STATUS(2LL)
902 #define PM_FILE PM_STATUS(1LL)
903 #define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
904 #define PM_END_OF_BUFFER 1
906 static inline pagemap_entry_t make_pme(u64 val)
908 return (pagemap_entry_t) { .pme = val };
911 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
912 struct pagemapread *pm)
914 pm->buffer[pm->pos++] = *pme;
915 if (pm->pos >= pm->len)
916 return PM_END_OF_BUFFER;
920 static int pagemap_pte_hole(unsigned long start, unsigned long end,
921 struct mm_walk *walk)
923 struct pagemapread *pm = walk->private;
926 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
928 for (addr = start; addr < end; addr += PAGE_SIZE) {
929 err = add_to_pagemap(addr, &pme, pm);
936 static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
937 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
940 struct page *page = NULL;
943 if (pte_present(pte)) {
944 frame = pte_pfn(pte);
946 page = vm_normal_page(vma, addr, pte);
947 if (pte_soft_dirty(pte))
948 flags2 |= __PM_SOFT_DIRTY;
949 } else if (is_swap_pte(pte)) {
951 if (pte_swp_soft_dirty(pte))
952 flags2 |= __PM_SOFT_DIRTY;
953 entry = pte_to_swp_entry(pte);
954 frame = swp_type(entry) |
955 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
957 if (is_migration_entry(entry))
958 page = migration_entry_to_page(entry);
960 if (vma->vm_flags & VM_SOFTDIRTY)
961 flags2 |= __PM_SOFT_DIRTY;
962 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
966 if (page && !PageAnon(page))
968 if ((vma->vm_flags & VM_SOFTDIRTY))
969 flags2 |= __PM_SOFT_DIRTY;
971 *pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
975 static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
976 pmd_t pmd, int offset, int pmd_flags2)
979 * Currently pmd for thp is always present because thp can not be
980 * swapped-out, migrated, or HWPOISONed (split in such cases instead.)
981 * This if-check is just to prepare for future implementation.
983 if (pmd_present(pmd))
984 *pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
985 | PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
987 *pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
990 static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
991 pmd_t pmd, int offset, int pmd_flags2)
996 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
997 struct mm_walk *walk)
999 struct vm_area_struct *vma;
1000 struct pagemapread *pm = walk->private;
1003 pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
1005 /* find the first VMA at or above 'addr' */
1006 vma = find_vma(walk->mm, addr);
1007 if (vma && pmd_trans_huge_lock(pmd, vma) == 1) {
1010 if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
1011 pmd_flags2 = __PM_SOFT_DIRTY;
1015 for (; addr != end; addr += PAGE_SIZE) {
1016 unsigned long offset;
1018 offset = (addr & ~PAGEMAP_WALK_MASK) >>
1020 thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
1021 err = add_to_pagemap(addr, &pme, pm);
1025 spin_unlock(&walk->mm->page_table_lock);
1029 if (pmd_trans_unstable(pmd))
1031 for (; addr != end; addr += PAGE_SIZE) {
1034 /* check to see if we've left 'vma' behind
1035 * and need a new, higher one */
1036 if (vma && (addr >= vma->vm_end)) {
1037 vma = find_vma(walk->mm, addr);
1038 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1039 flags2 = __PM_SOFT_DIRTY;
1042 pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
1045 /* check that 'vma' actually covers this address,
1046 * and that it isn't a huge page vma */
1047 if (vma && (vma->vm_start <= addr) &&
1048 !is_vm_hugetlb_page(vma)) {
1049 pte = pte_offset_map(pmd, addr);
1050 pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
1051 /* unmap before userspace copy */
1054 err = add_to_pagemap(addr, &pme, pm);
1064 #ifdef CONFIG_HUGETLB_PAGE
1065 static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
1066 pte_t pte, int offset, int flags2)
1068 if (pte_present(pte))
1069 *pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
1070 PM_STATUS2(pm->v2, flags2) |
1073 *pme = make_pme(PM_NOT_PRESENT(pm->v2) |
1074 PM_STATUS2(pm->v2, flags2));
1077 /* This function walks within one hugetlb entry in the single call */
1078 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
1079 unsigned long addr, unsigned long end,
1080 struct mm_walk *walk)
1082 struct pagemapread *pm = walk->private;
1083 struct vm_area_struct *vma;
1086 pagemap_entry_t pme;
1088 vma = find_vma(walk->mm, addr);
1091 if (vma && (vma->vm_flags & VM_SOFTDIRTY))
1092 flags2 = __PM_SOFT_DIRTY;
1096 for (; addr != end; addr += PAGE_SIZE) {
1097 int offset = (addr & ~hmask) >> PAGE_SHIFT;
1098 huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
1099 err = add_to_pagemap(addr, &pme, pm);
1108 #endif /* HUGETLB_PAGE */
1111 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1113 * For each page in the address space, this file contains one 64-bit entry
1114 * consisting of the following:
1116 * Bits 0-54 page frame number (PFN) if present
1117 * Bits 0-4 swap type if swapped
1118 * Bits 5-54 swap offset if swapped
1119 * Bits 55-60 page shift (page size = 1<<page shift)
1120 * Bit 61 page is file-page or shared-anon
1121 * Bit 62 page swapped
1122 * Bit 63 page present
1124 * If the page is not present but in swap, then the PFN contains an
1125 * encoding of the swap file number and the page's offset into the
1126 * swap. Unmapped pages return a null PFN. This allows determining
1127 * precisely which pages are mapped (or in swap) and comparing mapped
1128 * pages between processes.
1130 * Efficient users of this interface will use /proc/pid/maps to
1131 * determine which areas of memory are actually mapped and llseek to
1132 * skip over unmapped regions.
1134 static ssize_t pagemap_read(struct file *file, char __user *buf,
1135 size_t count, loff_t *ppos)
1137 struct task_struct *task = get_proc_task(file_inode(file));
1138 struct mm_struct *mm;
1139 struct pagemapread pm;
1141 struct mm_walk pagemap_walk = {};
1143 unsigned long svpfn;
1144 unsigned long start_vaddr;
1145 unsigned long end_vaddr;
1152 /* file position must be aligned */
1153 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1160 pm.v2 = soft_dirty_cleared;
1161 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1162 pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
1167 mm = mm_access(task, PTRACE_MODE_READ);
1169 if (!mm || IS_ERR(mm))
1172 pagemap_walk.pmd_entry = pagemap_pte_range;
1173 pagemap_walk.pte_hole = pagemap_pte_hole;
1174 #ifdef CONFIG_HUGETLB_PAGE
1175 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1177 pagemap_walk.mm = mm;
1178 pagemap_walk.private = ±
1181 svpfn = src / PM_ENTRY_BYTES;
1182 start_vaddr = svpfn << PAGE_SHIFT;
1183 end_vaddr = TASK_SIZE_OF(task);
1185 /* watch out for wraparound */
1186 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
1187 start_vaddr = end_vaddr;
1190 * The odds are that this will stop walking way
1191 * before end_vaddr, because the length of the
1192 * user buffer is tracked in "pm", and the walk
1193 * will stop when we hit the end of the buffer.
1196 while (count && (start_vaddr < end_vaddr)) {
1201 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1203 if (end < start_vaddr || end > end_vaddr)
1205 down_read(&mm->mmap_sem);
1206 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1207 up_read(&mm->mmap_sem);
1210 len = min(count, PM_ENTRY_BYTES * pm.pos);
1211 if (copy_to_user(buf, pm.buffer, len)) {
1220 if (!ret || ret == PM_END_OF_BUFFER)
1228 put_task_struct(task);
1233 static int pagemap_open(struct inode *inode, struct file *file)
1235 pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
1236 "to stop being page-shift some time soon. See the "
1237 "linux/Documentation/vm/pagemap.txt for details.\n");
1241 const struct file_operations proc_pagemap_operations = {
1242 .llseek = mem_lseek, /* borrow this */
1243 .read = pagemap_read,
1244 .open = pagemap_open,
1246 #endif /* CONFIG_PROC_PAGE_MONITOR */
1251 struct vm_area_struct *vma;
1252 unsigned long pages;
1254 unsigned long active;
1255 unsigned long writeback;
1256 unsigned long mapcount_max;
1257 unsigned long dirty;
1258 unsigned long swapcache;
1259 unsigned long node[MAX_NUMNODES];
1262 struct numa_maps_private {
1263 struct proc_maps_private proc_maps;
1264 struct numa_maps md;
1267 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1268 unsigned long nr_pages)
1270 int count = page_mapcount(page);
1272 md->pages += nr_pages;
1273 if (pte_dirty || PageDirty(page))
1274 md->dirty += nr_pages;
1276 if (PageSwapCache(page))
1277 md->swapcache += nr_pages;
1279 if (PageActive(page) || PageUnevictable(page))
1280 md->active += nr_pages;
1282 if (PageWriteback(page))
1283 md->writeback += nr_pages;
1286 md->anon += nr_pages;
1288 if (count > md->mapcount_max)
1289 md->mapcount_max = count;
1291 md->node[page_to_nid(page)] += nr_pages;
1294 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1300 if (!pte_present(pte))
1303 page = vm_normal_page(vma, addr, pte);
1307 if (PageReserved(page))
1310 nid = page_to_nid(page);
1311 if (!node_isset(nid, node_states[N_MEMORY]))
1317 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1318 unsigned long end, struct mm_walk *walk)
1320 struct numa_maps *md;
1327 if (pmd_trans_huge_lock(pmd, md->vma) == 1) {
1328 pte_t huge_pte = *(pte_t *)pmd;
1331 page = can_gather_numa_stats(huge_pte, md->vma, addr);
1333 gather_stats(page, md, pte_dirty(huge_pte),
1334 HPAGE_PMD_SIZE/PAGE_SIZE);
1335 spin_unlock(&walk->mm->page_table_lock);
1339 if (pmd_trans_unstable(pmd))
1341 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1343 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
1346 gather_stats(page, md, pte_dirty(*pte), 1);
1348 } while (pte++, addr += PAGE_SIZE, addr != end);
1349 pte_unmap_unlock(orig_pte, ptl);
1352 #ifdef CONFIG_HUGETLB_PAGE
1353 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1354 unsigned long addr, unsigned long end, struct mm_walk *walk)
1356 struct numa_maps *md;
1362 page = pte_page(*pte);
1367 gather_stats(page, md, pte_dirty(*pte), 1);
1372 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
1373 unsigned long addr, unsigned long end, struct mm_walk *walk)
1380 * Display pages allocated per node and memory policy via /proc.
1382 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1384 struct numa_maps_private *numa_priv = m->private;
1385 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1386 struct vm_area_struct *vma = v;
1387 struct numa_maps *md = &numa_priv->md;
1388 struct file *file = vma->vm_file;
1389 struct task_struct *task = proc_priv->task;
1390 struct mm_struct *mm = vma->vm_mm;
1391 struct mm_walk walk = {};
1392 struct mempolicy *pol;
1399 /* Ensure we start with an empty set of numa_maps statistics. */
1400 memset(md, 0, sizeof(*md));
1404 walk.hugetlb_entry = gather_hugetbl_stats;
1405 walk.pmd_entry = gather_pte_stats;
1409 pol = get_vma_policy(task, vma, vma->vm_start);
1410 mpol_to_str(buffer, sizeof(buffer), pol);
1413 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1416 seq_printf(m, " file=");
1417 seq_path(m, &file->f_path, "\n\t= ");
1418 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1419 seq_printf(m, " heap");
1421 pid_t tid = vm_is_stack(task, vma, is_pid);
1424 * Thread stack in /proc/PID/task/TID/maps or
1425 * the main process stack.
1427 if (!is_pid || (vma->vm_start <= mm->start_stack &&
1428 vma->vm_end >= mm->start_stack))
1429 seq_printf(m, " stack");
1431 seq_printf(m, " stack:%d", tid);
1435 if (is_vm_hugetlb_page(vma))
1436 seq_printf(m, " huge");
1438 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1444 seq_printf(m, " anon=%lu", md->anon);
1447 seq_printf(m, " dirty=%lu", md->dirty);
1449 if (md->pages != md->anon && md->pages != md->dirty)
1450 seq_printf(m, " mapped=%lu", md->pages);
1452 if (md->mapcount_max > 1)
1453 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1456 seq_printf(m, " swapcache=%lu", md->swapcache);
1458 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1459 seq_printf(m, " active=%lu", md->active);
1462 seq_printf(m, " writeback=%lu", md->writeback);
1464 for_each_node_state(nid, N_MEMORY)
1466 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1470 if (m->count < m->size)
1471 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1475 static int show_pid_numa_map(struct seq_file *m, void *v)
1477 return show_numa_map(m, v, 1);
1480 static int show_tid_numa_map(struct seq_file *m, void *v)
1482 return show_numa_map(m, v, 0);
1485 static const struct seq_operations proc_pid_numa_maps_op = {
1489 .show = show_pid_numa_map,
1492 static const struct seq_operations proc_tid_numa_maps_op = {
1496 .show = show_tid_numa_map,
1499 static int numa_maps_open(struct inode *inode, struct file *file,
1500 const struct seq_operations *ops)
1502 struct numa_maps_private *priv;
1504 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1506 priv->proc_maps.pid = proc_pid(inode);
1507 ret = seq_open(file, ops);
1509 struct seq_file *m = file->private_data;
1518 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1520 return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1523 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1525 return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1528 const struct file_operations proc_pid_numa_maps_operations = {
1529 .open = pid_numa_maps_open,
1531 .llseek = seq_lseek,
1532 .release = seq_release_private,
1535 const struct file_operations proc_tid_numa_maps_operations = {
1536 .open = tid_numa_maps_open,
1538 .llseek = seq_lseek,
1539 .release = seq_release_private,
1541 #endif /* CONFIG_NUMA */