Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[platform/kernel/linux-rpi.git] / fs / proc / task_mmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21
22 #include <asm/elf.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include "internal.h"
26
27 void task_mem(struct seq_file *m, struct mm_struct *mm)
28 {
29         unsigned long text, lib, swap, anon, file, shmem;
30         unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
31
32         anon = get_mm_counter(mm, MM_ANONPAGES);
33         file = get_mm_counter(mm, MM_FILEPAGES);
34         shmem = get_mm_counter(mm, MM_SHMEMPAGES);
35
36         /*
37          * Note: to minimize their overhead, mm maintains hiwater_vm and
38          * hiwater_rss only when about to *lower* total_vm or rss.  Any
39          * collector of these hiwater stats must therefore get total_vm
40          * and rss too, which will usually be the higher.  Barriers? not
41          * worth the effort, such snapshots can always be inconsistent.
42          */
43         hiwater_vm = total_vm = mm->total_vm;
44         if (hiwater_vm < mm->hiwater_vm)
45                 hiwater_vm = mm->hiwater_vm;
46         hiwater_rss = total_rss = anon + file + shmem;
47         if (hiwater_rss < mm->hiwater_rss)
48                 hiwater_rss = mm->hiwater_rss;
49
50         text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
51         lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
52         swap = get_mm_counter(mm, MM_SWAPENTS);
53         seq_printf(m,
54                 "VmPeak:\t%8lu kB\n"
55                 "VmSize:\t%8lu kB\n"
56                 "VmLck:\t%8lu kB\n"
57                 "VmPin:\t%8lu kB\n"
58                 "VmHWM:\t%8lu kB\n"
59                 "VmRSS:\t%8lu kB\n"
60                 "RssAnon:\t%8lu kB\n"
61                 "RssFile:\t%8lu kB\n"
62                 "RssShmem:\t%8lu kB\n"
63                 "VmData:\t%8lu kB\n"
64                 "VmStk:\t%8lu kB\n"
65                 "VmExe:\t%8lu kB\n"
66                 "VmLib:\t%8lu kB\n"
67                 "VmPTE:\t%8lu kB\n"
68                 "VmSwap:\t%8lu kB\n",
69                 hiwater_vm << (PAGE_SHIFT-10),
70                 total_vm << (PAGE_SHIFT-10),
71                 mm->locked_vm << (PAGE_SHIFT-10),
72                 mm->pinned_vm << (PAGE_SHIFT-10),
73                 hiwater_rss << (PAGE_SHIFT-10),
74                 total_rss << (PAGE_SHIFT-10),
75                 anon << (PAGE_SHIFT-10),
76                 file << (PAGE_SHIFT-10),
77                 shmem << (PAGE_SHIFT-10),
78                 mm->data_vm << (PAGE_SHIFT-10),
79                 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
80                 mm_pgtables_bytes(mm) >> 10,
81                 swap << (PAGE_SHIFT-10));
82         hugetlb_report_usage(m, mm);
83 }
84
85 unsigned long task_vsize(struct mm_struct *mm)
86 {
87         return PAGE_SIZE * mm->total_vm;
88 }
89
90 unsigned long task_statm(struct mm_struct *mm,
91                          unsigned long *shared, unsigned long *text,
92                          unsigned long *data, unsigned long *resident)
93 {
94         *shared = get_mm_counter(mm, MM_FILEPAGES) +
95                         get_mm_counter(mm, MM_SHMEMPAGES);
96         *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
97                                                                 >> PAGE_SHIFT;
98         *data = mm->data_vm + mm->stack_vm;
99         *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
100         return mm->total_vm;
101 }
102
103 #ifdef CONFIG_NUMA
104 /*
105  * Save get_task_policy() for show_numa_map().
106  */
107 static void hold_task_mempolicy(struct proc_maps_private *priv)
108 {
109         struct task_struct *task = priv->task;
110
111         task_lock(task);
112         priv->task_mempolicy = get_task_policy(task);
113         mpol_get(priv->task_mempolicy);
114         task_unlock(task);
115 }
116 static void release_task_mempolicy(struct proc_maps_private *priv)
117 {
118         mpol_put(priv->task_mempolicy);
119 }
120 #else
121 static void hold_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 static void release_task_mempolicy(struct proc_maps_private *priv)
125 {
126 }
127 #endif
128
129 static void vma_stop(struct proc_maps_private *priv)
130 {
131         struct mm_struct *mm = priv->mm;
132
133         release_task_mempolicy(priv);
134         up_read(&mm->mmap_sem);
135         mmput(mm);
136 }
137
138 static struct vm_area_struct *
139 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
140 {
141         if (vma == priv->tail_vma)
142                 return NULL;
143         return vma->vm_next ?: priv->tail_vma;
144 }
145
146 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
147 {
148         if (m->count < m->size) /* vma is copied successfully */
149                 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
150 }
151
152 static void *m_start(struct seq_file *m, loff_t *ppos)
153 {
154         struct proc_maps_private *priv = m->private;
155         unsigned long last_addr = m->version;
156         struct mm_struct *mm;
157         struct vm_area_struct *vma;
158         unsigned int pos = *ppos;
159
160         /* See m_cache_vma(). Zero at the start or after lseek. */
161         if (last_addr == -1UL)
162                 return NULL;
163
164         priv->task = get_proc_task(priv->inode);
165         if (!priv->task)
166                 return ERR_PTR(-ESRCH);
167
168         mm = priv->mm;
169         if (!mm || !mmget_not_zero(mm))
170                 return NULL;
171
172         down_read(&mm->mmap_sem);
173         hold_task_mempolicy(priv);
174         priv->tail_vma = get_gate_vma(mm);
175
176         if (last_addr) {
177                 vma = find_vma(mm, last_addr - 1);
178                 if (vma && vma->vm_start <= last_addr)
179                         vma = m_next_vma(priv, vma);
180                 if (vma)
181                         return vma;
182         }
183
184         m->version = 0;
185         if (pos < mm->map_count) {
186                 for (vma = mm->mmap; pos; pos--) {
187                         m->version = vma->vm_start;
188                         vma = vma->vm_next;
189                 }
190                 return vma;
191         }
192
193         /* we do not bother to update m->version in this case */
194         if (pos == mm->map_count && priv->tail_vma)
195                 return priv->tail_vma;
196
197         vma_stop(priv);
198         return NULL;
199 }
200
201 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
202 {
203         struct proc_maps_private *priv = m->private;
204         struct vm_area_struct *next;
205
206         (*pos)++;
207         next = m_next_vma(priv, v);
208         if (!next)
209                 vma_stop(priv);
210         return next;
211 }
212
213 static void m_stop(struct seq_file *m, void *v)
214 {
215         struct proc_maps_private *priv = m->private;
216
217         if (!IS_ERR_OR_NULL(v))
218                 vma_stop(priv);
219         if (priv->task) {
220                 put_task_struct(priv->task);
221                 priv->task = NULL;
222         }
223 }
224
225 static int proc_maps_open(struct inode *inode, struct file *file,
226                         const struct seq_operations *ops, int psize)
227 {
228         struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
229
230         if (!priv)
231                 return -ENOMEM;
232
233         priv->inode = inode;
234         priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
235         if (IS_ERR(priv->mm)) {
236                 int err = PTR_ERR(priv->mm);
237
238                 seq_release_private(inode, file);
239                 return err;
240         }
241
242         return 0;
243 }
244
245 static int proc_map_release(struct inode *inode, struct file *file)
246 {
247         struct seq_file *seq = file->private_data;
248         struct proc_maps_private *priv = seq->private;
249
250         if (priv->mm)
251                 mmdrop(priv->mm);
252
253         kfree(priv->rollup);
254         return seq_release_private(inode, file);
255 }
256
257 static int do_maps_open(struct inode *inode, struct file *file,
258                         const struct seq_operations *ops)
259 {
260         return proc_maps_open(inode, file, ops,
261                                 sizeof(struct proc_maps_private));
262 }
263
264 /*
265  * Indicate if the VMA is a stack for the given task; for
266  * /proc/PID/maps that is the stack of the main task.
267  */
268 static int is_stack(struct vm_area_struct *vma)
269 {
270         /*
271          * We make no effort to guess what a given thread considers to be
272          * its "stack".  It's not even well-defined for programs written
273          * languages like Go.
274          */
275         return vma->vm_start <= vma->vm_mm->start_stack &&
276                 vma->vm_end >= vma->vm_mm->start_stack;
277 }
278
279 static void show_vma_header_prefix(struct seq_file *m,
280                                    unsigned long start, unsigned long end,
281                                    vm_flags_t flags, unsigned long long pgoff,
282                                    dev_t dev, unsigned long ino)
283 {
284         seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285         seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
286                    start,
287                    end,
288                    flags & VM_READ ? 'r' : '-',
289                    flags & VM_WRITE ? 'w' : '-',
290                    flags & VM_EXEC ? 'x' : '-',
291                    flags & VM_MAYSHARE ? 's' : 'p',
292                    pgoff,
293                    MAJOR(dev), MINOR(dev), ino);
294 }
295
296 static void
297 show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
298 {
299         struct mm_struct *mm = vma->vm_mm;
300         struct file *file = vma->vm_file;
301         vm_flags_t flags = vma->vm_flags;
302         unsigned long ino = 0;
303         unsigned long long pgoff = 0;
304         unsigned long start, end;
305         dev_t dev = 0;
306         const char *name = NULL;
307
308         if (file) {
309                 struct inode *inode = file_inode(vma->vm_file);
310                 dev = inode->i_sb->s_dev;
311                 ino = inode->i_ino;
312                 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
313         }
314
315         start = vma->vm_start;
316         end = vma->vm_end;
317         show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
318
319         /*
320          * Print the dentry name for named mappings, and a
321          * special [heap] marker for the heap:
322          */
323         if (file) {
324                 seq_pad(m, ' ');
325                 seq_file_path(m, file, "\n");
326                 goto done;
327         }
328
329         if (vma->vm_ops && vma->vm_ops->name) {
330                 name = vma->vm_ops->name(vma);
331                 if (name)
332                         goto done;
333         }
334
335         name = arch_vma_name(vma);
336         if (!name) {
337                 if (!mm) {
338                         name = "[vdso]";
339                         goto done;
340                 }
341
342                 if (vma->vm_start <= mm->brk &&
343                     vma->vm_end >= mm->start_brk) {
344                         name = "[heap]";
345                         goto done;
346                 }
347
348                 if (is_stack(vma))
349                         name = "[stack]";
350         }
351
352 done:
353         if (name) {
354                 seq_pad(m, ' ');
355                 seq_puts(m, name);
356         }
357         seq_putc(m, '\n');
358 }
359
360 static int show_map(struct seq_file *m, void *v, int is_pid)
361 {
362         show_map_vma(m, v, is_pid);
363         m_cache_vma(m, v);
364         return 0;
365 }
366
367 static int show_pid_map(struct seq_file *m, void *v)
368 {
369         return show_map(m, v, 1);
370 }
371
372 static int show_tid_map(struct seq_file *m, void *v)
373 {
374         return show_map(m, v, 0);
375 }
376
377 static const struct seq_operations proc_pid_maps_op = {
378         .start  = m_start,
379         .next   = m_next,
380         .stop   = m_stop,
381         .show   = show_pid_map
382 };
383
384 static const struct seq_operations proc_tid_maps_op = {
385         .start  = m_start,
386         .next   = m_next,
387         .stop   = m_stop,
388         .show   = show_tid_map
389 };
390
391 static int pid_maps_open(struct inode *inode, struct file *file)
392 {
393         return do_maps_open(inode, file, &proc_pid_maps_op);
394 }
395
396 static int tid_maps_open(struct inode *inode, struct file *file)
397 {
398         return do_maps_open(inode, file, &proc_tid_maps_op);
399 }
400
401 const struct file_operations proc_pid_maps_operations = {
402         .open           = pid_maps_open,
403         .read           = seq_read,
404         .llseek         = seq_lseek,
405         .release        = proc_map_release,
406 };
407
408 const struct file_operations proc_tid_maps_operations = {
409         .open           = tid_maps_open,
410         .read           = seq_read,
411         .llseek         = seq_lseek,
412         .release        = proc_map_release,
413 };
414
415 /*
416  * Proportional Set Size(PSS): my share of RSS.
417  *
418  * PSS of a process is the count of pages it has in memory, where each
419  * page is divided by the number of processes sharing it.  So if a
420  * process has 1000 pages all to itself, and 1000 shared with one other
421  * process, its PSS will be 1500.
422  *
423  * To keep (accumulated) division errors low, we adopt a 64bit
424  * fixed-point pss counter to minimize division errors. So (pss >>
425  * PSS_SHIFT) would be the real byte count.
426  *
427  * A shift of 12 before division means (assuming 4K page size):
428  *      - 1M 3-user-pages add up to 8KB errors;
429  *      - supports mapcount up to 2^24, or 16M;
430  *      - supports PSS up to 2^52 bytes, or 4PB.
431  */
432 #define PSS_SHIFT 12
433
434 #ifdef CONFIG_PROC_PAGE_MONITOR
435 struct mem_size_stats {
436         bool first;
437         unsigned long resident;
438         unsigned long shared_clean;
439         unsigned long shared_dirty;
440         unsigned long private_clean;
441         unsigned long private_dirty;
442         unsigned long referenced;
443         unsigned long anonymous;
444         unsigned long lazyfree;
445         unsigned long anonymous_thp;
446         unsigned long shmem_thp;
447         unsigned long swap;
448         unsigned long shared_hugetlb;
449         unsigned long private_hugetlb;
450         unsigned long first_vma_start;
451         u64 pss;
452         u64 pss_locked;
453         u64 swap_pss;
454         bool check_shmem_swap;
455 };
456
457 static void smaps_account(struct mem_size_stats *mss, struct page *page,
458                 bool compound, bool young, bool dirty)
459 {
460         int i, nr = compound ? 1 << compound_order(page) : 1;
461         unsigned long size = nr * PAGE_SIZE;
462
463         if (PageAnon(page)) {
464                 mss->anonymous += size;
465                 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
466                         mss->lazyfree += size;
467         }
468
469         mss->resident += size;
470         /* Accumulate the size in pages that have been accessed. */
471         if (young || page_is_young(page) || PageReferenced(page))
472                 mss->referenced += size;
473
474         /*
475          * page_count(page) == 1 guarantees the page is mapped exactly once.
476          * If any subpage of the compound page mapped with PTE it would elevate
477          * page_count().
478          */
479         if (page_count(page) == 1) {
480                 if (dirty || PageDirty(page))
481                         mss->private_dirty += size;
482                 else
483                         mss->private_clean += size;
484                 mss->pss += (u64)size << PSS_SHIFT;
485                 return;
486         }
487
488         for (i = 0; i < nr; i++, page++) {
489                 int mapcount = page_mapcount(page);
490
491                 if (mapcount >= 2) {
492                         if (dirty || PageDirty(page))
493                                 mss->shared_dirty += PAGE_SIZE;
494                         else
495                                 mss->shared_clean += PAGE_SIZE;
496                         mss->pss += (PAGE_SIZE << PSS_SHIFT) / mapcount;
497                 } else {
498                         if (dirty || PageDirty(page))
499                                 mss->private_dirty += PAGE_SIZE;
500                         else
501                                 mss->private_clean += PAGE_SIZE;
502                         mss->pss += PAGE_SIZE << PSS_SHIFT;
503                 }
504         }
505 }
506
507 #ifdef CONFIG_SHMEM
508 static int smaps_pte_hole(unsigned long addr, unsigned long end,
509                 struct mm_walk *walk)
510 {
511         struct mem_size_stats *mss = walk->private;
512
513         mss->swap += shmem_partial_swap_usage(
514                         walk->vma->vm_file->f_mapping, addr, end);
515
516         return 0;
517 }
518 #endif
519
520 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
521                 struct mm_walk *walk)
522 {
523         struct mem_size_stats *mss = walk->private;
524         struct vm_area_struct *vma = walk->vma;
525         struct page *page = NULL;
526
527         if (pte_present(*pte)) {
528                 page = vm_normal_page(vma, addr, *pte);
529         } else if (is_swap_pte(*pte)) {
530                 swp_entry_t swpent = pte_to_swp_entry(*pte);
531
532                 if (!non_swap_entry(swpent)) {
533                         int mapcount;
534
535                         mss->swap += PAGE_SIZE;
536                         mapcount = swp_swapcount(swpent);
537                         if (mapcount >= 2) {
538                                 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
539
540                                 do_div(pss_delta, mapcount);
541                                 mss->swap_pss += pss_delta;
542                         } else {
543                                 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
544                         }
545                 } else if (is_migration_entry(swpent))
546                         page = migration_entry_to_page(swpent);
547                 else if (is_device_private_entry(swpent))
548                         page = device_private_entry_to_page(swpent);
549         } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
550                                                         && pte_none(*pte))) {
551                 page = find_get_entry(vma->vm_file->f_mapping,
552                                                 linear_page_index(vma, addr));
553                 if (!page)
554                         return;
555
556                 if (radix_tree_exceptional_entry(page))
557                         mss->swap += PAGE_SIZE;
558                 else
559                         put_page(page);
560
561                 return;
562         }
563
564         if (!page)
565                 return;
566
567         smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte));
568 }
569
570 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
571 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
572                 struct mm_walk *walk)
573 {
574         struct mem_size_stats *mss = walk->private;
575         struct vm_area_struct *vma = walk->vma;
576         struct page *page;
577
578         /* FOLL_DUMP will return -EFAULT on huge zero page */
579         page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
580         if (IS_ERR_OR_NULL(page))
581                 return;
582         if (PageAnon(page))
583                 mss->anonymous_thp += HPAGE_PMD_SIZE;
584         else if (PageSwapBacked(page))
585                 mss->shmem_thp += HPAGE_PMD_SIZE;
586         else if (is_zone_device_page(page))
587                 /* pass */;
588         else
589                 VM_BUG_ON_PAGE(1, page);
590         smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd));
591 }
592 #else
593 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
594                 struct mm_walk *walk)
595 {
596 }
597 #endif
598
599 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
600                            struct mm_walk *walk)
601 {
602         struct vm_area_struct *vma = walk->vma;
603         pte_t *pte;
604         spinlock_t *ptl;
605
606         ptl = pmd_trans_huge_lock(pmd, vma);
607         if (ptl) {
608                 if (pmd_present(*pmd))
609                         smaps_pmd_entry(pmd, addr, walk);
610                 spin_unlock(ptl);
611                 goto out;
612         }
613
614         if (pmd_trans_unstable(pmd))
615                 goto out;
616         /*
617          * The mmap_sem held all the way back in m_start() is what
618          * keeps khugepaged out of here and from collapsing things
619          * in here.
620          */
621         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
622         for (; addr != end; pte++, addr += PAGE_SIZE)
623                 smaps_pte_entry(pte, addr, walk);
624         pte_unmap_unlock(pte - 1, ptl);
625 out:
626         cond_resched();
627         return 0;
628 }
629
630 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
631 {
632         /*
633          * Don't forget to update Documentation/ on changes.
634          */
635         static const char mnemonics[BITS_PER_LONG][2] = {
636                 /*
637                  * In case if we meet a flag we don't know about.
638                  */
639                 [0 ... (BITS_PER_LONG-1)] = "??",
640
641                 [ilog2(VM_READ)]        = "rd",
642                 [ilog2(VM_WRITE)]       = "wr",
643                 [ilog2(VM_EXEC)]        = "ex",
644                 [ilog2(VM_SHARED)]      = "sh",
645                 [ilog2(VM_MAYREAD)]     = "mr",
646                 [ilog2(VM_MAYWRITE)]    = "mw",
647                 [ilog2(VM_MAYEXEC)]     = "me",
648                 [ilog2(VM_MAYSHARE)]    = "ms",
649                 [ilog2(VM_GROWSDOWN)]   = "gd",
650                 [ilog2(VM_PFNMAP)]      = "pf",
651                 [ilog2(VM_DENYWRITE)]   = "dw",
652 #ifdef CONFIG_X86_INTEL_MPX
653                 [ilog2(VM_MPX)]         = "mp",
654 #endif
655                 [ilog2(VM_LOCKED)]      = "lo",
656                 [ilog2(VM_IO)]          = "io",
657                 [ilog2(VM_SEQ_READ)]    = "sr",
658                 [ilog2(VM_RAND_READ)]   = "rr",
659                 [ilog2(VM_DONTCOPY)]    = "dc",
660                 [ilog2(VM_DONTEXPAND)]  = "de",
661                 [ilog2(VM_ACCOUNT)]     = "ac",
662                 [ilog2(VM_NORESERVE)]   = "nr",
663                 [ilog2(VM_HUGETLB)]     = "ht",
664                 [ilog2(VM_SYNC)]        = "sf",
665                 [ilog2(VM_ARCH_1)]      = "ar",
666                 [ilog2(VM_WIPEONFORK)]  = "wf",
667                 [ilog2(VM_DONTDUMP)]    = "dd",
668 #ifdef CONFIG_MEM_SOFT_DIRTY
669                 [ilog2(VM_SOFTDIRTY)]   = "sd",
670 #endif
671                 [ilog2(VM_MIXEDMAP)]    = "mm",
672                 [ilog2(VM_HUGEPAGE)]    = "hg",
673                 [ilog2(VM_NOHUGEPAGE)]  = "nh",
674                 [ilog2(VM_MERGEABLE)]   = "mg",
675                 [ilog2(VM_UFFD_MISSING)]= "um",
676                 [ilog2(VM_UFFD_WP)]     = "uw",
677 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
678                 /* These come out via ProtectionKey: */
679                 [ilog2(VM_PKEY_BIT0)]   = "",
680                 [ilog2(VM_PKEY_BIT1)]   = "",
681                 [ilog2(VM_PKEY_BIT2)]   = "",
682                 [ilog2(VM_PKEY_BIT3)]   = "",
683 #endif
684         };
685         size_t i;
686
687         seq_puts(m, "VmFlags: ");
688         for (i = 0; i < BITS_PER_LONG; i++) {
689                 if (!mnemonics[i][0])
690                         continue;
691                 if (vma->vm_flags & (1UL << i)) {
692                         seq_printf(m, "%c%c ",
693                                    mnemonics[i][0], mnemonics[i][1]);
694                 }
695         }
696         seq_putc(m, '\n');
697 }
698
699 #ifdef CONFIG_HUGETLB_PAGE
700 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
701                                  unsigned long addr, unsigned long end,
702                                  struct mm_walk *walk)
703 {
704         struct mem_size_stats *mss = walk->private;
705         struct vm_area_struct *vma = walk->vma;
706         struct page *page = NULL;
707
708         if (pte_present(*pte)) {
709                 page = vm_normal_page(vma, addr, *pte);
710         } else if (is_swap_pte(*pte)) {
711                 swp_entry_t swpent = pte_to_swp_entry(*pte);
712
713                 if (is_migration_entry(swpent))
714                         page = migration_entry_to_page(swpent);
715                 else if (is_device_private_entry(swpent))
716                         page = device_private_entry_to_page(swpent);
717         }
718         if (page) {
719                 int mapcount = page_mapcount(page);
720
721                 if (mapcount >= 2)
722                         mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
723                 else
724                         mss->private_hugetlb += huge_page_size(hstate_vma(vma));
725         }
726         return 0;
727 }
728 #endif /* HUGETLB_PAGE */
729
730 void __weak arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
731 {
732 }
733
734 static int show_smap(struct seq_file *m, void *v, int is_pid)
735 {
736         struct proc_maps_private *priv = m->private;
737         struct vm_area_struct *vma = v;
738         struct mem_size_stats mss_stack;
739         struct mem_size_stats *mss;
740         struct mm_walk smaps_walk = {
741                 .pmd_entry = smaps_pte_range,
742 #ifdef CONFIG_HUGETLB_PAGE
743                 .hugetlb_entry = smaps_hugetlb_range,
744 #endif
745                 .mm = vma->vm_mm,
746         };
747         int ret = 0;
748         bool rollup_mode;
749         bool last_vma;
750
751         if (priv->rollup) {
752                 rollup_mode = true;
753                 mss = priv->rollup;
754                 if (mss->first) {
755                         mss->first_vma_start = vma->vm_start;
756                         mss->first = false;
757                 }
758                 last_vma = !m_next_vma(priv, vma);
759         } else {
760                 rollup_mode = false;
761                 memset(&mss_stack, 0, sizeof(mss_stack));
762                 mss = &mss_stack;
763         }
764
765         smaps_walk.private = mss;
766
767 #ifdef CONFIG_SHMEM
768         if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
769                 /*
770                  * For shared or readonly shmem mappings we know that all
771                  * swapped out pages belong to the shmem object, and we can
772                  * obtain the swap value much more efficiently. For private
773                  * writable mappings, we might have COW pages that are
774                  * not affected by the parent swapped out pages of the shmem
775                  * object, so we have to distinguish them during the page walk.
776                  * Unless we know that the shmem object (or the part mapped by
777                  * our VMA) has no swapped out pages at all.
778                  */
779                 unsigned long shmem_swapped = shmem_swap_usage(vma);
780
781                 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
782                                         !(vma->vm_flags & VM_WRITE)) {
783                         mss->swap = shmem_swapped;
784                 } else {
785                         mss->check_shmem_swap = true;
786                         smaps_walk.pte_hole = smaps_pte_hole;
787                 }
788         }
789 #endif
790
791         /* mmap_sem is held in m_start */
792         walk_page_vma(vma, &smaps_walk);
793         if (vma->vm_flags & VM_LOCKED)
794                 mss->pss_locked += mss->pss;
795
796         if (!rollup_mode) {
797                 show_map_vma(m, vma, is_pid);
798         } else if (last_vma) {
799                 show_vma_header_prefix(
800                         m, mss->first_vma_start, vma->vm_end, 0, 0, 0, 0);
801                 seq_pad(m, ' ');
802                 seq_puts(m, "[rollup]\n");
803         } else {
804                 ret = SEQ_SKIP;
805         }
806
807         if (!rollup_mode)
808                 seq_printf(m,
809                            "Size:           %8lu kB\n"
810                            "KernelPageSize: %8lu kB\n"
811                            "MMUPageSize:    %8lu kB\n",
812                            (vma->vm_end - vma->vm_start) >> 10,
813                            vma_kernel_pagesize(vma) >> 10,
814                            vma_mmu_pagesize(vma) >> 10);
815
816
817         if (!rollup_mode || last_vma)
818                 seq_printf(m,
819                            "Rss:            %8lu kB\n"
820                            "Pss:            %8lu kB\n"
821                            "Shared_Clean:   %8lu kB\n"
822                            "Shared_Dirty:   %8lu kB\n"
823                            "Private_Clean:  %8lu kB\n"
824                            "Private_Dirty:  %8lu kB\n"
825                            "Referenced:     %8lu kB\n"
826                            "Anonymous:      %8lu kB\n"
827                            "LazyFree:       %8lu kB\n"
828                            "AnonHugePages:  %8lu kB\n"
829                            "ShmemPmdMapped: %8lu kB\n"
830                            "Shared_Hugetlb: %8lu kB\n"
831                            "Private_Hugetlb: %7lu kB\n"
832                            "Swap:           %8lu kB\n"
833                            "SwapPss:        %8lu kB\n"
834                            "Locked:         %8lu kB\n",
835                            mss->resident >> 10,
836                            (unsigned long)(mss->pss >> (10 + PSS_SHIFT)),
837                            mss->shared_clean  >> 10,
838                            mss->shared_dirty  >> 10,
839                            mss->private_clean >> 10,
840                            mss->private_dirty >> 10,
841                            mss->referenced >> 10,
842                            mss->anonymous >> 10,
843                            mss->lazyfree >> 10,
844                            mss->anonymous_thp >> 10,
845                            mss->shmem_thp >> 10,
846                            mss->shared_hugetlb >> 10,
847                            mss->private_hugetlb >> 10,
848                            mss->swap >> 10,
849                            (unsigned long)(mss->swap_pss >> (10 + PSS_SHIFT)),
850                            (unsigned long)(mss->pss >> (10 + PSS_SHIFT)));
851
852         if (!rollup_mode) {
853                 arch_show_smap(m, vma);
854                 show_smap_vma_flags(m, vma);
855         }
856         m_cache_vma(m, vma);
857         return ret;
858 }
859
860 static int show_pid_smap(struct seq_file *m, void *v)
861 {
862         return show_smap(m, v, 1);
863 }
864
865 static int show_tid_smap(struct seq_file *m, void *v)
866 {
867         return show_smap(m, v, 0);
868 }
869
870 static const struct seq_operations proc_pid_smaps_op = {
871         .start  = m_start,
872         .next   = m_next,
873         .stop   = m_stop,
874         .show   = show_pid_smap
875 };
876
877 static const struct seq_operations proc_tid_smaps_op = {
878         .start  = m_start,
879         .next   = m_next,
880         .stop   = m_stop,
881         .show   = show_tid_smap
882 };
883
884 static int pid_smaps_open(struct inode *inode, struct file *file)
885 {
886         return do_maps_open(inode, file, &proc_pid_smaps_op);
887 }
888
889 static int pid_smaps_rollup_open(struct inode *inode, struct file *file)
890 {
891         struct seq_file *seq;
892         struct proc_maps_private *priv;
893         int ret = do_maps_open(inode, file, &proc_pid_smaps_op);
894
895         if (ret < 0)
896                 return ret;
897         seq = file->private_data;
898         priv = seq->private;
899         priv->rollup = kzalloc(sizeof(*priv->rollup), GFP_KERNEL);
900         if (!priv->rollup) {
901                 proc_map_release(inode, file);
902                 return -ENOMEM;
903         }
904         priv->rollup->first = true;
905         return 0;
906 }
907
908 static int tid_smaps_open(struct inode *inode, struct file *file)
909 {
910         return do_maps_open(inode, file, &proc_tid_smaps_op);
911 }
912
913 const struct file_operations proc_pid_smaps_operations = {
914         .open           = pid_smaps_open,
915         .read           = seq_read,
916         .llseek         = seq_lseek,
917         .release        = proc_map_release,
918 };
919
920 const struct file_operations proc_pid_smaps_rollup_operations = {
921         .open           = pid_smaps_rollup_open,
922         .read           = seq_read,
923         .llseek         = seq_lseek,
924         .release        = proc_map_release,
925 };
926
927 const struct file_operations proc_tid_smaps_operations = {
928         .open           = tid_smaps_open,
929         .read           = seq_read,
930         .llseek         = seq_lseek,
931         .release        = proc_map_release,
932 };
933
934 enum clear_refs_types {
935         CLEAR_REFS_ALL = 1,
936         CLEAR_REFS_ANON,
937         CLEAR_REFS_MAPPED,
938         CLEAR_REFS_SOFT_DIRTY,
939         CLEAR_REFS_MM_HIWATER_RSS,
940         CLEAR_REFS_LAST,
941 };
942
943 struct clear_refs_private {
944         enum clear_refs_types type;
945 };
946
947 #ifdef CONFIG_MEM_SOFT_DIRTY
948 static inline void clear_soft_dirty(struct vm_area_struct *vma,
949                 unsigned long addr, pte_t *pte)
950 {
951         /*
952          * The soft-dirty tracker uses #PF-s to catch writes
953          * to pages, so write-protect the pte as well. See the
954          * Documentation/vm/soft-dirty.txt for full description
955          * of how soft-dirty works.
956          */
957         pte_t ptent = *pte;
958
959         if (pte_present(ptent)) {
960                 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
961                 ptent = pte_wrprotect(ptent);
962                 ptent = pte_clear_soft_dirty(ptent);
963                 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
964         } else if (is_swap_pte(ptent)) {
965                 ptent = pte_swp_clear_soft_dirty(ptent);
966                 set_pte_at(vma->vm_mm, addr, pte, ptent);
967         }
968 }
969 #else
970 static inline void clear_soft_dirty(struct vm_area_struct *vma,
971                 unsigned long addr, pte_t *pte)
972 {
973 }
974 #endif
975
976 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
977 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
978                 unsigned long addr, pmd_t *pmdp)
979 {
980         pmd_t pmd = *pmdp;
981
982         if (pmd_present(pmd)) {
983                 /* See comment in change_huge_pmd() */
984                 pmdp_invalidate(vma, addr, pmdp);
985                 if (pmd_dirty(*pmdp))
986                         pmd = pmd_mkdirty(pmd);
987                 if (pmd_young(*pmdp))
988                         pmd = pmd_mkyoung(pmd);
989
990                 pmd = pmd_wrprotect(pmd);
991                 pmd = pmd_clear_soft_dirty(pmd);
992
993                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
994         } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
995                 pmd = pmd_swp_clear_soft_dirty(pmd);
996                 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
997         }
998 }
999 #else
1000 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1001                 unsigned long addr, pmd_t *pmdp)
1002 {
1003 }
1004 #endif
1005
1006 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1007                                 unsigned long end, struct mm_walk *walk)
1008 {
1009         struct clear_refs_private *cp = walk->private;
1010         struct vm_area_struct *vma = walk->vma;
1011         pte_t *pte, ptent;
1012         spinlock_t *ptl;
1013         struct page *page;
1014
1015         ptl = pmd_trans_huge_lock(pmd, vma);
1016         if (ptl) {
1017                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1018                         clear_soft_dirty_pmd(vma, addr, pmd);
1019                         goto out;
1020                 }
1021
1022                 if (!pmd_present(*pmd))
1023                         goto out;
1024
1025                 page = pmd_page(*pmd);
1026
1027                 /* Clear accessed and referenced bits. */
1028                 pmdp_test_and_clear_young(vma, addr, pmd);
1029                 test_and_clear_page_young(page);
1030                 ClearPageReferenced(page);
1031 out:
1032                 spin_unlock(ptl);
1033                 return 0;
1034         }
1035
1036         if (pmd_trans_unstable(pmd))
1037                 return 0;
1038
1039         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1040         for (; addr != end; pte++, addr += PAGE_SIZE) {
1041                 ptent = *pte;
1042
1043                 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1044                         clear_soft_dirty(vma, addr, pte);
1045                         continue;
1046                 }
1047
1048                 if (!pte_present(ptent))
1049                         continue;
1050
1051                 page = vm_normal_page(vma, addr, ptent);
1052                 if (!page)
1053                         continue;
1054
1055                 /* Clear accessed and referenced bits. */
1056                 ptep_test_and_clear_young(vma, addr, pte);
1057                 test_and_clear_page_young(page);
1058                 ClearPageReferenced(page);
1059         }
1060         pte_unmap_unlock(pte - 1, ptl);
1061         cond_resched();
1062         return 0;
1063 }
1064
1065 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1066                                 struct mm_walk *walk)
1067 {
1068         struct clear_refs_private *cp = walk->private;
1069         struct vm_area_struct *vma = walk->vma;
1070
1071         if (vma->vm_flags & VM_PFNMAP)
1072                 return 1;
1073
1074         /*
1075          * Writing 1 to /proc/pid/clear_refs affects all pages.
1076          * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1077          * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1078          * Writing 4 to /proc/pid/clear_refs affects all pages.
1079          */
1080         if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1081                 return 1;
1082         if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1083                 return 1;
1084         return 0;
1085 }
1086
1087 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1088                                 size_t count, loff_t *ppos)
1089 {
1090         struct task_struct *task;
1091         char buffer[PROC_NUMBUF];
1092         struct mm_struct *mm;
1093         struct vm_area_struct *vma;
1094         enum clear_refs_types type;
1095         struct mmu_gather tlb;
1096         int itype;
1097         int rv;
1098
1099         memset(buffer, 0, sizeof(buffer));
1100         if (count > sizeof(buffer) - 1)
1101                 count = sizeof(buffer) - 1;
1102         if (copy_from_user(buffer, buf, count))
1103                 return -EFAULT;
1104         rv = kstrtoint(strstrip(buffer), 10, &itype);
1105         if (rv < 0)
1106                 return rv;
1107         type = (enum clear_refs_types)itype;
1108         if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1109                 return -EINVAL;
1110
1111         task = get_proc_task(file_inode(file));
1112         if (!task)
1113                 return -ESRCH;
1114         mm = get_task_mm(task);
1115         if (mm) {
1116                 struct clear_refs_private cp = {
1117                         .type = type,
1118                 };
1119                 struct mm_walk clear_refs_walk = {
1120                         .pmd_entry = clear_refs_pte_range,
1121                         .test_walk = clear_refs_test_walk,
1122                         .mm = mm,
1123                         .private = &cp,
1124                 };
1125
1126                 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1127                         if (down_write_killable(&mm->mmap_sem)) {
1128                                 count = -EINTR;
1129                                 goto out_mm;
1130                         }
1131
1132                         /*
1133                          * Writing 5 to /proc/pid/clear_refs resets the peak
1134                          * resident set size to this mm's current rss value.
1135                          */
1136                         reset_mm_hiwater_rss(mm);
1137                         up_write(&mm->mmap_sem);
1138                         goto out_mm;
1139                 }
1140
1141                 down_read(&mm->mmap_sem);
1142                 tlb_gather_mmu(&tlb, mm, 0, -1);
1143                 if (type == CLEAR_REFS_SOFT_DIRTY) {
1144                         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1145                                 if (!(vma->vm_flags & VM_SOFTDIRTY))
1146                                         continue;
1147                                 up_read(&mm->mmap_sem);
1148                                 if (down_write_killable(&mm->mmap_sem)) {
1149                                         count = -EINTR;
1150                                         goto out_mm;
1151                                 }
1152                                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1153                                         vma->vm_flags &= ~VM_SOFTDIRTY;
1154                                         vma_set_page_prot(vma);
1155                                 }
1156                                 downgrade_write(&mm->mmap_sem);
1157                                 break;
1158                         }
1159                         mmu_notifier_invalidate_range_start(mm, 0, -1);
1160                 }
1161                 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1162                 if (type == CLEAR_REFS_SOFT_DIRTY)
1163                         mmu_notifier_invalidate_range_end(mm, 0, -1);
1164                 tlb_finish_mmu(&tlb, 0, -1);
1165                 up_read(&mm->mmap_sem);
1166 out_mm:
1167                 mmput(mm);
1168         }
1169         put_task_struct(task);
1170
1171         return count;
1172 }
1173
1174 const struct file_operations proc_clear_refs_operations = {
1175         .write          = clear_refs_write,
1176         .llseek         = noop_llseek,
1177 };
1178
1179 typedef struct {
1180         u64 pme;
1181 } pagemap_entry_t;
1182
1183 struct pagemapread {
1184         int pos, len;           /* units: PM_ENTRY_BYTES, not bytes */
1185         pagemap_entry_t *buffer;
1186         bool show_pfn;
1187 };
1188
1189 #define PAGEMAP_WALK_SIZE       (PMD_SIZE)
1190 #define PAGEMAP_WALK_MASK       (PMD_MASK)
1191
1192 #define PM_ENTRY_BYTES          sizeof(pagemap_entry_t)
1193 #define PM_PFRAME_BITS          55
1194 #define PM_PFRAME_MASK          GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1195 #define PM_SOFT_DIRTY           BIT_ULL(55)
1196 #define PM_MMAP_EXCLUSIVE       BIT_ULL(56)
1197 #define PM_FILE                 BIT_ULL(61)
1198 #define PM_SWAP                 BIT_ULL(62)
1199 #define PM_PRESENT              BIT_ULL(63)
1200
1201 #define PM_END_OF_BUFFER    1
1202
1203 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1204 {
1205         return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1206 }
1207
1208 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1209                           struct pagemapread *pm)
1210 {
1211         pm->buffer[pm->pos++] = *pme;
1212         if (pm->pos >= pm->len)
1213                 return PM_END_OF_BUFFER;
1214         return 0;
1215 }
1216
1217 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1218                                 struct mm_walk *walk)
1219 {
1220         struct pagemapread *pm = walk->private;
1221         unsigned long addr = start;
1222         int err = 0;
1223
1224         while (addr < end) {
1225                 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1226                 pagemap_entry_t pme = make_pme(0, 0);
1227                 /* End of address space hole, which we mark as non-present. */
1228                 unsigned long hole_end;
1229
1230                 if (vma)
1231                         hole_end = min(end, vma->vm_start);
1232                 else
1233                         hole_end = end;
1234
1235                 for (; addr < hole_end; addr += PAGE_SIZE) {
1236                         err = add_to_pagemap(addr, &pme, pm);
1237                         if (err)
1238                                 goto out;
1239                 }
1240
1241                 if (!vma)
1242                         break;
1243
1244                 /* Addresses in the VMA. */
1245                 if (vma->vm_flags & VM_SOFTDIRTY)
1246                         pme = make_pme(0, PM_SOFT_DIRTY);
1247                 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1248                         err = add_to_pagemap(addr, &pme, pm);
1249                         if (err)
1250                                 goto out;
1251                 }
1252         }
1253 out:
1254         return err;
1255 }
1256
1257 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1258                 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1259 {
1260         u64 frame = 0, flags = 0;
1261         struct page *page = NULL;
1262
1263         if (pte_present(pte)) {
1264                 if (pm->show_pfn)
1265                         frame = pte_pfn(pte);
1266                 flags |= PM_PRESENT;
1267                 page = _vm_normal_page(vma, addr, pte, true);
1268                 if (pte_soft_dirty(pte))
1269                         flags |= PM_SOFT_DIRTY;
1270         } else if (is_swap_pte(pte)) {
1271                 swp_entry_t entry;
1272                 if (pte_swp_soft_dirty(pte))
1273                         flags |= PM_SOFT_DIRTY;
1274                 entry = pte_to_swp_entry(pte);
1275                 frame = swp_type(entry) |
1276                         (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1277                 flags |= PM_SWAP;
1278                 if (is_migration_entry(entry))
1279                         page = migration_entry_to_page(entry);
1280
1281                 if (is_device_private_entry(entry))
1282                         page = device_private_entry_to_page(entry);
1283         }
1284
1285         if (page && !PageAnon(page))
1286                 flags |= PM_FILE;
1287         if (page && page_mapcount(page) == 1)
1288                 flags |= PM_MMAP_EXCLUSIVE;
1289         if (vma->vm_flags & VM_SOFTDIRTY)
1290                 flags |= PM_SOFT_DIRTY;
1291
1292         return make_pme(frame, flags);
1293 }
1294
1295 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1296                              struct mm_walk *walk)
1297 {
1298         struct vm_area_struct *vma = walk->vma;
1299         struct pagemapread *pm = walk->private;
1300         spinlock_t *ptl;
1301         pte_t *pte, *orig_pte;
1302         int err = 0;
1303
1304 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1305         ptl = pmd_trans_huge_lock(pmdp, vma);
1306         if (ptl) {
1307                 u64 flags = 0, frame = 0;
1308                 pmd_t pmd = *pmdp;
1309                 struct page *page = NULL;
1310
1311                 if (vma->vm_flags & VM_SOFTDIRTY)
1312                         flags |= PM_SOFT_DIRTY;
1313
1314                 if (pmd_present(pmd)) {
1315                         page = pmd_page(pmd);
1316
1317                         flags |= PM_PRESENT;
1318                         if (pmd_soft_dirty(pmd))
1319                                 flags |= PM_SOFT_DIRTY;
1320                         if (pm->show_pfn)
1321                                 frame = pmd_pfn(pmd) +
1322                                         ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1323                 }
1324 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1325                 else if (is_swap_pmd(pmd)) {
1326                         swp_entry_t entry = pmd_to_swp_entry(pmd);
1327
1328                         frame = swp_type(entry) |
1329                                 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1330                         flags |= PM_SWAP;
1331                         if (pmd_swp_soft_dirty(pmd))
1332                                 flags |= PM_SOFT_DIRTY;
1333                         VM_BUG_ON(!is_pmd_migration_entry(pmd));
1334                         page = migration_entry_to_page(entry);
1335                 }
1336 #endif
1337
1338                 if (page && page_mapcount(page) == 1)
1339                         flags |= PM_MMAP_EXCLUSIVE;
1340
1341                 for (; addr != end; addr += PAGE_SIZE) {
1342                         pagemap_entry_t pme = make_pme(frame, flags);
1343
1344                         err = add_to_pagemap(addr, &pme, pm);
1345                         if (err)
1346                                 break;
1347                         if (pm->show_pfn && (flags & PM_PRESENT))
1348                                 frame++;
1349                 }
1350                 spin_unlock(ptl);
1351                 return err;
1352         }
1353
1354         if (pmd_trans_unstable(pmdp))
1355                 return 0;
1356 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1357
1358         /*
1359          * We can assume that @vma always points to a valid one and @end never
1360          * goes beyond vma->vm_end.
1361          */
1362         orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1363         for (; addr < end; pte++, addr += PAGE_SIZE) {
1364                 pagemap_entry_t pme;
1365
1366                 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1367                 err = add_to_pagemap(addr, &pme, pm);
1368                 if (err)
1369                         break;
1370         }
1371         pte_unmap_unlock(orig_pte, ptl);
1372
1373         cond_resched();
1374
1375         return err;
1376 }
1377
1378 #ifdef CONFIG_HUGETLB_PAGE
1379 /* This function walks within one hugetlb entry in the single call */
1380 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1381                                  unsigned long addr, unsigned long end,
1382                                  struct mm_walk *walk)
1383 {
1384         struct pagemapread *pm = walk->private;
1385         struct vm_area_struct *vma = walk->vma;
1386         u64 flags = 0, frame = 0;
1387         int err = 0;
1388         pte_t pte;
1389
1390         if (vma->vm_flags & VM_SOFTDIRTY)
1391                 flags |= PM_SOFT_DIRTY;
1392
1393         pte = huge_ptep_get(ptep);
1394         if (pte_present(pte)) {
1395                 struct page *page = pte_page(pte);
1396
1397                 if (!PageAnon(page))
1398                         flags |= PM_FILE;
1399
1400                 if (page_mapcount(page) == 1)
1401                         flags |= PM_MMAP_EXCLUSIVE;
1402
1403                 flags |= PM_PRESENT;
1404                 if (pm->show_pfn)
1405                         frame = pte_pfn(pte) +
1406                                 ((addr & ~hmask) >> PAGE_SHIFT);
1407         }
1408
1409         for (; addr != end; addr += PAGE_SIZE) {
1410                 pagemap_entry_t pme = make_pme(frame, flags);
1411
1412                 err = add_to_pagemap(addr, &pme, pm);
1413                 if (err)
1414                         return err;
1415                 if (pm->show_pfn && (flags & PM_PRESENT))
1416                         frame++;
1417         }
1418
1419         cond_resched();
1420
1421         return err;
1422 }
1423 #endif /* HUGETLB_PAGE */
1424
1425 /*
1426  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1427  *
1428  * For each page in the address space, this file contains one 64-bit entry
1429  * consisting of the following:
1430  *
1431  * Bits 0-54  page frame number (PFN) if present
1432  * Bits 0-4   swap type if swapped
1433  * Bits 5-54  swap offset if swapped
1434  * Bit  55    pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1435  * Bit  56    page exclusively mapped
1436  * Bits 57-60 zero
1437  * Bit  61    page is file-page or shared-anon
1438  * Bit  62    page swapped
1439  * Bit  63    page present
1440  *
1441  * If the page is not present but in swap, then the PFN contains an
1442  * encoding of the swap file number and the page's offset into the
1443  * swap. Unmapped pages return a null PFN. This allows determining
1444  * precisely which pages are mapped (or in swap) and comparing mapped
1445  * pages between processes.
1446  *
1447  * Efficient users of this interface will use /proc/pid/maps to
1448  * determine which areas of memory are actually mapped and llseek to
1449  * skip over unmapped regions.
1450  */
1451 static ssize_t pagemap_read(struct file *file, char __user *buf,
1452                             size_t count, loff_t *ppos)
1453 {
1454         struct mm_struct *mm = file->private_data;
1455         struct pagemapread pm;
1456         struct mm_walk pagemap_walk = {};
1457         unsigned long src;
1458         unsigned long svpfn;
1459         unsigned long start_vaddr;
1460         unsigned long end_vaddr;
1461         int ret = 0, copied = 0;
1462
1463         if (!mm || !mmget_not_zero(mm))
1464                 goto out;
1465
1466         ret = -EINVAL;
1467         /* file position must be aligned */
1468         if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1469                 goto out_mm;
1470
1471         ret = 0;
1472         if (!count)
1473                 goto out_mm;
1474
1475         /* do not disclose physical addresses: attack vector */
1476         pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1477
1478         pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1479         pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_KERNEL);
1480         ret = -ENOMEM;
1481         if (!pm.buffer)
1482                 goto out_mm;
1483
1484         pagemap_walk.pmd_entry = pagemap_pmd_range;
1485         pagemap_walk.pte_hole = pagemap_pte_hole;
1486 #ifdef CONFIG_HUGETLB_PAGE
1487         pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1488 #endif
1489         pagemap_walk.mm = mm;
1490         pagemap_walk.private = &pm;
1491
1492         src = *ppos;
1493         svpfn = src / PM_ENTRY_BYTES;
1494         start_vaddr = svpfn << PAGE_SHIFT;
1495         end_vaddr = mm->task_size;
1496
1497         /* watch out for wraparound */
1498         if (svpfn > mm->task_size >> PAGE_SHIFT)
1499                 start_vaddr = end_vaddr;
1500
1501         /*
1502          * The odds are that this will stop walking way
1503          * before end_vaddr, because the length of the
1504          * user buffer is tracked in "pm", and the walk
1505          * will stop when we hit the end of the buffer.
1506          */
1507         ret = 0;
1508         while (count && (start_vaddr < end_vaddr)) {
1509                 int len;
1510                 unsigned long end;
1511
1512                 pm.pos = 0;
1513                 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1514                 /* overflow ? */
1515                 if (end < start_vaddr || end > end_vaddr)
1516                         end = end_vaddr;
1517                 down_read(&mm->mmap_sem);
1518                 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1519                 up_read(&mm->mmap_sem);
1520                 start_vaddr = end;
1521
1522                 len = min(count, PM_ENTRY_BYTES * pm.pos);
1523                 if (copy_to_user(buf, pm.buffer, len)) {
1524                         ret = -EFAULT;
1525                         goto out_free;
1526                 }
1527                 copied += len;
1528                 buf += len;
1529                 count -= len;
1530         }
1531         *ppos += copied;
1532         if (!ret || ret == PM_END_OF_BUFFER)
1533                 ret = copied;
1534
1535 out_free:
1536         kfree(pm.buffer);
1537 out_mm:
1538         mmput(mm);
1539 out:
1540         return ret;
1541 }
1542
1543 static int pagemap_open(struct inode *inode, struct file *file)
1544 {
1545         struct mm_struct *mm;
1546
1547         mm = proc_mem_open(inode, PTRACE_MODE_READ);
1548         if (IS_ERR(mm))
1549                 return PTR_ERR(mm);
1550         file->private_data = mm;
1551         return 0;
1552 }
1553
1554 static int pagemap_release(struct inode *inode, struct file *file)
1555 {
1556         struct mm_struct *mm = file->private_data;
1557
1558         if (mm)
1559                 mmdrop(mm);
1560         return 0;
1561 }
1562
1563 const struct file_operations proc_pagemap_operations = {
1564         .llseek         = mem_lseek, /* borrow this */
1565         .read           = pagemap_read,
1566         .open           = pagemap_open,
1567         .release        = pagemap_release,
1568 };
1569 #endif /* CONFIG_PROC_PAGE_MONITOR */
1570
1571 #ifdef CONFIG_NUMA
1572
1573 struct numa_maps {
1574         unsigned long pages;
1575         unsigned long anon;
1576         unsigned long active;
1577         unsigned long writeback;
1578         unsigned long mapcount_max;
1579         unsigned long dirty;
1580         unsigned long swapcache;
1581         unsigned long node[MAX_NUMNODES];
1582 };
1583
1584 struct numa_maps_private {
1585         struct proc_maps_private proc_maps;
1586         struct numa_maps md;
1587 };
1588
1589 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1590                         unsigned long nr_pages)
1591 {
1592         int count = page_mapcount(page);
1593
1594         md->pages += nr_pages;
1595         if (pte_dirty || PageDirty(page))
1596                 md->dirty += nr_pages;
1597
1598         if (PageSwapCache(page))
1599                 md->swapcache += nr_pages;
1600
1601         if (PageActive(page) || PageUnevictable(page))
1602                 md->active += nr_pages;
1603
1604         if (PageWriteback(page))
1605                 md->writeback += nr_pages;
1606
1607         if (PageAnon(page))
1608                 md->anon += nr_pages;
1609
1610         if (count > md->mapcount_max)
1611                 md->mapcount_max = count;
1612
1613         md->node[page_to_nid(page)] += nr_pages;
1614 }
1615
1616 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1617                 unsigned long addr)
1618 {
1619         struct page *page;
1620         int nid;
1621
1622         if (!pte_present(pte))
1623                 return NULL;
1624
1625         page = vm_normal_page(vma, addr, pte);
1626         if (!page)
1627                 return NULL;
1628
1629         if (PageReserved(page))
1630                 return NULL;
1631
1632         nid = page_to_nid(page);
1633         if (!node_isset(nid, node_states[N_MEMORY]))
1634                 return NULL;
1635
1636         return page;
1637 }
1638
1639 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1640 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1641                                               struct vm_area_struct *vma,
1642                                               unsigned long addr)
1643 {
1644         struct page *page;
1645         int nid;
1646
1647         if (!pmd_present(pmd))
1648                 return NULL;
1649
1650         page = vm_normal_page_pmd(vma, addr, pmd);
1651         if (!page)
1652                 return NULL;
1653
1654         if (PageReserved(page))
1655                 return NULL;
1656
1657         nid = page_to_nid(page);
1658         if (!node_isset(nid, node_states[N_MEMORY]))
1659                 return NULL;
1660
1661         return page;
1662 }
1663 #endif
1664
1665 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1666                 unsigned long end, struct mm_walk *walk)
1667 {
1668         struct numa_maps *md = walk->private;
1669         struct vm_area_struct *vma = walk->vma;
1670         spinlock_t *ptl;
1671         pte_t *orig_pte;
1672         pte_t *pte;
1673
1674 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1675         ptl = pmd_trans_huge_lock(pmd, vma);
1676         if (ptl) {
1677                 struct page *page;
1678
1679                 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1680                 if (page)
1681                         gather_stats(page, md, pmd_dirty(*pmd),
1682                                      HPAGE_PMD_SIZE/PAGE_SIZE);
1683                 spin_unlock(ptl);
1684                 return 0;
1685         }
1686
1687         if (pmd_trans_unstable(pmd))
1688                 return 0;
1689 #endif
1690         orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1691         do {
1692                 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1693                 if (!page)
1694                         continue;
1695                 gather_stats(page, md, pte_dirty(*pte), 1);
1696
1697         } while (pte++, addr += PAGE_SIZE, addr != end);
1698         pte_unmap_unlock(orig_pte, ptl);
1699         cond_resched();
1700         return 0;
1701 }
1702 #ifdef CONFIG_HUGETLB_PAGE
1703 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1704                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1705 {
1706         pte_t huge_pte = huge_ptep_get(pte);
1707         struct numa_maps *md;
1708         struct page *page;
1709
1710         if (!pte_present(huge_pte))
1711                 return 0;
1712
1713         page = pte_page(huge_pte);
1714         if (!page)
1715                 return 0;
1716
1717         md = walk->private;
1718         gather_stats(page, md, pte_dirty(huge_pte), 1);
1719         return 0;
1720 }
1721
1722 #else
1723 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1724                 unsigned long addr, unsigned long end, struct mm_walk *walk)
1725 {
1726         return 0;
1727 }
1728 #endif
1729
1730 /*
1731  * Display pages allocated per node and memory policy via /proc.
1732  */
1733 static int show_numa_map(struct seq_file *m, void *v, int is_pid)
1734 {
1735         struct numa_maps_private *numa_priv = m->private;
1736         struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1737         struct vm_area_struct *vma = v;
1738         struct numa_maps *md = &numa_priv->md;
1739         struct file *file = vma->vm_file;
1740         struct mm_struct *mm = vma->vm_mm;
1741         struct mm_walk walk = {
1742                 .hugetlb_entry = gather_hugetlb_stats,
1743                 .pmd_entry = gather_pte_stats,
1744                 .private = md,
1745                 .mm = mm,
1746         };
1747         struct mempolicy *pol;
1748         char buffer[64];
1749         int nid;
1750
1751         if (!mm)
1752                 return 0;
1753
1754         /* Ensure we start with an empty set of numa_maps statistics. */
1755         memset(md, 0, sizeof(*md));
1756
1757         pol = __get_vma_policy(vma, vma->vm_start);
1758         if (pol) {
1759                 mpol_to_str(buffer, sizeof(buffer), pol);
1760                 mpol_cond_put(pol);
1761         } else {
1762                 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1763         }
1764
1765         seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1766
1767         if (file) {
1768                 seq_puts(m, " file=");
1769                 seq_file_path(m, file, "\n\t= ");
1770         } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1771                 seq_puts(m, " heap");
1772         } else if (is_stack(vma)) {
1773                 seq_puts(m, " stack");
1774         }
1775
1776         if (is_vm_hugetlb_page(vma))
1777                 seq_puts(m, " huge");
1778
1779         /* mmap_sem is held by m_start */
1780         walk_page_vma(vma, &walk);
1781
1782         if (!md->pages)
1783                 goto out;
1784
1785         if (md->anon)
1786                 seq_printf(m, " anon=%lu", md->anon);
1787
1788         if (md->dirty)
1789                 seq_printf(m, " dirty=%lu", md->dirty);
1790
1791         if (md->pages != md->anon && md->pages != md->dirty)
1792                 seq_printf(m, " mapped=%lu", md->pages);
1793
1794         if (md->mapcount_max > 1)
1795                 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1796
1797         if (md->swapcache)
1798                 seq_printf(m, " swapcache=%lu", md->swapcache);
1799
1800         if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1801                 seq_printf(m, " active=%lu", md->active);
1802
1803         if (md->writeback)
1804                 seq_printf(m, " writeback=%lu", md->writeback);
1805
1806         for_each_node_state(nid, N_MEMORY)
1807                 if (md->node[nid])
1808                         seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1809
1810         seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1811 out:
1812         seq_putc(m, '\n');
1813         m_cache_vma(m, vma);
1814         return 0;
1815 }
1816
1817 static int show_pid_numa_map(struct seq_file *m, void *v)
1818 {
1819         return show_numa_map(m, v, 1);
1820 }
1821
1822 static int show_tid_numa_map(struct seq_file *m, void *v)
1823 {
1824         return show_numa_map(m, v, 0);
1825 }
1826
1827 static const struct seq_operations proc_pid_numa_maps_op = {
1828         .start  = m_start,
1829         .next   = m_next,
1830         .stop   = m_stop,
1831         .show   = show_pid_numa_map,
1832 };
1833
1834 static const struct seq_operations proc_tid_numa_maps_op = {
1835         .start  = m_start,
1836         .next   = m_next,
1837         .stop   = m_stop,
1838         .show   = show_tid_numa_map,
1839 };
1840
1841 static int numa_maps_open(struct inode *inode, struct file *file,
1842                           const struct seq_operations *ops)
1843 {
1844         return proc_maps_open(inode, file, ops,
1845                                 sizeof(struct numa_maps_private));
1846 }
1847
1848 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1849 {
1850         return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
1851 }
1852
1853 static int tid_numa_maps_open(struct inode *inode, struct file *file)
1854 {
1855         return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
1856 }
1857
1858 const struct file_operations proc_pid_numa_maps_operations = {
1859         .open           = pid_numa_maps_open,
1860         .read           = seq_read,
1861         .llseek         = seq_lseek,
1862         .release        = proc_map_release,
1863 };
1864
1865 const struct file_operations proc_tid_numa_maps_operations = {
1866         .open           = tid_numa_maps_open,
1867         .read           = seq_read,
1868         .llseek         = seq_lseek,
1869         .release        = proc_map_release,
1870 };
1871 #endif /* CONFIG_NUMA */