Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[platform/kernel/linux-rpi.git] / fs / proc / base.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50
51 #include <linux/uaccess.h>
52
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
67 #include <linux/mm.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/tracehook.h>
78 #include <linux/printk.h>
79 #include <linux/cache.h>
80 #include <linux/cgroup.h>
81 #include <linux/cpuset.h>
82 #include <linux/audit.h>
83 #include <linux/poll.h>
84 #include <linux/nsproxy.h>
85 #include <linux/oom.h>
86 #include <linux/elf.h>
87 #include <linux/pid_namespace.h>
88 #include <linux/user_namespace.h>
89 #include <linux/fs_struct.h>
90 #include <linux/slab.h>
91 #include <linux/sched/autogroup.h>
92 #include <linux/sched/mm.h>
93 #include <linux/sched/coredump.h>
94 #include <linux/sched/debug.h>
95 #include <linux/sched/stat.h>
96 #include <linux/posix-timers.h>
97 #include <linux/time_namespace.h>
98 #include <linux/resctrl.h>
99 #include <trace/events/oom.h>
100 #include "internal.h"
101 #include "fd.h"
102
103 #include "../../lib/kstrtox.h"
104
105 /* NOTE:
106  *      Implementing inode permission operations in /proc is almost
107  *      certainly an error.  Permission checks need to happen during
108  *      each system call not at open time.  The reason is that most of
109  *      what we wish to check for permissions in /proc varies at runtime.
110  *
111  *      The classic example of a problem is opening file descriptors
112  *      in /proc for a task before it execs a suid executable.
113  */
114
115 static u8 nlink_tid __ro_after_init;
116 static u8 nlink_tgid __ro_after_init;
117
118 struct pid_entry {
119         const char *name;
120         unsigned int len;
121         umode_t mode;
122         const struct inode_operations *iop;
123         const struct file_operations *fop;
124         union proc_op op;
125 };
126
127 #define NOD(NAME, MODE, IOP, FOP, OP) {                 \
128         .name = (NAME),                                 \
129         .len  = sizeof(NAME) - 1,                       \
130         .mode = MODE,                                   \
131         .iop  = IOP,                                    \
132         .fop  = FOP,                                    \
133         .op   = OP,                                     \
134 }
135
136 #define DIR(NAME, MODE, iops, fops)     \
137         NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
138 #define LNK(NAME, get_link)                                     \
139         NOD(NAME, (S_IFLNK|S_IRWXUGO),                          \
140                 &proc_pid_link_inode_operations, NULL,          \
141                 { .proc_get_link = get_link } )
142 #define REG(NAME, MODE, fops)                           \
143         NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
144 #define ONE(NAME, MODE, show)                           \
145         NOD(NAME, (S_IFREG|(MODE)),                     \
146                 NULL, &proc_single_file_operations,     \
147                 { .proc_show = show } )
148 #define ATTR(LSM, NAME, MODE)                           \
149         NOD(NAME, (S_IFREG|(MODE)),                     \
150                 NULL, &proc_pid_attr_operations,        \
151                 { .lsm = LSM })
152
153 /*
154  * Count the number of hardlinks for the pid_entry table, excluding the .
155  * and .. links.
156  */
157 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
158         unsigned int n)
159 {
160         unsigned int i;
161         unsigned int count;
162
163         count = 2;
164         for (i = 0; i < n; ++i) {
165                 if (S_ISDIR(entries[i].mode))
166                         ++count;
167         }
168
169         return count;
170 }
171
172 static int get_task_root(struct task_struct *task, struct path *root)
173 {
174         int result = -ENOENT;
175
176         task_lock(task);
177         if (task->fs) {
178                 get_fs_root(task->fs, root);
179                 result = 0;
180         }
181         task_unlock(task);
182         return result;
183 }
184
185 static int proc_cwd_link(struct dentry *dentry, struct path *path)
186 {
187         struct task_struct *task = get_proc_task(d_inode(dentry));
188         int result = -ENOENT;
189
190         if (task) {
191                 task_lock(task);
192                 if (task->fs) {
193                         get_fs_pwd(task->fs, path);
194                         result = 0;
195                 }
196                 task_unlock(task);
197                 put_task_struct(task);
198         }
199         return result;
200 }
201
202 static int proc_root_link(struct dentry *dentry, struct path *path)
203 {
204         struct task_struct *task = get_proc_task(d_inode(dentry));
205         int result = -ENOENT;
206
207         if (task) {
208                 result = get_task_root(task, path);
209                 put_task_struct(task);
210         }
211         return result;
212 }
213
214 /*
215  * If the user used setproctitle(), we just get the string from
216  * user space at arg_start, and limit it to a maximum of one page.
217  */
218 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
219                                 size_t count, unsigned long pos,
220                                 unsigned long arg_start)
221 {
222         char *page;
223         int ret, got;
224
225         if (pos >= PAGE_SIZE)
226                 return 0;
227
228         page = (char *)__get_free_page(GFP_KERNEL);
229         if (!page)
230                 return -ENOMEM;
231
232         ret = 0;
233         got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
234         if (got > 0) {
235                 int len = strnlen(page, got);
236
237                 /* Include the NUL character if it was found */
238                 if (len < got)
239                         len++;
240
241                 if (len > pos) {
242                         len -= pos;
243                         if (len > count)
244                                 len = count;
245                         len -= copy_to_user(buf, page+pos, len);
246                         if (!len)
247                                 len = -EFAULT;
248                         ret = len;
249                 }
250         }
251         free_page((unsigned long)page);
252         return ret;
253 }
254
255 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
256                               size_t count, loff_t *ppos)
257 {
258         unsigned long arg_start, arg_end, env_start, env_end;
259         unsigned long pos, len;
260         char *page, c;
261
262         /* Check if process spawned far enough to have cmdline. */
263         if (!mm->env_end)
264                 return 0;
265
266         spin_lock(&mm->arg_lock);
267         arg_start = mm->arg_start;
268         arg_end = mm->arg_end;
269         env_start = mm->env_start;
270         env_end = mm->env_end;
271         spin_unlock(&mm->arg_lock);
272
273         if (arg_start >= arg_end)
274                 return 0;
275
276         /*
277          * We allow setproctitle() to overwrite the argument
278          * strings, and overflow past the original end. But
279          * only when it overflows into the environment area.
280          */
281         if (env_start != arg_end || env_end < env_start)
282                 env_start = env_end = arg_end;
283         len = env_end - arg_start;
284
285         /* We're not going to care if "*ppos" has high bits set */
286         pos = *ppos;
287         if (pos >= len)
288                 return 0;
289         if (count > len - pos)
290                 count = len - pos;
291         if (!count)
292                 return 0;
293
294         /*
295          * Magical special case: if the argv[] end byte is not
296          * zero, the user has overwritten it with setproctitle(3).
297          *
298          * Possible future enhancement: do this only once when
299          * pos is 0, and set a flag in the 'struct file'.
300          */
301         if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
302                 return get_mm_proctitle(mm, buf, count, pos, arg_start);
303
304         /*
305          * For the non-setproctitle() case we limit things strictly
306          * to the [arg_start, arg_end[ range.
307          */
308         pos += arg_start;
309         if (pos < arg_start || pos >= arg_end)
310                 return 0;
311         if (count > arg_end - pos)
312                 count = arg_end - pos;
313
314         page = (char *)__get_free_page(GFP_KERNEL);
315         if (!page)
316                 return -ENOMEM;
317
318         len = 0;
319         while (count) {
320                 int got;
321                 size_t size = min_t(size_t, PAGE_SIZE, count);
322
323                 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
324                 if (got <= 0)
325                         break;
326                 got -= copy_to_user(buf, page, got);
327                 if (unlikely(!got)) {
328                         if (!len)
329                                 len = -EFAULT;
330                         break;
331                 }
332                 pos += got;
333                 buf += got;
334                 len += got;
335                 count -= got;
336         }
337
338         free_page((unsigned long)page);
339         return len;
340 }
341
342 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
343                                 size_t count, loff_t *pos)
344 {
345         struct mm_struct *mm;
346         ssize_t ret;
347
348         mm = get_task_mm(tsk);
349         if (!mm)
350                 return 0;
351
352         ret = get_mm_cmdline(mm, buf, count, pos);
353         mmput(mm);
354         return ret;
355 }
356
357 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
358                                      size_t count, loff_t *pos)
359 {
360         struct task_struct *tsk;
361         ssize_t ret;
362
363         BUG_ON(*pos < 0);
364
365         tsk = get_proc_task(file_inode(file));
366         if (!tsk)
367                 return -ESRCH;
368         ret = get_task_cmdline(tsk, buf, count, pos);
369         put_task_struct(tsk);
370         if (ret > 0)
371                 *pos += ret;
372         return ret;
373 }
374
375 static const struct file_operations proc_pid_cmdline_ops = {
376         .read   = proc_pid_cmdline_read,
377         .llseek = generic_file_llseek,
378 };
379
380 #ifdef CONFIG_KALLSYMS
381 /*
382  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
383  * Returns the resolved symbol.  If that fails, simply return the address.
384  */
385 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
386                           struct pid *pid, struct task_struct *task)
387 {
388         unsigned long wchan;
389         char symname[KSYM_NAME_LEN];
390
391         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
392                 goto print0;
393
394         wchan = get_wchan(task);
395         if (wchan && !lookup_symbol_name(wchan, symname)) {
396                 seq_puts(m, symname);
397                 return 0;
398         }
399
400 print0:
401         seq_putc(m, '0');
402         return 0;
403 }
404 #endif /* CONFIG_KALLSYMS */
405
406 static int lock_trace(struct task_struct *task)
407 {
408         int err = mutex_lock_killable(&task->signal->exec_update_mutex);
409         if (err)
410                 return err;
411         if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
412                 mutex_unlock(&task->signal->exec_update_mutex);
413                 return -EPERM;
414         }
415         return 0;
416 }
417
418 static void unlock_trace(struct task_struct *task)
419 {
420         mutex_unlock(&task->signal->exec_update_mutex);
421 }
422
423 #ifdef CONFIG_STACKTRACE
424
425 #define MAX_STACK_TRACE_DEPTH   64
426
427 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
428                           struct pid *pid, struct task_struct *task)
429 {
430         unsigned long *entries;
431         int err;
432
433         /*
434          * The ability to racily run the kernel stack unwinder on a running task
435          * and then observe the unwinder output is scary; while it is useful for
436          * debugging kernel issues, it can also allow an attacker to leak kernel
437          * stack contents.
438          * Doing this in a manner that is at least safe from races would require
439          * some work to ensure that the remote task can not be scheduled; and
440          * even then, this would still expose the unwinder as local attack
441          * surface.
442          * Therefore, this interface is restricted to root.
443          */
444         if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
445                 return -EACCES;
446
447         entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
448                                 GFP_KERNEL);
449         if (!entries)
450                 return -ENOMEM;
451
452         err = lock_trace(task);
453         if (!err) {
454                 unsigned int i, nr_entries;
455
456                 nr_entries = stack_trace_save_tsk(task, entries,
457                                                   MAX_STACK_TRACE_DEPTH, 0);
458
459                 for (i = 0; i < nr_entries; i++) {
460                         seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
461                 }
462
463                 unlock_trace(task);
464         }
465         kfree(entries);
466
467         return err;
468 }
469 #endif
470
471 #ifdef CONFIG_SCHED_INFO
472 /*
473  * Provides /proc/PID/schedstat
474  */
475 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
476                               struct pid *pid, struct task_struct *task)
477 {
478         if (unlikely(!sched_info_on()))
479                 seq_puts(m, "0 0 0\n");
480         else
481                 seq_printf(m, "%llu %llu %lu\n",
482                    (unsigned long long)task->se.sum_exec_runtime,
483                    (unsigned long long)task->sched_info.run_delay,
484                    task->sched_info.pcount);
485
486         return 0;
487 }
488 #endif
489
490 #ifdef CONFIG_LATENCYTOP
491 static int lstats_show_proc(struct seq_file *m, void *v)
492 {
493         int i;
494         struct inode *inode = m->private;
495         struct task_struct *task = get_proc_task(inode);
496
497         if (!task)
498                 return -ESRCH;
499         seq_puts(m, "Latency Top version : v0.1\n");
500         for (i = 0; i < LT_SAVECOUNT; i++) {
501                 struct latency_record *lr = &task->latency_record[i];
502                 if (lr->backtrace[0]) {
503                         int q;
504                         seq_printf(m, "%i %li %li",
505                                    lr->count, lr->time, lr->max);
506                         for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
507                                 unsigned long bt = lr->backtrace[q];
508
509                                 if (!bt)
510                                         break;
511                                 seq_printf(m, " %ps", (void *)bt);
512                         }
513                         seq_putc(m, '\n');
514                 }
515
516         }
517         put_task_struct(task);
518         return 0;
519 }
520
521 static int lstats_open(struct inode *inode, struct file *file)
522 {
523         return single_open(file, lstats_show_proc, inode);
524 }
525
526 static ssize_t lstats_write(struct file *file, const char __user *buf,
527                             size_t count, loff_t *offs)
528 {
529         struct task_struct *task = get_proc_task(file_inode(file));
530
531         if (!task)
532                 return -ESRCH;
533         clear_tsk_latency_tracing(task);
534         put_task_struct(task);
535
536         return count;
537 }
538
539 static const struct file_operations proc_lstats_operations = {
540         .open           = lstats_open,
541         .read           = seq_read,
542         .write          = lstats_write,
543         .llseek         = seq_lseek,
544         .release        = single_release,
545 };
546
547 #endif
548
549 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
550                           struct pid *pid, struct task_struct *task)
551 {
552         unsigned long totalpages = totalram_pages() + total_swap_pages;
553         unsigned long points = 0;
554
555         points = oom_badness(task, totalpages) * 1000 / totalpages;
556         seq_printf(m, "%lu\n", points);
557
558         return 0;
559 }
560
561 struct limit_names {
562         const char *name;
563         const char *unit;
564 };
565
566 static const struct limit_names lnames[RLIM_NLIMITS] = {
567         [RLIMIT_CPU] = {"Max cpu time", "seconds"},
568         [RLIMIT_FSIZE] = {"Max file size", "bytes"},
569         [RLIMIT_DATA] = {"Max data size", "bytes"},
570         [RLIMIT_STACK] = {"Max stack size", "bytes"},
571         [RLIMIT_CORE] = {"Max core file size", "bytes"},
572         [RLIMIT_RSS] = {"Max resident set", "bytes"},
573         [RLIMIT_NPROC] = {"Max processes", "processes"},
574         [RLIMIT_NOFILE] = {"Max open files", "files"},
575         [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
576         [RLIMIT_AS] = {"Max address space", "bytes"},
577         [RLIMIT_LOCKS] = {"Max file locks", "locks"},
578         [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
579         [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
580         [RLIMIT_NICE] = {"Max nice priority", NULL},
581         [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
582         [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
583 };
584
585 /* Display limits for a process */
586 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
587                            struct pid *pid, struct task_struct *task)
588 {
589         unsigned int i;
590         unsigned long flags;
591
592         struct rlimit rlim[RLIM_NLIMITS];
593
594         if (!lock_task_sighand(task, &flags))
595                 return 0;
596         memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
597         unlock_task_sighand(task, &flags);
598
599         /*
600          * print the file header
601          */
602         seq_puts(m, "Limit                     "
603                 "Soft Limit           "
604                 "Hard Limit           "
605                 "Units     \n");
606
607         for (i = 0; i < RLIM_NLIMITS; i++) {
608                 if (rlim[i].rlim_cur == RLIM_INFINITY)
609                         seq_printf(m, "%-25s %-20s ",
610                                    lnames[i].name, "unlimited");
611                 else
612                         seq_printf(m, "%-25s %-20lu ",
613                                    lnames[i].name, rlim[i].rlim_cur);
614
615                 if (rlim[i].rlim_max == RLIM_INFINITY)
616                         seq_printf(m, "%-20s ", "unlimited");
617                 else
618                         seq_printf(m, "%-20lu ", rlim[i].rlim_max);
619
620                 if (lnames[i].unit)
621                         seq_printf(m, "%-10s\n", lnames[i].unit);
622                 else
623                         seq_putc(m, '\n');
624         }
625
626         return 0;
627 }
628
629 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
630 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
631                             struct pid *pid, struct task_struct *task)
632 {
633         struct syscall_info info;
634         u64 *args = &info.data.args[0];
635         int res;
636
637         res = lock_trace(task);
638         if (res)
639                 return res;
640
641         if (task_current_syscall(task, &info))
642                 seq_puts(m, "running\n");
643         else if (info.data.nr < 0)
644                 seq_printf(m, "%d 0x%llx 0x%llx\n",
645                            info.data.nr, info.sp, info.data.instruction_pointer);
646         else
647                 seq_printf(m,
648                        "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
649                        info.data.nr,
650                        args[0], args[1], args[2], args[3], args[4], args[5],
651                        info.sp, info.data.instruction_pointer);
652         unlock_trace(task);
653
654         return 0;
655 }
656 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
657
658 /************************************************************************/
659 /*                       Here the fs part begins                        */
660 /************************************************************************/
661
662 /* permission checks */
663 static int proc_fd_access_allowed(struct inode *inode)
664 {
665         struct task_struct *task;
666         int allowed = 0;
667         /* Allow access to a task's file descriptors if it is us or we
668          * may use ptrace attach to the process and find out that
669          * information.
670          */
671         task = get_proc_task(inode);
672         if (task) {
673                 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
674                 put_task_struct(task);
675         }
676         return allowed;
677 }
678
679 int proc_setattr(struct dentry *dentry, struct iattr *attr)
680 {
681         int error;
682         struct inode *inode = d_inode(dentry);
683
684         if (attr->ia_valid & ATTR_MODE)
685                 return -EPERM;
686
687         error = setattr_prepare(dentry, attr);
688         if (error)
689                 return error;
690
691         setattr_copy(inode, attr);
692         mark_inode_dirty(inode);
693         return 0;
694 }
695
696 /*
697  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
698  * or euid/egid (for hide_pid_min=2)?
699  */
700 static bool has_pid_permissions(struct pid_namespace *pid,
701                                  struct task_struct *task,
702                                  int hide_pid_min)
703 {
704         if (pid->hide_pid < hide_pid_min)
705                 return true;
706         if (in_group_p(pid->pid_gid))
707                 return true;
708         return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
709 }
710
711
712 static int proc_pid_permission(struct inode *inode, int mask)
713 {
714         struct pid_namespace *pid = proc_pid_ns(inode);
715         struct task_struct *task;
716         bool has_perms;
717
718         task = get_proc_task(inode);
719         if (!task)
720                 return -ESRCH;
721         has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
722         put_task_struct(task);
723
724         if (!has_perms) {
725                 if (pid->hide_pid == HIDEPID_INVISIBLE) {
726                         /*
727                          * Let's make getdents(), stat(), and open()
728                          * consistent with each other.  If a process
729                          * may not stat() a file, it shouldn't be seen
730                          * in procfs at all.
731                          */
732                         return -ENOENT;
733                 }
734
735                 return -EPERM;
736         }
737         return generic_permission(inode, mask);
738 }
739
740
741
742 static const struct inode_operations proc_def_inode_operations = {
743         .setattr        = proc_setattr,
744 };
745
746 static int proc_single_show(struct seq_file *m, void *v)
747 {
748         struct inode *inode = m->private;
749         struct pid_namespace *ns = proc_pid_ns(inode);
750         struct pid *pid = proc_pid(inode);
751         struct task_struct *task;
752         int ret;
753
754         task = get_pid_task(pid, PIDTYPE_PID);
755         if (!task)
756                 return -ESRCH;
757
758         ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
759
760         put_task_struct(task);
761         return ret;
762 }
763
764 static int proc_single_open(struct inode *inode, struct file *filp)
765 {
766         return single_open(filp, proc_single_show, inode);
767 }
768
769 static const struct file_operations proc_single_file_operations = {
770         .open           = proc_single_open,
771         .read           = seq_read,
772         .llseek         = seq_lseek,
773         .release        = single_release,
774 };
775
776
777 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
778 {
779         struct task_struct *task = get_proc_task(inode);
780         struct mm_struct *mm = ERR_PTR(-ESRCH);
781
782         if (task) {
783                 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
784                 put_task_struct(task);
785
786                 if (!IS_ERR_OR_NULL(mm)) {
787                         /* ensure this mm_struct can't be freed */
788                         mmgrab(mm);
789                         /* but do not pin its memory */
790                         mmput(mm);
791                 }
792         }
793
794         return mm;
795 }
796
797 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
798 {
799         struct mm_struct *mm = proc_mem_open(inode, mode);
800
801         if (IS_ERR(mm))
802                 return PTR_ERR(mm);
803
804         file->private_data = mm;
805         return 0;
806 }
807
808 static int mem_open(struct inode *inode, struct file *file)
809 {
810         int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
811
812         /* OK to pass negative loff_t, we can catch out-of-range */
813         file->f_mode |= FMODE_UNSIGNED_OFFSET;
814
815         return ret;
816 }
817
818 static ssize_t mem_rw(struct file *file, char __user *buf,
819                         size_t count, loff_t *ppos, int write)
820 {
821         struct mm_struct *mm = file->private_data;
822         unsigned long addr = *ppos;
823         ssize_t copied;
824         char *page;
825         unsigned int flags;
826
827         if (!mm)
828                 return 0;
829
830         page = (char *)__get_free_page(GFP_KERNEL);
831         if (!page)
832                 return -ENOMEM;
833
834         copied = 0;
835         if (!mmget_not_zero(mm))
836                 goto free;
837
838         flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
839
840         while (count > 0) {
841                 int this_len = min_t(int, count, PAGE_SIZE);
842
843                 if (write && copy_from_user(page, buf, this_len)) {
844                         copied = -EFAULT;
845                         break;
846                 }
847
848                 this_len = access_remote_vm(mm, addr, page, this_len, flags);
849                 if (!this_len) {
850                         if (!copied)
851                                 copied = -EIO;
852                         break;
853                 }
854
855                 if (!write && copy_to_user(buf, page, this_len)) {
856                         copied = -EFAULT;
857                         break;
858                 }
859
860                 buf += this_len;
861                 addr += this_len;
862                 copied += this_len;
863                 count -= this_len;
864         }
865         *ppos = addr;
866
867         mmput(mm);
868 free:
869         free_page((unsigned long) page);
870         return copied;
871 }
872
873 static ssize_t mem_read(struct file *file, char __user *buf,
874                         size_t count, loff_t *ppos)
875 {
876         return mem_rw(file, buf, count, ppos, 0);
877 }
878
879 static ssize_t mem_write(struct file *file, const char __user *buf,
880                          size_t count, loff_t *ppos)
881 {
882         return mem_rw(file, (char __user*)buf, count, ppos, 1);
883 }
884
885 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
886 {
887         switch (orig) {
888         case 0:
889                 file->f_pos = offset;
890                 break;
891         case 1:
892                 file->f_pos += offset;
893                 break;
894         default:
895                 return -EINVAL;
896         }
897         force_successful_syscall_return();
898         return file->f_pos;
899 }
900
901 static int mem_release(struct inode *inode, struct file *file)
902 {
903         struct mm_struct *mm = file->private_data;
904         if (mm)
905                 mmdrop(mm);
906         return 0;
907 }
908
909 static const struct file_operations proc_mem_operations = {
910         .llseek         = mem_lseek,
911         .read           = mem_read,
912         .write          = mem_write,
913         .open           = mem_open,
914         .release        = mem_release,
915 };
916
917 static int environ_open(struct inode *inode, struct file *file)
918 {
919         return __mem_open(inode, file, PTRACE_MODE_READ);
920 }
921
922 static ssize_t environ_read(struct file *file, char __user *buf,
923                         size_t count, loff_t *ppos)
924 {
925         char *page;
926         unsigned long src = *ppos;
927         int ret = 0;
928         struct mm_struct *mm = file->private_data;
929         unsigned long env_start, env_end;
930
931         /* Ensure the process spawned far enough to have an environment. */
932         if (!mm || !mm->env_end)
933                 return 0;
934
935         page = (char *)__get_free_page(GFP_KERNEL);
936         if (!page)
937                 return -ENOMEM;
938
939         ret = 0;
940         if (!mmget_not_zero(mm))
941                 goto free;
942
943         spin_lock(&mm->arg_lock);
944         env_start = mm->env_start;
945         env_end = mm->env_end;
946         spin_unlock(&mm->arg_lock);
947
948         while (count > 0) {
949                 size_t this_len, max_len;
950                 int retval;
951
952                 if (src >= (env_end - env_start))
953                         break;
954
955                 this_len = env_end - (env_start + src);
956
957                 max_len = min_t(size_t, PAGE_SIZE, count);
958                 this_len = min(max_len, this_len);
959
960                 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
961
962                 if (retval <= 0) {
963                         ret = retval;
964                         break;
965                 }
966
967                 if (copy_to_user(buf, page, retval)) {
968                         ret = -EFAULT;
969                         break;
970                 }
971
972                 ret += retval;
973                 src += retval;
974                 buf += retval;
975                 count -= retval;
976         }
977         *ppos = src;
978         mmput(mm);
979
980 free:
981         free_page((unsigned long) page);
982         return ret;
983 }
984
985 static const struct file_operations proc_environ_operations = {
986         .open           = environ_open,
987         .read           = environ_read,
988         .llseek         = generic_file_llseek,
989         .release        = mem_release,
990 };
991
992 static int auxv_open(struct inode *inode, struct file *file)
993 {
994         return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
995 }
996
997 static ssize_t auxv_read(struct file *file, char __user *buf,
998                         size_t count, loff_t *ppos)
999 {
1000         struct mm_struct *mm = file->private_data;
1001         unsigned int nwords = 0;
1002
1003         if (!mm)
1004                 return 0;
1005         do {
1006                 nwords += 2;
1007         } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1008         return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1009                                        nwords * sizeof(mm->saved_auxv[0]));
1010 }
1011
1012 static const struct file_operations proc_auxv_operations = {
1013         .open           = auxv_open,
1014         .read           = auxv_read,
1015         .llseek         = generic_file_llseek,
1016         .release        = mem_release,
1017 };
1018
1019 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1020                             loff_t *ppos)
1021 {
1022         struct task_struct *task = get_proc_task(file_inode(file));
1023         char buffer[PROC_NUMBUF];
1024         int oom_adj = OOM_ADJUST_MIN;
1025         size_t len;
1026
1027         if (!task)
1028                 return -ESRCH;
1029         if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1030                 oom_adj = OOM_ADJUST_MAX;
1031         else
1032                 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1033                           OOM_SCORE_ADJ_MAX;
1034         put_task_struct(task);
1035         len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1036         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1037 }
1038
1039 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1040 {
1041         static DEFINE_MUTEX(oom_adj_mutex);
1042         struct mm_struct *mm = NULL;
1043         struct task_struct *task;
1044         int err = 0;
1045
1046         task = get_proc_task(file_inode(file));
1047         if (!task)
1048                 return -ESRCH;
1049
1050         mutex_lock(&oom_adj_mutex);
1051         if (legacy) {
1052                 if (oom_adj < task->signal->oom_score_adj &&
1053                                 !capable(CAP_SYS_RESOURCE)) {
1054                         err = -EACCES;
1055                         goto err_unlock;
1056                 }
1057                 /*
1058                  * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1059                  * /proc/pid/oom_score_adj instead.
1060                  */
1061                 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1062                           current->comm, task_pid_nr(current), task_pid_nr(task),
1063                           task_pid_nr(task));
1064         } else {
1065                 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1066                                 !capable(CAP_SYS_RESOURCE)) {
1067                         err = -EACCES;
1068                         goto err_unlock;
1069                 }
1070         }
1071
1072         /*
1073          * Make sure we will check other processes sharing the mm if this is
1074          * not vfrok which wants its own oom_score_adj.
1075          * pin the mm so it doesn't go away and get reused after task_unlock
1076          */
1077         if (!task->vfork_done) {
1078                 struct task_struct *p = find_lock_task_mm(task);
1079
1080                 if (p) {
1081                         if (atomic_read(&p->mm->mm_users) > 1) {
1082                                 mm = p->mm;
1083                                 mmgrab(mm);
1084                         }
1085                         task_unlock(p);
1086                 }
1087         }
1088
1089         task->signal->oom_score_adj = oom_adj;
1090         if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1091                 task->signal->oom_score_adj_min = (short)oom_adj;
1092         trace_oom_score_adj_update(task);
1093
1094         if (mm) {
1095                 struct task_struct *p;
1096
1097                 rcu_read_lock();
1098                 for_each_process(p) {
1099                         if (same_thread_group(task, p))
1100                                 continue;
1101
1102                         /* do not touch kernel threads or the global init */
1103                         if (p->flags & PF_KTHREAD || is_global_init(p))
1104                                 continue;
1105
1106                         task_lock(p);
1107                         if (!p->vfork_done && process_shares_mm(p, mm)) {
1108                                 p->signal->oom_score_adj = oom_adj;
1109                                 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1110                                         p->signal->oom_score_adj_min = (short)oom_adj;
1111                         }
1112                         task_unlock(p);
1113                 }
1114                 rcu_read_unlock();
1115                 mmdrop(mm);
1116         }
1117 err_unlock:
1118         mutex_unlock(&oom_adj_mutex);
1119         put_task_struct(task);
1120         return err;
1121 }
1122
1123 /*
1124  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1125  * kernels.  The effective policy is defined by oom_score_adj, which has a
1126  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1127  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1128  * Processes that become oom disabled via oom_adj will still be oom disabled
1129  * with this implementation.
1130  *
1131  * oom_adj cannot be removed since existing userspace binaries use it.
1132  */
1133 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1134                              size_t count, loff_t *ppos)
1135 {
1136         char buffer[PROC_NUMBUF];
1137         int oom_adj;
1138         int err;
1139
1140         memset(buffer, 0, sizeof(buffer));
1141         if (count > sizeof(buffer) - 1)
1142                 count = sizeof(buffer) - 1;
1143         if (copy_from_user(buffer, buf, count)) {
1144                 err = -EFAULT;
1145                 goto out;
1146         }
1147
1148         err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1149         if (err)
1150                 goto out;
1151         if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1152              oom_adj != OOM_DISABLE) {
1153                 err = -EINVAL;
1154                 goto out;
1155         }
1156
1157         /*
1158          * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1159          * value is always attainable.
1160          */
1161         if (oom_adj == OOM_ADJUST_MAX)
1162                 oom_adj = OOM_SCORE_ADJ_MAX;
1163         else
1164                 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1165
1166         err = __set_oom_adj(file, oom_adj, true);
1167 out:
1168         return err < 0 ? err : count;
1169 }
1170
1171 static const struct file_operations proc_oom_adj_operations = {
1172         .read           = oom_adj_read,
1173         .write          = oom_adj_write,
1174         .llseek         = generic_file_llseek,
1175 };
1176
1177 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1178                                         size_t count, loff_t *ppos)
1179 {
1180         struct task_struct *task = get_proc_task(file_inode(file));
1181         char buffer[PROC_NUMBUF];
1182         short oom_score_adj = OOM_SCORE_ADJ_MIN;
1183         size_t len;
1184
1185         if (!task)
1186                 return -ESRCH;
1187         oom_score_adj = task->signal->oom_score_adj;
1188         put_task_struct(task);
1189         len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1190         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1191 }
1192
1193 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1194                                         size_t count, loff_t *ppos)
1195 {
1196         char buffer[PROC_NUMBUF];
1197         int oom_score_adj;
1198         int err;
1199
1200         memset(buffer, 0, sizeof(buffer));
1201         if (count > sizeof(buffer) - 1)
1202                 count = sizeof(buffer) - 1;
1203         if (copy_from_user(buffer, buf, count)) {
1204                 err = -EFAULT;
1205                 goto out;
1206         }
1207
1208         err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1209         if (err)
1210                 goto out;
1211         if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1212                         oom_score_adj > OOM_SCORE_ADJ_MAX) {
1213                 err = -EINVAL;
1214                 goto out;
1215         }
1216
1217         err = __set_oom_adj(file, oom_score_adj, false);
1218 out:
1219         return err < 0 ? err : count;
1220 }
1221
1222 static const struct file_operations proc_oom_score_adj_operations = {
1223         .read           = oom_score_adj_read,
1224         .write          = oom_score_adj_write,
1225         .llseek         = default_llseek,
1226 };
1227
1228 #ifdef CONFIG_AUDIT
1229 #define TMPBUFLEN 11
1230 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1231                                   size_t count, loff_t *ppos)
1232 {
1233         struct inode * inode = file_inode(file);
1234         struct task_struct *task = get_proc_task(inode);
1235         ssize_t length;
1236         char tmpbuf[TMPBUFLEN];
1237
1238         if (!task)
1239                 return -ESRCH;
1240         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1241                            from_kuid(file->f_cred->user_ns,
1242                                      audit_get_loginuid(task)));
1243         put_task_struct(task);
1244         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1245 }
1246
1247 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1248                                    size_t count, loff_t *ppos)
1249 {
1250         struct inode * inode = file_inode(file);
1251         uid_t loginuid;
1252         kuid_t kloginuid;
1253         int rv;
1254
1255         rcu_read_lock();
1256         if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1257                 rcu_read_unlock();
1258                 return -EPERM;
1259         }
1260         rcu_read_unlock();
1261
1262         if (*ppos != 0) {
1263                 /* No partial writes. */
1264                 return -EINVAL;
1265         }
1266
1267         rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1268         if (rv < 0)
1269                 return rv;
1270
1271         /* is userspace tring to explicitly UNSET the loginuid? */
1272         if (loginuid == AUDIT_UID_UNSET) {
1273                 kloginuid = INVALID_UID;
1274         } else {
1275                 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1276                 if (!uid_valid(kloginuid))
1277                         return -EINVAL;
1278         }
1279
1280         rv = audit_set_loginuid(kloginuid);
1281         if (rv < 0)
1282                 return rv;
1283         return count;
1284 }
1285
1286 static const struct file_operations proc_loginuid_operations = {
1287         .read           = proc_loginuid_read,
1288         .write          = proc_loginuid_write,
1289         .llseek         = generic_file_llseek,
1290 };
1291
1292 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1293                                   size_t count, loff_t *ppos)
1294 {
1295         struct inode * inode = file_inode(file);
1296         struct task_struct *task = get_proc_task(inode);
1297         ssize_t length;
1298         char tmpbuf[TMPBUFLEN];
1299
1300         if (!task)
1301                 return -ESRCH;
1302         length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1303                                 audit_get_sessionid(task));
1304         put_task_struct(task);
1305         return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1306 }
1307
1308 static const struct file_operations proc_sessionid_operations = {
1309         .read           = proc_sessionid_read,
1310         .llseek         = generic_file_llseek,
1311 };
1312 #endif
1313
1314 #ifdef CONFIG_FAULT_INJECTION
1315 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1316                                       size_t count, loff_t *ppos)
1317 {
1318         struct task_struct *task = get_proc_task(file_inode(file));
1319         char buffer[PROC_NUMBUF];
1320         size_t len;
1321         int make_it_fail;
1322
1323         if (!task)
1324                 return -ESRCH;
1325         make_it_fail = task->make_it_fail;
1326         put_task_struct(task);
1327
1328         len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1329
1330         return simple_read_from_buffer(buf, count, ppos, buffer, len);
1331 }
1332
1333 static ssize_t proc_fault_inject_write(struct file * file,
1334                         const char __user * buf, size_t count, loff_t *ppos)
1335 {
1336         struct task_struct *task;
1337         char buffer[PROC_NUMBUF];
1338         int make_it_fail;
1339         int rv;
1340
1341         if (!capable(CAP_SYS_RESOURCE))
1342                 return -EPERM;
1343         memset(buffer, 0, sizeof(buffer));
1344         if (count > sizeof(buffer) - 1)
1345                 count = sizeof(buffer) - 1;
1346         if (copy_from_user(buffer, buf, count))
1347                 return -EFAULT;
1348         rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1349         if (rv < 0)
1350                 return rv;
1351         if (make_it_fail < 0 || make_it_fail > 1)
1352                 return -EINVAL;
1353
1354         task = get_proc_task(file_inode(file));
1355         if (!task)
1356                 return -ESRCH;
1357         task->make_it_fail = make_it_fail;
1358         put_task_struct(task);
1359
1360         return count;
1361 }
1362
1363 static const struct file_operations proc_fault_inject_operations = {
1364         .read           = proc_fault_inject_read,
1365         .write          = proc_fault_inject_write,
1366         .llseek         = generic_file_llseek,
1367 };
1368
1369 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1370                                    size_t count, loff_t *ppos)
1371 {
1372         struct task_struct *task;
1373         int err;
1374         unsigned int n;
1375
1376         err = kstrtouint_from_user(buf, count, 0, &n);
1377         if (err)
1378                 return err;
1379
1380         task = get_proc_task(file_inode(file));
1381         if (!task)
1382                 return -ESRCH;
1383         task->fail_nth = n;
1384         put_task_struct(task);
1385
1386         return count;
1387 }
1388
1389 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1390                                   size_t count, loff_t *ppos)
1391 {
1392         struct task_struct *task;
1393         char numbuf[PROC_NUMBUF];
1394         ssize_t len;
1395
1396         task = get_proc_task(file_inode(file));
1397         if (!task)
1398                 return -ESRCH;
1399         len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1400         put_task_struct(task);
1401         return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1402 }
1403
1404 static const struct file_operations proc_fail_nth_operations = {
1405         .read           = proc_fail_nth_read,
1406         .write          = proc_fail_nth_write,
1407 };
1408 #endif
1409
1410
1411 #ifdef CONFIG_SCHED_DEBUG
1412 /*
1413  * Print out various scheduling related per-task fields:
1414  */
1415 static int sched_show(struct seq_file *m, void *v)
1416 {
1417         struct inode *inode = m->private;
1418         struct pid_namespace *ns = proc_pid_ns(inode);
1419         struct task_struct *p;
1420
1421         p = get_proc_task(inode);
1422         if (!p)
1423                 return -ESRCH;
1424         proc_sched_show_task(p, ns, m);
1425
1426         put_task_struct(p);
1427
1428         return 0;
1429 }
1430
1431 static ssize_t
1432 sched_write(struct file *file, const char __user *buf,
1433             size_t count, loff_t *offset)
1434 {
1435         struct inode *inode = file_inode(file);
1436         struct task_struct *p;
1437
1438         p = get_proc_task(inode);
1439         if (!p)
1440                 return -ESRCH;
1441         proc_sched_set_task(p);
1442
1443         put_task_struct(p);
1444
1445         return count;
1446 }
1447
1448 static int sched_open(struct inode *inode, struct file *filp)
1449 {
1450         return single_open(filp, sched_show, inode);
1451 }
1452
1453 static const struct file_operations proc_pid_sched_operations = {
1454         .open           = sched_open,
1455         .read           = seq_read,
1456         .write          = sched_write,
1457         .llseek         = seq_lseek,
1458         .release        = single_release,
1459 };
1460
1461 #endif
1462
1463 #ifdef CONFIG_SCHED_AUTOGROUP
1464 /*
1465  * Print out autogroup related information:
1466  */
1467 static int sched_autogroup_show(struct seq_file *m, void *v)
1468 {
1469         struct inode *inode = m->private;
1470         struct task_struct *p;
1471
1472         p = get_proc_task(inode);
1473         if (!p)
1474                 return -ESRCH;
1475         proc_sched_autogroup_show_task(p, m);
1476
1477         put_task_struct(p);
1478
1479         return 0;
1480 }
1481
1482 static ssize_t
1483 sched_autogroup_write(struct file *file, const char __user *buf,
1484             size_t count, loff_t *offset)
1485 {
1486         struct inode *inode = file_inode(file);
1487         struct task_struct *p;
1488         char buffer[PROC_NUMBUF];
1489         int nice;
1490         int err;
1491
1492         memset(buffer, 0, sizeof(buffer));
1493         if (count > sizeof(buffer) - 1)
1494                 count = sizeof(buffer) - 1;
1495         if (copy_from_user(buffer, buf, count))
1496                 return -EFAULT;
1497
1498         err = kstrtoint(strstrip(buffer), 0, &nice);
1499         if (err < 0)
1500                 return err;
1501
1502         p = get_proc_task(inode);
1503         if (!p)
1504                 return -ESRCH;
1505
1506         err = proc_sched_autogroup_set_nice(p, nice);
1507         if (err)
1508                 count = err;
1509
1510         put_task_struct(p);
1511
1512         return count;
1513 }
1514
1515 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1516 {
1517         int ret;
1518
1519         ret = single_open(filp, sched_autogroup_show, NULL);
1520         if (!ret) {
1521                 struct seq_file *m = filp->private_data;
1522
1523                 m->private = inode;
1524         }
1525         return ret;
1526 }
1527
1528 static const struct file_operations proc_pid_sched_autogroup_operations = {
1529         .open           = sched_autogroup_open,
1530         .read           = seq_read,
1531         .write          = sched_autogroup_write,
1532         .llseek         = seq_lseek,
1533         .release        = single_release,
1534 };
1535
1536 #endif /* CONFIG_SCHED_AUTOGROUP */
1537
1538 #ifdef CONFIG_TIME_NS
1539 static int timens_offsets_show(struct seq_file *m, void *v)
1540 {
1541         struct task_struct *p;
1542
1543         p = get_proc_task(file_inode(m->file));
1544         if (!p)
1545                 return -ESRCH;
1546         proc_timens_show_offsets(p, m);
1547
1548         put_task_struct(p);
1549
1550         return 0;
1551 }
1552
1553 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1554                                     size_t count, loff_t *ppos)
1555 {
1556         struct inode *inode = file_inode(file);
1557         struct proc_timens_offset offsets[2];
1558         char *kbuf = NULL, *pos, *next_line;
1559         struct task_struct *p;
1560         int ret, noffsets;
1561
1562         /* Only allow < page size writes at the beginning of the file */
1563         if ((*ppos != 0) || (count >= PAGE_SIZE))
1564                 return -EINVAL;
1565
1566         /* Slurp in the user data */
1567         kbuf = memdup_user_nul(buf, count);
1568         if (IS_ERR(kbuf))
1569                 return PTR_ERR(kbuf);
1570
1571         /* Parse the user data */
1572         ret = -EINVAL;
1573         noffsets = 0;
1574         for (pos = kbuf; pos; pos = next_line) {
1575                 struct proc_timens_offset *off = &offsets[noffsets];
1576                 char clock[10];
1577                 int err;
1578
1579                 /* Find the end of line and ensure we don't look past it */
1580                 next_line = strchr(pos, '\n');
1581                 if (next_line) {
1582                         *next_line = '\0';
1583                         next_line++;
1584                         if (*next_line == '\0')
1585                                 next_line = NULL;
1586                 }
1587
1588                 err = sscanf(pos, "%9s %lld %lu", clock,
1589                                 &off->val.tv_sec, &off->val.tv_nsec);
1590                 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1591                         goto out;
1592
1593                 clock[sizeof(clock) - 1] = 0;
1594                 if (strcmp(clock, "monotonic") == 0 ||
1595                     strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1596                         off->clockid = CLOCK_MONOTONIC;
1597                 else if (strcmp(clock, "boottime") == 0 ||
1598                          strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1599                         off->clockid = CLOCK_BOOTTIME;
1600                 else
1601                         goto out;
1602
1603                 noffsets++;
1604                 if (noffsets == ARRAY_SIZE(offsets)) {
1605                         if (next_line)
1606                                 count = next_line - kbuf;
1607                         break;
1608                 }
1609         }
1610
1611         ret = -ESRCH;
1612         p = get_proc_task(inode);
1613         if (!p)
1614                 goto out;
1615         ret = proc_timens_set_offset(file, p, offsets, noffsets);
1616         put_task_struct(p);
1617         if (ret)
1618                 goto out;
1619
1620         ret = count;
1621 out:
1622         kfree(kbuf);
1623         return ret;
1624 }
1625
1626 static int timens_offsets_open(struct inode *inode, struct file *filp)
1627 {
1628         return single_open(filp, timens_offsets_show, inode);
1629 }
1630
1631 static const struct file_operations proc_timens_offsets_operations = {
1632         .open           = timens_offsets_open,
1633         .read           = seq_read,
1634         .write          = timens_offsets_write,
1635         .llseek         = seq_lseek,
1636         .release        = single_release,
1637 };
1638 #endif /* CONFIG_TIME_NS */
1639
1640 static ssize_t comm_write(struct file *file, const char __user *buf,
1641                                 size_t count, loff_t *offset)
1642 {
1643         struct inode *inode = file_inode(file);
1644         struct task_struct *p;
1645         char buffer[TASK_COMM_LEN];
1646         const size_t maxlen = sizeof(buffer) - 1;
1647
1648         memset(buffer, 0, sizeof(buffer));
1649         if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1650                 return -EFAULT;
1651
1652         p = get_proc_task(inode);
1653         if (!p)
1654                 return -ESRCH;
1655
1656         if (same_thread_group(current, p))
1657                 set_task_comm(p, buffer);
1658         else
1659                 count = -EINVAL;
1660
1661         put_task_struct(p);
1662
1663         return count;
1664 }
1665
1666 static int comm_show(struct seq_file *m, void *v)
1667 {
1668         struct inode *inode = m->private;
1669         struct task_struct *p;
1670
1671         p = get_proc_task(inode);
1672         if (!p)
1673                 return -ESRCH;
1674
1675         proc_task_name(m, p, false);
1676         seq_putc(m, '\n');
1677
1678         put_task_struct(p);
1679
1680         return 0;
1681 }
1682
1683 static int comm_open(struct inode *inode, struct file *filp)
1684 {
1685         return single_open(filp, comm_show, inode);
1686 }
1687
1688 static const struct file_operations proc_pid_set_comm_operations = {
1689         .open           = comm_open,
1690         .read           = seq_read,
1691         .write          = comm_write,
1692         .llseek         = seq_lseek,
1693         .release        = single_release,
1694 };
1695
1696 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1697 {
1698         struct task_struct *task;
1699         struct file *exe_file;
1700
1701         task = get_proc_task(d_inode(dentry));
1702         if (!task)
1703                 return -ENOENT;
1704         exe_file = get_task_exe_file(task);
1705         put_task_struct(task);
1706         if (exe_file) {
1707                 *exe_path = exe_file->f_path;
1708                 path_get(&exe_file->f_path);
1709                 fput(exe_file);
1710                 return 0;
1711         } else
1712                 return -ENOENT;
1713 }
1714
1715 static const char *proc_pid_get_link(struct dentry *dentry,
1716                                      struct inode *inode,
1717                                      struct delayed_call *done)
1718 {
1719         struct path path;
1720         int error = -EACCES;
1721
1722         if (!dentry)
1723                 return ERR_PTR(-ECHILD);
1724
1725         /* Are we allowed to snoop on the tasks file descriptors? */
1726         if (!proc_fd_access_allowed(inode))
1727                 goto out;
1728
1729         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1730         if (error)
1731                 goto out;
1732
1733         error = nd_jump_link(&path);
1734 out:
1735         return ERR_PTR(error);
1736 }
1737
1738 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1739 {
1740         char *tmp = (char *)__get_free_page(GFP_KERNEL);
1741         char *pathname;
1742         int len;
1743
1744         if (!tmp)
1745                 return -ENOMEM;
1746
1747         pathname = d_path(path, tmp, PAGE_SIZE);
1748         len = PTR_ERR(pathname);
1749         if (IS_ERR(pathname))
1750                 goto out;
1751         len = tmp + PAGE_SIZE - 1 - pathname;
1752
1753         if (len > buflen)
1754                 len = buflen;
1755         if (copy_to_user(buffer, pathname, len))
1756                 len = -EFAULT;
1757  out:
1758         free_page((unsigned long)tmp);
1759         return len;
1760 }
1761
1762 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1763 {
1764         int error = -EACCES;
1765         struct inode *inode = d_inode(dentry);
1766         struct path path;
1767
1768         /* Are we allowed to snoop on the tasks file descriptors? */
1769         if (!proc_fd_access_allowed(inode))
1770                 goto out;
1771
1772         error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1773         if (error)
1774                 goto out;
1775
1776         error = do_proc_readlink(&path, buffer, buflen);
1777         path_put(&path);
1778 out:
1779         return error;
1780 }
1781
1782 const struct inode_operations proc_pid_link_inode_operations = {
1783         .readlink       = proc_pid_readlink,
1784         .get_link       = proc_pid_get_link,
1785         .setattr        = proc_setattr,
1786 };
1787
1788
1789 /* building an inode */
1790
1791 void task_dump_owner(struct task_struct *task, umode_t mode,
1792                      kuid_t *ruid, kgid_t *rgid)
1793 {
1794         /* Depending on the state of dumpable compute who should own a
1795          * proc file for a task.
1796          */
1797         const struct cred *cred;
1798         kuid_t uid;
1799         kgid_t gid;
1800
1801         if (unlikely(task->flags & PF_KTHREAD)) {
1802                 *ruid = GLOBAL_ROOT_UID;
1803                 *rgid = GLOBAL_ROOT_GID;
1804                 return;
1805         }
1806
1807         /* Default to the tasks effective ownership */
1808         rcu_read_lock();
1809         cred = __task_cred(task);
1810         uid = cred->euid;
1811         gid = cred->egid;
1812         rcu_read_unlock();
1813
1814         /*
1815          * Before the /proc/pid/status file was created the only way to read
1816          * the effective uid of a /process was to stat /proc/pid.  Reading
1817          * /proc/pid/status is slow enough that procps and other packages
1818          * kept stating /proc/pid.  To keep the rules in /proc simple I have
1819          * made this apply to all per process world readable and executable
1820          * directories.
1821          */
1822         if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1823                 struct mm_struct *mm;
1824                 task_lock(task);
1825                 mm = task->mm;
1826                 /* Make non-dumpable tasks owned by some root */
1827                 if (mm) {
1828                         if (get_dumpable(mm) != SUID_DUMP_USER) {
1829                                 struct user_namespace *user_ns = mm->user_ns;
1830
1831                                 uid = make_kuid(user_ns, 0);
1832                                 if (!uid_valid(uid))
1833                                         uid = GLOBAL_ROOT_UID;
1834
1835                                 gid = make_kgid(user_ns, 0);
1836                                 if (!gid_valid(gid))
1837                                         gid = GLOBAL_ROOT_GID;
1838                         }
1839                 } else {
1840                         uid = GLOBAL_ROOT_UID;
1841                         gid = GLOBAL_ROOT_GID;
1842                 }
1843                 task_unlock(task);
1844         }
1845         *ruid = uid;
1846         *rgid = gid;
1847 }
1848
1849 void proc_pid_evict_inode(struct proc_inode *ei)
1850 {
1851         struct pid *pid = ei->pid;
1852
1853         if (S_ISDIR(ei->vfs_inode.i_mode)) {
1854                 spin_lock(&pid->lock);
1855                 hlist_del_init_rcu(&ei->sibling_inodes);
1856                 spin_unlock(&pid->lock);
1857         }
1858
1859         put_pid(pid);
1860 }
1861
1862 struct inode *proc_pid_make_inode(struct super_block * sb,
1863                                   struct task_struct *task, umode_t mode)
1864 {
1865         struct inode * inode;
1866         struct proc_inode *ei;
1867         struct pid *pid;
1868
1869         /* We need a new inode */
1870
1871         inode = new_inode(sb);
1872         if (!inode)
1873                 goto out;
1874
1875         /* Common stuff */
1876         ei = PROC_I(inode);
1877         inode->i_mode = mode;
1878         inode->i_ino = get_next_ino();
1879         inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1880         inode->i_op = &proc_def_inode_operations;
1881
1882         /*
1883          * grab the reference to task.
1884          */
1885         pid = get_task_pid(task, PIDTYPE_PID);
1886         if (!pid)
1887                 goto out_unlock;
1888
1889         /* Let the pid remember us for quick removal */
1890         ei->pid = pid;
1891         if (S_ISDIR(mode)) {
1892                 spin_lock(&pid->lock);
1893                 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1894                 spin_unlock(&pid->lock);
1895         }
1896
1897         task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1898         security_task_to_inode(task, inode);
1899
1900 out:
1901         return inode;
1902
1903 out_unlock:
1904         iput(inode);
1905         return NULL;
1906 }
1907
1908 int pid_getattr(const struct path *path, struct kstat *stat,
1909                 u32 request_mask, unsigned int query_flags)
1910 {
1911         struct inode *inode = d_inode(path->dentry);
1912         struct pid_namespace *pid = proc_pid_ns(inode);
1913         struct task_struct *task;
1914
1915         generic_fillattr(inode, stat);
1916
1917         stat->uid = GLOBAL_ROOT_UID;
1918         stat->gid = GLOBAL_ROOT_GID;
1919         rcu_read_lock();
1920         task = pid_task(proc_pid(inode), PIDTYPE_PID);
1921         if (task) {
1922                 if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1923                         rcu_read_unlock();
1924                         /*
1925                          * This doesn't prevent learning whether PID exists,
1926                          * it only makes getattr() consistent with readdir().
1927                          */
1928                         return -ENOENT;
1929                 }
1930                 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1931         }
1932         rcu_read_unlock();
1933         return 0;
1934 }
1935
1936 /* dentry stuff */
1937
1938 /*
1939  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1940  */
1941 void pid_update_inode(struct task_struct *task, struct inode *inode)
1942 {
1943         task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1944
1945         inode->i_mode &= ~(S_ISUID | S_ISGID);
1946         security_task_to_inode(task, inode);
1947 }
1948
1949 /*
1950  * Rewrite the inode's ownerships here because the owning task may have
1951  * performed a setuid(), etc.
1952  *
1953  */
1954 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1955 {
1956         struct inode *inode;
1957         struct task_struct *task;
1958
1959         if (flags & LOOKUP_RCU)
1960                 return -ECHILD;
1961
1962         inode = d_inode(dentry);
1963         task = get_proc_task(inode);
1964
1965         if (task) {
1966                 pid_update_inode(task, inode);
1967                 put_task_struct(task);
1968                 return 1;
1969         }
1970         return 0;
1971 }
1972
1973 static inline bool proc_inode_is_dead(struct inode *inode)
1974 {
1975         return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1976 }
1977
1978 int pid_delete_dentry(const struct dentry *dentry)
1979 {
1980         /* Is the task we represent dead?
1981          * If so, then don't put the dentry on the lru list,
1982          * kill it immediately.
1983          */
1984         return proc_inode_is_dead(d_inode(dentry));
1985 }
1986
1987 const struct dentry_operations pid_dentry_operations =
1988 {
1989         .d_revalidate   = pid_revalidate,
1990         .d_delete       = pid_delete_dentry,
1991 };
1992
1993 /* Lookups */
1994
1995 /*
1996  * Fill a directory entry.
1997  *
1998  * If possible create the dcache entry and derive our inode number and
1999  * file type from dcache entry.
2000  *
2001  * Since all of the proc inode numbers are dynamically generated, the inode
2002  * numbers do not exist until the inode is cache.  This means creating the
2003  * the dcache entry in readdir is necessary to keep the inode numbers
2004  * reported by readdir in sync with the inode numbers reported
2005  * by stat.
2006  */
2007 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2008         const char *name, unsigned int len,
2009         instantiate_t instantiate, struct task_struct *task, const void *ptr)
2010 {
2011         struct dentry *child, *dir = file->f_path.dentry;
2012         struct qstr qname = QSTR_INIT(name, len);
2013         struct inode *inode;
2014         unsigned type = DT_UNKNOWN;
2015         ino_t ino = 1;
2016
2017         child = d_hash_and_lookup(dir, &qname);
2018         if (!child) {
2019                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2020                 child = d_alloc_parallel(dir, &qname, &wq);
2021                 if (IS_ERR(child))
2022                         goto end_instantiate;
2023                 if (d_in_lookup(child)) {
2024                         struct dentry *res;
2025                         res = instantiate(child, task, ptr);
2026                         d_lookup_done(child);
2027                         if (unlikely(res)) {
2028                                 dput(child);
2029                                 child = res;
2030                                 if (IS_ERR(child))
2031                                         goto end_instantiate;
2032                         }
2033                 }
2034         }
2035         inode = d_inode(child);
2036         ino = inode->i_ino;
2037         type = inode->i_mode >> 12;
2038         dput(child);
2039 end_instantiate:
2040         return dir_emit(ctx, name, len, ino, type);
2041 }
2042
2043 /*
2044  * dname_to_vma_addr - maps a dentry name into two unsigned longs
2045  * which represent vma start and end addresses.
2046  */
2047 static int dname_to_vma_addr(struct dentry *dentry,
2048                              unsigned long *start, unsigned long *end)
2049 {
2050         const char *str = dentry->d_name.name;
2051         unsigned long long sval, eval;
2052         unsigned int len;
2053
2054         if (str[0] == '0' && str[1] != '-')
2055                 return -EINVAL;
2056         len = _parse_integer(str, 16, &sval);
2057         if (len & KSTRTOX_OVERFLOW)
2058                 return -EINVAL;
2059         if (sval != (unsigned long)sval)
2060                 return -EINVAL;
2061         str += len;
2062
2063         if (*str != '-')
2064                 return -EINVAL;
2065         str++;
2066
2067         if (str[0] == '0' && str[1])
2068                 return -EINVAL;
2069         len = _parse_integer(str, 16, &eval);
2070         if (len & KSTRTOX_OVERFLOW)
2071                 return -EINVAL;
2072         if (eval != (unsigned long)eval)
2073                 return -EINVAL;
2074         str += len;
2075
2076         if (*str != '\0')
2077                 return -EINVAL;
2078
2079         *start = sval;
2080         *end = eval;
2081
2082         return 0;
2083 }
2084
2085 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2086 {
2087         unsigned long vm_start, vm_end;
2088         bool exact_vma_exists = false;
2089         struct mm_struct *mm = NULL;
2090         struct task_struct *task;
2091         struct inode *inode;
2092         int status = 0;
2093
2094         if (flags & LOOKUP_RCU)
2095                 return -ECHILD;
2096
2097         inode = d_inode(dentry);
2098         task = get_proc_task(inode);
2099         if (!task)
2100                 goto out_notask;
2101
2102         mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2103         if (IS_ERR_OR_NULL(mm))
2104                 goto out;
2105
2106         if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2107                 status = down_read_killable(&mm->mmap_sem);
2108                 if (!status) {
2109                         exact_vma_exists = !!find_exact_vma(mm, vm_start,
2110                                                             vm_end);
2111                         up_read(&mm->mmap_sem);
2112                 }
2113         }
2114
2115         mmput(mm);
2116
2117         if (exact_vma_exists) {
2118                 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2119
2120                 security_task_to_inode(task, inode);
2121                 status = 1;
2122         }
2123
2124 out:
2125         put_task_struct(task);
2126
2127 out_notask:
2128         return status;
2129 }
2130
2131 static const struct dentry_operations tid_map_files_dentry_operations = {
2132         .d_revalidate   = map_files_d_revalidate,
2133         .d_delete       = pid_delete_dentry,
2134 };
2135
2136 static int map_files_get_link(struct dentry *dentry, struct path *path)
2137 {
2138         unsigned long vm_start, vm_end;
2139         struct vm_area_struct *vma;
2140         struct task_struct *task;
2141         struct mm_struct *mm;
2142         int rc;
2143
2144         rc = -ENOENT;
2145         task = get_proc_task(d_inode(dentry));
2146         if (!task)
2147                 goto out;
2148
2149         mm = get_task_mm(task);
2150         put_task_struct(task);
2151         if (!mm)
2152                 goto out;
2153
2154         rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2155         if (rc)
2156                 goto out_mmput;
2157
2158         rc = down_read_killable(&mm->mmap_sem);
2159         if (rc)
2160                 goto out_mmput;
2161
2162         rc = -ENOENT;
2163         vma = find_exact_vma(mm, vm_start, vm_end);
2164         if (vma && vma->vm_file) {
2165                 *path = vma->vm_file->f_path;
2166                 path_get(path);
2167                 rc = 0;
2168         }
2169         up_read(&mm->mmap_sem);
2170
2171 out_mmput:
2172         mmput(mm);
2173 out:
2174         return rc;
2175 }
2176
2177 struct map_files_info {
2178         unsigned long   start;
2179         unsigned long   end;
2180         fmode_t         mode;
2181 };
2182
2183 /*
2184  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2185  * symlinks may be used to bypass permissions on ancestor directories in the
2186  * path to the file in question.
2187  */
2188 static const char *
2189 proc_map_files_get_link(struct dentry *dentry,
2190                         struct inode *inode,
2191                         struct delayed_call *done)
2192 {
2193         if (!capable(CAP_SYS_ADMIN))
2194                 return ERR_PTR(-EPERM);
2195
2196         return proc_pid_get_link(dentry, inode, done);
2197 }
2198
2199 /*
2200  * Identical to proc_pid_link_inode_operations except for get_link()
2201  */
2202 static const struct inode_operations proc_map_files_link_inode_operations = {
2203         .readlink       = proc_pid_readlink,
2204         .get_link       = proc_map_files_get_link,
2205         .setattr        = proc_setattr,
2206 };
2207
2208 static struct dentry *
2209 proc_map_files_instantiate(struct dentry *dentry,
2210                            struct task_struct *task, const void *ptr)
2211 {
2212         fmode_t mode = (fmode_t)(unsigned long)ptr;
2213         struct proc_inode *ei;
2214         struct inode *inode;
2215
2216         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2217                                     ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2218                                     ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2219         if (!inode)
2220                 return ERR_PTR(-ENOENT);
2221
2222         ei = PROC_I(inode);
2223         ei->op.proc_get_link = map_files_get_link;
2224
2225         inode->i_op = &proc_map_files_link_inode_operations;
2226         inode->i_size = 64;
2227
2228         d_set_d_op(dentry, &tid_map_files_dentry_operations);
2229         return d_splice_alias(inode, dentry);
2230 }
2231
2232 static struct dentry *proc_map_files_lookup(struct inode *dir,
2233                 struct dentry *dentry, unsigned int flags)
2234 {
2235         unsigned long vm_start, vm_end;
2236         struct vm_area_struct *vma;
2237         struct task_struct *task;
2238         struct dentry *result;
2239         struct mm_struct *mm;
2240
2241         result = ERR_PTR(-ENOENT);
2242         task = get_proc_task(dir);
2243         if (!task)
2244                 goto out;
2245
2246         result = ERR_PTR(-EACCES);
2247         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2248                 goto out_put_task;
2249
2250         result = ERR_PTR(-ENOENT);
2251         if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2252                 goto out_put_task;
2253
2254         mm = get_task_mm(task);
2255         if (!mm)
2256                 goto out_put_task;
2257
2258         result = ERR_PTR(-EINTR);
2259         if (down_read_killable(&mm->mmap_sem))
2260                 goto out_put_mm;
2261
2262         result = ERR_PTR(-ENOENT);
2263         vma = find_exact_vma(mm, vm_start, vm_end);
2264         if (!vma)
2265                 goto out_no_vma;
2266
2267         if (vma->vm_file)
2268                 result = proc_map_files_instantiate(dentry, task,
2269                                 (void *)(unsigned long)vma->vm_file->f_mode);
2270
2271 out_no_vma:
2272         up_read(&mm->mmap_sem);
2273 out_put_mm:
2274         mmput(mm);
2275 out_put_task:
2276         put_task_struct(task);
2277 out:
2278         return result;
2279 }
2280
2281 static const struct inode_operations proc_map_files_inode_operations = {
2282         .lookup         = proc_map_files_lookup,
2283         .permission     = proc_fd_permission,
2284         .setattr        = proc_setattr,
2285 };
2286
2287 static int
2288 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2289 {
2290         struct vm_area_struct *vma;
2291         struct task_struct *task;
2292         struct mm_struct *mm;
2293         unsigned long nr_files, pos, i;
2294         GENRADIX(struct map_files_info) fa;
2295         struct map_files_info *p;
2296         int ret;
2297
2298         genradix_init(&fa);
2299
2300         ret = -ENOENT;
2301         task = get_proc_task(file_inode(file));
2302         if (!task)
2303                 goto out;
2304
2305         ret = -EACCES;
2306         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2307                 goto out_put_task;
2308
2309         ret = 0;
2310         if (!dir_emit_dots(file, ctx))
2311                 goto out_put_task;
2312
2313         mm = get_task_mm(task);
2314         if (!mm)
2315                 goto out_put_task;
2316
2317         ret = down_read_killable(&mm->mmap_sem);
2318         if (ret) {
2319                 mmput(mm);
2320                 goto out_put_task;
2321         }
2322
2323         nr_files = 0;
2324
2325         /*
2326          * We need two passes here:
2327          *
2328          *  1) Collect vmas of mapped files with mmap_sem taken
2329          *  2) Release mmap_sem and instantiate entries
2330          *
2331          * otherwise we get lockdep complained, since filldir()
2332          * routine might require mmap_sem taken in might_fault().
2333          */
2334
2335         for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2336                 if (!vma->vm_file)
2337                         continue;
2338                 if (++pos <= ctx->pos)
2339                         continue;
2340
2341                 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2342                 if (!p) {
2343                         ret = -ENOMEM;
2344                         up_read(&mm->mmap_sem);
2345                         mmput(mm);
2346                         goto out_put_task;
2347                 }
2348
2349                 p->start = vma->vm_start;
2350                 p->end = vma->vm_end;
2351                 p->mode = vma->vm_file->f_mode;
2352         }
2353         up_read(&mm->mmap_sem);
2354         mmput(mm);
2355
2356         for (i = 0; i < nr_files; i++) {
2357                 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2358                 unsigned int len;
2359
2360                 p = genradix_ptr(&fa, i);
2361                 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2362                 if (!proc_fill_cache(file, ctx,
2363                                       buf, len,
2364                                       proc_map_files_instantiate,
2365                                       task,
2366                                       (void *)(unsigned long)p->mode))
2367                         break;
2368                 ctx->pos++;
2369         }
2370
2371 out_put_task:
2372         put_task_struct(task);
2373 out:
2374         genradix_free(&fa);
2375         return ret;
2376 }
2377
2378 static const struct file_operations proc_map_files_operations = {
2379         .read           = generic_read_dir,
2380         .iterate_shared = proc_map_files_readdir,
2381         .llseek         = generic_file_llseek,
2382 };
2383
2384 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2385 struct timers_private {
2386         struct pid *pid;
2387         struct task_struct *task;
2388         struct sighand_struct *sighand;
2389         struct pid_namespace *ns;
2390         unsigned long flags;
2391 };
2392
2393 static void *timers_start(struct seq_file *m, loff_t *pos)
2394 {
2395         struct timers_private *tp = m->private;
2396
2397         tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2398         if (!tp->task)
2399                 return ERR_PTR(-ESRCH);
2400
2401         tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2402         if (!tp->sighand)
2403                 return ERR_PTR(-ESRCH);
2404
2405         return seq_list_start(&tp->task->signal->posix_timers, *pos);
2406 }
2407
2408 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2409 {
2410         struct timers_private *tp = m->private;
2411         return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2412 }
2413
2414 static void timers_stop(struct seq_file *m, void *v)
2415 {
2416         struct timers_private *tp = m->private;
2417
2418         if (tp->sighand) {
2419                 unlock_task_sighand(tp->task, &tp->flags);
2420                 tp->sighand = NULL;
2421         }
2422
2423         if (tp->task) {
2424                 put_task_struct(tp->task);
2425                 tp->task = NULL;
2426         }
2427 }
2428
2429 static int show_timer(struct seq_file *m, void *v)
2430 {
2431         struct k_itimer *timer;
2432         struct timers_private *tp = m->private;
2433         int notify;
2434         static const char * const nstr[] = {
2435                 [SIGEV_SIGNAL] = "signal",
2436                 [SIGEV_NONE] = "none",
2437                 [SIGEV_THREAD] = "thread",
2438         };
2439
2440         timer = list_entry((struct list_head *)v, struct k_itimer, list);
2441         notify = timer->it_sigev_notify;
2442
2443         seq_printf(m, "ID: %d\n", timer->it_id);
2444         seq_printf(m, "signal: %d/%px\n",
2445                    timer->sigq->info.si_signo,
2446                    timer->sigq->info.si_value.sival_ptr);
2447         seq_printf(m, "notify: %s/%s.%d\n",
2448                    nstr[notify & ~SIGEV_THREAD_ID],
2449                    (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2450                    pid_nr_ns(timer->it_pid, tp->ns));
2451         seq_printf(m, "ClockID: %d\n", timer->it_clock);
2452
2453         return 0;
2454 }
2455
2456 static const struct seq_operations proc_timers_seq_ops = {
2457         .start  = timers_start,
2458         .next   = timers_next,
2459         .stop   = timers_stop,
2460         .show   = show_timer,
2461 };
2462
2463 static int proc_timers_open(struct inode *inode, struct file *file)
2464 {
2465         struct timers_private *tp;
2466
2467         tp = __seq_open_private(file, &proc_timers_seq_ops,
2468                         sizeof(struct timers_private));
2469         if (!tp)
2470                 return -ENOMEM;
2471
2472         tp->pid = proc_pid(inode);
2473         tp->ns = proc_pid_ns(inode);
2474         return 0;
2475 }
2476
2477 static const struct file_operations proc_timers_operations = {
2478         .open           = proc_timers_open,
2479         .read           = seq_read,
2480         .llseek         = seq_lseek,
2481         .release        = seq_release_private,
2482 };
2483 #endif
2484
2485 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2486                                         size_t count, loff_t *offset)
2487 {
2488         struct inode *inode = file_inode(file);
2489         struct task_struct *p;
2490         u64 slack_ns;
2491         int err;
2492
2493         err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2494         if (err < 0)
2495                 return err;
2496
2497         p = get_proc_task(inode);
2498         if (!p)
2499                 return -ESRCH;
2500
2501         if (p != current) {
2502                 rcu_read_lock();
2503                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2504                         rcu_read_unlock();
2505                         count = -EPERM;
2506                         goto out;
2507                 }
2508                 rcu_read_unlock();
2509
2510                 err = security_task_setscheduler(p);
2511                 if (err) {
2512                         count = err;
2513                         goto out;
2514                 }
2515         }
2516
2517         task_lock(p);
2518         if (slack_ns == 0)
2519                 p->timer_slack_ns = p->default_timer_slack_ns;
2520         else
2521                 p->timer_slack_ns = slack_ns;
2522         task_unlock(p);
2523
2524 out:
2525         put_task_struct(p);
2526
2527         return count;
2528 }
2529
2530 static int timerslack_ns_show(struct seq_file *m, void *v)
2531 {
2532         struct inode *inode = m->private;
2533         struct task_struct *p;
2534         int err = 0;
2535
2536         p = get_proc_task(inode);
2537         if (!p)
2538                 return -ESRCH;
2539
2540         if (p != current) {
2541                 rcu_read_lock();
2542                 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2543                         rcu_read_unlock();
2544                         err = -EPERM;
2545                         goto out;
2546                 }
2547                 rcu_read_unlock();
2548
2549                 err = security_task_getscheduler(p);
2550                 if (err)
2551                         goto out;
2552         }
2553
2554         task_lock(p);
2555         seq_printf(m, "%llu\n", p->timer_slack_ns);
2556         task_unlock(p);
2557
2558 out:
2559         put_task_struct(p);
2560
2561         return err;
2562 }
2563
2564 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2565 {
2566         return single_open(filp, timerslack_ns_show, inode);
2567 }
2568
2569 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2570         .open           = timerslack_ns_open,
2571         .read           = seq_read,
2572         .write          = timerslack_ns_write,
2573         .llseek         = seq_lseek,
2574         .release        = single_release,
2575 };
2576
2577 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2578         struct task_struct *task, const void *ptr)
2579 {
2580         const struct pid_entry *p = ptr;
2581         struct inode *inode;
2582         struct proc_inode *ei;
2583
2584         inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2585         if (!inode)
2586                 return ERR_PTR(-ENOENT);
2587
2588         ei = PROC_I(inode);
2589         if (S_ISDIR(inode->i_mode))
2590                 set_nlink(inode, 2);    /* Use getattr to fix if necessary */
2591         if (p->iop)
2592                 inode->i_op = p->iop;
2593         if (p->fop)
2594                 inode->i_fop = p->fop;
2595         ei->op = p->op;
2596         pid_update_inode(task, inode);
2597         d_set_d_op(dentry, &pid_dentry_operations);
2598         return d_splice_alias(inode, dentry);
2599 }
2600
2601 static struct dentry *proc_pident_lookup(struct inode *dir, 
2602                                          struct dentry *dentry,
2603                                          const struct pid_entry *p,
2604                                          const struct pid_entry *end)
2605 {
2606         struct task_struct *task = get_proc_task(dir);
2607         struct dentry *res = ERR_PTR(-ENOENT);
2608
2609         if (!task)
2610                 goto out_no_task;
2611
2612         /*
2613          * Yes, it does not scale. And it should not. Don't add
2614          * new entries into /proc/<tgid>/ without very good reasons.
2615          */
2616         for (; p < end; p++) {
2617                 if (p->len != dentry->d_name.len)
2618                         continue;
2619                 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2620                         res = proc_pident_instantiate(dentry, task, p);
2621                         break;
2622                 }
2623         }
2624         put_task_struct(task);
2625 out_no_task:
2626         return res;
2627 }
2628
2629 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2630                 const struct pid_entry *ents, unsigned int nents)
2631 {
2632         struct task_struct *task = get_proc_task(file_inode(file));
2633         const struct pid_entry *p;
2634
2635         if (!task)
2636                 return -ENOENT;
2637
2638         if (!dir_emit_dots(file, ctx))
2639                 goto out;
2640
2641         if (ctx->pos >= nents + 2)
2642                 goto out;
2643
2644         for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2645                 if (!proc_fill_cache(file, ctx, p->name, p->len,
2646                                 proc_pident_instantiate, task, p))
2647                         break;
2648                 ctx->pos++;
2649         }
2650 out:
2651         put_task_struct(task);
2652         return 0;
2653 }
2654
2655 #ifdef CONFIG_SECURITY
2656 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2657                                   size_t count, loff_t *ppos)
2658 {
2659         struct inode * inode = file_inode(file);
2660         char *p = NULL;
2661         ssize_t length;
2662         struct task_struct *task = get_proc_task(inode);
2663
2664         if (!task)
2665                 return -ESRCH;
2666
2667         length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2668                                       (char*)file->f_path.dentry->d_name.name,
2669                                       &p);
2670         put_task_struct(task);
2671         if (length > 0)
2672                 length = simple_read_from_buffer(buf, count, ppos, p, length);
2673         kfree(p);
2674         return length;
2675 }
2676
2677 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2678                                    size_t count, loff_t *ppos)
2679 {
2680         struct inode * inode = file_inode(file);
2681         struct task_struct *task;
2682         void *page;
2683         int rv;
2684
2685         rcu_read_lock();
2686         task = pid_task(proc_pid(inode), PIDTYPE_PID);
2687         if (!task) {
2688                 rcu_read_unlock();
2689                 return -ESRCH;
2690         }
2691         /* A task may only write its own attributes. */
2692         if (current != task) {
2693                 rcu_read_unlock();
2694                 return -EACCES;
2695         }
2696         /* Prevent changes to overridden credentials. */
2697         if (current_cred() != current_real_cred()) {
2698                 rcu_read_unlock();
2699                 return -EBUSY;
2700         }
2701         rcu_read_unlock();
2702
2703         if (count > PAGE_SIZE)
2704                 count = PAGE_SIZE;
2705
2706         /* No partial writes. */
2707         if (*ppos != 0)
2708                 return -EINVAL;
2709
2710         page = memdup_user(buf, count);
2711         if (IS_ERR(page)) {
2712                 rv = PTR_ERR(page);
2713                 goto out;
2714         }
2715
2716         /* Guard against adverse ptrace interaction */
2717         rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2718         if (rv < 0)
2719                 goto out_free;
2720
2721         rv = security_setprocattr(PROC_I(inode)->op.lsm,
2722                                   file->f_path.dentry->d_name.name, page,
2723                                   count);
2724         mutex_unlock(&current->signal->cred_guard_mutex);
2725 out_free:
2726         kfree(page);
2727 out:
2728         return rv;
2729 }
2730
2731 static const struct file_operations proc_pid_attr_operations = {
2732         .read           = proc_pid_attr_read,
2733         .write          = proc_pid_attr_write,
2734         .llseek         = generic_file_llseek,
2735 };
2736
2737 #define LSM_DIR_OPS(LSM) \
2738 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2739                              struct dir_context *ctx) \
2740 { \
2741         return proc_pident_readdir(filp, ctx, \
2742                                    LSM##_attr_dir_stuff, \
2743                                    ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2744 } \
2745 \
2746 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2747         .read           = generic_read_dir, \
2748         .iterate        = proc_##LSM##_attr_dir_iterate, \
2749         .llseek         = default_llseek, \
2750 }; \
2751 \
2752 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2753                                 struct dentry *dentry, unsigned int flags) \
2754 { \
2755         return proc_pident_lookup(dir, dentry, \
2756                                   LSM##_attr_dir_stuff, \
2757                                   LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2758 } \
2759 \
2760 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2761         .lookup         = proc_##LSM##_attr_dir_lookup, \
2762         .getattr        = pid_getattr, \
2763         .setattr        = proc_setattr, \
2764 }
2765
2766 #ifdef CONFIG_SECURITY_SMACK
2767 static const struct pid_entry smack_attr_dir_stuff[] = {
2768         ATTR("smack", "current",        0666),
2769 };
2770 LSM_DIR_OPS(smack);
2771 #endif
2772
2773 static const struct pid_entry attr_dir_stuff[] = {
2774         ATTR(NULL, "current",           0666),
2775         ATTR(NULL, "prev",              0444),
2776         ATTR(NULL, "exec",              0666),
2777         ATTR(NULL, "fscreate",          0666),
2778         ATTR(NULL, "keycreate",         0666),
2779         ATTR(NULL, "sockcreate",        0666),
2780 #ifdef CONFIG_SECURITY_SMACK
2781         DIR("smack",                    0555,
2782             proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2783 #endif
2784 };
2785
2786 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2787 {
2788         return proc_pident_readdir(file, ctx, 
2789                                    attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2790 }
2791
2792 static const struct file_operations proc_attr_dir_operations = {
2793         .read           = generic_read_dir,
2794         .iterate_shared = proc_attr_dir_readdir,
2795         .llseek         = generic_file_llseek,
2796 };
2797
2798 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2799                                 struct dentry *dentry, unsigned int flags)
2800 {
2801         return proc_pident_lookup(dir, dentry,
2802                                   attr_dir_stuff,
2803                                   attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2804 }
2805
2806 static const struct inode_operations proc_attr_dir_inode_operations = {
2807         .lookup         = proc_attr_dir_lookup,
2808         .getattr        = pid_getattr,
2809         .setattr        = proc_setattr,
2810 };
2811
2812 #endif
2813
2814 #ifdef CONFIG_ELF_CORE
2815 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2816                                          size_t count, loff_t *ppos)
2817 {
2818         struct task_struct *task = get_proc_task(file_inode(file));
2819         struct mm_struct *mm;
2820         char buffer[PROC_NUMBUF];
2821         size_t len;
2822         int ret;
2823
2824         if (!task)
2825                 return -ESRCH;
2826
2827         ret = 0;
2828         mm = get_task_mm(task);
2829         if (mm) {
2830                 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2831                                ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2832                                 MMF_DUMP_FILTER_SHIFT));
2833                 mmput(mm);
2834                 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2835         }
2836
2837         put_task_struct(task);
2838
2839         return ret;
2840 }
2841
2842 static ssize_t proc_coredump_filter_write(struct file *file,
2843                                           const char __user *buf,
2844                                           size_t count,
2845                                           loff_t *ppos)
2846 {
2847         struct task_struct *task;
2848         struct mm_struct *mm;
2849         unsigned int val;
2850         int ret;
2851         int i;
2852         unsigned long mask;
2853
2854         ret = kstrtouint_from_user(buf, count, 0, &val);
2855         if (ret < 0)
2856                 return ret;
2857
2858         ret = -ESRCH;
2859         task = get_proc_task(file_inode(file));
2860         if (!task)
2861                 goto out_no_task;
2862
2863         mm = get_task_mm(task);
2864         if (!mm)
2865                 goto out_no_mm;
2866         ret = 0;
2867
2868         for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2869                 if (val & mask)
2870                         set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2871                 else
2872                         clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2873         }
2874
2875         mmput(mm);
2876  out_no_mm:
2877         put_task_struct(task);
2878  out_no_task:
2879         if (ret < 0)
2880                 return ret;
2881         return count;
2882 }
2883
2884 static const struct file_operations proc_coredump_filter_operations = {
2885         .read           = proc_coredump_filter_read,
2886         .write          = proc_coredump_filter_write,
2887         .llseek         = generic_file_llseek,
2888 };
2889 #endif
2890
2891 #ifdef CONFIG_TASK_IO_ACCOUNTING
2892 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2893 {
2894         struct task_io_accounting acct = task->ioac;
2895         unsigned long flags;
2896         int result;
2897
2898         result = mutex_lock_killable(&task->signal->exec_update_mutex);
2899         if (result)
2900                 return result;
2901
2902         if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2903                 result = -EACCES;
2904                 goto out_unlock;
2905         }
2906
2907         if (whole && lock_task_sighand(task, &flags)) {
2908                 struct task_struct *t = task;
2909
2910                 task_io_accounting_add(&acct, &task->signal->ioac);
2911                 while_each_thread(task, t)
2912                         task_io_accounting_add(&acct, &t->ioac);
2913
2914                 unlock_task_sighand(task, &flags);
2915         }
2916         seq_printf(m,
2917                    "rchar: %llu\n"
2918                    "wchar: %llu\n"
2919                    "syscr: %llu\n"
2920                    "syscw: %llu\n"
2921                    "read_bytes: %llu\n"
2922                    "write_bytes: %llu\n"
2923                    "cancelled_write_bytes: %llu\n",
2924                    (unsigned long long)acct.rchar,
2925                    (unsigned long long)acct.wchar,
2926                    (unsigned long long)acct.syscr,
2927                    (unsigned long long)acct.syscw,
2928                    (unsigned long long)acct.read_bytes,
2929                    (unsigned long long)acct.write_bytes,
2930                    (unsigned long long)acct.cancelled_write_bytes);
2931         result = 0;
2932
2933 out_unlock:
2934         mutex_unlock(&task->signal->exec_update_mutex);
2935         return result;
2936 }
2937
2938 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2939                                   struct pid *pid, struct task_struct *task)
2940 {
2941         return do_io_accounting(task, m, 0);
2942 }
2943
2944 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2945                                    struct pid *pid, struct task_struct *task)
2946 {
2947         return do_io_accounting(task, m, 1);
2948 }
2949 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2950
2951 #ifdef CONFIG_USER_NS
2952 static int proc_id_map_open(struct inode *inode, struct file *file,
2953         const struct seq_operations *seq_ops)
2954 {
2955         struct user_namespace *ns = NULL;
2956         struct task_struct *task;
2957         struct seq_file *seq;
2958         int ret = -EINVAL;
2959
2960         task = get_proc_task(inode);
2961         if (task) {
2962                 rcu_read_lock();
2963                 ns = get_user_ns(task_cred_xxx(task, user_ns));
2964                 rcu_read_unlock();
2965                 put_task_struct(task);
2966         }
2967         if (!ns)
2968                 goto err;
2969
2970         ret = seq_open(file, seq_ops);
2971         if (ret)
2972                 goto err_put_ns;
2973
2974         seq = file->private_data;
2975         seq->private = ns;
2976
2977         return 0;
2978 err_put_ns:
2979         put_user_ns(ns);
2980 err:
2981         return ret;
2982 }
2983
2984 static int proc_id_map_release(struct inode *inode, struct file *file)
2985 {
2986         struct seq_file *seq = file->private_data;
2987         struct user_namespace *ns = seq->private;
2988         put_user_ns(ns);
2989         return seq_release(inode, file);
2990 }
2991
2992 static int proc_uid_map_open(struct inode *inode, struct file *file)
2993 {
2994         return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2995 }
2996
2997 static int proc_gid_map_open(struct inode *inode, struct file *file)
2998 {
2999         return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3000 }
3001
3002 static int proc_projid_map_open(struct inode *inode, struct file *file)
3003 {
3004         return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3005 }
3006
3007 static const struct file_operations proc_uid_map_operations = {
3008         .open           = proc_uid_map_open,
3009         .write          = proc_uid_map_write,
3010         .read           = seq_read,
3011         .llseek         = seq_lseek,
3012         .release        = proc_id_map_release,
3013 };
3014
3015 static const struct file_operations proc_gid_map_operations = {
3016         .open           = proc_gid_map_open,
3017         .write          = proc_gid_map_write,
3018         .read           = seq_read,
3019         .llseek         = seq_lseek,
3020         .release        = proc_id_map_release,
3021 };
3022
3023 static const struct file_operations proc_projid_map_operations = {
3024         .open           = proc_projid_map_open,
3025         .write          = proc_projid_map_write,
3026         .read           = seq_read,
3027         .llseek         = seq_lseek,
3028         .release        = proc_id_map_release,
3029 };
3030
3031 static int proc_setgroups_open(struct inode *inode, struct file *file)
3032 {
3033         struct user_namespace *ns = NULL;
3034         struct task_struct *task;
3035         int ret;
3036
3037         ret = -ESRCH;
3038         task = get_proc_task(inode);
3039         if (task) {
3040                 rcu_read_lock();
3041                 ns = get_user_ns(task_cred_xxx(task, user_ns));
3042                 rcu_read_unlock();
3043                 put_task_struct(task);
3044         }
3045         if (!ns)
3046                 goto err;
3047
3048         if (file->f_mode & FMODE_WRITE) {
3049                 ret = -EACCES;
3050                 if (!ns_capable(ns, CAP_SYS_ADMIN))
3051                         goto err_put_ns;
3052         }
3053
3054         ret = single_open(file, &proc_setgroups_show, ns);
3055         if (ret)
3056                 goto err_put_ns;
3057
3058         return 0;
3059 err_put_ns:
3060         put_user_ns(ns);
3061 err:
3062         return ret;
3063 }
3064
3065 static int proc_setgroups_release(struct inode *inode, struct file *file)
3066 {
3067         struct seq_file *seq = file->private_data;
3068         struct user_namespace *ns = seq->private;
3069         int ret = single_release(inode, file);
3070         put_user_ns(ns);
3071         return ret;
3072 }
3073
3074 static const struct file_operations proc_setgroups_operations = {
3075         .open           = proc_setgroups_open,
3076         .write          = proc_setgroups_write,
3077         .read           = seq_read,
3078         .llseek         = seq_lseek,
3079         .release        = proc_setgroups_release,
3080 };
3081 #endif /* CONFIG_USER_NS */
3082
3083 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3084                                 struct pid *pid, struct task_struct *task)
3085 {
3086         int err = lock_trace(task);
3087         if (!err) {
3088                 seq_printf(m, "%08x\n", task->personality);
3089                 unlock_trace(task);
3090         }
3091         return err;
3092 }
3093
3094 #ifdef CONFIG_LIVEPATCH
3095 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3096                                 struct pid *pid, struct task_struct *task)
3097 {
3098         seq_printf(m, "%d\n", task->patch_state);
3099         return 0;
3100 }
3101 #endif /* CONFIG_LIVEPATCH */
3102
3103 #ifdef CONFIG_STACKLEAK_METRICS
3104 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3105                                 struct pid *pid, struct task_struct *task)
3106 {
3107         unsigned long prev_depth = THREAD_SIZE -
3108                                 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3109         unsigned long depth = THREAD_SIZE -
3110                                 (task->lowest_stack & (THREAD_SIZE - 1));
3111
3112         seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3113                                                         prev_depth, depth);
3114         return 0;
3115 }
3116 #endif /* CONFIG_STACKLEAK_METRICS */
3117
3118 /*
3119  * Thread groups
3120  */
3121 static const struct file_operations proc_task_operations;
3122 static const struct inode_operations proc_task_inode_operations;
3123
3124 static const struct pid_entry tgid_base_stuff[] = {
3125         DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3126         DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3127         DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3128         DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3129         DIR("ns",         S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3130 #ifdef CONFIG_NET
3131         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3132 #endif
3133         REG("environ",    S_IRUSR, proc_environ_operations),
3134         REG("auxv",       S_IRUSR, proc_auxv_operations),
3135         ONE("status",     S_IRUGO, proc_pid_status),
3136         ONE("personality", S_IRUSR, proc_pid_personality),
3137         ONE("limits",     S_IRUGO, proc_pid_limits),
3138 #ifdef CONFIG_SCHED_DEBUG
3139         REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3140 #endif
3141 #ifdef CONFIG_SCHED_AUTOGROUP
3142         REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3143 #endif
3144 #ifdef CONFIG_TIME_NS
3145         REG("timens_offsets",  S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3146 #endif
3147         REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3148 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3149         ONE("syscall",    S_IRUSR, proc_pid_syscall),
3150 #endif
3151         REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3152         ONE("stat",       S_IRUGO, proc_tgid_stat),
3153         ONE("statm",      S_IRUGO, proc_pid_statm),
3154         REG("maps",       S_IRUGO, proc_pid_maps_operations),
3155 #ifdef CONFIG_NUMA
3156         REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3157 #endif
3158         REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3159         LNK("cwd",        proc_cwd_link),
3160         LNK("root",       proc_root_link),
3161         LNK("exe",        proc_exe_link),
3162         REG("mounts",     S_IRUGO, proc_mounts_operations),
3163         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3164         REG("mountstats", S_IRUSR, proc_mountstats_operations),
3165 #ifdef CONFIG_PROC_PAGE_MONITOR
3166         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3167         REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3168         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3169         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3170 #endif
3171 #ifdef CONFIG_SECURITY
3172         DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3173 #endif
3174 #ifdef CONFIG_KALLSYMS
3175         ONE("wchan",      S_IRUGO, proc_pid_wchan),
3176 #endif
3177 #ifdef CONFIG_STACKTRACE
3178         ONE("stack",      S_IRUSR, proc_pid_stack),
3179 #endif
3180 #ifdef CONFIG_SCHED_INFO
3181         ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3182 #endif
3183 #ifdef CONFIG_LATENCYTOP
3184         REG("latency",  S_IRUGO, proc_lstats_operations),
3185 #endif
3186 #ifdef CONFIG_PROC_PID_CPUSET
3187         ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3188 #endif
3189 #ifdef CONFIG_CGROUPS
3190         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3191 #endif
3192 #ifdef CONFIG_PROC_CPU_RESCTRL
3193         ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3194 #endif
3195         ONE("oom_score",  S_IRUGO, proc_oom_score),
3196         REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3197         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3198 #ifdef CONFIG_AUDIT
3199         REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3200         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3201 #endif
3202 #ifdef CONFIG_FAULT_INJECTION
3203         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3204         REG("fail-nth", 0644, proc_fail_nth_operations),
3205 #endif
3206 #ifdef CONFIG_ELF_CORE
3207         REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3208 #endif
3209 #ifdef CONFIG_TASK_IO_ACCOUNTING
3210         ONE("io",       S_IRUSR, proc_tgid_io_accounting),
3211 #endif
3212 #ifdef CONFIG_USER_NS
3213         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3214         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3215         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3216         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3217 #endif
3218 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3219         REG("timers",     S_IRUGO, proc_timers_operations),
3220 #endif
3221         REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3222 #ifdef CONFIG_LIVEPATCH
3223         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3224 #endif
3225 #ifdef CONFIG_STACKLEAK_METRICS
3226         ONE("stack_depth", S_IRUGO, proc_stack_depth),
3227 #endif
3228 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3229         ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3230 #endif
3231 };
3232
3233 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3234 {
3235         return proc_pident_readdir(file, ctx,
3236                                    tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3237 }
3238
3239 static const struct file_operations proc_tgid_base_operations = {
3240         .read           = generic_read_dir,
3241         .iterate_shared = proc_tgid_base_readdir,
3242         .llseek         = generic_file_llseek,
3243 };
3244
3245 struct pid *tgid_pidfd_to_pid(const struct file *file)
3246 {
3247         if (file->f_op != &proc_tgid_base_operations)
3248                 return ERR_PTR(-EBADF);
3249
3250         return proc_pid(file_inode(file));
3251 }
3252
3253 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3254 {
3255         return proc_pident_lookup(dir, dentry,
3256                                   tgid_base_stuff,
3257                                   tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3258 }
3259
3260 static const struct inode_operations proc_tgid_base_inode_operations = {
3261         .lookup         = proc_tgid_base_lookup,
3262         .getattr        = pid_getattr,
3263         .setattr        = proc_setattr,
3264         .permission     = proc_pid_permission,
3265 };
3266
3267 /**
3268  * proc_flush_pid -  Remove dcache entries for @pid from the /proc dcache.
3269  * @pid: pid that should be flushed.
3270  *
3271  * This function walks a list of inodes (that belong to any proc
3272  * filesystem) that are attached to the pid and flushes them from
3273  * the dentry cache.
3274  *
3275  * It is safe and reasonable to cache /proc entries for a task until
3276  * that task exits.  After that they just clog up the dcache with
3277  * useless entries, possibly causing useful dcache entries to be
3278  * flushed instead.  This routine is provided to flush those useless
3279  * dcache entries when a process is reaped.
3280  *
3281  * NOTE: This routine is just an optimization so it does not guarantee
3282  *       that no dcache entries will exist after a process is reaped
3283  *       it just makes it very unlikely that any will persist.
3284  */
3285
3286 void proc_flush_pid(struct pid *pid)
3287 {
3288         proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3289 }
3290
3291 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3292                                    struct task_struct *task, const void *ptr)
3293 {
3294         struct inode *inode;
3295
3296         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3297         if (!inode)
3298                 return ERR_PTR(-ENOENT);
3299
3300         inode->i_op = &proc_tgid_base_inode_operations;
3301         inode->i_fop = &proc_tgid_base_operations;
3302         inode->i_flags|=S_IMMUTABLE;
3303
3304         set_nlink(inode, nlink_tgid);
3305         pid_update_inode(task, inode);
3306
3307         d_set_d_op(dentry, &pid_dentry_operations);
3308         return d_splice_alias(inode, dentry);
3309 }
3310
3311 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3312 {
3313         struct task_struct *task;
3314         unsigned tgid;
3315         struct pid_namespace *ns;
3316         struct dentry *result = ERR_PTR(-ENOENT);
3317
3318         tgid = name_to_int(&dentry->d_name);
3319         if (tgid == ~0U)
3320                 goto out;
3321
3322         ns = dentry->d_sb->s_fs_info;
3323         rcu_read_lock();
3324         task = find_task_by_pid_ns(tgid, ns);
3325         if (task)
3326                 get_task_struct(task);
3327         rcu_read_unlock();
3328         if (!task)
3329                 goto out;
3330
3331         result = proc_pid_instantiate(dentry, task, NULL);
3332         put_task_struct(task);
3333 out:
3334         return result;
3335 }
3336
3337 /*
3338  * Find the first task with tgid >= tgid
3339  *
3340  */
3341 struct tgid_iter {
3342         unsigned int tgid;
3343         struct task_struct *task;
3344 };
3345 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3346 {
3347         struct pid *pid;
3348
3349         if (iter.task)
3350                 put_task_struct(iter.task);
3351         rcu_read_lock();
3352 retry:
3353         iter.task = NULL;
3354         pid = find_ge_pid(iter.tgid, ns);
3355         if (pid) {
3356                 iter.tgid = pid_nr_ns(pid, ns);
3357                 iter.task = pid_task(pid, PIDTYPE_PID);
3358                 /* What we to know is if the pid we have find is the
3359                  * pid of a thread_group_leader.  Testing for task
3360                  * being a thread_group_leader is the obvious thing
3361                  * todo but there is a window when it fails, due to
3362                  * the pid transfer logic in de_thread.
3363                  *
3364                  * So we perform the straight forward test of seeing
3365                  * if the pid we have found is the pid of a thread
3366                  * group leader, and don't worry if the task we have
3367                  * found doesn't happen to be a thread group leader.
3368                  * As we don't care in the case of readdir.
3369                  */
3370                 if (!iter.task || !has_group_leader_pid(iter.task)) {
3371                         iter.tgid += 1;
3372                         goto retry;
3373                 }
3374                 get_task_struct(iter.task);
3375         }
3376         rcu_read_unlock();
3377         return iter;
3378 }
3379
3380 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3381
3382 /* for the /proc/ directory itself, after non-process stuff has been done */
3383 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3384 {
3385         struct tgid_iter iter;
3386         struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3387         loff_t pos = ctx->pos;
3388
3389         if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3390                 return 0;
3391
3392         if (pos == TGID_OFFSET - 2) {
3393                 struct inode *inode = d_inode(ns->proc_self);
3394                 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3395                         return 0;
3396                 ctx->pos = pos = pos + 1;
3397         }
3398         if (pos == TGID_OFFSET - 1) {
3399                 struct inode *inode = d_inode(ns->proc_thread_self);
3400                 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3401                         return 0;
3402                 ctx->pos = pos = pos + 1;
3403         }
3404         iter.tgid = pos - TGID_OFFSET;
3405         iter.task = NULL;
3406         for (iter = next_tgid(ns, iter);
3407              iter.task;
3408              iter.tgid += 1, iter = next_tgid(ns, iter)) {
3409                 char name[10 + 1];
3410                 unsigned int len;
3411
3412                 cond_resched();
3413                 if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3414                         continue;
3415
3416                 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3417                 ctx->pos = iter.tgid + TGID_OFFSET;
3418                 if (!proc_fill_cache(file, ctx, name, len,
3419                                      proc_pid_instantiate, iter.task, NULL)) {
3420                         put_task_struct(iter.task);
3421                         return 0;
3422                 }
3423         }
3424         ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3425         return 0;
3426 }
3427
3428 /*
3429  * proc_tid_comm_permission is a special permission function exclusively
3430  * used for the node /proc/<pid>/task/<tid>/comm.
3431  * It bypasses generic permission checks in the case where a task of the same
3432  * task group attempts to access the node.
3433  * The rationale behind this is that glibc and bionic access this node for
3434  * cross thread naming (pthread_set/getname_np(!self)). However, if
3435  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3436  * which locks out the cross thread naming implementation.
3437  * This function makes sure that the node is always accessible for members of
3438  * same thread group.
3439  */
3440 static int proc_tid_comm_permission(struct inode *inode, int mask)
3441 {
3442         bool is_same_tgroup;
3443         struct task_struct *task;
3444
3445         task = get_proc_task(inode);
3446         if (!task)
3447                 return -ESRCH;
3448         is_same_tgroup = same_thread_group(current, task);
3449         put_task_struct(task);
3450
3451         if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3452                 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3453                  * read or written by the members of the corresponding
3454                  * thread group.
3455                  */
3456                 return 0;
3457         }
3458
3459         return generic_permission(inode, mask);
3460 }
3461
3462 static const struct inode_operations proc_tid_comm_inode_operations = {
3463                 .permission = proc_tid_comm_permission,
3464 };
3465
3466 /*
3467  * Tasks
3468  */
3469 static const struct pid_entry tid_base_stuff[] = {
3470         DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3471         DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3472         DIR("ns",        S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3473 #ifdef CONFIG_NET
3474         DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3475 #endif
3476         REG("environ",   S_IRUSR, proc_environ_operations),
3477         REG("auxv",      S_IRUSR, proc_auxv_operations),
3478         ONE("status",    S_IRUGO, proc_pid_status),
3479         ONE("personality", S_IRUSR, proc_pid_personality),
3480         ONE("limits",    S_IRUGO, proc_pid_limits),
3481 #ifdef CONFIG_SCHED_DEBUG
3482         REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3483 #endif
3484         NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3485                          &proc_tid_comm_inode_operations,
3486                          &proc_pid_set_comm_operations, {}),
3487 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3488         ONE("syscall",   S_IRUSR, proc_pid_syscall),
3489 #endif
3490         REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3491         ONE("stat",      S_IRUGO, proc_tid_stat),
3492         ONE("statm",     S_IRUGO, proc_pid_statm),
3493         REG("maps",      S_IRUGO, proc_pid_maps_operations),
3494 #ifdef CONFIG_PROC_CHILDREN
3495         REG("children",  S_IRUGO, proc_tid_children_operations),
3496 #endif
3497 #ifdef CONFIG_NUMA
3498         REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3499 #endif
3500         REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3501         LNK("cwd",       proc_cwd_link),
3502         LNK("root",      proc_root_link),
3503         LNK("exe",       proc_exe_link),
3504         REG("mounts",    S_IRUGO, proc_mounts_operations),
3505         REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3506 #ifdef CONFIG_PROC_PAGE_MONITOR
3507         REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3508         REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3509         REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3510         REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3511 #endif
3512 #ifdef CONFIG_SECURITY
3513         DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3514 #endif
3515 #ifdef CONFIG_KALLSYMS
3516         ONE("wchan",     S_IRUGO, proc_pid_wchan),
3517 #endif
3518 #ifdef CONFIG_STACKTRACE
3519         ONE("stack",      S_IRUSR, proc_pid_stack),
3520 #endif
3521 #ifdef CONFIG_SCHED_INFO
3522         ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3523 #endif
3524 #ifdef CONFIG_LATENCYTOP
3525         REG("latency",  S_IRUGO, proc_lstats_operations),
3526 #endif
3527 #ifdef CONFIG_PROC_PID_CPUSET
3528         ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3529 #endif
3530 #ifdef CONFIG_CGROUPS
3531         ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3532 #endif
3533 #ifdef CONFIG_PROC_CPU_RESCTRL
3534         ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3535 #endif
3536         ONE("oom_score", S_IRUGO, proc_oom_score),
3537         REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3538         REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3539 #ifdef CONFIG_AUDIT
3540         REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3541         REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3542 #endif
3543 #ifdef CONFIG_FAULT_INJECTION
3544         REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3545         REG("fail-nth", 0644, proc_fail_nth_operations),
3546 #endif
3547 #ifdef CONFIG_TASK_IO_ACCOUNTING
3548         ONE("io",       S_IRUSR, proc_tid_io_accounting),
3549 #endif
3550 #ifdef CONFIG_USER_NS
3551         REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3552         REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3553         REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3554         REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3555 #endif
3556 #ifdef CONFIG_LIVEPATCH
3557         ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3558 #endif
3559 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3560         ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3561 #endif
3562 };
3563
3564 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3565 {
3566         return proc_pident_readdir(file, ctx,
3567                                    tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3568 }
3569
3570 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3571 {
3572         return proc_pident_lookup(dir, dentry,
3573                                   tid_base_stuff,
3574                                   tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3575 }
3576
3577 static const struct file_operations proc_tid_base_operations = {
3578         .read           = generic_read_dir,
3579         .iterate_shared = proc_tid_base_readdir,
3580         .llseek         = generic_file_llseek,
3581 };
3582
3583 static const struct inode_operations proc_tid_base_inode_operations = {
3584         .lookup         = proc_tid_base_lookup,
3585         .getattr        = pid_getattr,
3586         .setattr        = proc_setattr,
3587 };
3588
3589 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3590         struct task_struct *task, const void *ptr)
3591 {
3592         struct inode *inode;
3593         inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3594         if (!inode)
3595                 return ERR_PTR(-ENOENT);
3596
3597         inode->i_op = &proc_tid_base_inode_operations;
3598         inode->i_fop = &proc_tid_base_operations;
3599         inode->i_flags |= S_IMMUTABLE;
3600
3601         set_nlink(inode, nlink_tid);
3602         pid_update_inode(task, inode);
3603
3604         d_set_d_op(dentry, &pid_dentry_operations);
3605         return d_splice_alias(inode, dentry);
3606 }
3607
3608 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3609 {
3610         struct task_struct *task;
3611         struct task_struct *leader = get_proc_task(dir);
3612         unsigned tid;
3613         struct pid_namespace *ns;
3614         struct dentry *result = ERR_PTR(-ENOENT);
3615
3616         if (!leader)
3617                 goto out_no_task;
3618
3619         tid = name_to_int(&dentry->d_name);
3620         if (tid == ~0U)
3621                 goto out;
3622
3623         ns = dentry->d_sb->s_fs_info;
3624         rcu_read_lock();
3625         task = find_task_by_pid_ns(tid, ns);
3626         if (task)
3627                 get_task_struct(task);
3628         rcu_read_unlock();
3629         if (!task)
3630                 goto out;
3631         if (!same_thread_group(leader, task))
3632                 goto out_drop_task;
3633
3634         result = proc_task_instantiate(dentry, task, NULL);
3635 out_drop_task:
3636         put_task_struct(task);
3637 out:
3638         put_task_struct(leader);
3639 out_no_task:
3640         return result;
3641 }
3642
3643 /*
3644  * Find the first tid of a thread group to return to user space.
3645  *
3646  * Usually this is just the thread group leader, but if the users
3647  * buffer was too small or there was a seek into the middle of the
3648  * directory we have more work todo.
3649  *
3650  * In the case of a short read we start with find_task_by_pid.
3651  *
3652  * In the case of a seek we start with the leader and walk nr
3653  * threads past it.
3654  */
3655 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3656                                         struct pid_namespace *ns)
3657 {
3658         struct task_struct *pos, *task;
3659         unsigned long nr = f_pos;
3660
3661         if (nr != f_pos)        /* 32bit overflow? */
3662                 return NULL;
3663
3664         rcu_read_lock();
3665         task = pid_task(pid, PIDTYPE_PID);
3666         if (!task)
3667                 goto fail;
3668
3669         /* Attempt to start with the tid of a thread */
3670         if (tid && nr) {
3671                 pos = find_task_by_pid_ns(tid, ns);
3672                 if (pos && same_thread_group(pos, task))
3673                         goto found;
3674         }
3675
3676         /* If nr exceeds the number of threads there is nothing todo */
3677         if (nr >= get_nr_threads(task))
3678                 goto fail;
3679
3680         /* If we haven't found our starting place yet start
3681          * with the leader and walk nr threads forward.
3682          */
3683         pos = task = task->group_leader;
3684         do {
3685                 if (!nr--)
3686                         goto found;
3687         } while_each_thread(task, pos);
3688 fail:
3689         pos = NULL;
3690         goto out;
3691 found:
3692         get_task_struct(pos);
3693 out:
3694         rcu_read_unlock();
3695         return pos;
3696 }
3697
3698 /*
3699  * Find the next thread in the thread list.
3700  * Return NULL if there is an error or no next thread.
3701  *
3702  * The reference to the input task_struct is released.
3703  */
3704 static struct task_struct *next_tid(struct task_struct *start)
3705 {
3706         struct task_struct *pos = NULL;
3707         rcu_read_lock();
3708         if (pid_alive(start)) {
3709                 pos = next_thread(start);
3710                 if (thread_group_leader(pos))
3711                         pos = NULL;
3712                 else
3713                         get_task_struct(pos);
3714         }
3715         rcu_read_unlock();
3716         put_task_struct(start);
3717         return pos;
3718 }
3719
3720 /* for the /proc/TGID/task/ directories */
3721 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3722 {
3723         struct inode *inode = file_inode(file);
3724         struct task_struct *task;
3725         struct pid_namespace *ns;
3726         int tid;
3727
3728         if (proc_inode_is_dead(inode))
3729                 return -ENOENT;
3730
3731         if (!dir_emit_dots(file, ctx))
3732                 return 0;
3733
3734         /* f_version caches the tgid value that the last readdir call couldn't
3735          * return. lseek aka telldir automagically resets f_version to 0.
3736          */
3737         ns = proc_pid_ns(inode);
3738         tid = (int)file->f_version;
3739         file->f_version = 0;
3740         for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3741              task;
3742              task = next_tid(task), ctx->pos++) {
3743                 char name[10 + 1];
3744                 unsigned int len;
3745                 tid = task_pid_nr_ns(task, ns);
3746                 len = snprintf(name, sizeof(name), "%u", tid);
3747                 if (!proc_fill_cache(file, ctx, name, len,
3748                                 proc_task_instantiate, task, NULL)) {
3749                         /* returning this tgid failed, save it as the first
3750                          * pid for the next readir call */
3751                         file->f_version = (u64)tid;
3752                         put_task_struct(task);
3753                         break;
3754                 }
3755         }
3756
3757         return 0;
3758 }
3759
3760 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3761                              u32 request_mask, unsigned int query_flags)
3762 {
3763         struct inode *inode = d_inode(path->dentry);
3764         struct task_struct *p = get_proc_task(inode);
3765         generic_fillattr(inode, stat);
3766
3767         if (p) {
3768                 stat->nlink += get_nr_threads(p);
3769                 put_task_struct(p);
3770         }
3771
3772         return 0;
3773 }
3774
3775 static const struct inode_operations proc_task_inode_operations = {
3776         .lookup         = proc_task_lookup,
3777         .getattr        = proc_task_getattr,
3778         .setattr        = proc_setattr,
3779         .permission     = proc_pid_permission,
3780 };
3781
3782 static const struct file_operations proc_task_operations = {
3783         .read           = generic_read_dir,
3784         .iterate_shared = proc_task_readdir,
3785         .llseek         = generic_file_llseek,
3786 };
3787
3788 void __init set_proc_pid_nlink(void)
3789 {
3790         nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3791         nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3792 }