1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
7 * proc base directory handling functions
9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10 * Instead of using magical inumbers to determine the kind of object
11 * we allocate and fill in-core inodes upon lookup. They don't even
12 * go into icache. We cache the reference to task_struct upon lookup too.
13 * Eventually it should become a filesystem in its own. We don't use the
14 * rest of procfs anymore.
20 * Bruna Moreira <bruna.moreira@indt.org.br>
21 * Edjard Mota <edjard.mota@indt.org.br>
22 * Ilias Biris <ilias.biris@indt.org.br>
23 * Mauricio Lin <mauricio.lin@indt.org.br>
25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
27 * A new process specific entry (smaps) included in /proc. It shows the
28 * size of rss for each memory area. The maps entry lacks information
29 * about physical memory size (rss) for each mapped file, i.e.,
30 * rss information for executables and library files.
31 * This additional information is useful for any tools that need to know
32 * about physical memory consumption for a process specific library.
36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37 * Pud inclusion in the page table walking.
41 * 10LE Instituto Nokia de Tecnologia - INdT:
42 * A better way to walks through the page table as suggested by Hugh Dickins.
44 * Simo Piiroinen <simo.piiroinen@nokia.com>:
45 * Smaps information related to shared, private, clean and dirty pages.
47 * Paul Mundt <paul.mundt@nokia.com>:
48 * Overall revision about smaps.
51 #include <linux/uaccess.h>
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/generic-radix-tree.h>
63 #include <linux/string.h>
64 #include <linux/seq_file.h>
65 #include <linux/namei.h>
66 #include <linux/mnt_namespace.h>
68 #include <linux/swap.h>
69 #include <linux/rcupdate.h>
70 #include <linux/kallsyms.h>
71 #include <linux/stacktrace.h>
72 #include <linux/resource.h>
73 #include <linux/module.h>
74 #include <linux/mount.h>
75 #include <linux/security.h>
76 #include <linux/ptrace.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/posix-timers.h>
96 #include <linux/time_namespace.h>
97 #include <linux/resctrl.h>
98 #include <linux/cn_proc.h>
99 #include <linux/ksm.h>
100 #include <trace/events/oom.h>
101 #include "internal.h"
104 #include "../../lib/kstrtox.h"
107 * Implementing inode permission operations in /proc is almost
108 * certainly an error. Permission checks need to happen during
109 * each system call not at open time. The reason is that most of
110 * what we wish to check for permissions in /proc varies at runtime.
112 * The classic example of a problem is opening file descriptors
113 * in /proc for a task before it execs a suid executable.
116 static u8 nlink_tid __ro_after_init;
117 static u8 nlink_tgid __ro_after_init;
123 const struct inode_operations *iop;
124 const struct file_operations *fop;
128 #define NOD(NAME, MODE, IOP, FOP, OP) { \
130 .len = sizeof(NAME) - 1, \
137 #define DIR(NAME, MODE, iops, fops) \
138 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
139 #define LNK(NAME, get_link) \
140 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
141 &proc_pid_link_inode_operations, NULL, \
142 { .proc_get_link = get_link } )
143 #define REG(NAME, MODE, fops) \
144 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
145 #define ONE(NAME, MODE, show) \
146 NOD(NAME, (S_IFREG|(MODE)), \
147 NULL, &proc_single_file_operations, \
148 { .proc_show = show } )
149 #define ATTR(LSM, NAME, MODE) \
150 NOD(NAME, (S_IFREG|(MODE)), \
151 NULL, &proc_pid_attr_operations, \
155 * Count the number of hardlinks for the pid_entry table, excluding the .
158 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
165 for (i = 0; i < n; ++i) {
166 if (S_ISDIR(entries[i].mode))
173 static int get_task_root(struct task_struct *task, struct path *root)
175 int result = -ENOENT;
179 get_fs_root(task->fs, root);
186 static int proc_cwd_link(struct dentry *dentry, struct path *path)
188 struct task_struct *task = get_proc_task(d_inode(dentry));
189 int result = -ENOENT;
194 get_fs_pwd(task->fs, path);
198 put_task_struct(task);
203 static int proc_root_link(struct dentry *dentry, struct path *path)
205 struct task_struct *task = get_proc_task(d_inode(dentry));
206 int result = -ENOENT;
209 result = get_task_root(task, path);
210 put_task_struct(task);
216 * If the user used setproctitle(), we just get the string from
217 * user space at arg_start, and limit it to a maximum of one page.
219 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
220 size_t count, unsigned long pos,
221 unsigned long arg_start)
226 if (pos >= PAGE_SIZE)
229 page = (char *)__get_free_page(GFP_KERNEL);
234 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
236 int len = strnlen(page, got);
238 /* Include the NUL character if it was found */
246 len -= copy_to_user(buf, page+pos, len);
252 free_page((unsigned long)page);
256 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
257 size_t count, loff_t *ppos)
259 unsigned long arg_start, arg_end, env_start, env_end;
260 unsigned long pos, len;
263 /* Check if process spawned far enough to have cmdline. */
267 spin_lock(&mm->arg_lock);
268 arg_start = mm->arg_start;
269 arg_end = mm->arg_end;
270 env_start = mm->env_start;
271 env_end = mm->env_end;
272 spin_unlock(&mm->arg_lock);
274 if (arg_start >= arg_end)
278 * We allow setproctitle() to overwrite the argument
279 * strings, and overflow past the original end. But
280 * only when it overflows into the environment area.
282 if (env_start != arg_end || env_end < env_start)
283 env_start = env_end = arg_end;
284 len = env_end - arg_start;
286 /* We're not going to care if "*ppos" has high bits set */
290 if (count > len - pos)
296 * Magical special case: if the argv[] end byte is not
297 * zero, the user has overwritten it with setproctitle(3).
299 * Possible future enhancement: do this only once when
300 * pos is 0, and set a flag in the 'struct file'.
302 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
303 return get_mm_proctitle(mm, buf, count, pos, arg_start);
306 * For the non-setproctitle() case we limit things strictly
307 * to the [arg_start, arg_end[ range.
310 if (pos < arg_start || pos >= arg_end)
312 if (count > arg_end - pos)
313 count = arg_end - pos;
315 page = (char *)__get_free_page(GFP_KERNEL);
322 size_t size = min_t(size_t, PAGE_SIZE, count);
324 got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
327 got -= copy_to_user(buf, page, got);
328 if (unlikely(!got)) {
339 free_page((unsigned long)page);
343 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
344 size_t count, loff_t *pos)
346 struct mm_struct *mm;
349 mm = get_task_mm(tsk);
353 ret = get_mm_cmdline(mm, buf, count, pos);
358 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
359 size_t count, loff_t *pos)
361 struct task_struct *tsk;
366 tsk = get_proc_task(file_inode(file));
369 ret = get_task_cmdline(tsk, buf, count, pos);
370 put_task_struct(tsk);
376 static const struct file_operations proc_pid_cmdline_ops = {
377 .read = proc_pid_cmdline_read,
378 .llseek = generic_file_llseek,
381 #ifdef CONFIG_KALLSYMS
383 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
384 * Returns the resolved symbol. If that fails, simply return the address.
386 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
387 struct pid *pid, struct task_struct *task)
390 char symname[KSYM_NAME_LEN];
392 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
395 wchan = get_wchan(task);
396 if (wchan && !lookup_symbol_name(wchan, symname)) {
397 seq_puts(m, symname);
405 #endif /* CONFIG_KALLSYMS */
407 static int lock_trace(struct task_struct *task)
409 int err = down_read_killable(&task->signal->exec_update_lock);
412 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
413 up_read(&task->signal->exec_update_lock);
419 static void unlock_trace(struct task_struct *task)
421 up_read(&task->signal->exec_update_lock);
424 #ifdef CONFIG_STACKTRACE
426 #define MAX_STACK_TRACE_DEPTH 64
428 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
429 struct pid *pid, struct task_struct *task)
431 unsigned long *entries;
435 * The ability to racily run the kernel stack unwinder on a running task
436 * and then observe the unwinder output is scary; while it is useful for
437 * debugging kernel issues, it can also allow an attacker to leak kernel
439 * Doing this in a manner that is at least safe from races would require
440 * some work to ensure that the remote task can not be scheduled; and
441 * even then, this would still expose the unwinder as local attack
443 * Therefore, this interface is restricted to root.
445 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
448 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
453 err = lock_trace(task);
455 unsigned int i, nr_entries;
457 nr_entries = stack_trace_save_tsk(task, entries,
458 MAX_STACK_TRACE_DEPTH, 0);
460 for (i = 0; i < nr_entries; i++) {
461 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
472 #ifdef CONFIG_SCHED_INFO
474 * Provides /proc/PID/schedstat
476 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
477 struct pid *pid, struct task_struct *task)
479 if (unlikely(!sched_info_on()))
480 seq_puts(m, "0 0 0\n");
482 seq_printf(m, "%llu %llu %lu\n",
483 (unsigned long long)task->se.sum_exec_runtime,
484 (unsigned long long)task->sched_info.run_delay,
485 task->sched_info.pcount);
491 #ifdef CONFIG_LATENCYTOP
492 static int lstats_show_proc(struct seq_file *m, void *v)
495 struct inode *inode = m->private;
496 struct task_struct *task = get_proc_task(inode);
500 seq_puts(m, "Latency Top version : v0.1\n");
501 for (i = 0; i < LT_SAVECOUNT; i++) {
502 struct latency_record *lr = &task->latency_record[i];
503 if (lr->backtrace[0]) {
505 seq_printf(m, "%i %li %li",
506 lr->count, lr->time, lr->max);
507 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
508 unsigned long bt = lr->backtrace[q];
512 seq_printf(m, " %ps", (void *)bt);
518 put_task_struct(task);
522 static int lstats_open(struct inode *inode, struct file *file)
524 return single_open(file, lstats_show_proc, inode);
527 static ssize_t lstats_write(struct file *file, const char __user *buf,
528 size_t count, loff_t *offs)
530 struct task_struct *task = get_proc_task(file_inode(file));
534 clear_tsk_latency_tracing(task);
535 put_task_struct(task);
540 static const struct file_operations proc_lstats_operations = {
543 .write = lstats_write,
545 .release = single_release,
550 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
551 struct pid *pid, struct task_struct *task)
553 unsigned long totalpages = totalram_pages() + total_swap_pages;
554 unsigned long points = 0;
557 badness = oom_badness(task, totalpages);
559 * Special case OOM_SCORE_ADJ_MIN for all others scale the
560 * badness value into [0, 2000] range which we have been
561 * exporting for a long time so userspace might depend on it.
563 if (badness != LONG_MIN)
564 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3;
566 seq_printf(m, "%lu\n", points);
576 static const struct limit_names lnames[RLIM_NLIMITS] = {
577 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
578 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
579 [RLIMIT_DATA] = {"Max data size", "bytes"},
580 [RLIMIT_STACK] = {"Max stack size", "bytes"},
581 [RLIMIT_CORE] = {"Max core file size", "bytes"},
582 [RLIMIT_RSS] = {"Max resident set", "bytes"},
583 [RLIMIT_NPROC] = {"Max processes", "processes"},
584 [RLIMIT_NOFILE] = {"Max open files", "files"},
585 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
586 [RLIMIT_AS] = {"Max address space", "bytes"},
587 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
588 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
589 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
590 [RLIMIT_NICE] = {"Max nice priority", NULL},
591 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
592 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
595 /* Display limits for a process */
596 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
597 struct pid *pid, struct task_struct *task)
602 struct rlimit rlim[RLIM_NLIMITS];
604 if (!lock_task_sighand(task, &flags))
606 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
607 unlock_task_sighand(task, &flags);
610 * print the file header
617 for (i = 0; i < RLIM_NLIMITS; i++) {
618 if (rlim[i].rlim_cur == RLIM_INFINITY)
619 seq_printf(m, "%-25s %-20s ",
620 lnames[i].name, "unlimited");
622 seq_printf(m, "%-25s %-20lu ",
623 lnames[i].name, rlim[i].rlim_cur);
625 if (rlim[i].rlim_max == RLIM_INFINITY)
626 seq_printf(m, "%-20s ", "unlimited");
628 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
631 seq_printf(m, "%-10s\n", lnames[i].unit);
639 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
640 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
641 struct pid *pid, struct task_struct *task)
643 struct syscall_info info;
644 u64 *args = &info.data.args[0];
647 res = lock_trace(task);
651 if (task_current_syscall(task, &info))
652 seq_puts(m, "running\n");
653 else if (info.data.nr < 0)
654 seq_printf(m, "%d 0x%llx 0x%llx\n",
655 info.data.nr, info.sp, info.data.instruction_pointer);
658 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
660 args[0], args[1], args[2], args[3], args[4], args[5],
661 info.sp, info.data.instruction_pointer);
666 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
668 /************************************************************************/
669 /* Here the fs part begins */
670 /************************************************************************/
672 /* permission checks */
673 static bool proc_fd_access_allowed(struct inode *inode)
675 struct task_struct *task;
676 bool allowed = false;
677 /* Allow access to a task's file descriptors if it is us or we
678 * may use ptrace attach to the process and find out that
681 task = get_proc_task(inode);
683 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
684 put_task_struct(task);
689 int proc_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
693 struct inode *inode = d_inode(dentry);
695 if (attr->ia_valid & ATTR_MODE)
698 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
702 setattr_copy(&nop_mnt_idmap, inode, attr);
707 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
708 * or euid/egid (for hide_pid_min=2)?
710 static bool has_pid_permissions(struct proc_fs_info *fs_info,
711 struct task_struct *task,
712 enum proc_hidepid hide_pid_min)
715 * If 'hidpid' mount option is set force a ptrace check,
716 * we indicate that we are using a filesystem syscall
717 * by passing PTRACE_MODE_READ_FSCREDS
719 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE)
720 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
722 if (fs_info->hide_pid < hide_pid_min)
724 if (in_group_p(fs_info->pid_gid))
726 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
730 static int proc_pid_permission(struct mnt_idmap *idmap,
731 struct inode *inode, int mask)
733 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
734 struct task_struct *task;
737 task = get_proc_task(inode);
740 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS);
741 put_task_struct(task);
744 if (fs_info->hide_pid == HIDEPID_INVISIBLE) {
746 * Let's make getdents(), stat(), and open()
747 * consistent with each other. If a process
748 * may not stat() a file, it shouldn't be seen
756 return generic_permission(&nop_mnt_idmap, inode, mask);
761 static const struct inode_operations proc_def_inode_operations = {
762 .setattr = proc_setattr,
765 static int proc_single_show(struct seq_file *m, void *v)
767 struct inode *inode = m->private;
768 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
769 struct pid *pid = proc_pid(inode);
770 struct task_struct *task;
773 task = get_pid_task(pid, PIDTYPE_PID);
777 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
779 put_task_struct(task);
783 static int proc_single_open(struct inode *inode, struct file *filp)
785 return single_open(filp, proc_single_show, inode);
788 static const struct file_operations proc_single_file_operations = {
789 .open = proc_single_open,
792 .release = single_release,
796 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
798 struct task_struct *task = get_proc_task(inode);
799 struct mm_struct *mm = ERR_PTR(-ESRCH);
802 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
803 put_task_struct(task);
805 if (!IS_ERR_OR_NULL(mm)) {
806 /* ensure this mm_struct can't be freed */
808 /* but do not pin its memory */
816 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
818 struct mm_struct *mm = proc_mem_open(inode, mode);
823 file->private_data = mm;
827 static int mem_open(struct inode *inode, struct file *file)
829 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
831 /* OK to pass negative loff_t, we can catch out-of-range */
832 file->f_mode |= FMODE_UNSIGNED_OFFSET;
837 static ssize_t mem_rw(struct file *file, char __user *buf,
838 size_t count, loff_t *ppos, int write)
840 struct mm_struct *mm = file->private_data;
841 unsigned long addr = *ppos;
849 page = (char *)__get_free_page(GFP_KERNEL);
854 if (!mmget_not_zero(mm))
857 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
860 size_t this_len = min_t(size_t, count, PAGE_SIZE);
862 if (write && copy_from_user(page, buf, this_len)) {
867 this_len = access_remote_vm(mm, addr, page, this_len, flags);
874 if (!write && copy_to_user(buf, page, this_len)) {
888 free_page((unsigned long) page);
892 static ssize_t mem_read(struct file *file, char __user *buf,
893 size_t count, loff_t *ppos)
895 return mem_rw(file, buf, count, ppos, 0);
898 static ssize_t mem_write(struct file *file, const char __user *buf,
899 size_t count, loff_t *ppos)
901 return mem_rw(file, (char __user*)buf, count, ppos, 1);
904 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
908 file->f_pos = offset;
911 file->f_pos += offset;
916 force_successful_syscall_return();
920 static int mem_release(struct inode *inode, struct file *file)
922 struct mm_struct *mm = file->private_data;
928 static const struct file_operations proc_mem_operations = {
933 .release = mem_release,
936 static int environ_open(struct inode *inode, struct file *file)
938 return __mem_open(inode, file, PTRACE_MODE_READ);
941 static ssize_t environ_read(struct file *file, char __user *buf,
942 size_t count, loff_t *ppos)
945 unsigned long src = *ppos;
947 struct mm_struct *mm = file->private_data;
948 unsigned long env_start, env_end;
950 /* Ensure the process spawned far enough to have an environment. */
951 if (!mm || !mm->env_end)
954 page = (char *)__get_free_page(GFP_KERNEL);
959 if (!mmget_not_zero(mm))
962 spin_lock(&mm->arg_lock);
963 env_start = mm->env_start;
964 env_end = mm->env_end;
965 spin_unlock(&mm->arg_lock);
968 size_t this_len, max_len;
971 if (src >= (env_end - env_start))
974 this_len = env_end - (env_start + src);
976 max_len = min_t(size_t, PAGE_SIZE, count);
977 this_len = min(max_len, this_len);
979 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
986 if (copy_to_user(buf, page, retval)) {
1000 free_page((unsigned long) page);
1004 static const struct file_operations proc_environ_operations = {
1005 .open = environ_open,
1006 .read = environ_read,
1007 .llseek = generic_file_llseek,
1008 .release = mem_release,
1011 static int auxv_open(struct inode *inode, struct file *file)
1013 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1016 static ssize_t auxv_read(struct file *file, char __user *buf,
1017 size_t count, loff_t *ppos)
1019 struct mm_struct *mm = file->private_data;
1020 unsigned int nwords = 0;
1026 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1027 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1028 nwords * sizeof(mm->saved_auxv[0]));
1031 static const struct file_operations proc_auxv_operations = {
1034 .llseek = generic_file_llseek,
1035 .release = mem_release,
1038 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1041 struct task_struct *task = get_proc_task(file_inode(file));
1042 char buffer[PROC_NUMBUF];
1043 int oom_adj = OOM_ADJUST_MIN;
1048 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1049 oom_adj = OOM_ADJUST_MAX;
1051 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1053 put_task_struct(task);
1054 if (oom_adj > OOM_ADJUST_MAX)
1055 oom_adj = OOM_ADJUST_MAX;
1056 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1057 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1060 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1062 struct mm_struct *mm = NULL;
1063 struct task_struct *task;
1066 task = get_proc_task(file_inode(file));
1070 mutex_lock(&oom_adj_mutex);
1072 if (oom_adj < task->signal->oom_score_adj &&
1073 !capable(CAP_SYS_RESOURCE)) {
1078 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1079 * /proc/pid/oom_score_adj instead.
1081 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1082 current->comm, task_pid_nr(current), task_pid_nr(task),
1085 if ((short)oom_adj < task->signal->oom_score_adj_min &&
1086 !capable(CAP_SYS_RESOURCE)) {
1093 * Make sure we will check other processes sharing the mm if this is
1094 * not vfrok which wants its own oom_score_adj.
1095 * pin the mm so it doesn't go away and get reused after task_unlock
1097 if (!task->vfork_done) {
1098 struct task_struct *p = find_lock_task_mm(task);
1101 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1109 task->signal->oom_score_adj = oom_adj;
1110 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1111 task->signal->oom_score_adj_min = (short)oom_adj;
1112 trace_oom_score_adj_update(task);
1115 struct task_struct *p;
1118 for_each_process(p) {
1119 if (same_thread_group(task, p))
1122 /* do not touch kernel threads or the global init */
1123 if (p->flags & PF_KTHREAD || is_global_init(p))
1127 if (!p->vfork_done && process_shares_mm(p, mm)) {
1128 p->signal->oom_score_adj = oom_adj;
1129 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130 p->signal->oom_score_adj_min = (short)oom_adj;
1138 mutex_unlock(&oom_adj_mutex);
1139 put_task_struct(task);
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels. The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1153 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154 size_t count, loff_t *ppos)
1156 char buffer[PROC_NUMBUF];
1160 memset(buffer, 0, sizeof(buffer));
1161 if (count > sizeof(buffer) - 1)
1162 count = sizeof(buffer) - 1;
1163 if (copy_from_user(buffer, buf, count)) {
1168 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1171 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172 oom_adj != OOM_DISABLE) {
1178 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179 * value is always attainable.
1181 if (oom_adj == OOM_ADJUST_MAX)
1182 oom_adj = OOM_SCORE_ADJ_MAX;
1184 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1186 err = __set_oom_adj(file, oom_adj, true);
1188 return err < 0 ? err : count;
1191 static const struct file_operations proc_oom_adj_operations = {
1192 .read = oom_adj_read,
1193 .write = oom_adj_write,
1194 .llseek = generic_file_llseek,
1197 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198 size_t count, loff_t *ppos)
1200 struct task_struct *task = get_proc_task(file_inode(file));
1201 char buffer[PROC_NUMBUF];
1202 short oom_score_adj = OOM_SCORE_ADJ_MIN;
1207 oom_score_adj = task->signal->oom_score_adj;
1208 put_task_struct(task);
1209 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1213 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214 size_t count, loff_t *ppos)
1216 char buffer[PROC_NUMBUF];
1220 memset(buffer, 0, sizeof(buffer));
1221 if (count > sizeof(buffer) - 1)
1222 count = sizeof(buffer) - 1;
1223 if (copy_from_user(buffer, buf, count)) {
1228 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1231 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232 oom_score_adj > OOM_SCORE_ADJ_MAX) {
1237 err = __set_oom_adj(file, oom_score_adj, false);
1239 return err < 0 ? err : count;
1242 static const struct file_operations proc_oom_score_adj_operations = {
1243 .read = oom_score_adj_read,
1244 .write = oom_score_adj_write,
1245 .llseek = default_llseek,
1249 #define TMPBUFLEN 11
1250 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251 size_t count, loff_t *ppos)
1253 struct inode * inode = file_inode(file);
1254 struct task_struct *task = get_proc_task(inode);
1256 char tmpbuf[TMPBUFLEN];
1260 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261 from_kuid(file->f_cred->user_ns,
1262 audit_get_loginuid(task)));
1263 put_task_struct(task);
1264 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1267 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268 size_t count, loff_t *ppos)
1270 struct inode * inode = file_inode(file);
1275 /* Don't let kthreads write their own loginuid */
1276 if (current->flags & PF_KTHREAD)
1280 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1287 /* No partial writes. */
1291 rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1295 /* is userspace tring to explicitly UNSET the loginuid? */
1296 if (loginuid == AUDIT_UID_UNSET) {
1297 kloginuid = INVALID_UID;
1299 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1300 if (!uid_valid(kloginuid))
1304 rv = audit_set_loginuid(kloginuid);
1310 static const struct file_operations proc_loginuid_operations = {
1311 .read = proc_loginuid_read,
1312 .write = proc_loginuid_write,
1313 .llseek = generic_file_llseek,
1316 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1317 size_t count, loff_t *ppos)
1319 struct inode * inode = file_inode(file);
1320 struct task_struct *task = get_proc_task(inode);
1322 char tmpbuf[TMPBUFLEN];
1326 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1327 audit_get_sessionid(task));
1328 put_task_struct(task);
1329 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1332 static const struct file_operations proc_sessionid_operations = {
1333 .read = proc_sessionid_read,
1334 .llseek = generic_file_llseek,
1338 #ifdef CONFIG_FAULT_INJECTION
1339 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1340 size_t count, loff_t *ppos)
1342 struct task_struct *task = get_proc_task(file_inode(file));
1343 char buffer[PROC_NUMBUF];
1349 make_it_fail = task->make_it_fail;
1350 put_task_struct(task);
1352 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1354 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1357 static ssize_t proc_fault_inject_write(struct file * file,
1358 const char __user * buf, size_t count, loff_t *ppos)
1360 struct task_struct *task;
1361 char buffer[PROC_NUMBUF];
1365 if (!capable(CAP_SYS_RESOURCE))
1367 memset(buffer, 0, sizeof(buffer));
1368 if (count > sizeof(buffer) - 1)
1369 count = sizeof(buffer) - 1;
1370 if (copy_from_user(buffer, buf, count))
1372 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1375 if (make_it_fail < 0 || make_it_fail > 1)
1378 task = get_proc_task(file_inode(file));
1381 task->make_it_fail = make_it_fail;
1382 put_task_struct(task);
1387 static const struct file_operations proc_fault_inject_operations = {
1388 .read = proc_fault_inject_read,
1389 .write = proc_fault_inject_write,
1390 .llseek = generic_file_llseek,
1393 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1394 size_t count, loff_t *ppos)
1396 struct task_struct *task;
1400 err = kstrtouint_from_user(buf, count, 0, &n);
1404 task = get_proc_task(file_inode(file));
1408 put_task_struct(task);
1413 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1414 size_t count, loff_t *ppos)
1416 struct task_struct *task;
1417 char numbuf[PROC_NUMBUF];
1420 task = get_proc_task(file_inode(file));
1423 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1424 put_task_struct(task);
1425 return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1428 static const struct file_operations proc_fail_nth_operations = {
1429 .read = proc_fail_nth_read,
1430 .write = proc_fail_nth_write,
1435 #ifdef CONFIG_SCHED_DEBUG
1437 * Print out various scheduling related per-task fields:
1439 static int sched_show(struct seq_file *m, void *v)
1441 struct inode *inode = m->private;
1442 struct pid_namespace *ns = proc_pid_ns(inode->i_sb);
1443 struct task_struct *p;
1445 p = get_proc_task(inode);
1448 proc_sched_show_task(p, ns, m);
1456 sched_write(struct file *file, const char __user *buf,
1457 size_t count, loff_t *offset)
1459 struct inode *inode = file_inode(file);
1460 struct task_struct *p;
1462 p = get_proc_task(inode);
1465 proc_sched_set_task(p);
1472 static int sched_open(struct inode *inode, struct file *filp)
1474 return single_open(filp, sched_show, inode);
1477 static const struct file_operations proc_pid_sched_operations = {
1480 .write = sched_write,
1481 .llseek = seq_lseek,
1482 .release = single_release,
1487 #ifdef CONFIG_SCHED_AUTOGROUP
1489 * Print out autogroup related information:
1491 static int sched_autogroup_show(struct seq_file *m, void *v)
1493 struct inode *inode = m->private;
1494 struct task_struct *p;
1496 p = get_proc_task(inode);
1499 proc_sched_autogroup_show_task(p, m);
1507 sched_autogroup_write(struct file *file, const char __user *buf,
1508 size_t count, loff_t *offset)
1510 struct inode *inode = file_inode(file);
1511 struct task_struct *p;
1512 char buffer[PROC_NUMBUF];
1516 memset(buffer, 0, sizeof(buffer));
1517 if (count > sizeof(buffer) - 1)
1518 count = sizeof(buffer) - 1;
1519 if (copy_from_user(buffer, buf, count))
1522 err = kstrtoint(strstrip(buffer), 0, &nice);
1526 p = get_proc_task(inode);
1530 err = proc_sched_autogroup_set_nice(p, nice);
1539 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1543 ret = single_open(filp, sched_autogroup_show, NULL);
1545 struct seq_file *m = filp->private_data;
1552 static const struct file_operations proc_pid_sched_autogroup_operations = {
1553 .open = sched_autogroup_open,
1555 .write = sched_autogroup_write,
1556 .llseek = seq_lseek,
1557 .release = single_release,
1560 #endif /* CONFIG_SCHED_AUTOGROUP */
1562 #ifdef CONFIG_TIME_NS
1563 static int timens_offsets_show(struct seq_file *m, void *v)
1565 struct task_struct *p;
1567 p = get_proc_task(file_inode(m->file));
1570 proc_timens_show_offsets(p, m);
1577 static ssize_t timens_offsets_write(struct file *file, const char __user *buf,
1578 size_t count, loff_t *ppos)
1580 struct inode *inode = file_inode(file);
1581 struct proc_timens_offset offsets[2];
1582 char *kbuf = NULL, *pos, *next_line;
1583 struct task_struct *p;
1586 /* Only allow < page size writes at the beginning of the file */
1587 if ((*ppos != 0) || (count >= PAGE_SIZE))
1590 /* Slurp in the user data */
1591 kbuf = memdup_user_nul(buf, count);
1593 return PTR_ERR(kbuf);
1595 /* Parse the user data */
1598 for (pos = kbuf; pos; pos = next_line) {
1599 struct proc_timens_offset *off = &offsets[noffsets];
1603 /* Find the end of line and ensure we don't look past it */
1604 next_line = strchr(pos, '\n');
1608 if (*next_line == '\0')
1612 err = sscanf(pos, "%9s %lld %lu", clock,
1613 &off->val.tv_sec, &off->val.tv_nsec);
1614 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC)
1617 clock[sizeof(clock) - 1] = 0;
1618 if (strcmp(clock, "monotonic") == 0 ||
1619 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0)
1620 off->clockid = CLOCK_MONOTONIC;
1621 else if (strcmp(clock, "boottime") == 0 ||
1622 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0)
1623 off->clockid = CLOCK_BOOTTIME;
1628 if (noffsets == ARRAY_SIZE(offsets)) {
1630 count = next_line - kbuf;
1636 p = get_proc_task(inode);
1639 ret = proc_timens_set_offset(file, p, offsets, noffsets);
1650 static int timens_offsets_open(struct inode *inode, struct file *filp)
1652 return single_open(filp, timens_offsets_show, inode);
1655 static const struct file_operations proc_timens_offsets_operations = {
1656 .open = timens_offsets_open,
1658 .write = timens_offsets_write,
1659 .llseek = seq_lseek,
1660 .release = single_release,
1662 #endif /* CONFIG_TIME_NS */
1664 static ssize_t comm_write(struct file *file, const char __user *buf,
1665 size_t count, loff_t *offset)
1667 struct inode *inode = file_inode(file);
1668 struct task_struct *p;
1669 char buffer[TASK_COMM_LEN];
1670 const size_t maxlen = sizeof(buffer) - 1;
1672 memset(buffer, 0, sizeof(buffer));
1673 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1676 p = get_proc_task(inode);
1680 if (same_thread_group(current, p)) {
1681 set_task_comm(p, buffer);
1682 proc_comm_connector(p);
1692 static int comm_show(struct seq_file *m, void *v)
1694 struct inode *inode = m->private;
1695 struct task_struct *p;
1697 p = get_proc_task(inode);
1701 proc_task_name(m, p, false);
1709 static int comm_open(struct inode *inode, struct file *filp)
1711 return single_open(filp, comm_show, inode);
1714 static const struct file_operations proc_pid_set_comm_operations = {
1717 .write = comm_write,
1718 .llseek = seq_lseek,
1719 .release = single_release,
1722 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1724 struct task_struct *task;
1725 struct file *exe_file;
1727 task = get_proc_task(d_inode(dentry));
1730 exe_file = get_task_exe_file(task);
1731 put_task_struct(task);
1733 *exe_path = exe_file->f_path;
1734 path_get(&exe_file->f_path);
1741 static const char *proc_pid_get_link(struct dentry *dentry,
1742 struct inode *inode,
1743 struct delayed_call *done)
1746 int error = -EACCES;
1749 return ERR_PTR(-ECHILD);
1751 /* Are we allowed to snoop on the tasks file descriptors? */
1752 if (!proc_fd_access_allowed(inode))
1755 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1759 error = nd_jump_link(&path);
1761 return ERR_PTR(error);
1764 static int do_proc_readlink(const struct path *path, char __user *buffer, int buflen)
1766 char *tmp = kmalloc(PATH_MAX, GFP_KERNEL);
1773 pathname = d_path(path, tmp, PATH_MAX);
1774 len = PTR_ERR(pathname);
1775 if (IS_ERR(pathname))
1777 len = tmp + PATH_MAX - 1 - pathname;
1781 if (copy_to_user(buffer, pathname, len))
1788 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1790 int error = -EACCES;
1791 struct inode *inode = d_inode(dentry);
1794 /* Are we allowed to snoop on the tasks file descriptors? */
1795 if (!proc_fd_access_allowed(inode))
1798 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1802 error = do_proc_readlink(&path, buffer, buflen);
1808 const struct inode_operations proc_pid_link_inode_operations = {
1809 .readlink = proc_pid_readlink,
1810 .get_link = proc_pid_get_link,
1811 .setattr = proc_setattr,
1815 /* building an inode */
1817 void task_dump_owner(struct task_struct *task, umode_t mode,
1818 kuid_t *ruid, kgid_t *rgid)
1820 /* Depending on the state of dumpable compute who should own a
1821 * proc file for a task.
1823 const struct cred *cred;
1827 if (unlikely(task->flags & PF_KTHREAD)) {
1828 *ruid = GLOBAL_ROOT_UID;
1829 *rgid = GLOBAL_ROOT_GID;
1833 /* Default to the tasks effective ownership */
1835 cred = __task_cred(task);
1841 * Before the /proc/pid/status file was created the only way to read
1842 * the effective uid of a /process was to stat /proc/pid. Reading
1843 * /proc/pid/status is slow enough that procps and other packages
1844 * kept stating /proc/pid. To keep the rules in /proc simple I have
1845 * made this apply to all per process world readable and executable
1848 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1849 struct mm_struct *mm;
1852 /* Make non-dumpable tasks owned by some root */
1854 if (get_dumpable(mm) != SUID_DUMP_USER) {
1855 struct user_namespace *user_ns = mm->user_ns;
1857 uid = make_kuid(user_ns, 0);
1858 if (!uid_valid(uid))
1859 uid = GLOBAL_ROOT_UID;
1861 gid = make_kgid(user_ns, 0);
1862 if (!gid_valid(gid))
1863 gid = GLOBAL_ROOT_GID;
1866 uid = GLOBAL_ROOT_UID;
1867 gid = GLOBAL_ROOT_GID;
1875 void proc_pid_evict_inode(struct proc_inode *ei)
1877 struct pid *pid = ei->pid;
1879 if (S_ISDIR(ei->vfs_inode.i_mode)) {
1880 spin_lock(&pid->lock);
1881 hlist_del_init_rcu(&ei->sibling_inodes);
1882 spin_unlock(&pid->lock);
1888 struct inode *proc_pid_make_inode(struct super_block *sb,
1889 struct task_struct *task, umode_t mode)
1891 struct inode * inode;
1892 struct proc_inode *ei;
1895 /* We need a new inode */
1897 inode = new_inode(sb);
1903 inode->i_mode = mode;
1904 inode->i_ino = get_next_ino();
1905 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1906 inode->i_op = &proc_def_inode_operations;
1909 * grab the reference to task.
1911 pid = get_task_pid(task, PIDTYPE_PID);
1915 /* Let the pid remember us for quick removal */
1918 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1919 security_task_to_inode(task, inode);
1930 * Generating an inode and adding it into @pid->inodes, so that task will
1931 * invalidate inode's dentry before being released.
1933 * This helper is used for creating dir-type entries under '/proc' and
1934 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>'
1935 * can be released by invalidating '/proc/<tgid>' dentry.
1936 * In theory, dentries under '/proc/<tgid>/task' can also be released by
1937 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single
1938 * thread exiting situation: Any one of threads should invalidate its
1939 * '/proc/<tgid>/task/<pid>' dentry before released.
1941 static struct inode *proc_pid_make_base_inode(struct super_block *sb,
1942 struct task_struct *task, umode_t mode)
1944 struct inode *inode;
1945 struct proc_inode *ei;
1948 inode = proc_pid_make_inode(sb, task, mode);
1952 /* Let proc_flush_pid find this directory inode */
1955 spin_lock(&pid->lock);
1956 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes);
1957 spin_unlock(&pid->lock);
1962 int pid_getattr(struct mnt_idmap *idmap, const struct path *path,
1963 struct kstat *stat, u32 request_mask, unsigned int query_flags)
1965 struct inode *inode = d_inode(path->dentry);
1966 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb);
1967 struct task_struct *task;
1969 generic_fillattr(&nop_mnt_idmap, inode, stat);
1971 stat->uid = GLOBAL_ROOT_UID;
1972 stat->gid = GLOBAL_ROOT_GID;
1974 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1976 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) {
1979 * This doesn't prevent learning whether PID exists,
1980 * it only makes getattr() consistent with readdir().
1984 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1993 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1995 void pid_update_inode(struct task_struct *task, struct inode *inode)
1997 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1999 inode->i_mode &= ~(S_ISUID | S_ISGID);
2000 security_task_to_inode(task, inode);
2004 * Rewrite the inode's ownerships here because the owning task may have
2005 * performed a setuid(), etc.
2008 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
2010 struct inode *inode;
2011 struct task_struct *task;
2015 inode = d_inode_rcu(dentry);
2018 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2021 pid_update_inode(task, inode);
2029 static inline bool proc_inode_is_dead(struct inode *inode)
2031 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
2034 int pid_delete_dentry(const struct dentry *dentry)
2036 /* Is the task we represent dead?
2037 * If so, then don't put the dentry on the lru list,
2038 * kill it immediately.
2040 return proc_inode_is_dead(d_inode(dentry));
2043 const struct dentry_operations pid_dentry_operations =
2045 .d_revalidate = pid_revalidate,
2046 .d_delete = pid_delete_dentry,
2052 * Fill a directory entry.
2054 * If possible create the dcache entry and derive our inode number and
2055 * file type from dcache entry.
2057 * Since all of the proc inode numbers are dynamically generated, the inode
2058 * numbers do not exist until the inode is cache. This means creating
2059 * the dcache entry in readdir is necessary to keep the inode numbers
2060 * reported by readdir in sync with the inode numbers reported
2063 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
2064 const char *name, unsigned int len,
2065 instantiate_t instantiate, struct task_struct *task, const void *ptr)
2067 struct dentry *child, *dir = file->f_path.dentry;
2068 struct qstr qname = QSTR_INIT(name, len);
2069 struct inode *inode;
2070 unsigned type = DT_UNKNOWN;
2073 child = d_hash_and_lookup(dir, &qname);
2075 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2076 child = d_alloc_parallel(dir, &qname, &wq);
2078 goto end_instantiate;
2079 if (d_in_lookup(child)) {
2081 res = instantiate(child, task, ptr);
2082 d_lookup_done(child);
2083 if (unlikely(res)) {
2087 goto end_instantiate;
2091 inode = d_inode(child);
2093 type = inode->i_mode >> 12;
2096 return dir_emit(ctx, name, len, ino, type);
2100 * dname_to_vma_addr - maps a dentry name into two unsigned longs
2101 * which represent vma start and end addresses.
2103 static int dname_to_vma_addr(struct dentry *dentry,
2104 unsigned long *start, unsigned long *end)
2106 const char *str = dentry->d_name.name;
2107 unsigned long long sval, eval;
2110 if (str[0] == '0' && str[1] != '-')
2112 len = _parse_integer(str, 16, &sval);
2113 if (len & KSTRTOX_OVERFLOW)
2115 if (sval != (unsigned long)sval)
2123 if (str[0] == '0' && str[1])
2125 len = _parse_integer(str, 16, &eval);
2126 if (len & KSTRTOX_OVERFLOW)
2128 if (eval != (unsigned long)eval)
2141 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
2143 unsigned long vm_start, vm_end;
2144 bool exact_vma_exists = false;
2145 struct mm_struct *mm = NULL;
2146 struct task_struct *task;
2147 struct inode *inode;
2150 if (flags & LOOKUP_RCU)
2153 inode = d_inode(dentry);
2154 task = get_proc_task(inode);
2158 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
2159 if (IS_ERR_OR_NULL(mm))
2162 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2163 status = mmap_read_lock_killable(mm);
2165 exact_vma_exists = !!find_exact_vma(mm, vm_start,
2167 mmap_read_unlock(mm);
2173 if (exact_vma_exists) {
2174 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
2176 security_task_to_inode(task, inode);
2181 put_task_struct(task);
2187 static const struct dentry_operations tid_map_files_dentry_operations = {
2188 .d_revalidate = map_files_d_revalidate,
2189 .d_delete = pid_delete_dentry,
2192 static int map_files_get_link(struct dentry *dentry, struct path *path)
2194 unsigned long vm_start, vm_end;
2195 struct vm_area_struct *vma;
2196 struct task_struct *task;
2197 struct mm_struct *mm;
2201 task = get_proc_task(d_inode(dentry));
2205 mm = get_task_mm(task);
2206 put_task_struct(task);
2210 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2214 rc = mmap_read_lock_killable(mm);
2219 vma = find_exact_vma(mm, vm_start, vm_end);
2220 if (vma && vma->vm_file) {
2221 *path = vma->vm_file->f_path;
2225 mmap_read_unlock(mm);
2233 struct map_files_info {
2234 unsigned long start;
2240 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due
2241 * to concerns about how the symlinks may be used to bypass permissions on
2242 * ancestor directories in the path to the file in question.
2245 proc_map_files_get_link(struct dentry *dentry,
2246 struct inode *inode,
2247 struct delayed_call *done)
2249 if (!checkpoint_restore_ns_capable(&init_user_ns))
2250 return ERR_PTR(-EPERM);
2252 return proc_pid_get_link(dentry, inode, done);
2256 * Identical to proc_pid_link_inode_operations except for get_link()
2258 static const struct inode_operations proc_map_files_link_inode_operations = {
2259 .readlink = proc_pid_readlink,
2260 .get_link = proc_map_files_get_link,
2261 .setattr = proc_setattr,
2264 static struct dentry *
2265 proc_map_files_instantiate(struct dentry *dentry,
2266 struct task_struct *task, const void *ptr)
2268 fmode_t mode = (fmode_t)(unsigned long)ptr;
2269 struct proc_inode *ei;
2270 struct inode *inode;
2272 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2273 ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2274 ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2276 return ERR_PTR(-ENOENT);
2279 ei->op.proc_get_link = map_files_get_link;
2281 inode->i_op = &proc_map_files_link_inode_operations;
2284 d_set_d_op(dentry, &tid_map_files_dentry_operations);
2285 return d_splice_alias(inode, dentry);
2288 static struct dentry *proc_map_files_lookup(struct inode *dir,
2289 struct dentry *dentry, unsigned int flags)
2291 unsigned long vm_start, vm_end;
2292 struct vm_area_struct *vma;
2293 struct task_struct *task;
2294 struct dentry *result;
2295 struct mm_struct *mm;
2297 result = ERR_PTR(-ENOENT);
2298 task = get_proc_task(dir);
2302 result = ERR_PTR(-EACCES);
2303 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2306 result = ERR_PTR(-ENOENT);
2307 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2310 mm = get_task_mm(task);
2314 result = ERR_PTR(-EINTR);
2315 if (mmap_read_lock_killable(mm))
2318 result = ERR_PTR(-ENOENT);
2319 vma = find_exact_vma(mm, vm_start, vm_end);
2324 result = proc_map_files_instantiate(dentry, task,
2325 (void *)(unsigned long)vma->vm_file->f_mode);
2328 mmap_read_unlock(mm);
2332 put_task_struct(task);
2337 static const struct inode_operations proc_map_files_inode_operations = {
2338 .lookup = proc_map_files_lookup,
2339 .permission = proc_fd_permission,
2340 .setattr = proc_setattr,
2344 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2346 struct vm_area_struct *vma;
2347 struct task_struct *task;
2348 struct mm_struct *mm;
2349 unsigned long nr_files, pos, i;
2350 GENRADIX(struct map_files_info) fa;
2351 struct map_files_info *p;
2353 struct vma_iterator vmi;
2358 task = get_proc_task(file_inode(file));
2363 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2367 if (!dir_emit_dots(file, ctx))
2370 mm = get_task_mm(task);
2374 ret = mmap_read_lock_killable(mm);
2383 * We need two passes here:
2385 * 1) Collect vmas of mapped files with mmap_lock taken
2386 * 2) Release mmap_lock and instantiate entries
2388 * otherwise we get lockdep complained, since filldir()
2389 * routine might require mmap_lock taken in might_fault().
2393 vma_iter_init(&vmi, mm, 0);
2394 for_each_vma(vmi, vma) {
2397 if (++pos <= ctx->pos)
2400 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2403 mmap_read_unlock(mm);
2408 p->start = vma->vm_start;
2409 p->end = vma->vm_end;
2410 p->mode = vma->vm_file->f_mode;
2412 mmap_read_unlock(mm);
2415 for (i = 0; i < nr_files; i++) {
2416 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */
2419 p = genradix_ptr(&fa, i);
2420 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2421 if (!proc_fill_cache(file, ctx,
2423 proc_map_files_instantiate,
2425 (void *)(unsigned long)p->mode))
2431 put_task_struct(task);
2437 static const struct file_operations proc_map_files_operations = {
2438 .read = generic_read_dir,
2439 .iterate_shared = proc_map_files_readdir,
2440 .llseek = generic_file_llseek,
2443 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2444 struct timers_private {
2446 struct task_struct *task;
2447 struct sighand_struct *sighand;
2448 struct pid_namespace *ns;
2449 unsigned long flags;
2452 static void *timers_start(struct seq_file *m, loff_t *pos)
2454 struct timers_private *tp = m->private;
2456 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2458 return ERR_PTR(-ESRCH);
2460 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2462 return ERR_PTR(-ESRCH);
2464 return seq_list_start(&tp->task->signal->posix_timers, *pos);
2467 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2469 struct timers_private *tp = m->private;
2470 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2473 static void timers_stop(struct seq_file *m, void *v)
2475 struct timers_private *tp = m->private;
2478 unlock_task_sighand(tp->task, &tp->flags);
2483 put_task_struct(tp->task);
2488 static int show_timer(struct seq_file *m, void *v)
2490 struct k_itimer *timer;
2491 struct timers_private *tp = m->private;
2493 static const char * const nstr[] = {
2494 [SIGEV_SIGNAL] = "signal",
2495 [SIGEV_NONE] = "none",
2496 [SIGEV_THREAD] = "thread",
2499 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2500 notify = timer->it_sigev_notify;
2502 seq_printf(m, "ID: %d\n", timer->it_id);
2503 seq_printf(m, "signal: %d/%px\n",
2504 timer->sigq->info.si_signo,
2505 timer->sigq->info.si_value.sival_ptr);
2506 seq_printf(m, "notify: %s/%s.%d\n",
2507 nstr[notify & ~SIGEV_THREAD_ID],
2508 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2509 pid_nr_ns(timer->it_pid, tp->ns));
2510 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2515 static const struct seq_operations proc_timers_seq_ops = {
2516 .start = timers_start,
2517 .next = timers_next,
2518 .stop = timers_stop,
2522 static int proc_timers_open(struct inode *inode, struct file *file)
2524 struct timers_private *tp;
2526 tp = __seq_open_private(file, &proc_timers_seq_ops,
2527 sizeof(struct timers_private));
2531 tp->pid = proc_pid(inode);
2532 tp->ns = proc_pid_ns(inode->i_sb);
2536 static const struct file_operations proc_timers_operations = {
2537 .open = proc_timers_open,
2539 .llseek = seq_lseek,
2540 .release = seq_release_private,
2544 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2545 size_t count, loff_t *offset)
2547 struct inode *inode = file_inode(file);
2548 struct task_struct *p;
2552 err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2556 p = get_proc_task(inode);
2562 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2569 err = security_task_setscheduler(p);
2578 p->timer_slack_ns = p->default_timer_slack_ns;
2580 p->timer_slack_ns = slack_ns;
2589 static int timerslack_ns_show(struct seq_file *m, void *v)
2591 struct inode *inode = m->private;
2592 struct task_struct *p;
2595 p = get_proc_task(inode);
2601 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2608 err = security_task_getscheduler(p);
2614 seq_printf(m, "%llu\n", p->timer_slack_ns);
2623 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2625 return single_open(filp, timerslack_ns_show, inode);
2628 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2629 .open = timerslack_ns_open,
2631 .write = timerslack_ns_write,
2632 .llseek = seq_lseek,
2633 .release = single_release,
2636 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2637 struct task_struct *task, const void *ptr)
2639 const struct pid_entry *p = ptr;
2640 struct inode *inode;
2641 struct proc_inode *ei;
2643 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2645 return ERR_PTR(-ENOENT);
2648 if (S_ISDIR(inode->i_mode))
2649 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2651 inode->i_op = p->iop;
2653 inode->i_fop = p->fop;
2655 pid_update_inode(task, inode);
2656 d_set_d_op(dentry, &pid_dentry_operations);
2657 return d_splice_alias(inode, dentry);
2660 static struct dentry *proc_pident_lookup(struct inode *dir,
2661 struct dentry *dentry,
2662 const struct pid_entry *p,
2663 const struct pid_entry *end)
2665 struct task_struct *task = get_proc_task(dir);
2666 struct dentry *res = ERR_PTR(-ENOENT);
2672 * Yes, it does not scale. And it should not. Don't add
2673 * new entries into /proc/<tgid>/ without very good reasons.
2675 for (; p < end; p++) {
2676 if (p->len != dentry->d_name.len)
2678 if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2679 res = proc_pident_instantiate(dentry, task, p);
2683 put_task_struct(task);
2688 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2689 const struct pid_entry *ents, unsigned int nents)
2691 struct task_struct *task = get_proc_task(file_inode(file));
2692 const struct pid_entry *p;
2697 if (!dir_emit_dots(file, ctx))
2700 if (ctx->pos >= nents + 2)
2703 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2704 if (!proc_fill_cache(file, ctx, p->name, p->len,
2705 proc_pident_instantiate, task, p))
2710 put_task_struct(task);
2714 #ifdef CONFIG_SECURITY
2715 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2717 file->private_data = NULL;
2718 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2722 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2723 size_t count, loff_t *ppos)
2725 struct inode * inode = file_inode(file);
2728 struct task_struct *task = get_proc_task(inode);
2733 length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2734 file->f_path.dentry->d_name.name,
2736 put_task_struct(task);
2738 length = simple_read_from_buffer(buf, count, ppos, p, length);
2743 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2744 size_t count, loff_t *ppos)
2746 struct inode * inode = file_inode(file);
2747 struct task_struct *task;
2751 /* A task may only write when it was the opener. */
2752 if (file->private_data != current->mm)
2756 task = pid_task(proc_pid(inode), PIDTYPE_PID);
2761 /* A task may only write its own attributes. */
2762 if (current != task) {
2766 /* Prevent changes to overridden credentials. */
2767 if (current_cred() != current_real_cred()) {
2773 if (count > PAGE_SIZE)
2776 /* No partial writes. */
2780 page = memdup_user(buf, count);
2786 /* Guard against adverse ptrace interaction */
2787 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex);
2791 rv = security_setprocattr(PROC_I(inode)->op.lsm,
2792 file->f_path.dentry->d_name.name, page,
2794 mutex_unlock(¤t->signal->cred_guard_mutex);
2801 static const struct file_operations proc_pid_attr_operations = {
2802 .open = proc_pid_attr_open,
2803 .read = proc_pid_attr_read,
2804 .write = proc_pid_attr_write,
2805 .llseek = generic_file_llseek,
2806 .release = mem_release,
2809 #define LSM_DIR_OPS(LSM) \
2810 static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2811 struct dir_context *ctx) \
2813 return proc_pident_readdir(filp, ctx, \
2814 LSM##_attr_dir_stuff, \
2815 ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2818 static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2819 .read = generic_read_dir, \
2820 .iterate_shared = proc_##LSM##_attr_dir_iterate, \
2821 .llseek = default_llseek, \
2824 static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2825 struct dentry *dentry, unsigned int flags) \
2827 return proc_pident_lookup(dir, dentry, \
2828 LSM##_attr_dir_stuff, \
2829 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2832 static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2833 .lookup = proc_##LSM##_attr_dir_lookup, \
2834 .getattr = pid_getattr, \
2835 .setattr = proc_setattr, \
2838 #ifdef CONFIG_SECURITY_SMACK
2839 static const struct pid_entry smack_attr_dir_stuff[] = {
2840 ATTR("smack", "current", 0666),
2845 #ifdef CONFIG_SECURITY_APPARMOR
2846 static const struct pid_entry apparmor_attr_dir_stuff[] = {
2847 ATTR("apparmor", "current", 0666),
2848 ATTR("apparmor", "prev", 0444),
2849 ATTR("apparmor", "exec", 0666),
2851 LSM_DIR_OPS(apparmor);
2854 static const struct pid_entry attr_dir_stuff[] = {
2855 ATTR(NULL, "current", 0666),
2856 ATTR(NULL, "prev", 0444),
2857 ATTR(NULL, "exec", 0666),
2858 ATTR(NULL, "fscreate", 0666),
2859 ATTR(NULL, "keycreate", 0666),
2860 ATTR(NULL, "sockcreate", 0666),
2861 #ifdef CONFIG_SECURITY_SMACK
2863 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2865 #ifdef CONFIG_SECURITY_APPARMOR
2866 DIR("apparmor", 0555,
2867 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops),
2871 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2873 return proc_pident_readdir(file, ctx,
2874 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2877 static const struct file_operations proc_attr_dir_operations = {
2878 .read = generic_read_dir,
2879 .iterate_shared = proc_attr_dir_readdir,
2880 .llseek = generic_file_llseek,
2883 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2884 struct dentry *dentry, unsigned int flags)
2886 return proc_pident_lookup(dir, dentry,
2888 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2891 static const struct inode_operations proc_attr_dir_inode_operations = {
2892 .lookup = proc_attr_dir_lookup,
2893 .getattr = pid_getattr,
2894 .setattr = proc_setattr,
2899 #ifdef CONFIG_ELF_CORE
2900 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2901 size_t count, loff_t *ppos)
2903 struct task_struct *task = get_proc_task(file_inode(file));
2904 struct mm_struct *mm;
2905 char buffer[PROC_NUMBUF];
2913 mm = get_task_mm(task);
2915 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2916 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2917 MMF_DUMP_FILTER_SHIFT));
2919 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2922 put_task_struct(task);
2927 static ssize_t proc_coredump_filter_write(struct file *file,
2928 const char __user *buf,
2932 struct task_struct *task;
2933 struct mm_struct *mm;
2939 ret = kstrtouint_from_user(buf, count, 0, &val);
2944 task = get_proc_task(file_inode(file));
2948 mm = get_task_mm(task);
2953 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2955 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2957 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2962 put_task_struct(task);
2969 static const struct file_operations proc_coredump_filter_operations = {
2970 .read = proc_coredump_filter_read,
2971 .write = proc_coredump_filter_write,
2972 .llseek = generic_file_llseek,
2976 #ifdef CONFIG_TASK_IO_ACCOUNTING
2977 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2979 struct task_io_accounting acct = task->ioac;
2980 unsigned long flags;
2983 result = down_read_killable(&task->signal->exec_update_lock);
2987 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2992 if (whole && lock_task_sighand(task, &flags)) {
2993 struct task_struct *t = task;
2995 task_io_accounting_add(&acct, &task->signal->ioac);
2996 while_each_thread(task, t)
2997 task_io_accounting_add(&acct, &t->ioac);
2999 unlock_task_sighand(task, &flags);
3006 "read_bytes: %llu\n"
3007 "write_bytes: %llu\n"
3008 "cancelled_write_bytes: %llu\n",
3009 (unsigned long long)acct.rchar,
3010 (unsigned long long)acct.wchar,
3011 (unsigned long long)acct.syscr,
3012 (unsigned long long)acct.syscw,
3013 (unsigned long long)acct.read_bytes,
3014 (unsigned long long)acct.write_bytes,
3015 (unsigned long long)acct.cancelled_write_bytes);
3019 up_read(&task->signal->exec_update_lock);
3023 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3024 struct pid *pid, struct task_struct *task)
3026 return do_io_accounting(task, m, 0);
3029 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
3030 struct pid *pid, struct task_struct *task)
3032 return do_io_accounting(task, m, 1);
3034 #endif /* CONFIG_TASK_IO_ACCOUNTING */
3036 #ifdef CONFIG_USER_NS
3037 static int proc_id_map_open(struct inode *inode, struct file *file,
3038 const struct seq_operations *seq_ops)
3040 struct user_namespace *ns = NULL;
3041 struct task_struct *task;
3042 struct seq_file *seq;
3045 task = get_proc_task(inode);
3048 ns = get_user_ns(task_cred_xxx(task, user_ns));
3050 put_task_struct(task);
3055 ret = seq_open(file, seq_ops);
3059 seq = file->private_data;
3069 static int proc_id_map_release(struct inode *inode, struct file *file)
3071 struct seq_file *seq = file->private_data;
3072 struct user_namespace *ns = seq->private;
3074 return seq_release(inode, file);
3077 static int proc_uid_map_open(struct inode *inode, struct file *file)
3079 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
3082 static int proc_gid_map_open(struct inode *inode, struct file *file)
3084 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
3087 static int proc_projid_map_open(struct inode *inode, struct file *file)
3089 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
3092 static const struct file_operations proc_uid_map_operations = {
3093 .open = proc_uid_map_open,
3094 .write = proc_uid_map_write,
3096 .llseek = seq_lseek,
3097 .release = proc_id_map_release,
3100 static const struct file_operations proc_gid_map_operations = {
3101 .open = proc_gid_map_open,
3102 .write = proc_gid_map_write,
3104 .llseek = seq_lseek,
3105 .release = proc_id_map_release,
3108 static const struct file_operations proc_projid_map_operations = {
3109 .open = proc_projid_map_open,
3110 .write = proc_projid_map_write,
3112 .llseek = seq_lseek,
3113 .release = proc_id_map_release,
3116 static int proc_setgroups_open(struct inode *inode, struct file *file)
3118 struct user_namespace *ns = NULL;
3119 struct task_struct *task;
3123 task = get_proc_task(inode);
3126 ns = get_user_ns(task_cred_xxx(task, user_ns));
3128 put_task_struct(task);
3133 if (file->f_mode & FMODE_WRITE) {
3135 if (!ns_capable(ns, CAP_SYS_ADMIN))
3139 ret = single_open(file, &proc_setgroups_show, ns);
3150 static int proc_setgroups_release(struct inode *inode, struct file *file)
3152 struct seq_file *seq = file->private_data;
3153 struct user_namespace *ns = seq->private;
3154 int ret = single_release(inode, file);
3159 static const struct file_operations proc_setgroups_operations = {
3160 .open = proc_setgroups_open,
3161 .write = proc_setgroups_write,
3163 .llseek = seq_lseek,
3164 .release = proc_setgroups_release,
3166 #endif /* CONFIG_USER_NS */
3168 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
3169 struct pid *pid, struct task_struct *task)
3171 int err = lock_trace(task);
3173 seq_printf(m, "%08x\n", task->personality);
3179 #ifdef CONFIG_LIVEPATCH
3180 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
3181 struct pid *pid, struct task_struct *task)
3183 seq_printf(m, "%d\n", task->patch_state);
3186 #endif /* CONFIG_LIVEPATCH */
3189 static int proc_pid_ksm_merging_pages(struct seq_file *m, struct pid_namespace *ns,
3190 struct pid *pid, struct task_struct *task)
3192 struct mm_struct *mm;
3194 mm = get_task_mm(task);
3196 seq_printf(m, "%lu\n", mm->ksm_merging_pages);
3202 static int proc_pid_ksm_stat(struct seq_file *m, struct pid_namespace *ns,
3203 struct pid *pid, struct task_struct *task)
3205 struct mm_struct *mm;
3207 mm = get_task_mm(task);
3209 seq_printf(m, "ksm_rmap_items %lu\n", mm->ksm_rmap_items);
3210 seq_printf(m, "ksm_merging_pages %lu\n", mm->ksm_merging_pages);
3211 seq_printf(m, "ksm_process_profit %ld\n", ksm_process_profit(mm));
3217 #endif /* CONFIG_KSM */
3219 #ifdef CONFIG_STACKLEAK_METRICS
3220 static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
3221 struct pid *pid, struct task_struct *task)
3223 unsigned long prev_depth = THREAD_SIZE -
3224 (task->prev_lowest_stack & (THREAD_SIZE - 1));
3225 unsigned long depth = THREAD_SIZE -
3226 (task->lowest_stack & (THREAD_SIZE - 1));
3228 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
3232 #endif /* CONFIG_STACKLEAK_METRICS */
3237 static const struct file_operations proc_task_operations;
3238 static const struct inode_operations proc_task_inode_operations;
3240 static const struct pid_entry tgid_base_stuff[] = {
3241 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3242 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3243 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3244 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3245 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3247 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3249 REG("environ", S_IRUSR, proc_environ_operations),
3250 REG("auxv", S_IRUSR, proc_auxv_operations),
3251 ONE("status", S_IRUGO, proc_pid_status),
3252 ONE("personality", S_IRUSR, proc_pid_personality),
3253 ONE("limits", S_IRUGO, proc_pid_limits),
3254 #ifdef CONFIG_SCHED_DEBUG
3255 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3257 #ifdef CONFIG_SCHED_AUTOGROUP
3258 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3260 #ifdef CONFIG_TIME_NS
3261 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations),
3263 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3264 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3265 ONE("syscall", S_IRUSR, proc_pid_syscall),
3267 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3268 ONE("stat", S_IRUGO, proc_tgid_stat),
3269 ONE("statm", S_IRUGO, proc_pid_statm),
3270 REG("maps", S_IRUGO, proc_pid_maps_operations),
3272 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3274 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3275 LNK("cwd", proc_cwd_link),
3276 LNK("root", proc_root_link),
3277 LNK("exe", proc_exe_link),
3278 REG("mounts", S_IRUGO, proc_mounts_operations),
3279 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3280 REG("mountstats", S_IRUSR, proc_mountstats_operations),
3281 #ifdef CONFIG_PROC_PAGE_MONITOR
3282 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3283 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3284 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3285 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3287 #ifdef CONFIG_SECURITY
3288 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3290 #ifdef CONFIG_KALLSYMS
3291 ONE("wchan", S_IRUGO, proc_pid_wchan),
3293 #ifdef CONFIG_STACKTRACE
3294 ONE("stack", S_IRUSR, proc_pid_stack),
3296 #ifdef CONFIG_SCHED_INFO
3297 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3299 #ifdef CONFIG_LATENCYTOP
3300 REG("latency", S_IRUGO, proc_lstats_operations),
3302 #ifdef CONFIG_PROC_PID_CPUSET
3303 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3305 #ifdef CONFIG_CGROUPS
3306 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3308 #ifdef CONFIG_PROC_CPU_RESCTRL
3309 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3311 ONE("oom_score", S_IRUGO, proc_oom_score),
3312 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3313 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3315 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3316 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3318 #ifdef CONFIG_FAULT_INJECTION
3319 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3320 REG("fail-nth", 0644, proc_fail_nth_operations),
3322 #ifdef CONFIG_ELF_CORE
3323 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3325 #ifdef CONFIG_TASK_IO_ACCOUNTING
3326 ONE("io", S_IRUSR, proc_tgid_io_accounting),
3328 #ifdef CONFIG_USER_NS
3329 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3330 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3331 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3332 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3334 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3335 REG("timers", S_IRUGO, proc_timers_operations),
3337 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3338 #ifdef CONFIG_LIVEPATCH
3339 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3341 #ifdef CONFIG_STACKLEAK_METRICS
3342 ONE("stack_depth", S_IRUGO, proc_stack_depth),
3344 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3345 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3347 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3348 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3351 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3352 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3356 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3358 return proc_pident_readdir(file, ctx,
3359 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3362 static const struct file_operations proc_tgid_base_operations = {
3363 .read = generic_read_dir,
3364 .iterate_shared = proc_tgid_base_readdir,
3365 .llseek = generic_file_llseek,
3368 struct pid *tgid_pidfd_to_pid(const struct file *file)
3370 if (file->f_op != &proc_tgid_base_operations)
3371 return ERR_PTR(-EBADF);
3373 return proc_pid(file_inode(file));
3376 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3378 return proc_pident_lookup(dir, dentry,
3380 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3383 static const struct inode_operations proc_tgid_base_inode_operations = {
3384 .lookup = proc_tgid_base_lookup,
3385 .getattr = pid_getattr,
3386 .setattr = proc_setattr,
3387 .permission = proc_pid_permission,
3391 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache.
3392 * @pid: pid that should be flushed.
3394 * This function walks a list of inodes (that belong to any proc
3395 * filesystem) that are attached to the pid and flushes them from
3398 * It is safe and reasonable to cache /proc entries for a task until
3399 * that task exits. After that they just clog up the dcache with
3400 * useless entries, possibly causing useful dcache entries to be
3401 * flushed instead. This routine is provided to flush those useless
3402 * dcache entries when a process is reaped.
3404 * NOTE: This routine is just an optimization so it does not guarantee
3405 * that no dcache entries will exist after a process is reaped
3406 * it just makes it very unlikely that any will persist.
3409 void proc_flush_pid(struct pid *pid)
3411 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock);
3414 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3415 struct task_struct *task, const void *ptr)
3417 struct inode *inode;
3419 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3420 S_IFDIR | S_IRUGO | S_IXUGO);
3422 return ERR_PTR(-ENOENT);
3424 inode->i_op = &proc_tgid_base_inode_operations;
3425 inode->i_fop = &proc_tgid_base_operations;
3426 inode->i_flags|=S_IMMUTABLE;
3428 set_nlink(inode, nlink_tgid);
3429 pid_update_inode(task, inode);
3431 d_set_d_op(dentry, &pid_dentry_operations);
3432 return d_splice_alias(inode, dentry);
3435 struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3437 struct task_struct *task;
3439 struct proc_fs_info *fs_info;
3440 struct pid_namespace *ns;
3441 struct dentry *result = ERR_PTR(-ENOENT);
3443 tgid = name_to_int(&dentry->d_name);
3447 fs_info = proc_sb_info(dentry->d_sb);
3448 ns = fs_info->pid_ns;
3450 task = find_task_by_pid_ns(tgid, ns);
3452 get_task_struct(task);
3457 /* Limit procfs to only ptraceable tasks */
3458 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) {
3459 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS))
3463 result = proc_pid_instantiate(dentry, task, NULL);
3465 put_task_struct(task);
3471 * Find the first task with tgid >= tgid
3476 struct task_struct *task;
3478 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3483 put_task_struct(iter.task);
3487 pid = find_ge_pid(iter.tgid, ns);
3489 iter.tgid = pid_nr_ns(pid, ns);
3490 iter.task = pid_task(pid, PIDTYPE_TGID);
3495 get_task_struct(iter.task);
3501 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3503 /* for the /proc/ directory itself, after non-process stuff has been done */
3504 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3506 struct tgid_iter iter;
3507 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb);
3508 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb);
3509 loff_t pos = ctx->pos;
3511 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3514 if (pos == TGID_OFFSET - 2) {
3515 struct inode *inode = d_inode(fs_info->proc_self);
3516 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3518 ctx->pos = pos = pos + 1;
3520 if (pos == TGID_OFFSET - 1) {
3521 struct inode *inode = d_inode(fs_info->proc_thread_self);
3522 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3524 ctx->pos = pos = pos + 1;
3526 iter.tgid = pos - TGID_OFFSET;
3528 for (iter = next_tgid(ns, iter);
3530 iter.tgid += 1, iter = next_tgid(ns, iter)) {
3535 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE))
3538 len = snprintf(name, sizeof(name), "%u", iter.tgid);
3539 ctx->pos = iter.tgid + TGID_OFFSET;
3540 if (!proc_fill_cache(file, ctx, name, len,
3541 proc_pid_instantiate, iter.task, NULL)) {
3542 put_task_struct(iter.task);
3546 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3551 * proc_tid_comm_permission is a special permission function exclusively
3552 * used for the node /proc/<pid>/task/<tid>/comm.
3553 * It bypasses generic permission checks in the case where a task of the same
3554 * task group attempts to access the node.
3555 * The rationale behind this is that glibc and bionic access this node for
3556 * cross thread naming (pthread_set/getname_np(!self)). However, if
3557 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3558 * which locks out the cross thread naming implementation.
3559 * This function makes sure that the node is always accessible for members of
3560 * same thread group.
3562 static int proc_tid_comm_permission(struct mnt_idmap *idmap,
3563 struct inode *inode, int mask)
3565 bool is_same_tgroup;
3566 struct task_struct *task;
3568 task = get_proc_task(inode);
3571 is_same_tgroup = same_thread_group(current, task);
3572 put_task_struct(task);
3574 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3575 /* This file (/proc/<pid>/task/<tid>/comm) can always be
3576 * read or written by the members of the corresponding
3582 return generic_permission(&nop_mnt_idmap, inode, mask);
3585 static const struct inode_operations proc_tid_comm_inode_operations = {
3586 .permission = proc_tid_comm_permission,
3592 static const struct pid_entry tid_base_stuff[] = {
3593 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3594 DIR("fdinfo", S_IRUGO|S_IXUGO, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3595 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3597 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3599 REG("environ", S_IRUSR, proc_environ_operations),
3600 REG("auxv", S_IRUSR, proc_auxv_operations),
3601 ONE("status", S_IRUGO, proc_pid_status),
3602 ONE("personality", S_IRUSR, proc_pid_personality),
3603 ONE("limits", S_IRUGO, proc_pid_limits),
3604 #ifdef CONFIG_SCHED_DEBUG
3605 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3607 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR,
3608 &proc_tid_comm_inode_operations,
3609 &proc_pid_set_comm_operations, {}),
3610 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3611 ONE("syscall", S_IRUSR, proc_pid_syscall),
3613 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops),
3614 ONE("stat", S_IRUGO, proc_tid_stat),
3615 ONE("statm", S_IRUGO, proc_pid_statm),
3616 REG("maps", S_IRUGO, proc_pid_maps_operations),
3617 #ifdef CONFIG_PROC_CHILDREN
3618 REG("children", S_IRUGO, proc_tid_children_operations),
3621 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3623 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
3624 LNK("cwd", proc_cwd_link),
3625 LNK("root", proc_root_link),
3626 LNK("exe", proc_exe_link),
3627 REG("mounts", S_IRUGO, proc_mounts_operations),
3628 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
3629 #ifdef CONFIG_PROC_PAGE_MONITOR
3630 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3631 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
3632 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3633 REG("pagemap", S_IRUSR, proc_pagemap_operations),
3635 #ifdef CONFIG_SECURITY
3636 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3638 #ifdef CONFIG_KALLSYMS
3639 ONE("wchan", S_IRUGO, proc_pid_wchan),
3641 #ifdef CONFIG_STACKTRACE
3642 ONE("stack", S_IRUSR, proc_pid_stack),
3644 #ifdef CONFIG_SCHED_INFO
3645 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3647 #ifdef CONFIG_LATENCYTOP
3648 REG("latency", S_IRUGO, proc_lstats_operations),
3650 #ifdef CONFIG_PROC_PID_CPUSET
3651 ONE("cpuset", S_IRUGO, proc_cpuset_show),
3653 #ifdef CONFIG_CGROUPS
3654 ONE("cgroup", S_IRUGO, proc_cgroup_show),
3656 #ifdef CONFIG_PROC_CPU_RESCTRL
3657 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show),
3659 ONE("oom_score", S_IRUGO, proc_oom_score),
3660 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3661 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3663 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
3664 REG("sessionid", S_IRUGO, proc_sessionid_operations),
3666 #ifdef CONFIG_FAULT_INJECTION
3667 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3668 REG("fail-nth", 0644, proc_fail_nth_operations),
3670 #ifdef CONFIG_TASK_IO_ACCOUNTING
3671 ONE("io", S_IRUSR, proc_tid_io_accounting),
3673 #ifdef CONFIG_USER_NS
3674 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
3675 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
3676 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3677 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations),
3679 #ifdef CONFIG_LIVEPATCH
3680 ONE("patch_state", S_IRUSR, proc_pid_patch_state),
3682 #ifdef CONFIG_PROC_PID_ARCH_STATUS
3683 ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3685 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
3686 ONE("seccomp_cache", S_IRUSR, proc_pid_seccomp_cache),
3689 ONE("ksm_merging_pages", S_IRUSR, proc_pid_ksm_merging_pages),
3690 ONE("ksm_stat", S_IRUSR, proc_pid_ksm_stat),
3694 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3696 return proc_pident_readdir(file, ctx,
3697 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3700 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3702 return proc_pident_lookup(dir, dentry,
3704 tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3707 static const struct file_operations proc_tid_base_operations = {
3708 .read = generic_read_dir,
3709 .iterate_shared = proc_tid_base_readdir,
3710 .llseek = generic_file_llseek,
3713 static const struct inode_operations proc_tid_base_inode_operations = {
3714 .lookup = proc_tid_base_lookup,
3715 .getattr = pid_getattr,
3716 .setattr = proc_setattr,
3719 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3720 struct task_struct *task, const void *ptr)
3722 struct inode *inode;
3723 inode = proc_pid_make_base_inode(dentry->d_sb, task,
3724 S_IFDIR | S_IRUGO | S_IXUGO);
3726 return ERR_PTR(-ENOENT);
3728 inode->i_op = &proc_tid_base_inode_operations;
3729 inode->i_fop = &proc_tid_base_operations;
3730 inode->i_flags |= S_IMMUTABLE;
3732 set_nlink(inode, nlink_tid);
3733 pid_update_inode(task, inode);
3735 d_set_d_op(dentry, &pid_dentry_operations);
3736 return d_splice_alias(inode, dentry);
3739 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3741 struct task_struct *task;
3742 struct task_struct *leader = get_proc_task(dir);
3744 struct proc_fs_info *fs_info;
3745 struct pid_namespace *ns;
3746 struct dentry *result = ERR_PTR(-ENOENT);
3751 tid = name_to_int(&dentry->d_name);
3755 fs_info = proc_sb_info(dentry->d_sb);
3756 ns = fs_info->pid_ns;
3758 task = find_task_by_pid_ns(tid, ns);
3760 get_task_struct(task);
3764 if (!same_thread_group(leader, task))
3767 result = proc_task_instantiate(dentry, task, NULL);
3769 put_task_struct(task);
3771 put_task_struct(leader);
3777 * Find the first tid of a thread group to return to user space.
3779 * Usually this is just the thread group leader, but if the users
3780 * buffer was too small or there was a seek into the middle of the
3781 * directory we have more work todo.
3783 * In the case of a short read we start with find_task_by_pid.
3785 * In the case of a seek we start with the leader and walk nr
3788 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3789 struct pid_namespace *ns)
3791 struct task_struct *pos, *task;
3792 unsigned long nr = f_pos;
3794 if (nr != f_pos) /* 32bit overflow? */
3798 task = pid_task(pid, PIDTYPE_PID);
3802 /* Attempt to start with the tid of a thread */
3804 pos = find_task_by_pid_ns(tid, ns);
3805 if (pos && same_thread_group(pos, task))
3809 /* If nr exceeds the number of threads there is nothing todo */
3810 if (nr >= get_nr_threads(task))
3813 /* If we haven't found our starting place yet start
3814 * with the leader and walk nr threads forward.
3816 pos = task = task->group_leader;
3820 } while_each_thread(task, pos);
3825 get_task_struct(pos);
3832 * Find the next thread in the thread list.
3833 * Return NULL if there is an error or no next thread.
3835 * The reference to the input task_struct is released.
3837 static struct task_struct *next_tid(struct task_struct *start)
3839 struct task_struct *pos = NULL;
3841 if (pid_alive(start)) {
3842 pos = next_thread(start);
3843 if (thread_group_leader(pos))
3846 get_task_struct(pos);
3849 put_task_struct(start);
3853 /* for the /proc/TGID/task/ directories */
3854 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3856 struct inode *inode = file_inode(file);
3857 struct task_struct *task;
3858 struct pid_namespace *ns;
3861 if (proc_inode_is_dead(inode))
3864 if (!dir_emit_dots(file, ctx))
3867 /* f_version caches the tgid value that the last readdir call couldn't
3868 * return. lseek aka telldir automagically resets f_version to 0.
3870 ns = proc_pid_ns(inode->i_sb);
3871 tid = (int)file->f_version;
3872 file->f_version = 0;
3873 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3875 task = next_tid(task), ctx->pos++) {
3879 tid = task_pid_nr_ns(task, ns);
3881 continue; /* The task has just exited. */
3882 len = snprintf(name, sizeof(name), "%u", tid);
3883 if (!proc_fill_cache(file, ctx, name, len,
3884 proc_task_instantiate, task, NULL)) {
3885 /* returning this tgid failed, save it as the first
3886 * pid for the next readir call */
3887 file->f_version = (u64)tid;
3888 put_task_struct(task);
3896 static int proc_task_getattr(struct mnt_idmap *idmap,
3897 const struct path *path, struct kstat *stat,
3898 u32 request_mask, unsigned int query_flags)
3900 struct inode *inode = d_inode(path->dentry);
3901 struct task_struct *p = get_proc_task(inode);
3902 generic_fillattr(&nop_mnt_idmap, inode, stat);
3905 stat->nlink += get_nr_threads(p);
3912 static const struct inode_operations proc_task_inode_operations = {
3913 .lookup = proc_task_lookup,
3914 .getattr = proc_task_getattr,
3915 .setattr = proc_setattr,
3916 .permission = proc_pid_permission,
3919 static const struct file_operations proc_task_operations = {
3920 .read = generic_read_dir,
3921 .iterate_shared = proc_task_readdir,
3922 .llseek = generic_file_llseek,
3925 void __init set_proc_pid_nlink(void)
3927 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3928 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));