4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/pipe_fs_i.h>
17 #include <linux/uio.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/audit.h>
21 #include <linux/syscalls.h>
22 #include <linux/fcntl.h>
24 #include <asm/uaccess.h>
25 #include <asm/ioctls.h>
28 * The max size that a non-root user is allowed to grow the pipe. Can
29 * be set by root in /proc/sys/fs/pipe-max-size
31 unsigned int pipe_max_size = 1048576;
34 * Minimum pipe size, as required by POSIX
36 unsigned int pipe_min_size = PAGE_SIZE;
39 * We use a start+len construction, which provides full use of the
41 * -- Florian Coosmann (FGC)
43 * Reads with count = 0 should always return 0.
44 * -- Julian Bradfield 1999-06-07.
46 * FIFOs and Pipes now generate SIGIO for both readers and writers.
47 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
49 * pipe_read & write cleanup
50 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
53 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
56 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
59 void pipe_lock(struct pipe_inode_info *pipe)
62 * pipe_lock() nests non-pipe inode locks (for writing to a file)
64 pipe_lock_nested(pipe, I_MUTEX_PARENT);
66 EXPORT_SYMBOL(pipe_lock);
68 void pipe_unlock(struct pipe_inode_info *pipe)
71 mutex_unlock(&pipe->inode->i_mutex);
73 EXPORT_SYMBOL(pipe_unlock);
75 void pipe_double_lock(struct pipe_inode_info *pipe1,
76 struct pipe_inode_info *pipe2)
78 BUG_ON(pipe1 == pipe2);
81 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
82 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
84 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
85 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
89 /* Drop the inode semaphore and wait for a pipe event, atomically */
90 void pipe_wait(struct pipe_inode_info *pipe)
95 * Pipes are system-local resources, so sleeping on them
96 * is considered a noninteractive wait:
98 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
101 finish_wait(&pipe->wait, &wait);
106 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
112 while (!iov->iov_len)
114 copy = min_t(unsigned long, len, iov->iov_len);
117 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
120 if (copy_from_user(to, iov->iov_base, copy))
125 iov->iov_base += copy;
126 iov->iov_len -= copy;
132 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
138 while (!iov->iov_len)
140 copy = min_t(unsigned long, len, iov->iov_len);
143 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
146 if (copy_to_user(iov->iov_base, from, copy))
151 iov->iov_base += copy;
152 iov->iov_len -= copy;
158 * Attempt to pre-fault in the user memory, so we can use atomic copies.
159 * Returns the number of bytes not faulted in.
161 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
163 while (!iov->iov_len)
167 unsigned long this_len;
169 this_len = min_t(unsigned long, len, iov->iov_len);
170 if (fault_in_pages_writeable(iov->iov_base, this_len))
181 * Pre-fault in the user memory, so we can use atomic copies.
183 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
185 while (!iov->iov_len)
189 unsigned long this_len;
191 this_len = min_t(unsigned long, len, iov->iov_len);
192 fault_in_pages_readable(iov->iov_base, this_len);
198 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
199 struct pipe_buffer *buf)
201 struct page *page = buf->page;
204 * If nobody else uses this page, and we don't already have a
205 * temporary page, let's keep track of it as a one-deep
206 * allocation cache. (Otherwise just release our reference to it)
208 if (page_count(page) == 1 && !pipe->tmp_page)
209 pipe->tmp_page = page;
211 page_cache_release(page);
215 * generic_pipe_buf_map - virtually map a pipe buffer
216 * @pipe: the pipe that the buffer belongs to
217 * @buf: the buffer that should be mapped
218 * @atomic: whether to use an atomic map
221 * This function returns a kernel virtual address mapping for the
222 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
223 * and the caller has to be careful not to fault before calling
224 * the unmap function.
226 * Note that this function occupies KM_USER0 if @atomic != 0.
228 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
229 struct pipe_buffer *buf, int atomic)
232 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
233 return kmap_atomic(buf->page, KM_USER0);
236 return kmap(buf->page);
238 EXPORT_SYMBOL(generic_pipe_buf_map);
241 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
242 * @pipe: the pipe that the buffer belongs to
243 * @buf: the buffer that should be unmapped
244 * @map_data: the data that the mapping function returned
247 * This function undoes the mapping that ->map() provided.
249 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
250 struct pipe_buffer *buf, void *map_data)
252 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
253 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
254 kunmap_atomic(map_data, KM_USER0);
258 EXPORT_SYMBOL(generic_pipe_buf_unmap);
261 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
262 * @pipe: the pipe that the buffer belongs to
263 * @buf: the buffer to attempt to steal
266 * This function attempts to steal the &struct page attached to
267 * @buf. If successful, this function returns 0 and returns with
268 * the page locked. The caller may then reuse the page for whatever
269 * he wishes; the typical use is insertion into a different file
272 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
273 struct pipe_buffer *buf)
275 struct page *page = buf->page;
278 * A reference of one is golden, that means that the owner of this
279 * page is the only one holding a reference to it. lock the page
282 if (page_count(page) == 1) {
289 EXPORT_SYMBOL(generic_pipe_buf_steal);
292 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
293 * @pipe: the pipe that the buffer belongs to
294 * @buf: the buffer to get a reference to
297 * This function grabs an extra reference to @buf. It's used in
298 * in the tee() system call, when we duplicate the buffers in one
301 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
303 page_cache_get(buf->page);
305 EXPORT_SYMBOL(generic_pipe_buf_get);
308 * generic_pipe_buf_confirm - verify contents of the pipe buffer
309 * @info: the pipe that the buffer belongs to
310 * @buf: the buffer to confirm
313 * This function does nothing, because the generic pipe code uses
314 * pages that are always good when inserted into the pipe.
316 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
317 struct pipe_buffer *buf)
321 EXPORT_SYMBOL(generic_pipe_buf_confirm);
324 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
325 * @pipe: the pipe that the buffer belongs to
326 * @buf: the buffer to put a reference to
329 * This function releases a reference to @buf.
331 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
332 struct pipe_buffer *buf)
334 page_cache_release(buf->page);
336 EXPORT_SYMBOL(generic_pipe_buf_release);
338 static const struct pipe_buf_operations anon_pipe_buf_ops = {
340 .map = generic_pipe_buf_map,
341 .unmap = generic_pipe_buf_unmap,
342 .confirm = generic_pipe_buf_confirm,
343 .release = anon_pipe_buf_release,
344 .steal = generic_pipe_buf_steal,
345 .get = generic_pipe_buf_get,
349 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
350 unsigned long nr_segs, loff_t pos)
352 struct file *filp = iocb->ki_filp;
353 struct inode *inode = filp->f_path.dentry->d_inode;
354 struct pipe_inode_info *pipe;
357 struct iovec *iov = (struct iovec *)_iov;
360 total_len = iov_length(iov, nr_segs);
361 /* Null read succeeds. */
362 if (unlikely(total_len == 0))
367 mutex_lock(&inode->i_mutex);
368 pipe = inode->i_pipe;
370 int bufs = pipe->nrbufs;
372 int curbuf = pipe->curbuf;
373 struct pipe_buffer *buf = pipe->bufs + curbuf;
374 const struct pipe_buf_operations *ops = buf->ops;
376 size_t chars = buf->len;
379 if (chars > total_len)
382 error = ops->confirm(pipe, buf);
389 atomic = !iov_fault_in_pages_write(iov, chars);
391 addr = ops->map(pipe, buf, atomic);
392 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
393 ops->unmap(pipe, buf, addr);
394 if (unlikely(error)) {
396 * Just retry with the slow path if we failed.
407 buf->offset += chars;
411 ops->release(pipe, buf);
412 curbuf = (curbuf + 1) & (pipe->buffers - 1);
413 pipe->curbuf = curbuf;
414 pipe->nrbufs = --bufs;
419 break; /* common path: read succeeded */
421 if (bufs) /* More to do? */
425 if (!pipe->waiting_writers) {
426 /* syscall merging: Usually we must not sleep
427 * if O_NONBLOCK is set, or if we got some data.
428 * But if a writer sleeps in kernel space, then
429 * we can wait for that data without violating POSIX.
433 if (filp->f_flags & O_NONBLOCK) {
438 if (signal_pending(current)) {
444 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
445 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
449 mutex_unlock(&inode->i_mutex);
451 /* Signal writers asynchronously that there is more room. */
453 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
454 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
462 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
463 unsigned long nr_segs, loff_t ppos)
465 struct file *filp = iocb->ki_filp;
466 struct inode *inode = filp->f_path.dentry->d_inode;
467 struct pipe_inode_info *pipe;
470 struct iovec *iov = (struct iovec *)_iov;
474 total_len = iov_length(iov, nr_segs);
475 /* Null write succeeds. */
476 if (unlikely(total_len == 0))
481 mutex_lock(&inode->i_mutex);
482 pipe = inode->i_pipe;
484 if (!pipe->readers) {
485 send_sig(SIGPIPE, current, 0);
490 /* We try to merge small writes */
491 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
492 if (pipe->nrbufs && chars != 0) {
493 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
495 struct pipe_buffer *buf = pipe->bufs + lastbuf;
496 const struct pipe_buf_operations *ops = buf->ops;
497 int offset = buf->offset + buf->len;
499 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
500 int error, atomic = 1;
503 error = ops->confirm(pipe, buf);
507 iov_fault_in_pages_read(iov, chars);
509 addr = ops->map(pipe, buf, atomic);
510 error = pipe_iov_copy_from_user(offset + addr, iov,
512 ops->unmap(pipe, buf, addr);
533 if (!pipe->readers) {
534 send_sig(SIGPIPE, current, 0);
540 if (bufs < pipe->buffers) {
541 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
542 struct pipe_buffer *buf = pipe->bufs + newbuf;
543 struct page *page = pipe->tmp_page;
545 int error, atomic = 1;
548 page = alloc_page(GFP_HIGHUSER);
549 if (unlikely(!page)) {
550 ret = ret ? : -ENOMEM;
553 pipe->tmp_page = page;
555 /* Always wake up, even if the copy fails. Otherwise
556 * we lock up (O_NONBLOCK-)readers that sleep due to
558 * FIXME! Is this really true?
562 if (chars > total_len)
565 iov_fault_in_pages_read(iov, chars);
568 src = kmap_atomic(page, KM_USER0);
572 error = pipe_iov_copy_from_user(src, iov, chars,
575 kunmap_atomic(src, KM_USER0);
579 if (unlikely(error)) {
590 /* Insert it into the buffer array */
592 buf->ops = &anon_pipe_buf_ops;
595 pipe->nrbufs = ++bufs;
596 pipe->tmp_page = NULL;
602 if (bufs < pipe->buffers)
604 if (filp->f_flags & O_NONBLOCK) {
609 if (signal_pending(current)) {
615 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
616 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
619 pipe->waiting_writers++;
621 pipe->waiting_writers--;
624 mutex_unlock(&inode->i_mutex);
626 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
627 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
630 file_update_time(filp);
635 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
641 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
647 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
649 struct inode *inode = filp->f_path.dentry->d_inode;
650 struct pipe_inode_info *pipe;
651 int count, buf, nrbufs;
655 mutex_lock(&inode->i_mutex);
656 pipe = inode->i_pipe;
659 nrbufs = pipe->nrbufs;
660 while (--nrbufs >= 0) {
661 count += pipe->bufs[buf].len;
662 buf = (buf+1) & (pipe->buffers - 1);
664 mutex_unlock(&inode->i_mutex);
666 return put_user(count, (int __user *)arg);
672 /* No kernel lock held - fine */
674 pipe_poll(struct file *filp, poll_table *wait)
677 struct inode *inode = filp->f_path.dentry->d_inode;
678 struct pipe_inode_info *pipe = inode->i_pipe;
681 poll_wait(filp, &pipe->wait, wait);
683 /* Reading only -- no need for acquiring the semaphore. */
684 nrbufs = pipe->nrbufs;
686 if (filp->f_mode & FMODE_READ) {
687 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
688 if (!pipe->writers && filp->f_version != pipe->w_counter)
692 if (filp->f_mode & FMODE_WRITE) {
693 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
695 * Most Unices do not set POLLERR for FIFOs but on Linux they
696 * behave exactly like pipes for poll().
706 pipe_release(struct inode *inode, int decr, int decw)
708 struct pipe_inode_info *pipe;
710 mutex_lock(&inode->i_mutex);
711 pipe = inode->i_pipe;
712 pipe->readers -= decr;
713 pipe->writers -= decw;
715 if (!pipe->readers && !pipe->writers) {
716 free_pipe_info(inode);
718 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
719 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
720 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
722 mutex_unlock(&inode->i_mutex);
728 pipe_read_fasync(int fd, struct file *filp, int on)
730 struct inode *inode = filp->f_path.dentry->d_inode;
733 mutex_lock(&inode->i_mutex);
734 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
735 mutex_unlock(&inode->i_mutex);
742 pipe_write_fasync(int fd, struct file *filp, int on)
744 struct inode *inode = filp->f_path.dentry->d_inode;
747 mutex_lock(&inode->i_mutex);
748 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
749 mutex_unlock(&inode->i_mutex);
756 pipe_rdwr_fasync(int fd, struct file *filp, int on)
758 struct inode *inode = filp->f_path.dentry->d_inode;
759 struct pipe_inode_info *pipe = inode->i_pipe;
762 mutex_lock(&inode->i_mutex);
763 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
765 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
766 if (retval < 0) /* this can happen only if on == T */
767 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
769 mutex_unlock(&inode->i_mutex);
775 pipe_read_release(struct inode *inode, struct file *filp)
777 return pipe_release(inode, 1, 0);
781 pipe_write_release(struct inode *inode, struct file *filp)
783 return pipe_release(inode, 0, 1);
787 pipe_rdwr_release(struct inode *inode, struct file *filp)
791 decr = (filp->f_mode & FMODE_READ) != 0;
792 decw = (filp->f_mode & FMODE_WRITE) != 0;
793 return pipe_release(inode, decr, decw);
797 pipe_read_open(struct inode *inode, struct file *filp)
801 mutex_lock(&inode->i_mutex);
805 inode->i_pipe->readers++;
808 mutex_unlock(&inode->i_mutex);
814 pipe_write_open(struct inode *inode, struct file *filp)
818 mutex_lock(&inode->i_mutex);
822 inode->i_pipe->writers++;
825 mutex_unlock(&inode->i_mutex);
831 pipe_rdwr_open(struct inode *inode, struct file *filp)
835 mutex_lock(&inode->i_mutex);
839 if (filp->f_mode & FMODE_READ)
840 inode->i_pipe->readers++;
841 if (filp->f_mode & FMODE_WRITE)
842 inode->i_pipe->writers++;
845 mutex_unlock(&inode->i_mutex);
851 * The file_operations structs are not static because they
852 * are also used in linux/fs/fifo.c to do operations on FIFOs.
854 * Pipes reuse fifos' file_operations structs.
856 const struct file_operations read_pipefifo_fops = {
858 .read = do_sync_read,
859 .aio_read = pipe_read,
862 .unlocked_ioctl = pipe_ioctl,
863 .open = pipe_read_open,
864 .release = pipe_read_release,
865 .fasync = pipe_read_fasync,
868 const struct file_operations write_pipefifo_fops = {
871 .write = do_sync_write,
872 .aio_write = pipe_write,
874 .unlocked_ioctl = pipe_ioctl,
875 .open = pipe_write_open,
876 .release = pipe_write_release,
877 .fasync = pipe_write_fasync,
880 const struct file_operations rdwr_pipefifo_fops = {
882 .read = do_sync_read,
883 .aio_read = pipe_read,
884 .write = do_sync_write,
885 .aio_write = pipe_write,
887 .unlocked_ioctl = pipe_ioctl,
888 .open = pipe_rdwr_open,
889 .release = pipe_rdwr_release,
890 .fasync = pipe_rdwr_fasync,
893 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
895 struct pipe_inode_info *pipe;
897 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
899 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
901 init_waitqueue_head(&pipe->wait);
902 pipe->r_counter = pipe->w_counter = 1;
904 pipe->buffers = PIPE_DEF_BUFFERS;
913 void __free_pipe_info(struct pipe_inode_info *pipe)
917 for (i = 0; i < pipe->buffers; i++) {
918 struct pipe_buffer *buf = pipe->bufs + i;
920 buf->ops->release(pipe, buf);
923 __free_page(pipe->tmp_page);
928 void free_pipe_info(struct inode *inode)
930 __free_pipe_info(inode->i_pipe);
931 inode->i_pipe = NULL;
934 static struct vfsmount *pipe_mnt __read_mostly;
937 * pipefs_dname() is called from d_path().
939 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
941 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
942 dentry->d_inode->i_ino);
945 static const struct dentry_operations pipefs_dentry_operations = {
946 .d_dname = pipefs_dname,
949 static struct inode * get_pipe_inode(void)
951 struct inode *inode = new_inode(pipe_mnt->mnt_sb);
952 struct pipe_inode_info *pipe;
957 inode->i_ino = get_next_ino();
959 pipe = alloc_pipe_info(inode);
962 inode->i_pipe = pipe;
964 pipe->readers = pipe->writers = 1;
965 inode->i_fop = &rdwr_pipefifo_fops;
968 * Mark the inode dirty from the very beginning,
969 * that way it will never be moved to the dirty
970 * list because "mark_inode_dirty()" will think
971 * that it already _is_ on the dirty list.
973 inode->i_state = I_DIRTY;
974 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
975 inode->i_uid = current_fsuid();
976 inode->i_gid = current_fsgid();
977 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
988 struct file *create_write_pipe(int flags)
994 struct qstr name = { .name = "" };
997 inode = get_pipe_inode();
1002 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1005 path.mnt = mntget(pipe_mnt);
1007 d_instantiate(path.dentry, inode);
1010 f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1013 f->f_mapping = inode->i_mapping;
1015 f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1021 free_pipe_info(inode);
1023 return ERR_PTR(err);
1026 free_pipe_info(inode);
1029 return ERR_PTR(err);
1032 void free_write_pipe(struct file *f)
1034 free_pipe_info(f->f_dentry->d_inode);
1035 path_put(&f->f_path);
1039 struct file *create_read_pipe(struct file *wrf, int flags)
1041 /* Grab pipe from the writer */
1042 struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1043 &read_pipefifo_fops);
1045 return ERR_PTR(-ENFILE);
1047 path_get(&wrf->f_path);
1048 f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1053 int do_pipe_flags(int *fd, int flags)
1055 struct file *fw, *fr;
1059 if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1062 fw = create_write_pipe(flags);
1065 fr = create_read_pipe(fw, flags);
1066 error = PTR_ERR(fr);
1068 goto err_write_pipe;
1070 error = get_unused_fd_flags(flags);
1075 error = get_unused_fd_flags(flags);
1080 audit_fd_pair(fdr, fdw);
1081 fd_install(fdr, fr);
1082 fd_install(fdw, fw);
1091 path_put(&fr->f_path);
1094 free_write_pipe(fw);
1099 * sys_pipe() is the normal C calling standard for creating
1100 * a pipe. It's not the way Unix traditionally does this, though.
1102 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1107 error = do_pipe_flags(fd, flags);
1109 if (copy_to_user(fildes, fd, sizeof(fd))) {
1118 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1120 return sys_pipe2(fildes, 0);
1124 * Allocate a new array of pipe buffers and copy the info over. Returns the
1125 * pipe size if successful, or return -ERROR on error.
1127 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1129 struct pipe_buffer *bufs;
1132 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1133 * expect a lot of shrink+grow operations, just free and allocate
1134 * again like we would do for growing. If the pipe currently
1135 * contains more buffers than arg, then return busy.
1137 if (nr_pages < pipe->nrbufs)
1140 bufs = kcalloc(nr_pages, sizeof(struct pipe_buffer), GFP_KERNEL);
1141 if (unlikely(!bufs))
1145 * The pipe array wraps around, so just start the new one at zero
1146 * and adjust the indexes.
1152 tail = pipe->curbuf + pipe->nrbufs;
1153 if (tail < pipe->buffers)
1156 tail &= (pipe->buffers - 1);
1158 head = pipe->nrbufs - tail;
1160 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1162 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1168 pipe->buffers = nr_pages;
1169 return nr_pages * PAGE_SIZE;
1173 * Currently we rely on the pipe array holding a power-of-2 number
1176 static inline unsigned int round_pipe_size(unsigned int size)
1178 unsigned long nr_pages;
1180 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1181 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1185 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1186 * will return an error.
1188 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1189 size_t *lenp, loff_t *ppos)
1193 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1194 if (ret < 0 || !write)
1197 pipe_max_size = round_pipe_size(pipe_max_size);
1202 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1203 * location, so checking ->i_pipe is not enough to verify that this is a
1206 struct pipe_inode_info *get_pipe_info(struct file *file)
1208 struct inode *i = file->f_path.dentry->d_inode;
1210 return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1213 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1215 struct pipe_inode_info *pipe;
1218 pipe = get_pipe_info(file);
1222 mutex_lock(&pipe->inode->i_mutex);
1225 case F_SETPIPE_SZ: {
1226 unsigned int size, nr_pages;
1228 size = round_pipe_size(arg);
1229 nr_pages = size >> PAGE_SHIFT;
1235 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1239 ret = pipe_set_size(pipe, nr_pages);
1243 ret = pipe->buffers * PAGE_SIZE;
1251 mutex_unlock(&pipe->inode->i_mutex);
1255 static const struct super_operations pipefs_ops = {
1256 .destroy_inode = free_inode_nonrcu,
1260 * pipefs should _never_ be mounted by userland - too much of security hassle,
1261 * no real gain from having the whole whorehouse mounted. So we don't need
1262 * any operations on the root directory. However, we need a non-trivial
1263 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1265 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1266 int flags, const char *dev_name, void *data)
1268 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1269 &pipefs_dentry_operations, PIPEFS_MAGIC);
1272 static struct file_system_type pipe_fs_type = {
1274 .mount = pipefs_mount,
1275 .kill_sb = kill_anon_super,
1278 static int __init init_pipe_fs(void)
1280 int err = register_filesystem(&pipe_fs_type);
1283 pipe_mnt = kern_mount(&pipe_fs_type);
1284 if (IS_ERR(pipe_mnt)) {
1285 err = PTR_ERR(pipe_mnt);
1286 unregister_filesystem(&pipe_fs_type);
1292 static void __exit exit_pipe_fs(void)
1294 unregister_filesystem(&pipe_fs_type);
1298 fs_initcall(init_pipe_fs);
1299 module_exit(exit_pipe_fs);