4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
29 * The max size that a non-root user is allowed to grow the pipe. Can
30 * be set by root in /proc/sys/fs/pipe-max-size
32 unsigned int pipe_max_size = 1048576;
35 * Minimum pipe size, as required by POSIX
37 unsigned int pipe_min_size = PAGE_SIZE;
40 * We use a start+len construction, which provides full use of the
42 * -- Florian Coosmann (FGC)
44 * Reads with count = 0 should always return 0.
45 * -- Julian Bradfield 1999-06-07.
47 * FIFOs and Pipes now generate SIGIO for both readers and writers.
48 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
50 * pipe_read & write cleanup
51 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
54 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
57 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
60 void pipe_lock(struct pipe_inode_info *pipe)
63 * pipe_lock() nests non-pipe inode locks (for writing to a file)
65 pipe_lock_nested(pipe, I_MUTEX_PARENT);
67 EXPORT_SYMBOL(pipe_lock);
69 void pipe_unlock(struct pipe_inode_info *pipe)
72 mutex_unlock(&pipe->inode->i_mutex);
74 EXPORT_SYMBOL(pipe_unlock);
76 void pipe_double_lock(struct pipe_inode_info *pipe1,
77 struct pipe_inode_info *pipe2)
79 BUG_ON(pipe1 == pipe2);
82 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
83 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
85 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
86 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
90 /* Drop the inode semaphore and wait for a pipe event, atomically */
91 void pipe_wait(struct pipe_inode_info *pipe)
96 * Pipes are system-local resources, so sleeping on them
97 * is considered a noninteractive wait:
99 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
102 finish_wait(&pipe->wait, &wait);
107 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
113 while (!iov->iov_len)
115 copy = min_t(unsigned long, len, iov->iov_len);
118 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
121 if (copy_from_user(to, iov->iov_base, copy))
126 iov->iov_base += copy;
127 iov->iov_len -= copy;
133 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
139 while (!iov->iov_len)
141 copy = min_t(unsigned long, len, iov->iov_len);
144 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
147 if (copy_to_user(iov->iov_base, from, copy))
152 iov->iov_base += copy;
153 iov->iov_len -= copy;
159 * Attempt to pre-fault in the user memory, so we can use atomic copies.
160 * Returns the number of bytes not faulted in.
162 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
164 while (!iov->iov_len)
168 unsigned long this_len;
170 this_len = min_t(unsigned long, len, iov->iov_len);
171 if (fault_in_pages_writeable(iov->iov_base, this_len))
182 * Pre-fault in the user memory, so we can use atomic copies.
184 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
186 while (!iov->iov_len)
190 unsigned long this_len;
192 this_len = min_t(unsigned long, len, iov->iov_len);
193 fault_in_pages_readable(iov->iov_base, this_len);
199 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
200 struct pipe_buffer *buf)
202 struct page *page = buf->page;
205 * If nobody else uses this page, and we don't already have a
206 * temporary page, let's keep track of it as a one-deep
207 * allocation cache. (Otherwise just release our reference to it)
209 if (page_count(page) == 1 && !pipe->tmp_page)
210 pipe->tmp_page = page;
212 page_cache_release(page);
216 * generic_pipe_buf_map - virtually map a pipe buffer
217 * @pipe: the pipe that the buffer belongs to
218 * @buf: the buffer that should be mapped
219 * @atomic: whether to use an atomic map
222 * This function returns a kernel virtual address mapping for the
223 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
224 * and the caller has to be careful not to fault before calling
225 * the unmap function.
227 * Note that this function calls kmap_atomic() if @atomic != 0.
229 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
230 struct pipe_buffer *buf, int atomic)
233 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
234 return kmap_atomic(buf->page);
237 return kmap(buf->page);
239 EXPORT_SYMBOL(generic_pipe_buf_map);
242 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
243 * @pipe: the pipe that the buffer belongs to
244 * @buf: the buffer that should be unmapped
245 * @map_data: the data that the mapping function returned
248 * This function undoes the mapping that ->map() provided.
250 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
251 struct pipe_buffer *buf, void *map_data)
253 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
254 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
255 kunmap_atomic(map_data);
259 EXPORT_SYMBOL(generic_pipe_buf_unmap);
262 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
263 * @pipe: the pipe that the buffer belongs to
264 * @buf: the buffer to attempt to steal
267 * This function attempts to steal the &struct page attached to
268 * @buf. If successful, this function returns 0 and returns with
269 * the page locked. The caller may then reuse the page for whatever
270 * he wishes; the typical use is insertion into a different file
273 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
274 struct pipe_buffer *buf)
276 struct page *page = buf->page;
279 * A reference of one is golden, that means that the owner of this
280 * page is the only one holding a reference to it. lock the page
283 if (page_count(page) == 1) {
290 EXPORT_SYMBOL(generic_pipe_buf_steal);
293 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
294 * @pipe: the pipe that the buffer belongs to
295 * @buf: the buffer to get a reference to
298 * This function grabs an extra reference to @buf. It's used in
299 * in the tee() system call, when we duplicate the buffers in one
302 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
304 page_cache_get(buf->page);
306 EXPORT_SYMBOL(generic_pipe_buf_get);
309 * generic_pipe_buf_confirm - verify contents of the pipe buffer
310 * @info: the pipe that the buffer belongs to
311 * @buf: the buffer to confirm
314 * This function does nothing, because the generic pipe code uses
315 * pages that are always good when inserted into the pipe.
317 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
318 struct pipe_buffer *buf)
322 EXPORT_SYMBOL(generic_pipe_buf_confirm);
325 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
326 * @pipe: the pipe that the buffer belongs to
327 * @buf: the buffer to put a reference to
330 * This function releases a reference to @buf.
332 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
333 struct pipe_buffer *buf)
335 page_cache_release(buf->page);
337 EXPORT_SYMBOL(generic_pipe_buf_release);
339 static const struct pipe_buf_operations anon_pipe_buf_ops = {
341 .map = generic_pipe_buf_map,
342 .unmap = generic_pipe_buf_unmap,
343 .confirm = generic_pipe_buf_confirm,
344 .release = anon_pipe_buf_release,
345 .steal = generic_pipe_buf_steal,
346 .get = generic_pipe_buf_get,
349 static const struct pipe_buf_operations packet_pipe_buf_ops = {
351 .map = generic_pipe_buf_map,
352 .unmap = generic_pipe_buf_unmap,
353 .confirm = generic_pipe_buf_confirm,
354 .release = anon_pipe_buf_release,
355 .steal = generic_pipe_buf_steal,
356 .get = generic_pipe_buf_get,
360 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
361 unsigned long nr_segs, loff_t pos)
363 struct file *filp = iocb->ki_filp;
364 struct inode *inode = filp->f_path.dentry->d_inode;
365 struct pipe_inode_info *pipe;
368 struct iovec *iov = (struct iovec *)_iov;
371 total_len = iov_length(iov, nr_segs);
372 /* Null read succeeds. */
373 if (unlikely(total_len == 0))
378 mutex_lock(&inode->i_mutex);
379 pipe = inode->i_pipe;
381 int bufs = pipe->nrbufs;
383 int curbuf = pipe->curbuf;
384 struct pipe_buffer *buf = pipe->bufs + curbuf;
385 const struct pipe_buf_operations *ops = buf->ops;
387 size_t chars = buf->len;
390 if (chars > total_len)
393 error = ops->confirm(pipe, buf);
400 atomic = !iov_fault_in_pages_write(iov, chars);
402 addr = ops->map(pipe, buf, atomic);
403 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
404 ops->unmap(pipe, buf, addr);
405 if (unlikely(error)) {
407 * Just retry with the slow path if we failed.
418 buf->offset += chars;
421 /* Was it a packet buffer? Clean up and exit */
422 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
429 ops->release(pipe, buf);
430 curbuf = (curbuf + 1) & (pipe->buffers - 1);
431 pipe->curbuf = curbuf;
432 pipe->nrbufs = --bufs;
437 break; /* common path: read succeeded */
439 if (bufs) /* More to do? */
443 if (!pipe->waiting_writers) {
444 /* syscall merging: Usually we must not sleep
445 * if O_NONBLOCK is set, or if we got some data.
446 * But if a writer sleeps in kernel space, then
447 * we can wait for that data without violating POSIX.
451 if (filp->f_flags & O_NONBLOCK) {
456 if (signal_pending(current)) {
462 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
463 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
467 mutex_unlock(&inode->i_mutex);
469 /* Signal writers asynchronously that there is more room. */
471 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
472 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
479 static inline int is_packetized(struct file *file)
481 return (file->f_flags & O_DIRECT) != 0;
485 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
486 unsigned long nr_segs, loff_t ppos)
488 struct file *filp = iocb->ki_filp;
489 struct inode *inode = filp->f_path.dentry->d_inode;
490 struct pipe_inode_info *pipe;
493 struct iovec *iov = (struct iovec *)_iov;
497 total_len = iov_length(iov, nr_segs);
498 /* Null write succeeds. */
499 if (unlikely(total_len == 0))
504 mutex_lock(&inode->i_mutex);
505 pipe = inode->i_pipe;
507 if (!pipe->readers) {
508 send_sig(SIGPIPE, current, 0);
513 /* We try to merge small writes */
514 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
515 if (pipe->nrbufs && chars != 0) {
516 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
518 struct pipe_buffer *buf = pipe->bufs + lastbuf;
519 const struct pipe_buf_operations *ops = buf->ops;
520 int offset = buf->offset + buf->len;
522 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
523 int error, atomic = 1;
526 error = ops->confirm(pipe, buf);
530 iov_fault_in_pages_read(iov, chars);
532 addr = ops->map(pipe, buf, atomic);
533 error = pipe_iov_copy_from_user(offset + addr, iov,
535 ops->unmap(pipe, buf, addr);
556 if (!pipe->readers) {
557 send_sig(SIGPIPE, current, 0);
563 if (bufs < pipe->buffers) {
564 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
565 struct pipe_buffer *buf = pipe->bufs + newbuf;
566 struct page *page = pipe->tmp_page;
568 int error, atomic = 1;
571 page = alloc_page(GFP_HIGHUSER);
572 if (unlikely(!page)) {
573 ret = ret ? : -ENOMEM;
576 pipe->tmp_page = page;
578 /* Always wake up, even if the copy fails. Otherwise
579 * we lock up (O_NONBLOCK-)readers that sleep due to
581 * FIXME! Is this really true?
585 if (chars > total_len)
588 iov_fault_in_pages_read(iov, chars);
591 src = kmap_atomic(page);
595 error = pipe_iov_copy_from_user(src, iov, chars,
602 if (unlikely(error)) {
613 /* Insert it into the buffer array */
615 buf->ops = &anon_pipe_buf_ops;
619 if (is_packetized(filp)) {
620 buf->ops = &packet_pipe_buf_ops;
621 buf->flags = PIPE_BUF_FLAG_PACKET;
623 pipe->nrbufs = ++bufs;
624 pipe->tmp_page = NULL;
630 if (bufs < pipe->buffers)
632 if (filp->f_flags & O_NONBLOCK) {
637 if (signal_pending(current)) {
643 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
644 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
647 pipe->waiting_writers++;
649 pipe->waiting_writers--;
652 mutex_unlock(&inode->i_mutex);
654 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
655 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
658 int err = file_update_time(filp);
666 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
672 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
678 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
680 struct inode *inode = filp->f_path.dentry->d_inode;
681 struct pipe_inode_info *pipe;
682 int count, buf, nrbufs;
686 mutex_lock(&inode->i_mutex);
687 pipe = inode->i_pipe;
690 nrbufs = pipe->nrbufs;
691 while (--nrbufs >= 0) {
692 count += pipe->bufs[buf].len;
693 buf = (buf+1) & (pipe->buffers - 1);
695 mutex_unlock(&inode->i_mutex);
697 return put_user(count, (int __user *)arg);
703 /* No kernel lock held - fine */
705 pipe_poll(struct file *filp, poll_table *wait)
708 struct inode *inode = filp->f_path.dentry->d_inode;
709 struct pipe_inode_info *pipe = inode->i_pipe;
712 poll_wait(filp, &pipe->wait, wait);
714 /* Reading only -- no need for acquiring the semaphore. */
715 nrbufs = pipe->nrbufs;
717 if (filp->f_mode & FMODE_READ) {
718 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
719 if (!pipe->writers && filp->f_version != pipe->w_counter)
723 if (filp->f_mode & FMODE_WRITE) {
724 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
726 * Most Unices do not set POLLERR for FIFOs but on Linux they
727 * behave exactly like pipes for poll().
737 pipe_release(struct inode *inode, int decr, int decw)
739 struct pipe_inode_info *pipe;
741 mutex_lock(&inode->i_mutex);
742 pipe = inode->i_pipe;
743 pipe->readers -= decr;
744 pipe->writers -= decw;
746 if (!pipe->readers && !pipe->writers) {
747 free_pipe_info(inode);
749 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
750 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
751 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
753 mutex_unlock(&inode->i_mutex);
759 pipe_read_fasync(int fd, struct file *filp, int on)
761 struct inode *inode = filp->f_path.dentry->d_inode;
764 mutex_lock(&inode->i_mutex);
765 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
766 mutex_unlock(&inode->i_mutex);
773 pipe_write_fasync(int fd, struct file *filp, int on)
775 struct inode *inode = filp->f_path.dentry->d_inode;
778 mutex_lock(&inode->i_mutex);
779 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
780 mutex_unlock(&inode->i_mutex);
787 pipe_rdwr_fasync(int fd, struct file *filp, int on)
789 struct inode *inode = filp->f_path.dentry->d_inode;
790 struct pipe_inode_info *pipe = inode->i_pipe;
793 mutex_lock(&inode->i_mutex);
794 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
796 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
797 if (retval < 0) /* this can happen only if on == T */
798 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
800 mutex_unlock(&inode->i_mutex);
806 pipe_read_release(struct inode *inode, struct file *filp)
808 return pipe_release(inode, 1, 0);
812 pipe_write_release(struct inode *inode, struct file *filp)
814 return pipe_release(inode, 0, 1);
818 pipe_rdwr_release(struct inode *inode, struct file *filp)
822 decr = (filp->f_mode & FMODE_READ) != 0;
823 decw = (filp->f_mode & FMODE_WRITE) != 0;
824 return pipe_release(inode, decr, decw);
828 pipe_read_open(struct inode *inode, struct file *filp)
832 mutex_lock(&inode->i_mutex);
836 inode->i_pipe->readers++;
839 mutex_unlock(&inode->i_mutex);
845 pipe_write_open(struct inode *inode, struct file *filp)
849 mutex_lock(&inode->i_mutex);
853 inode->i_pipe->writers++;
856 mutex_unlock(&inode->i_mutex);
862 pipe_rdwr_open(struct inode *inode, struct file *filp)
866 mutex_lock(&inode->i_mutex);
870 if (filp->f_mode & FMODE_READ)
871 inode->i_pipe->readers++;
872 if (filp->f_mode & FMODE_WRITE)
873 inode->i_pipe->writers++;
876 mutex_unlock(&inode->i_mutex);
882 * The file_operations structs are not static because they
883 * are also used in linux/fs/fifo.c to do operations on FIFOs.
885 * Pipes reuse fifos' file_operations structs.
887 const struct file_operations read_pipefifo_fops = {
889 .read = do_sync_read,
890 .aio_read = pipe_read,
893 .unlocked_ioctl = pipe_ioctl,
894 .open = pipe_read_open,
895 .release = pipe_read_release,
896 .fasync = pipe_read_fasync,
899 const struct file_operations write_pipefifo_fops = {
902 .write = do_sync_write,
903 .aio_write = pipe_write,
905 .unlocked_ioctl = pipe_ioctl,
906 .open = pipe_write_open,
907 .release = pipe_write_release,
908 .fasync = pipe_write_fasync,
911 const struct file_operations rdwr_pipefifo_fops = {
913 .read = do_sync_read,
914 .aio_read = pipe_read,
915 .write = do_sync_write,
916 .aio_write = pipe_write,
918 .unlocked_ioctl = pipe_ioctl,
919 .open = pipe_rdwr_open,
920 .release = pipe_rdwr_release,
921 .fasync = pipe_rdwr_fasync,
924 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
926 struct pipe_inode_info *pipe;
928 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
930 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
932 init_waitqueue_head(&pipe->wait);
933 pipe->r_counter = pipe->w_counter = 1;
935 pipe->buffers = PIPE_DEF_BUFFERS;
944 void __free_pipe_info(struct pipe_inode_info *pipe)
948 for (i = 0; i < pipe->buffers; i++) {
949 struct pipe_buffer *buf = pipe->bufs + i;
951 buf->ops->release(pipe, buf);
954 __free_page(pipe->tmp_page);
959 void free_pipe_info(struct inode *inode)
961 __free_pipe_info(inode->i_pipe);
962 inode->i_pipe = NULL;
965 static struct vfsmount *pipe_mnt __read_mostly;
968 * pipefs_dname() is called from d_path().
970 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
972 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
973 dentry->d_inode->i_ino);
976 static const struct dentry_operations pipefs_dentry_operations = {
977 .d_dname = pipefs_dname,
980 static struct inode * get_pipe_inode(void)
982 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
983 struct pipe_inode_info *pipe;
988 inode->i_ino = get_next_ino();
990 pipe = alloc_pipe_info(inode);
993 inode->i_pipe = pipe;
995 pipe->readers = pipe->writers = 1;
996 inode->i_fop = &rdwr_pipefifo_fops;
999 * Mark the inode dirty from the very beginning,
1000 * that way it will never be moved to the dirty
1001 * list because "mark_inode_dirty()" will think
1002 * that it already _is_ on the dirty list.
1004 inode->i_state = I_DIRTY;
1005 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
1006 inode->i_uid = current_fsuid();
1007 inode->i_gid = current_fsgid();
1008 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1019 int create_pipe_files(struct file **res, int flags)
1022 struct inode *inode = get_pipe_inode();
1025 static struct qstr name = { .name = "" };
1031 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
1034 path.mnt = mntget(pipe_mnt);
1036 d_instantiate(path.dentry, inode);
1039 f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1043 f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
1045 res[0] = alloc_file(&path, FMODE_READ, &read_pipefifo_fops);
1050 res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1057 free_pipe_info(inode);
1062 free_pipe_info(inode);
1067 int do_pipe_flags(int *fd, int flags)
1069 struct file *files[2];
1073 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
1076 error = create_pipe_files(files, flags);
1080 error = get_unused_fd_flags(flags);
1085 error = get_unused_fd_flags(flags);
1090 audit_fd_pair(fdr, fdw);
1091 fd_install(fdr, files[0]);
1092 fd_install(fdw, files[1]);
1107 * sys_pipe() is the normal C calling standard for creating
1108 * a pipe. It's not the way Unix traditionally does this, though.
1110 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1115 error = do_pipe_flags(fd, flags);
1117 if (copy_to_user(fildes, fd, sizeof(fd))) {
1126 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1128 return sys_pipe2(fildes, 0);
1132 * Allocate a new array of pipe buffers and copy the info over. Returns the
1133 * pipe size if successful, or return -ERROR on error.
1135 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1137 struct pipe_buffer *bufs;
1140 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1141 * expect a lot of shrink+grow operations, just free and allocate
1142 * again like we would do for growing. If the pipe currently
1143 * contains more buffers than arg, then return busy.
1145 if (nr_pages < pipe->nrbufs)
1148 bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1149 if (unlikely(!bufs))
1153 * The pipe array wraps around, so just start the new one at zero
1154 * and adjust the indexes.
1160 tail = pipe->curbuf + pipe->nrbufs;
1161 if (tail < pipe->buffers)
1164 tail &= (pipe->buffers - 1);
1166 head = pipe->nrbufs - tail;
1168 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1170 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1176 pipe->buffers = nr_pages;
1177 return nr_pages * PAGE_SIZE;
1181 * Currently we rely on the pipe array holding a power-of-2 number
1184 static inline unsigned int round_pipe_size(unsigned int size)
1186 unsigned long nr_pages;
1188 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1189 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1193 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1194 * will return an error.
1196 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1197 size_t *lenp, loff_t *ppos)
1201 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1202 if (ret < 0 || !write)
1205 pipe_max_size = round_pipe_size(pipe_max_size);
1210 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1211 * location, so checking ->i_pipe is not enough to verify that this is a
1214 struct pipe_inode_info *get_pipe_info(struct file *file)
1216 struct inode *i = file->f_path.dentry->d_inode;
1218 return S_ISFIFO(i->i_mode) ? i->i_pipe : NULL;
1221 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1223 struct pipe_inode_info *pipe;
1226 pipe = get_pipe_info(file);
1230 mutex_lock(&pipe->inode->i_mutex);
1233 case F_SETPIPE_SZ: {
1234 unsigned int size, nr_pages;
1236 size = round_pipe_size(arg);
1237 nr_pages = size >> PAGE_SHIFT;
1243 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1247 ret = pipe_set_size(pipe, nr_pages);
1251 ret = pipe->buffers * PAGE_SIZE;
1259 mutex_unlock(&pipe->inode->i_mutex);
1263 static const struct super_operations pipefs_ops = {
1264 .destroy_inode = free_inode_nonrcu,
1265 .statfs = simple_statfs,
1269 * pipefs should _never_ be mounted by userland - too much of security hassle,
1270 * no real gain from having the whole whorehouse mounted. So we don't need
1271 * any operations on the root directory. However, we need a non-trivial
1272 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1274 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1275 int flags, const char *dev_name, void *data)
1277 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1278 &pipefs_dentry_operations, PIPEFS_MAGIC);
1281 static struct file_system_type pipe_fs_type = {
1283 .mount = pipefs_mount,
1284 .kill_sb = kill_anon_super,
1287 static int __init init_pipe_fs(void)
1289 int err = register_filesystem(&pipe_fs_type);
1292 pipe_mnt = kern_mount(&pipe_fs_type);
1293 if (IS_ERR(pipe_mnt)) {
1294 err = PTR_ERR(pipe_mnt);
1295 unregister_filesystem(&pipe_fs_type);
1301 fs_initcall(init_pipe_fs);