Merge branch 'next' into for-linus
[platform/kernel/linux-rpi.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30
31 #include "internal.h"
32
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64         if (pipe->files)
65                 mutex_lock_nested(&pipe->mutex, subclass);
66 }
67
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70         /*
71          * pipe_lock() nests non-pipe inode locks (for writing to a file)
72          */
73         pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79         if (pipe->files)
80                 mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91         mutex_unlock(&pipe->mutex);
92 }
93
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95                       struct pipe_inode_info *pipe2)
96 {
97         BUG_ON(pipe1 == pipe2);
98
99         if (pipe1 < pipe2) {
100                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102         } else {
103                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105         }
106 }
107
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111         DEFINE_WAIT(rdwait);
112         DEFINE_WAIT(wrwait);
113
114         /*
115          * Pipes are system-local resources, so sleeping on them
116          * is considered a noninteractive wait:
117          */
118         prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
119         prepare_to_wait(&pipe->wr_wait, &wrwait, TASK_INTERRUPTIBLE);
120         pipe_unlock(pipe);
121         schedule();
122         finish_wait(&pipe->rd_wait, &rdwait);
123         finish_wait(&pipe->wr_wait, &wrwait);
124         pipe_lock(pipe);
125 }
126
127 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
128                                   struct pipe_buffer *buf)
129 {
130         struct page *page = buf->page;
131
132         /*
133          * If nobody else uses this page, and we don't already have a
134          * temporary page, let's keep track of it as a one-deep
135          * allocation cache. (Otherwise just release our reference to it)
136          */
137         if (page_count(page) == 1 && !pipe->tmp_page)
138                 pipe->tmp_page = page;
139         else
140                 put_page(page);
141 }
142
143 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
144                                struct pipe_buffer *buf)
145 {
146         struct page *page = buf->page;
147
148         if (page_count(page) == 1) {
149                 memcg_kmem_uncharge_page(page, 0);
150                 __SetPageLocked(page);
151                 return 0;
152         }
153         return 1;
154 }
155
156 /**
157  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
158  * @pipe:       the pipe that the buffer belongs to
159  * @buf:        the buffer to attempt to steal
160  *
161  * Description:
162  *      This function attempts to steal the &struct page attached to
163  *      @buf. If successful, this function returns 0 and returns with
164  *      the page locked. The caller may then reuse the page for whatever
165  *      he wishes; the typical use is insertion into a different file
166  *      page cache.
167  */
168 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
169                            struct pipe_buffer *buf)
170 {
171         struct page *page = buf->page;
172
173         /*
174          * A reference of one is golden, that means that the owner of this
175          * page is the only one holding a reference to it. lock the page
176          * and return OK.
177          */
178         if (page_count(page) == 1) {
179                 lock_page(page);
180                 return 0;
181         }
182
183         return 1;
184 }
185 EXPORT_SYMBOL(generic_pipe_buf_steal);
186
187 /**
188  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
189  * @pipe:       the pipe that the buffer belongs to
190  * @buf:        the buffer to get a reference to
191  *
192  * Description:
193  *      This function grabs an extra reference to @buf. It's used in
194  *      in the tee() system call, when we duplicate the buffers in one
195  *      pipe into another.
196  */
197 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
198 {
199         return try_get_page(buf->page);
200 }
201 EXPORT_SYMBOL(generic_pipe_buf_get);
202
203 /**
204  * generic_pipe_buf_confirm - verify contents of the pipe buffer
205  * @info:       the pipe that the buffer belongs to
206  * @buf:        the buffer to confirm
207  *
208  * Description:
209  *      This function does nothing, because the generic pipe code uses
210  *      pages that are always good when inserted into the pipe.
211  */
212 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
213                              struct pipe_buffer *buf)
214 {
215         return 0;
216 }
217 EXPORT_SYMBOL(generic_pipe_buf_confirm);
218
219 /**
220  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
221  * @pipe:       the pipe that the buffer belongs to
222  * @buf:        the buffer to put a reference to
223  *
224  * Description:
225  *      This function releases a reference to @buf.
226  */
227 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
228                               struct pipe_buffer *buf)
229 {
230         put_page(buf->page);
231 }
232 EXPORT_SYMBOL(generic_pipe_buf_release);
233
234 /* New data written to a pipe may be appended to a buffer with this type. */
235 static const struct pipe_buf_operations anon_pipe_buf_ops = {
236         .confirm = generic_pipe_buf_confirm,
237         .release = anon_pipe_buf_release,
238         .steal = anon_pipe_buf_steal,
239         .get = generic_pipe_buf_get,
240 };
241
242 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
243         .confirm = generic_pipe_buf_confirm,
244         .release = anon_pipe_buf_release,
245         .steal = anon_pipe_buf_steal,
246         .get = generic_pipe_buf_get,
247 };
248
249 static const struct pipe_buf_operations packet_pipe_buf_ops = {
250         .confirm = generic_pipe_buf_confirm,
251         .release = anon_pipe_buf_release,
252         .steal = anon_pipe_buf_steal,
253         .get = generic_pipe_buf_get,
254 };
255
256 /**
257  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
258  * @buf:        the buffer to mark
259  *
260  * Description:
261  *      This function ensures that no future writes will be merged into the
262  *      given &struct pipe_buffer. This is necessary when multiple pipe buffers
263  *      share the same backing page.
264  */
265 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
266 {
267         if (buf->ops == &anon_pipe_buf_ops)
268                 buf->ops = &anon_pipe_buf_nomerge_ops;
269 }
270
271 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
272 {
273         return buf->ops == &anon_pipe_buf_ops;
274 }
275
276 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
277 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
278 {
279         unsigned int head = READ_ONCE(pipe->head);
280         unsigned int tail = READ_ONCE(pipe->tail);
281         unsigned int writers = READ_ONCE(pipe->writers);
282
283         return !pipe_empty(head, tail) || !writers;
284 }
285
286 static ssize_t
287 pipe_read(struct kiocb *iocb, struct iov_iter *to)
288 {
289         size_t total_len = iov_iter_count(to);
290         struct file *filp = iocb->ki_filp;
291         struct pipe_inode_info *pipe = filp->private_data;
292         bool was_full, wake_next_reader = false;
293         ssize_t ret;
294
295         /* Null read succeeds. */
296         if (unlikely(total_len == 0))
297                 return 0;
298
299         ret = 0;
300         __pipe_lock(pipe);
301
302         /*
303          * We only wake up writers if the pipe was full when we started
304          * reading in order to avoid unnecessary wakeups.
305          *
306          * But when we do wake up writers, we do so using a sync wakeup
307          * (WF_SYNC), because we want them to get going and generate more
308          * data for us.
309          */
310         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
311         for (;;) {
312                 unsigned int head = pipe->head;
313                 unsigned int tail = pipe->tail;
314                 unsigned int mask = pipe->ring_size - 1;
315
316                 if (!pipe_empty(head, tail)) {
317                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
318                         size_t chars = buf->len;
319                         size_t written;
320                         int error;
321
322                         if (chars > total_len)
323                                 chars = total_len;
324
325                         error = pipe_buf_confirm(pipe, buf);
326                         if (error) {
327                                 if (!ret)
328                                         ret = error;
329                                 break;
330                         }
331
332                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
333                         if (unlikely(written < chars)) {
334                                 if (!ret)
335                                         ret = -EFAULT;
336                                 break;
337                         }
338                         ret += chars;
339                         buf->offset += chars;
340                         buf->len -= chars;
341
342                         /* Was it a packet buffer? Clean up and exit */
343                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
344                                 total_len = chars;
345                                 buf->len = 0;
346                         }
347
348                         if (!buf->len) {
349                                 pipe_buf_release(pipe, buf);
350                                 spin_lock_irq(&pipe->rd_wait.lock);
351                                 tail++;
352                                 pipe->tail = tail;
353                                 spin_unlock_irq(&pipe->rd_wait.lock);
354                         }
355                         total_len -= chars;
356                         if (!total_len)
357                                 break;  /* common path: read succeeded */
358                         if (!pipe_empty(head, tail))    /* More to do? */
359                                 continue;
360                 }
361
362                 if (!pipe->writers)
363                         break;
364                 if (ret)
365                         break;
366                 if (filp->f_flags & O_NONBLOCK) {
367                         ret = -EAGAIN;
368                         break;
369                 }
370                 __pipe_unlock(pipe);
371
372                 /*
373                  * We only get here if we didn't actually read anything.
374                  *
375                  * However, we could have seen (and removed) a zero-sized
376                  * pipe buffer, and might have made space in the buffers
377                  * that way.
378                  *
379                  * You can't make zero-sized pipe buffers by doing an empty
380                  * write (not even in packet mode), but they can happen if
381                  * the writer gets an EFAULT when trying to fill a buffer
382                  * that already got allocated and inserted in the buffer
383                  * array.
384                  *
385                  * So we still need to wake up any pending writers in the
386                  * _very_ unlikely case that the pipe was full, but we got
387                  * no data.
388                  */
389                 if (unlikely(was_full)) {
390                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
392                 }
393
394                 /*
395                  * But because we didn't read anything, at this point we can
396                  * just return directly with -ERESTARTSYS if we're interrupted,
397                  * since we've done any required wakeups and there's no need
398                  * to mark anything accessed. And we've dropped the lock.
399                  */
400                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
401                         return -ERESTARTSYS;
402
403                 __pipe_lock(pipe);
404                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
405                 wake_next_reader = true;
406         }
407         if (pipe_empty(pipe->head, pipe->tail))
408                 wake_next_reader = false;
409         __pipe_unlock(pipe);
410
411         if (was_full) {
412                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
413                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
414         }
415         if (wake_next_reader)
416                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
417         if (ret > 0)
418                 file_accessed(filp);
419         return ret;
420 }
421
422 static inline int is_packetized(struct file *file)
423 {
424         return (file->f_flags & O_DIRECT) != 0;
425 }
426
427 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
428 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
429 {
430         unsigned int head = READ_ONCE(pipe->head);
431         unsigned int tail = READ_ONCE(pipe->tail);
432         unsigned int max_usage = READ_ONCE(pipe->max_usage);
433
434         return !pipe_full(head, tail, max_usage) ||
435                 !READ_ONCE(pipe->readers);
436 }
437
438 static ssize_t
439 pipe_write(struct kiocb *iocb, struct iov_iter *from)
440 {
441         struct file *filp = iocb->ki_filp;
442         struct pipe_inode_info *pipe = filp->private_data;
443         unsigned int head;
444         ssize_t ret = 0;
445         size_t total_len = iov_iter_count(from);
446         ssize_t chars;
447         bool was_empty = false;
448         bool wake_next_writer = false;
449
450         /* Null write succeeds. */
451         if (unlikely(total_len == 0))
452                 return 0;
453
454         __pipe_lock(pipe);
455
456         if (!pipe->readers) {
457                 send_sig(SIGPIPE, current, 0);
458                 ret = -EPIPE;
459                 goto out;
460         }
461
462         /*
463          * Only wake up if the pipe started out empty, since
464          * otherwise there should be no readers waiting.
465          *
466          * If it wasn't empty we try to merge new data into
467          * the last buffer.
468          *
469          * That naturally merges small writes, but it also
470          * page-aligs the rest of the writes for large writes
471          * spanning multiple pages.
472          */
473         head = pipe->head;
474         was_empty = pipe_empty(head, pipe->tail);
475         chars = total_len & (PAGE_SIZE-1);
476         if (chars && !was_empty) {
477                 unsigned int mask = pipe->ring_size - 1;
478                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
479                 int offset = buf->offset + buf->len;
480
481                 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
482                         ret = pipe_buf_confirm(pipe, buf);
483                         if (ret)
484                                 goto out;
485
486                         ret = copy_page_from_iter(buf->page, offset, chars, from);
487                         if (unlikely(ret < chars)) {
488                                 ret = -EFAULT;
489                                 goto out;
490                         }
491
492                         buf->len += ret;
493                         if (!iov_iter_count(from))
494                                 goto out;
495                 }
496         }
497
498         for (;;) {
499                 if (!pipe->readers) {
500                         send_sig(SIGPIPE, current, 0);
501                         if (!ret)
502                                 ret = -EPIPE;
503                         break;
504                 }
505
506                 head = pipe->head;
507                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
508                         unsigned int mask = pipe->ring_size - 1;
509                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
510                         struct page *page = pipe->tmp_page;
511                         int copied;
512
513                         if (!page) {
514                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
515                                 if (unlikely(!page)) {
516                                         ret = ret ? : -ENOMEM;
517                                         break;
518                                 }
519                                 pipe->tmp_page = page;
520                         }
521
522                         /* Allocate a slot in the ring in advance and attach an
523                          * empty buffer.  If we fault or otherwise fail to use
524                          * it, either the reader will consume it or it'll still
525                          * be there for the next write.
526                          */
527                         spin_lock_irq(&pipe->rd_wait.lock);
528
529                         head = pipe->head;
530                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
531                                 spin_unlock_irq(&pipe->rd_wait.lock);
532                                 continue;
533                         }
534
535                         pipe->head = head + 1;
536                         spin_unlock_irq(&pipe->rd_wait.lock);
537
538                         /* Insert it into the buffer array */
539                         buf = &pipe->bufs[head & mask];
540                         buf->page = page;
541                         buf->ops = &anon_pipe_buf_ops;
542                         buf->offset = 0;
543                         buf->len = 0;
544                         buf->flags = 0;
545                         if (is_packetized(filp)) {
546                                 buf->ops = &packet_pipe_buf_ops;
547                                 buf->flags = PIPE_BUF_FLAG_PACKET;
548                         }
549                         pipe->tmp_page = NULL;
550
551                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
552                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
553                                 if (!ret)
554                                         ret = -EFAULT;
555                                 break;
556                         }
557                         ret += copied;
558                         buf->offset = 0;
559                         buf->len = copied;
560
561                         if (!iov_iter_count(from))
562                                 break;
563                 }
564
565                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
566                         continue;
567
568                 /* Wait for buffer space to become available. */
569                 if (filp->f_flags & O_NONBLOCK) {
570                         if (!ret)
571                                 ret = -EAGAIN;
572                         break;
573                 }
574                 if (signal_pending(current)) {
575                         if (!ret)
576                                 ret = -ERESTARTSYS;
577                         break;
578                 }
579
580                 /*
581                  * We're going to release the pipe lock and wait for more
582                  * space. We wake up any readers if necessary, and then
583                  * after waiting we need to re-check whether the pipe
584                  * become empty while we dropped the lock.
585                  */
586                 __pipe_unlock(pipe);
587                 if (was_empty) {
588                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
589                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
590                 }
591                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
592                 __pipe_lock(pipe);
593                 was_empty = pipe_empty(pipe->head, pipe->tail);
594                 wake_next_writer = true;
595         }
596 out:
597         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
598                 wake_next_writer = false;
599         __pipe_unlock(pipe);
600
601         /*
602          * If we do do a wakeup event, we do a 'sync' wakeup, because we
603          * want the reader to start processing things asap, rather than
604          * leave the data pending.
605          *
606          * This is particularly important for small writes, because of
607          * how (for example) the GNU make jobserver uses small writes to
608          * wake up pending jobs
609          */
610         if (was_empty) {
611                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
612                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
613         }
614         if (wake_next_writer)
615                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
616         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
617                 int err = file_update_time(filp);
618                 if (err)
619                         ret = err;
620                 sb_end_write(file_inode(filp)->i_sb);
621         }
622         return ret;
623 }
624
625 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
626 {
627         struct pipe_inode_info *pipe = filp->private_data;
628         int count, head, tail, mask;
629
630         switch (cmd) {
631                 case FIONREAD:
632                         __pipe_lock(pipe);
633                         count = 0;
634                         head = pipe->head;
635                         tail = pipe->tail;
636                         mask = pipe->ring_size - 1;
637
638                         while (tail != head) {
639                                 count += pipe->bufs[tail & mask].len;
640                                 tail++;
641                         }
642                         __pipe_unlock(pipe);
643
644                         return put_user(count, (int __user *)arg);
645                 default:
646                         return -ENOIOCTLCMD;
647         }
648 }
649
650 /* No kernel lock held - fine */
651 static __poll_t
652 pipe_poll(struct file *filp, poll_table *wait)
653 {
654         __poll_t mask;
655         struct pipe_inode_info *pipe = filp->private_data;
656         unsigned int head, tail;
657
658         /*
659          * Reading pipe state only -- no need for acquiring the semaphore.
660          *
661          * But because this is racy, the code has to add the
662          * entry to the poll table _first_ ..
663          */
664         if (filp->f_mode & FMODE_READ)
665                 poll_wait(filp, &pipe->rd_wait, wait);
666         if (filp->f_mode & FMODE_WRITE)
667                 poll_wait(filp, &pipe->wr_wait, wait);
668
669         /*
670          * .. and only then can you do the racy tests. That way,
671          * if something changes and you got it wrong, the poll
672          * table entry will wake you up and fix it.
673          */
674         head = READ_ONCE(pipe->head);
675         tail = READ_ONCE(pipe->tail);
676
677         mask = 0;
678         if (filp->f_mode & FMODE_READ) {
679                 if (!pipe_empty(head, tail))
680                         mask |= EPOLLIN | EPOLLRDNORM;
681                 if (!pipe->writers && filp->f_version != pipe->w_counter)
682                         mask |= EPOLLHUP;
683         }
684
685         if (filp->f_mode & FMODE_WRITE) {
686                 if (!pipe_full(head, tail, pipe->max_usage))
687                         mask |= EPOLLOUT | EPOLLWRNORM;
688                 /*
689                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690                  * behave exactly like pipes for poll().
691                  */
692                 if (!pipe->readers)
693                         mask |= EPOLLERR;
694         }
695
696         return mask;
697 }
698
699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
700 {
701         int kill = 0;
702
703         spin_lock(&inode->i_lock);
704         if (!--pipe->files) {
705                 inode->i_pipe = NULL;
706                 kill = 1;
707         }
708         spin_unlock(&inode->i_lock);
709
710         if (kill)
711                 free_pipe_info(pipe);
712 }
713
714 static int
715 pipe_release(struct inode *inode, struct file *file)
716 {
717         struct pipe_inode_info *pipe = file->private_data;
718
719         __pipe_lock(pipe);
720         if (file->f_mode & FMODE_READ)
721                 pipe->readers--;
722         if (file->f_mode & FMODE_WRITE)
723                 pipe->writers--;
724
725         /* Was that the last reader or writer, but not the other side? */
726         if (!pipe->readers != !pipe->writers) {
727                 wake_up_interruptible_all(&pipe->rd_wait);
728                 wake_up_interruptible_all(&pipe->wr_wait);
729                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
730                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731         }
732         __pipe_unlock(pipe);
733
734         put_pipe_info(inode, pipe);
735         return 0;
736 }
737
738 static int
739 pipe_fasync(int fd, struct file *filp, int on)
740 {
741         struct pipe_inode_info *pipe = filp->private_data;
742         int retval = 0;
743
744         __pipe_lock(pipe);
745         if (filp->f_mode & FMODE_READ)
746                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
747         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
748                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
749                 if (retval < 0 && (filp->f_mode & FMODE_READ))
750                         /* this can happen only if on == T */
751                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
752         }
753         __pipe_unlock(pipe);
754         return retval;
755 }
756
757 static unsigned long account_pipe_buffers(struct user_struct *user,
758                                  unsigned long old, unsigned long new)
759 {
760         return atomic_long_add_return(new - old, &user->pipe_bufs);
761 }
762
763 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
764 {
765         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
766
767         return soft_limit && user_bufs > soft_limit;
768 }
769
770 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
771 {
772         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
773
774         return hard_limit && user_bufs > hard_limit;
775 }
776
777 static bool is_unprivileged_user(void)
778 {
779         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
780 }
781
782 struct pipe_inode_info *alloc_pipe_info(void)
783 {
784         struct pipe_inode_info *pipe;
785         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
786         struct user_struct *user = get_current_user();
787         unsigned long user_bufs;
788         unsigned int max_size = READ_ONCE(pipe_max_size);
789
790         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
791         if (pipe == NULL)
792                 goto out_free_uid;
793
794         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
795                 pipe_bufs = max_size >> PAGE_SHIFT;
796
797         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
798
799         if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
800                 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
801                 pipe_bufs = 1;
802         }
803
804         if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
805                 goto out_revert_acct;
806
807         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
808                              GFP_KERNEL_ACCOUNT);
809
810         if (pipe->bufs) {
811                 init_waitqueue_head(&pipe->rd_wait);
812                 init_waitqueue_head(&pipe->wr_wait);
813                 pipe->r_counter = pipe->w_counter = 1;
814                 pipe->max_usage = pipe_bufs;
815                 pipe->ring_size = pipe_bufs;
816                 pipe->user = user;
817                 mutex_init(&pipe->mutex);
818                 return pipe;
819         }
820
821 out_revert_acct:
822         (void) account_pipe_buffers(user, pipe_bufs, 0);
823         kfree(pipe);
824 out_free_uid:
825         free_uid(user);
826         return NULL;
827 }
828
829 void free_pipe_info(struct pipe_inode_info *pipe)
830 {
831         int i;
832
833         (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
834         free_uid(pipe->user);
835         for (i = 0; i < pipe->ring_size; i++) {
836                 struct pipe_buffer *buf = pipe->bufs + i;
837                 if (buf->ops)
838                         pipe_buf_release(pipe, buf);
839         }
840         if (pipe->tmp_page)
841                 __free_page(pipe->tmp_page);
842         kfree(pipe->bufs);
843         kfree(pipe);
844 }
845
846 static struct vfsmount *pipe_mnt __read_mostly;
847
848 /*
849  * pipefs_dname() is called from d_path().
850  */
851 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
852 {
853         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
854                                 d_inode(dentry)->i_ino);
855 }
856
857 static const struct dentry_operations pipefs_dentry_operations = {
858         .d_dname        = pipefs_dname,
859 };
860
861 static struct inode * get_pipe_inode(void)
862 {
863         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
864         struct pipe_inode_info *pipe;
865
866         if (!inode)
867                 goto fail_inode;
868
869         inode->i_ino = get_next_ino();
870
871         pipe = alloc_pipe_info();
872         if (!pipe)
873                 goto fail_iput;
874
875         inode->i_pipe = pipe;
876         pipe->files = 2;
877         pipe->readers = pipe->writers = 1;
878         inode->i_fop = &pipefifo_fops;
879
880         /*
881          * Mark the inode dirty from the very beginning,
882          * that way it will never be moved to the dirty
883          * list because "mark_inode_dirty()" will think
884          * that it already _is_ on the dirty list.
885          */
886         inode->i_state = I_DIRTY;
887         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
888         inode->i_uid = current_fsuid();
889         inode->i_gid = current_fsgid();
890         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
891
892         return inode;
893
894 fail_iput:
895         iput(inode);
896
897 fail_inode:
898         return NULL;
899 }
900
901 int create_pipe_files(struct file **res, int flags)
902 {
903         struct inode *inode = get_pipe_inode();
904         struct file *f;
905
906         if (!inode)
907                 return -ENFILE;
908
909         f = alloc_file_pseudo(inode, pipe_mnt, "",
910                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
911                                 &pipefifo_fops);
912         if (IS_ERR(f)) {
913                 free_pipe_info(inode->i_pipe);
914                 iput(inode);
915                 return PTR_ERR(f);
916         }
917
918         f->private_data = inode->i_pipe;
919
920         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
921                                   &pipefifo_fops);
922         if (IS_ERR(res[0])) {
923                 put_pipe_info(inode, inode->i_pipe);
924                 fput(f);
925                 return PTR_ERR(res[0]);
926         }
927         res[0]->private_data = inode->i_pipe;
928         res[1] = f;
929         stream_open(inode, res[0]);
930         stream_open(inode, res[1]);
931         return 0;
932 }
933
934 static int __do_pipe_flags(int *fd, struct file **files, int flags)
935 {
936         int error;
937         int fdw, fdr;
938
939         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
940                 return -EINVAL;
941
942         error = create_pipe_files(files, flags);
943         if (error)
944                 return error;
945
946         error = get_unused_fd_flags(flags);
947         if (error < 0)
948                 goto err_read_pipe;
949         fdr = error;
950
951         error = get_unused_fd_flags(flags);
952         if (error < 0)
953                 goto err_fdr;
954         fdw = error;
955
956         audit_fd_pair(fdr, fdw);
957         fd[0] = fdr;
958         fd[1] = fdw;
959         return 0;
960
961  err_fdr:
962         put_unused_fd(fdr);
963  err_read_pipe:
964         fput(files[0]);
965         fput(files[1]);
966         return error;
967 }
968
969 int do_pipe_flags(int *fd, int flags)
970 {
971         struct file *files[2];
972         int error = __do_pipe_flags(fd, files, flags);
973         if (!error) {
974                 fd_install(fd[0], files[0]);
975                 fd_install(fd[1], files[1]);
976         }
977         return error;
978 }
979
980 /*
981  * sys_pipe() is the normal C calling standard for creating
982  * a pipe. It's not the way Unix traditionally does this, though.
983  */
984 static int do_pipe2(int __user *fildes, int flags)
985 {
986         struct file *files[2];
987         int fd[2];
988         int error;
989
990         error = __do_pipe_flags(fd, files, flags);
991         if (!error) {
992                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
993                         fput(files[0]);
994                         fput(files[1]);
995                         put_unused_fd(fd[0]);
996                         put_unused_fd(fd[1]);
997                         error = -EFAULT;
998                 } else {
999                         fd_install(fd[0], files[0]);
1000                         fd_install(fd[1], files[1]);
1001                 }
1002         }
1003         return error;
1004 }
1005
1006 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1007 {
1008         return do_pipe2(fildes, flags);
1009 }
1010
1011 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1012 {
1013         return do_pipe2(fildes, 0);
1014 }
1015
1016 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1017 {
1018         int cur = *cnt;
1019
1020         while (cur == *cnt) {
1021                 pipe_wait(pipe);
1022                 if (signal_pending(current))
1023                         break;
1024         }
1025         return cur == *cnt ? -ERESTARTSYS : 0;
1026 }
1027
1028 static void wake_up_partner(struct pipe_inode_info *pipe)
1029 {
1030         wake_up_interruptible_all(&pipe->rd_wait);
1031         wake_up_interruptible_all(&pipe->wr_wait);
1032 }
1033
1034 static int fifo_open(struct inode *inode, struct file *filp)
1035 {
1036         struct pipe_inode_info *pipe;
1037         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1038         int ret;
1039
1040         filp->f_version = 0;
1041
1042         spin_lock(&inode->i_lock);
1043         if (inode->i_pipe) {
1044                 pipe = inode->i_pipe;
1045                 pipe->files++;
1046                 spin_unlock(&inode->i_lock);
1047         } else {
1048                 spin_unlock(&inode->i_lock);
1049                 pipe = alloc_pipe_info();
1050                 if (!pipe)
1051                         return -ENOMEM;
1052                 pipe->files = 1;
1053                 spin_lock(&inode->i_lock);
1054                 if (unlikely(inode->i_pipe)) {
1055                         inode->i_pipe->files++;
1056                         spin_unlock(&inode->i_lock);
1057                         free_pipe_info(pipe);
1058                         pipe = inode->i_pipe;
1059                 } else {
1060                         inode->i_pipe = pipe;
1061                         spin_unlock(&inode->i_lock);
1062                 }
1063         }
1064         filp->private_data = pipe;
1065         /* OK, we have a pipe and it's pinned down */
1066
1067         __pipe_lock(pipe);
1068
1069         /* We can only do regular read/write on fifos */
1070         stream_open(inode, filp);
1071
1072         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1073         case FMODE_READ:
1074         /*
1075          *  O_RDONLY
1076          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1077          *  opened, even when there is no process writing the FIFO.
1078          */
1079                 pipe->r_counter++;
1080                 if (pipe->readers++ == 0)
1081                         wake_up_partner(pipe);
1082
1083                 if (!is_pipe && !pipe->writers) {
1084                         if ((filp->f_flags & O_NONBLOCK)) {
1085                                 /* suppress EPOLLHUP until we have
1086                                  * seen a writer */
1087                                 filp->f_version = pipe->w_counter;
1088                         } else {
1089                                 if (wait_for_partner(pipe, &pipe->w_counter))
1090                                         goto err_rd;
1091                         }
1092                 }
1093                 break;
1094
1095         case FMODE_WRITE:
1096         /*
1097          *  O_WRONLY
1098          *  POSIX.1 says that O_NONBLOCK means return -1 with
1099          *  errno=ENXIO when there is no process reading the FIFO.
1100          */
1101                 ret = -ENXIO;
1102                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1103                         goto err;
1104
1105                 pipe->w_counter++;
1106                 if (!pipe->writers++)
1107                         wake_up_partner(pipe);
1108
1109                 if (!is_pipe && !pipe->readers) {
1110                         if (wait_for_partner(pipe, &pipe->r_counter))
1111                                 goto err_wr;
1112                 }
1113                 break;
1114
1115         case FMODE_READ | FMODE_WRITE:
1116         /*
1117          *  O_RDWR
1118          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1119          *  This implementation will NEVER block on a O_RDWR open, since
1120          *  the process can at least talk to itself.
1121          */
1122
1123                 pipe->readers++;
1124                 pipe->writers++;
1125                 pipe->r_counter++;
1126                 pipe->w_counter++;
1127                 if (pipe->readers == 1 || pipe->writers == 1)
1128                         wake_up_partner(pipe);
1129                 break;
1130
1131         default:
1132                 ret = -EINVAL;
1133                 goto err;
1134         }
1135
1136         /* Ok! */
1137         __pipe_unlock(pipe);
1138         return 0;
1139
1140 err_rd:
1141         if (!--pipe->readers)
1142                 wake_up_interruptible(&pipe->wr_wait);
1143         ret = -ERESTARTSYS;
1144         goto err;
1145
1146 err_wr:
1147         if (!--pipe->writers)
1148                 wake_up_interruptible_all(&pipe->rd_wait);
1149         ret = -ERESTARTSYS;
1150         goto err;
1151
1152 err:
1153         __pipe_unlock(pipe);
1154
1155         put_pipe_info(inode, pipe);
1156         return ret;
1157 }
1158
1159 const struct file_operations pipefifo_fops = {
1160         .open           = fifo_open,
1161         .llseek         = no_llseek,
1162         .read_iter      = pipe_read,
1163         .write_iter     = pipe_write,
1164         .poll           = pipe_poll,
1165         .unlocked_ioctl = pipe_ioctl,
1166         .release        = pipe_release,
1167         .fasync         = pipe_fasync,
1168 };
1169
1170 /*
1171  * Currently we rely on the pipe array holding a power-of-2 number
1172  * of pages. Returns 0 on error.
1173  */
1174 unsigned int round_pipe_size(unsigned long size)
1175 {
1176         if (size > (1U << 31))
1177                 return 0;
1178
1179         /* Minimum pipe size, as required by POSIX */
1180         if (size < PAGE_SIZE)
1181                 return PAGE_SIZE;
1182
1183         return roundup_pow_of_two(size);
1184 }
1185
1186 /*
1187  * Allocate a new array of pipe buffers and copy the info over. Returns the
1188  * pipe size if successful, or return -ERROR on error.
1189  */
1190 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1191 {
1192         struct pipe_buffer *bufs;
1193         unsigned int size, nr_slots, head, tail, mask, n;
1194         unsigned long user_bufs;
1195         long ret = 0;
1196
1197         size = round_pipe_size(arg);
1198         nr_slots = size >> PAGE_SHIFT;
1199
1200         if (!nr_slots)
1201                 return -EINVAL;
1202
1203         /*
1204          * If trying to increase the pipe capacity, check that an
1205          * unprivileged user is not trying to exceed various limits
1206          * (soft limit check here, hard limit check just below).
1207          * Decreasing the pipe capacity is always permitted, even
1208          * if the user is currently over a limit.
1209          */
1210         if (nr_slots > pipe->ring_size &&
1211                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1212                 return -EPERM;
1213
1214         user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1215
1216         if (nr_slots > pipe->ring_size &&
1217                         (too_many_pipe_buffers_hard(user_bufs) ||
1218                          too_many_pipe_buffers_soft(user_bufs)) &&
1219                         is_unprivileged_user()) {
1220                 ret = -EPERM;
1221                 goto out_revert_acct;
1222         }
1223
1224         /*
1225          * We can shrink the pipe, if arg is greater than the ring occupancy.
1226          * Since we don't expect a lot of shrink+grow operations, just free and
1227          * allocate again like we would do for growing.  If the pipe currently
1228          * contains more buffers than arg, then return busy.
1229          */
1230         mask = pipe->ring_size - 1;
1231         head = pipe->head;
1232         tail = pipe->tail;
1233         n = pipe_occupancy(pipe->head, pipe->tail);
1234         if (nr_slots < n) {
1235                 ret = -EBUSY;
1236                 goto out_revert_acct;
1237         }
1238
1239         bufs = kcalloc(nr_slots, sizeof(*bufs),
1240                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1241         if (unlikely(!bufs)) {
1242                 ret = -ENOMEM;
1243                 goto out_revert_acct;
1244         }
1245
1246         /*
1247          * The pipe array wraps around, so just start the new one at zero
1248          * and adjust the indices.
1249          */
1250         if (n > 0) {
1251                 unsigned int h = head & mask;
1252                 unsigned int t = tail & mask;
1253                 if (h > t) {
1254                         memcpy(bufs, pipe->bufs + t,
1255                                n * sizeof(struct pipe_buffer));
1256                 } else {
1257                         unsigned int tsize = pipe->ring_size - t;
1258                         if (h > 0)
1259                                 memcpy(bufs + tsize, pipe->bufs,
1260                                        h * sizeof(struct pipe_buffer));
1261                         memcpy(bufs, pipe->bufs + t,
1262                                tsize * sizeof(struct pipe_buffer));
1263                 }
1264         }
1265
1266         head = n;
1267         tail = 0;
1268
1269         kfree(pipe->bufs);
1270         pipe->bufs = bufs;
1271         pipe->ring_size = nr_slots;
1272         pipe->max_usage = nr_slots;
1273         pipe->tail = tail;
1274         pipe->head = head;
1275
1276         /* This might have made more room for writers */
1277         wake_up_interruptible(&pipe->wr_wait);
1278         return pipe->max_usage * PAGE_SIZE;
1279
1280 out_revert_acct:
1281         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1282         return ret;
1283 }
1284
1285 /*
1286  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1287  * location, so checking ->i_pipe is not enough to verify that this is a
1288  * pipe.
1289  */
1290 struct pipe_inode_info *get_pipe_info(struct file *file)
1291 {
1292         return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1293 }
1294
1295 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1296 {
1297         struct pipe_inode_info *pipe;
1298         long ret;
1299
1300         pipe = get_pipe_info(file);
1301         if (!pipe)
1302                 return -EBADF;
1303
1304         __pipe_lock(pipe);
1305
1306         switch (cmd) {
1307         case F_SETPIPE_SZ:
1308                 ret = pipe_set_size(pipe, arg);
1309                 break;
1310         case F_GETPIPE_SZ:
1311                 ret = pipe->max_usage * PAGE_SIZE;
1312                 break;
1313         default:
1314                 ret = -EINVAL;
1315                 break;
1316         }
1317
1318         __pipe_unlock(pipe);
1319         return ret;
1320 }
1321
1322 static const struct super_operations pipefs_ops = {
1323         .destroy_inode = free_inode_nonrcu,
1324         .statfs = simple_statfs,
1325 };
1326
1327 /*
1328  * pipefs should _never_ be mounted by userland - too much of security hassle,
1329  * no real gain from having the whole whorehouse mounted. So we don't need
1330  * any operations on the root directory. However, we need a non-trivial
1331  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1332  */
1333
1334 static int pipefs_init_fs_context(struct fs_context *fc)
1335 {
1336         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1337         if (!ctx)
1338                 return -ENOMEM;
1339         ctx->ops = &pipefs_ops;
1340         ctx->dops = &pipefs_dentry_operations;
1341         return 0;
1342 }
1343
1344 static struct file_system_type pipe_fs_type = {
1345         .name           = "pipefs",
1346         .init_fs_context = pipefs_init_fs_context,
1347         .kill_sb        = kill_anon_super,
1348 };
1349
1350 static int __init init_pipe_fs(void)
1351 {
1352         int err = register_filesystem(&pipe_fs_type);
1353
1354         if (!err) {
1355                 pipe_mnt = kern_mount(&pipe_fs_type);
1356                 if (IS_ERR(pipe_mnt)) {
1357                         err = PTR_ERR(pipe_mnt);
1358                         unregister_filesystem(&pipe_fs_type);
1359                 }
1360         }
1361         return err;
1362 }
1363
1364 fs_initcall(init_pipe_fs);