pipe: Remove redundant wakeup from pipe_write()
[platform/kernel/linux-starfive.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30
31 #include "internal.h"
32
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64         if (pipe->files)
65                 mutex_lock_nested(&pipe->mutex, subclass);
66 }
67
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70         /*
71          * pipe_lock() nests non-pipe inode locks (for writing to a file)
72          */
73         pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79         if (pipe->files)
80                 mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91         mutex_unlock(&pipe->mutex);
92 }
93
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95                       struct pipe_inode_info *pipe2)
96 {
97         BUG_ON(pipe1 == pipe2);
98
99         if (pipe1 < pipe2) {
100                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102         } else {
103                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105         }
106 }
107
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111         DEFINE_WAIT(wait);
112
113         /*
114          * Pipes are system-local resources, so sleeping on them
115          * is considered a noninteractive wait:
116          */
117         prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
118         pipe_unlock(pipe);
119         schedule();
120         finish_wait(&pipe->wait, &wait);
121         pipe_lock(pipe);
122 }
123
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125                                   struct pipe_buffer *buf)
126 {
127         struct page *page = buf->page;
128
129         /*
130          * If nobody else uses this page, and we don't already have a
131          * temporary page, let's keep track of it as a one-deep
132          * allocation cache. (Otherwise just release our reference to it)
133          */
134         if (page_count(page) == 1 && !pipe->tmp_page)
135                 pipe->tmp_page = page;
136         else
137                 put_page(page);
138 }
139
140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
141                                struct pipe_buffer *buf)
142 {
143         struct page *page = buf->page;
144
145         if (page_count(page) == 1) {
146                 memcg_kmem_uncharge(page, 0);
147                 __SetPageLocked(page);
148                 return 0;
149         }
150         return 1;
151 }
152
153 /**
154  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:       the pipe that the buffer belongs to
156  * @buf:        the buffer to attempt to steal
157  *
158  * Description:
159  *      This function attempts to steal the &struct page attached to
160  *      @buf. If successful, this function returns 0 and returns with
161  *      the page locked. The caller may then reuse the page for whatever
162  *      he wishes; the typical use is insertion into a different file
163  *      page cache.
164  */
165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
166                            struct pipe_buffer *buf)
167 {
168         struct page *page = buf->page;
169
170         /*
171          * A reference of one is golden, that means that the owner of this
172          * page is the only one holding a reference to it. lock the page
173          * and return OK.
174          */
175         if (page_count(page) == 1) {
176                 lock_page(page);
177                 return 0;
178         }
179
180         return 1;
181 }
182 EXPORT_SYMBOL(generic_pipe_buf_steal);
183
184 /**
185  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
186  * @pipe:       the pipe that the buffer belongs to
187  * @buf:        the buffer to get a reference to
188  *
189  * Description:
190  *      This function grabs an extra reference to @buf. It's used in
191  *      in the tee() system call, when we duplicate the buffers in one
192  *      pipe into another.
193  */
194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195 {
196         return try_get_page(buf->page);
197 }
198 EXPORT_SYMBOL(generic_pipe_buf_get);
199
200 /**
201  * generic_pipe_buf_confirm - verify contents of the pipe buffer
202  * @info:       the pipe that the buffer belongs to
203  * @buf:        the buffer to confirm
204  *
205  * Description:
206  *      This function does nothing, because the generic pipe code uses
207  *      pages that are always good when inserted into the pipe.
208  */
209 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
210                              struct pipe_buffer *buf)
211 {
212         return 0;
213 }
214 EXPORT_SYMBOL(generic_pipe_buf_confirm);
215
216 /**
217  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
218  * @pipe:       the pipe that the buffer belongs to
219  * @buf:        the buffer to put a reference to
220  *
221  * Description:
222  *      This function releases a reference to @buf.
223  */
224 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
225                               struct pipe_buffer *buf)
226 {
227         put_page(buf->page);
228 }
229 EXPORT_SYMBOL(generic_pipe_buf_release);
230
231 /* New data written to a pipe may be appended to a buffer with this type. */
232 static const struct pipe_buf_operations anon_pipe_buf_ops = {
233         .confirm = generic_pipe_buf_confirm,
234         .release = anon_pipe_buf_release,
235         .steal = anon_pipe_buf_steal,
236         .get = generic_pipe_buf_get,
237 };
238
239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
240         .confirm = generic_pipe_buf_confirm,
241         .release = anon_pipe_buf_release,
242         .steal = anon_pipe_buf_steal,
243         .get = generic_pipe_buf_get,
244 };
245
246 static const struct pipe_buf_operations packet_pipe_buf_ops = {
247         .confirm = generic_pipe_buf_confirm,
248         .release = anon_pipe_buf_release,
249         .steal = anon_pipe_buf_steal,
250         .get = generic_pipe_buf_get,
251 };
252
253 /**
254  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
255  * @buf:        the buffer to mark
256  *
257  * Description:
258  *      This function ensures that no future writes will be merged into the
259  *      given &struct pipe_buffer. This is necessary when multiple pipe buffers
260  *      share the same backing page.
261  */
262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
263 {
264         if (buf->ops == &anon_pipe_buf_ops)
265                 buf->ops = &anon_pipe_buf_nomerge_ops;
266 }
267
268 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
269 {
270         return buf->ops == &anon_pipe_buf_ops;
271 }
272
273 static ssize_t
274 pipe_read(struct kiocb *iocb, struct iov_iter *to)
275 {
276         size_t total_len = iov_iter_count(to);
277         struct file *filp = iocb->ki_filp;
278         struct pipe_inode_info *pipe = filp->private_data;
279         int do_wakeup;
280         ssize_t ret;
281
282         /* Null read succeeds. */
283         if (unlikely(total_len == 0))
284                 return 0;
285
286         do_wakeup = 0;
287         ret = 0;
288         __pipe_lock(pipe);
289         for (;;) {
290                 unsigned int head = pipe->head;
291                 unsigned int tail = pipe->tail;
292                 unsigned int mask = pipe->ring_size - 1;
293
294                 if (!pipe_empty(head, tail)) {
295                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
296                         size_t chars = buf->len;
297                         size_t written;
298                         int error;
299
300                         if (chars > total_len)
301                                 chars = total_len;
302
303                         error = pipe_buf_confirm(pipe, buf);
304                         if (error) {
305                                 if (!ret)
306                                         ret = error;
307                                 break;
308                         }
309
310                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
311                         if (unlikely(written < chars)) {
312                                 if (!ret)
313                                         ret = -EFAULT;
314                                 break;
315                         }
316                         ret += chars;
317                         buf->offset += chars;
318                         buf->len -= chars;
319
320                         /* Was it a packet buffer? Clean up and exit */
321                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
322                                 total_len = chars;
323                                 buf->len = 0;
324                         }
325
326                         if (!buf->len) {
327                                 pipe_buf_release(pipe, buf);
328                                 spin_lock_irq(&pipe->wait.lock);
329                                 tail++;
330                                 pipe->tail = tail;
331                                 do_wakeup = 1;
332                                 if (head - (tail - 1) == pipe->max_usage)
333                                         wake_up_interruptible_sync_poll_locked(
334                                                 &pipe->wait, EPOLLOUT | EPOLLWRNORM);
335                                 spin_unlock_irq(&pipe->wait.lock);
336                                 if (head - (tail - 1) == pipe->max_usage)
337                                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
338                         }
339                         total_len -= chars;
340                         if (!total_len)
341                                 break;  /* common path: read succeeded */
342                         if (!pipe_empty(head, tail))    /* More to do? */
343                                 continue;
344                 }
345
346                 if (!pipe->writers)
347                         break;
348                 if (!pipe->waiting_writers) {
349                         /* syscall merging: Usually we must not sleep
350                          * if O_NONBLOCK is set, or if we got some data.
351                          * But if a writer sleeps in kernel space, then
352                          * we can wait for that data without violating POSIX.
353                          */
354                         if (ret)
355                                 break;
356                         if (filp->f_flags & O_NONBLOCK) {
357                                 ret = -EAGAIN;
358                                 break;
359                         }
360                 }
361                 if (signal_pending(current)) {
362                         if (!ret)
363                                 ret = -ERESTARTSYS;
364                         break;
365                 }
366                 pipe_wait(pipe);
367         }
368         __pipe_unlock(pipe);
369
370         /* Signal writers asynchronously that there is more room. */
371         if (do_wakeup) {
372                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
373                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
374         }
375         if (ret > 0)
376                 file_accessed(filp);
377         return ret;
378 }
379
380 static inline int is_packetized(struct file *file)
381 {
382         return (file->f_flags & O_DIRECT) != 0;
383 }
384
385 static ssize_t
386 pipe_write(struct kiocb *iocb, struct iov_iter *from)
387 {
388         struct file *filp = iocb->ki_filp;
389         struct pipe_inode_info *pipe = filp->private_data;
390         unsigned int head, max_usage, mask;
391         ssize_t ret = 0;
392         int do_wakeup = 0;
393         size_t total_len = iov_iter_count(from);
394         ssize_t chars;
395
396         /* Null write succeeds. */
397         if (unlikely(total_len == 0))
398                 return 0;
399
400         __pipe_lock(pipe);
401
402         if (!pipe->readers) {
403                 send_sig(SIGPIPE, current, 0);
404                 ret = -EPIPE;
405                 goto out;
406         }
407
408         head = pipe->head;
409         max_usage = pipe->max_usage;
410         mask = pipe->ring_size - 1;
411
412         /* We try to merge small writes */
413         chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
414         if (!pipe_empty(head, pipe->tail) && chars != 0) {
415                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
416                 int offset = buf->offset + buf->len;
417
418                 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
419                         ret = pipe_buf_confirm(pipe, buf);
420                         if (ret)
421                                 goto out;
422
423                         ret = copy_page_from_iter(buf->page, offset, chars, from);
424                         if (unlikely(ret < chars)) {
425                                 ret = -EFAULT;
426                                 goto out;
427                         }
428                         do_wakeup = 1;
429                         buf->len += ret;
430                         if (!iov_iter_count(from))
431                                 goto out;
432                 }
433         }
434
435         for (;;) {
436                 if (!pipe->readers) {
437                         send_sig(SIGPIPE, current, 0);
438                         if (!ret)
439                                 ret = -EPIPE;
440                         break;
441                 }
442
443                 head = pipe->head;
444                 if (!pipe_full(head, pipe->tail, max_usage)) {
445                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
446                         struct page *page = pipe->tmp_page;
447                         int copied;
448
449                         if (!page) {
450                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
451                                 if (unlikely(!page)) {
452                                         ret = ret ? : -ENOMEM;
453                                         break;
454                                 }
455                                 pipe->tmp_page = page;
456                         }
457
458                         /* Allocate a slot in the ring in advance and attach an
459                          * empty buffer.  If we fault or otherwise fail to use
460                          * it, either the reader will consume it or it'll still
461                          * be there for the next write.
462                          */
463                         spin_lock_irq(&pipe->wait.lock);
464
465                         head = pipe->head;
466                         pipe->head = head + 1;
467
468                         /* Always wake up, even if the copy fails. Otherwise
469                          * we lock up (O_NONBLOCK-)readers that sleep due to
470                          * syscall merging.
471                          * FIXME! Is this really true?
472                          */
473                         wake_up_interruptible_sync_poll_locked(
474                                 &pipe->wait, EPOLLIN | EPOLLRDNORM);
475
476                         spin_unlock_irq(&pipe->wait.lock);
477                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
478
479                         /* Insert it into the buffer array */
480                         buf = &pipe->bufs[head & mask];
481                         buf->page = page;
482                         buf->ops = &anon_pipe_buf_ops;
483                         buf->offset = 0;
484                         buf->len = 0;
485                         buf->flags = 0;
486                         if (is_packetized(filp)) {
487                                 buf->ops = &packet_pipe_buf_ops;
488                                 buf->flags = PIPE_BUF_FLAG_PACKET;
489                         }
490                         pipe->tmp_page = NULL;
491
492                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
493                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
494                                 if (!ret)
495                                         ret = -EFAULT;
496                                 break;
497                         }
498                         ret += copied;
499                         buf->offset = 0;
500                         buf->len = copied;
501
502                         if (!iov_iter_count(from))
503                                 break;
504                 }
505
506                 if (!pipe_full(head, pipe->tail, max_usage))
507                         continue;
508
509                 /* Wait for buffer space to become available. */
510                 if (filp->f_flags & O_NONBLOCK) {
511                         if (!ret)
512                                 ret = -EAGAIN;
513                         break;
514                 }
515                 if (signal_pending(current)) {
516                         if (!ret)
517                                 ret = -ERESTARTSYS;
518                         break;
519                 }
520                 pipe->waiting_writers++;
521                 pipe_wait(pipe);
522                 pipe->waiting_writers--;
523         }
524 out:
525         __pipe_unlock(pipe);
526         if (do_wakeup) {
527                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
528                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
529         }
530         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
531                 int err = file_update_time(filp);
532                 if (err)
533                         ret = err;
534                 sb_end_write(file_inode(filp)->i_sb);
535         }
536         return ret;
537 }
538
539 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
540 {
541         struct pipe_inode_info *pipe = filp->private_data;
542         int count, head, tail, mask;
543
544         switch (cmd) {
545                 case FIONREAD:
546                         __pipe_lock(pipe);
547                         count = 0;
548                         head = pipe->head;
549                         tail = pipe->tail;
550                         mask = pipe->ring_size - 1;
551
552                         while (tail != head) {
553                                 count += pipe->bufs[tail & mask].len;
554                                 tail++;
555                         }
556                         __pipe_unlock(pipe);
557
558                         return put_user(count, (int __user *)arg);
559                 default:
560                         return -ENOIOCTLCMD;
561         }
562 }
563
564 /* No kernel lock held - fine */
565 static __poll_t
566 pipe_poll(struct file *filp, poll_table *wait)
567 {
568         __poll_t mask;
569         struct pipe_inode_info *pipe = filp->private_data;
570         unsigned int head = READ_ONCE(pipe->head);
571         unsigned int tail = READ_ONCE(pipe->tail);
572
573         poll_wait(filp, &pipe->wait, wait);
574
575         BUG_ON(pipe_occupancy(head, tail) > pipe->ring_size);
576
577         /* Reading only -- no need for acquiring the semaphore.  */
578         mask = 0;
579         if (filp->f_mode & FMODE_READ) {
580                 if (!pipe_empty(head, tail))
581                         mask |= EPOLLIN | EPOLLRDNORM;
582                 if (!pipe->writers && filp->f_version != pipe->w_counter)
583                         mask |= EPOLLHUP;
584         }
585
586         if (filp->f_mode & FMODE_WRITE) {
587                 if (!pipe_full(head, tail, pipe->max_usage))
588                         mask |= EPOLLOUT | EPOLLWRNORM;
589                 /*
590                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
591                  * behave exactly like pipes for poll().
592                  */
593                 if (!pipe->readers)
594                         mask |= EPOLLERR;
595         }
596
597         return mask;
598 }
599
600 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
601 {
602         int kill = 0;
603
604         spin_lock(&inode->i_lock);
605         if (!--pipe->files) {
606                 inode->i_pipe = NULL;
607                 kill = 1;
608         }
609         spin_unlock(&inode->i_lock);
610
611         if (kill)
612                 free_pipe_info(pipe);
613 }
614
615 static int
616 pipe_release(struct inode *inode, struct file *file)
617 {
618         struct pipe_inode_info *pipe = file->private_data;
619
620         __pipe_lock(pipe);
621         if (file->f_mode & FMODE_READ)
622                 pipe->readers--;
623         if (file->f_mode & FMODE_WRITE)
624                 pipe->writers--;
625
626         if (pipe->readers || pipe->writers) {
627                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
628                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
629                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
630         }
631         __pipe_unlock(pipe);
632
633         put_pipe_info(inode, pipe);
634         return 0;
635 }
636
637 static int
638 pipe_fasync(int fd, struct file *filp, int on)
639 {
640         struct pipe_inode_info *pipe = filp->private_data;
641         int retval = 0;
642
643         __pipe_lock(pipe);
644         if (filp->f_mode & FMODE_READ)
645                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
646         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
647                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
648                 if (retval < 0 && (filp->f_mode & FMODE_READ))
649                         /* this can happen only if on == T */
650                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
651         }
652         __pipe_unlock(pipe);
653         return retval;
654 }
655
656 static unsigned long account_pipe_buffers(struct user_struct *user,
657                                  unsigned long old, unsigned long new)
658 {
659         return atomic_long_add_return(new - old, &user->pipe_bufs);
660 }
661
662 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
663 {
664         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
665
666         return soft_limit && user_bufs > soft_limit;
667 }
668
669 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
670 {
671         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
672
673         return hard_limit && user_bufs > hard_limit;
674 }
675
676 static bool is_unprivileged_user(void)
677 {
678         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
679 }
680
681 struct pipe_inode_info *alloc_pipe_info(void)
682 {
683         struct pipe_inode_info *pipe;
684         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
685         struct user_struct *user = get_current_user();
686         unsigned long user_bufs;
687         unsigned int max_size = READ_ONCE(pipe_max_size);
688
689         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
690         if (pipe == NULL)
691                 goto out_free_uid;
692
693         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
694                 pipe_bufs = max_size >> PAGE_SHIFT;
695
696         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
697
698         if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
699                 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
700                 pipe_bufs = 1;
701         }
702
703         if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
704                 goto out_revert_acct;
705
706         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
707                              GFP_KERNEL_ACCOUNT);
708
709         if (pipe->bufs) {
710                 init_waitqueue_head(&pipe->wait);
711                 pipe->r_counter = pipe->w_counter = 1;
712                 pipe->max_usage = pipe_bufs;
713                 pipe->ring_size = pipe_bufs;
714                 pipe->user = user;
715                 mutex_init(&pipe->mutex);
716                 return pipe;
717         }
718
719 out_revert_acct:
720         (void) account_pipe_buffers(user, pipe_bufs, 0);
721         kfree(pipe);
722 out_free_uid:
723         free_uid(user);
724         return NULL;
725 }
726
727 void free_pipe_info(struct pipe_inode_info *pipe)
728 {
729         int i;
730
731         (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
732         free_uid(pipe->user);
733         for (i = 0; i < pipe->ring_size; i++) {
734                 struct pipe_buffer *buf = pipe->bufs + i;
735                 if (buf->ops)
736                         pipe_buf_release(pipe, buf);
737         }
738         if (pipe->tmp_page)
739                 __free_page(pipe->tmp_page);
740         kfree(pipe->bufs);
741         kfree(pipe);
742 }
743
744 static struct vfsmount *pipe_mnt __read_mostly;
745
746 /*
747  * pipefs_dname() is called from d_path().
748  */
749 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
750 {
751         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
752                                 d_inode(dentry)->i_ino);
753 }
754
755 static const struct dentry_operations pipefs_dentry_operations = {
756         .d_dname        = pipefs_dname,
757 };
758
759 static struct inode * get_pipe_inode(void)
760 {
761         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
762         struct pipe_inode_info *pipe;
763
764         if (!inode)
765                 goto fail_inode;
766
767         inode->i_ino = get_next_ino();
768
769         pipe = alloc_pipe_info();
770         if (!pipe)
771                 goto fail_iput;
772
773         inode->i_pipe = pipe;
774         pipe->files = 2;
775         pipe->readers = pipe->writers = 1;
776         inode->i_fop = &pipefifo_fops;
777
778         /*
779          * Mark the inode dirty from the very beginning,
780          * that way it will never be moved to the dirty
781          * list because "mark_inode_dirty()" will think
782          * that it already _is_ on the dirty list.
783          */
784         inode->i_state = I_DIRTY;
785         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
786         inode->i_uid = current_fsuid();
787         inode->i_gid = current_fsgid();
788         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
789
790         return inode;
791
792 fail_iput:
793         iput(inode);
794
795 fail_inode:
796         return NULL;
797 }
798
799 int create_pipe_files(struct file **res, int flags)
800 {
801         struct inode *inode = get_pipe_inode();
802         struct file *f;
803
804         if (!inode)
805                 return -ENFILE;
806
807         f = alloc_file_pseudo(inode, pipe_mnt, "",
808                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
809                                 &pipefifo_fops);
810         if (IS_ERR(f)) {
811                 free_pipe_info(inode->i_pipe);
812                 iput(inode);
813                 return PTR_ERR(f);
814         }
815
816         f->private_data = inode->i_pipe;
817
818         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
819                                   &pipefifo_fops);
820         if (IS_ERR(res[0])) {
821                 put_pipe_info(inode, inode->i_pipe);
822                 fput(f);
823                 return PTR_ERR(res[0]);
824         }
825         res[0]->private_data = inode->i_pipe;
826         res[1] = f;
827         return 0;
828 }
829
830 static int __do_pipe_flags(int *fd, struct file **files, int flags)
831 {
832         int error;
833         int fdw, fdr;
834
835         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
836                 return -EINVAL;
837
838         error = create_pipe_files(files, flags);
839         if (error)
840                 return error;
841
842         error = get_unused_fd_flags(flags);
843         if (error < 0)
844                 goto err_read_pipe;
845         fdr = error;
846
847         error = get_unused_fd_flags(flags);
848         if (error < 0)
849                 goto err_fdr;
850         fdw = error;
851
852         audit_fd_pair(fdr, fdw);
853         fd[0] = fdr;
854         fd[1] = fdw;
855         return 0;
856
857  err_fdr:
858         put_unused_fd(fdr);
859  err_read_pipe:
860         fput(files[0]);
861         fput(files[1]);
862         return error;
863 }
864
865 int do_pipe_flags(int *fd, int flags)
866 {
867         struct file *files[2];
868         int error = __do_pipe_flags(fd, files, flags);
869         if (!error) {
870                 fd_install(fd[0], files[0]);
871                 fd_install(fd[1], files[1]);
872         }
873         return error;
874 }
875
876 /*
877  * sys_pipe() is the normal C calling standard for creating
878  * a pipe. It's not the way Unix traditionally does this, though.
879  */
880 static int do_pipe2(int __user *fildes, int flags)
881 {
882         struct file *files[2];
883         int fd[2];
884         int error;
885
886         error = __do_pipe_flags(fd, files, flags);
887         if (!error) {
888                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
889                         fput(files[0]);
890                         fput(files[1]);
891                         put_unused_fd(fd[0]);
892                         put_unused_fd(fd[1]);
893                         error = -EFAULT;
894                 } else {
895                         fd_install(fd[0], files[0]);
896                         fd_install(fd[1], files[1]);
897                 }
898         }
899         return error;
900 }
901
902 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
903 {
904         return do_pipe2(fildes, flags);
905 }
906
907 SYSCALL_DEFINE1(pipe, int __user *, fildes)
908 {
909         return do_pipe2(fildes, 0);
910 }
911
912 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
913 {
914         int cur = *cnt;
915
916         while (cur == *cnt) {
917                 pipe_wait(pipe);
918                 if (signal_pending(current))
919                         break;
920         }
921         return cur == *cnt ? -ERESTARTSYS : 0;
922 }
923
924 static void wake_up_partner(struct pipe_inode_info *pipe)
925 {
926         wake_up_interruptible(&pipe->wait);
927 }
928
929 static int fifo_open(struct inode *inode, struct file *filp)
930 {
931         struct pipe_inode_info *pipe;
932         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
933         int ret;
934
935         filp->f_version = 0;
936
937         spin_lock(&inode->i_lock);
938         if (inode->i_pipe) {
939                 pipe = inode->i_pipe;
940                 pipe->files++;
941                 spin_unlock(&inode->i_lock);
942         } else {
943                 spin_unlock(&inode->i_lock);
944                 pipe = alloc_pipe_info();
945                 if (!pipe)
946                         return -ENOMEM;
947                 pipe->files = 1;
948                 spin_lock(&inode->i_lock);
949                 if (unlikely(inode->i_pipe)) {
950                         inode->i_pipe->files++;
951                         spin_unlock(&inode->i_lock);
952                         free_pipe_info(pipe);
953                         pipe = inode->i_pipe;
954                 } else {
955                         inode->i_pipe = pipe;
956                         spin_unlock(&inode->i_lock);
957                 }
958         }
959         filp->private_data = pipe;
960         /* OK, we have a pipe and it's pinned down */
961
962         __pipe_lock(pipe);
963
964         /* We can only do regular read/write on fifos */
965         filp->f_mode &= (FMODE_READ | FMODE_WRITE);
966
967         switch (filp->f_mode) {
968         case FMODE_READ:
969         /*
970          *  O_RDONLY
971          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
972          *  opened, even when there is no process writing the FIFO.
973          */
974                 pipe->r_counter++;
975                 if (pipe->readers++ == 0)
976                         wake_up_partner(pipe);
977
978                 if (!is_pipe && !pipe->writers) {
979                         if ((filp->f_flags & O_NONBLOCK)) {
980                                 /* suppress EPOLLHUP until we have
981                                  * seen a writer */
982                                 filp->f_version = pipe->w_counter;
983                         } else {
984                                 if (wait_for_partner(pipe, &pipe->w_counter))
985                                         goto err_rd;
986                         }
987                 }
988                 break;
989
990         case FMODE_WRITE:
991         /*
992          *  O_WRONLY
993          *  POSIX.1 says that O_NONBLOCK means return -1 with
994          *  errno=ENXIO when there is no process reading the FIFO.
995          */
996                 ret = -ENXIO;
997                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
998                         goto err;
999
1000                 pipe->w_counter++;
1001                 if (!pipe->writers++)
1002                         wake_up_partner(pipe);
1003
1004                 if (!is_pipe && !pipe->readers) {
1005                         if (wait_for_partner(pipe, &pipe->r_counter))
1006                                 goto err_wr;
1007                 }
1008                 break;
1009
1010         case FMODE_READ | FMODE_WRITE:
1011         /*
1012          *  O_RDWR
1013          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1014          *  This implementation will NEVER block on a O_RDWR open, since
1015          *  the process can at least talk to itself.
1016          */
1017
1018                 pipe->readers++;
1019                 pipe->writers++;
1020                 pipe->r_counter++;
1021                 pipe->w_counter++;
1022                 if (pipe->readers == 1 || pipe->writers == 1)
1023                         wake_up_partner(pipe);
1024                 break;
1025
1026         default:
1027                 ret = -EINVAL;
1028                 goto err;
1029         }
1030
1031         /* Ok! */
1032         __pipe_unlock(pipe);
1033         return 0;
1034
1035 err_rd:
1036         if (!--pipe->readers)
1037                 wake_up_interruptible(&pipe->wait);
1038         ret = -ERESTARTSYS;
1039         goto err;
1040
1041 err_wr:
1042         if (!--pipe->writers)
1043                 wake_up_interruptible(&pipe->wait);
1044         ret = -ERESTARTSYS;
1045         goto err;
1046
1047 err:
1048         __pipe_unlock(pipe);
1049
1050         put_pipe_info(inode, pipe);
1051         return ret;
1052 }
1053
1054 const struct file_operations pipefifo_fops = {
1055         .open           = fifo_open,
1056         .llseek         = no_llseek,
1057         .read_iter      = pipe_read,
1058         .write_iter     = pipe_write,
1059         .poll           = pipe_poll,
1060         .unlocked_ioctl = pipe_ioctl,
1061         .release        = pipe_release,
1062         .fasync         = pipe_fasync,
1063 };
1064
1065 /*
1066  * Currently we rely on the pipe array holding a power-of-2 number
1067  * of pages. Returns 0 on error.
1068  */
1069 unsigned int round_pipe_size(unsigned long size)
1070 {
1071         if (size > (1U << 31))
1072                 return 0;
1073
1074         /* Minimum pipe size, as required by POSIX */
1075         if (size < PAGE_SIZE)
1076                 return PAGE_SIZE;
1077
1078         return roundup_pow_of_two(size);
1079 }
1080
1081 /*
1082  * Allocate a new array of pipe buffers and copy the info over. Returns the
1083  * pipe size if successful, or return -ERROR on error.
1084  */
1085 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1086 {
1087         struct pipe_buffer *bufs;
1088         unsigned int size, nr_slots, head, tail, mask, n;
1089         unsigned long user_bufs;
1090         long ret = 0;
1091
1092         size = round_pipe_size(arg);
1093         nr_slots = size >> PAGE_SHIFT;
1094
1095         if (!nr_slots)
1096                 return -EINVAL;
1097
1098         /*
1099          * If trying to increase the pipe capacity, check that an
1100          * unprivileged user is not trying to exceed various limits
1101          * (soft limit check here, hard limit check just below).
1102          * Decreasing the pipe capacity is always permitted, even
1103          * if the user is currently over a limit.
1104          */
1105         if (nr_slots > pipe->ring_size &&
1106                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1107                 return -EPERM;
1108
1109         user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1110
1111         if (nr_slots > pipe->ring_size &&
1112                         (too_many_pipe_buffers_hard(user_bufs) ||
1113                          too_many_pipe_buffers_soft(user_bufs)) &&
1114                         is_unprivileged_user()) {
1115                 ret = -EPERM;
1116                 goto out_revert_acct;
1117         }
1118
1119         /*
1120          * We can shrink the pipe, if arg is greater than the ring occupancy.
1121          * Since we don't expect a lot of shrink+grow operations, just free and
1122          * allocate again like we would do for growing.  If the pipe currently
1123          * contains more buffers than arg, then return busy.
1124          */
1125         mask = pipe->ring_size - 1;
1126         head = pipe->head;
1127         tail = pipe->tail;
1128         n = pipe_occupancy(pipe->head, pipe->tail);
1129         if (nr_slots < n) {
1130                 ret = -EBUSY;
1131                 goto out_revert_acct;
1132         }
1133
1134         bufs = kcalloc(nr_slots, sizeof(*bufs),
1135                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1136         if (unlikely(!bufs)) {
1137                 ret = -ENOMEM;
1138                 goto out_revert_acct;
1139         }
1140
1141         /*
1142          * The pipe array wraps around, so just start the new one at zero
1143          * and adjust the indices.
1144          */
1145         if (n > 0) {
1146                 unsigned int h = head & mask;
1147                 unsigned int t = tail & mask;
1148                 if (h > t) {
1149                         memcpy(bufs, pipe->bufs + t,
1150                                n * sizeof(struct pipe_buffer));
1151                 } else {
1152                         unsigned int tsize = pipe->ring_size - t;
1153                         if (h > 0)
1154                                 memcpy(bufs + tsize, pipe->bufs,
1155                                        h * sizeof(struct pipe_buffer));
1156                         memcpy(bufs, pipe->bufs + t,
1157                                tsize * sizeof(struct pipe_buffer));
1158                 }
1159         }
1160
1161         head = n;
1162         tail = 0;
1163
1164         kfree(pipe->bufs);
1165         pipe->bufs = bufs;
1166         pipe->ring_size = nr_slots;
1167         pipe->max_usage = nr_slots;
1168         pipe->tail = tail;
1169         pipe->head = head;
1170         return pipe->max_usage * PAGE_SIZE;
1171
1172 out_revert_acct:
1173         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1174         return ret;
1175 }
1176
1177 /*
1178  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1179  * location, so checking ->i_pipe is not enough to verify that this is a
1180  * pipe.
1181  */
1182 struct pipe_inode_info *get_pipe_info(struct file *file)
1183 {
1184         return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1185 }
1186
1187 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1188 {
1189         struct pipe_inode_info *pipe;
1190         long ret;
1191
1192         pipe = get_pipe_info(file);
1193         if (!pipe)
1194                 return -EBADF;
1195
1196         __pipe_lock(pipe);
1197
1198         switch (cmd) {
1199         case F_SETPIPE_SZ:
1200                 ret = pipe_set_size(pipe, arg);
1201                 break;
1202         case F_GETPIPE_SZ:
1203                 ret = pipe->max_usage * PAGE_SIZE;
1204                 break;
1205         default:
1206                 ret = -EINVAL;
1207                 break;
1208         }
1209
1210         __pipe_unlock(pipe);
1211         return ret;
1212 }
1213
1214 static const struct super_operations pipefs_ops = {
1215         .destroy_inode = free_inode_nonrcu,
1216         .statfs = simple_statfs,
1217 };
1218
1219 /*
1220  * pipefs should _never_ be mounted by userland - too much of security hassle,
1221  * no real gain from having the whole whorehouse mounted. So we don't need
1222  * any operations on the root directory. However, we need a non-trivial
1223  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1224  */
1225
1226 static int pipefs_init_fs_context(struct fs_context *fc)
1227 {
1228         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1229         if (!ctx)
1230                 return -ENOMEM;
1231         ctx->ops = &pipefs_ops;
1232         ctx->dops = &pipefs_dentry_operations;
1233         return 0;
1234 }
1235
1236 static struct file_system_type pipe_fs_type = {
1237         .name           = "pipefs",
1238         .init_fs_context = pipefs_init_fs_context,
1239         .kill_sb        = kill_anon_super,
1240 };
1241
1242 static int __init init_pipe_fs(void)
1243 {
1244         int err = register_filesystem(&pipe_fs_type);
1245
1246         if (!err) {
1247                 pipe_mnt = kern_mount(&pipe_fs_type);
1248                 if (IS_ERR(pipe_mnt)) {
1249                         err = PTR_ERR(pipe_mnt);
1250                         unregister_filesystem(&pipe_fs_type);
1251                 }
1252         }
1253         return err;
1254 }
1255
1256 fs_initcall(init_pipe_fs);