4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
25 #include <asm/uaccess.h>
26 #include <asm/ioctls.h>
31 * The max size that a non-root user is allowed to grow the pipe. Can
32 * be set by root in /proc/sys/fs/pipe-max-size
34 unsigned int pipe_max_size = 1048576;
37 * Minimum pipe size, as required by POSIX
39 unsigned int pipe_min_size = PAGE_SIZE;
42 * We use a start+len construction, which provides full use of the
44 * -- Florian Coosmann (FGC)
46 * Reads with count = 0 should always return 0.
47 * -- Julian Bradfield 1999-06-07.
49 * FIFOs and Pipes now generate SIGIO for both readers and writers.
50 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
52 * pipe_read & write cleanup
53 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
56 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
59 mutex_lock_nested(&pipe->mutex, subclass);
62 void pipe_lock(struct pipe_inode_info *pipe)
65 * pipe_lock() nests non-pipe inode locks (for writing to a file)
67 pipe_lock_nested(pipe, I_MUTEX_PARENT);
69 EXPORT_SYMBOL(pipe_lock);
71 void pipe_unlock(struct pipe_inode_info *pipe)
74 mutex_unlock(&pipe->mutex);
76 EXPORT_SYMBOL(pipe_unlock);
78 static inline void __pipe_lock(struct pipe_inode_info *pipe)
80 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
83 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
85 mutex_unlock(&pipe->mutex);
88 void pipe_double_lock(struct pipe_inode_info *pipe1,
89 struct pipe_inode_info *pipe2)
91 BUG_ON(pipe1 == pipe2);
94 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
95 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
97 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
98 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
102 /* Drop the inode semaphore and wait for a pipe event, atomically */
103 void pipe_wait(struct pipe_inode_info *pipe)
108 * Pipes are system-local resources, so sleeping on them
109 * is considered a noninteractive wait:
111 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
114 finish_wait(&pipe->wait, &wait);
119 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
125 while (!iov->iov_len)
127 copy = min_t(unsigned long, len, iov->iov_len);
130 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
133 if (copy_from_user(to, iov->iov_base, copy))
138 iov->iov_base += copy;
139 iov->iov_len -= copy;
145 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
151 while (!iov->iov_len)
153 copy = min_t(unsigned long, len, iov->iov_len);
156 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
159 if (copy_to_user(iov->iov_base, from, copy))
164 iov->iov_base += copy;
165 iov->iov_len -= copy;
171 * Attempt to pre-fault in the user memory, so we can use atomic copies.
172 * Returns the number of bytes not faulted in.
174 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
176 while (!iov->iov_len)
180 unsigned long this_len;
182 this_len = min_t(unsigned long, len, iov->iov_len);
183 if (fault_in_pages_writeable(iov->iov_base, this_len))
194 * Pre-fault in the user memory, so we can use atomic copies.
196 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
198 while (!iov->iov_len)
202 unsigned long this_len;
204 this_len = min_t(unsigned long, len, iov->iov_len);
205 fault_in_pages_readable(iov->iov_base, this_len);
211 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
212 struct pipe_buffer *buf)
214 struct page *page = buf->page;
217 * If nobody else uses this page, and we don't already have a
218 * temporary page, let's keep track of it as a one-deep
219 * allocation cache. (Otherwise just release our reference to it)
221 if (page_count(page) == 1 && !pipe->tmp_page)
222 pipe->tmp_page = page;
224 page_cache_release(page);
228 * generic_pipe_buf_map - virtually map a pipe buffer
229 * @pipe: the pipe that the buffer belongs to
230 * @buf: the buffer that should be mapped
231 * @atomic: whether to use an atomic map
234 * This function returns a kernel virtual address mapping for the
235 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
236 * and the caller has to be careful not to fault before calling
237 * the unmap function.
239 * Note that this function calls kmap_atomic() if @atomic != 0.
241 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
242 struct pipe_buffer *buf, int atomic)
245 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
246 return kmap_atomic(buf->page);
249 return kmap(buf->page);
251 EXPORT_SYMBOL(generic_pipe_buf_map);
254 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
255 * @pipe: the pipe that the buffer belongs to
256 * @buf: the buffer that should be unmapped
257 * @map_data: the data that the mapping function returned
260 * This function undoes the mapping that ->map() provided.
262 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
263 struct pipe_buffer *buf, void *map_data)
265 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
266 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
267 kunmap_atomic(map_data);
271 EXPORT_SYMBOL(generic_pipe_buf_unmap);
274 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
275 * @pipe: the pipe that the buffer belongs to
276 * @buf: the buffer to attempt to steal
279 * This function attempts to steal the &struct page attached to
280 * @buf. If successful, this function returns 0 and returns with
281 * the page locked. The caller may then reuse the page for whatever
282 * he wishes; the typical use is insertion into a different file
285 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
286 struct pipe_buffer *buf)
288 struct page *page = buf->page;
291 * A reference of one is golden, that means that the owner of this
292 * page is the only one holding a reference to it. lock the page
295 if (page_count(page) == 1) {
302 EXPORT_SYMBOL(generic_pipe_buf_steal);
305 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
306 * @pipe: the pipe that the buffer belongs to
307 * @buf: the buffer to get a reference to
310 * This function grabs an extra reference to @buf. It's used in
311 * in the tee() system call, when we duplicate the buffers in one
314 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
316 page_cache_get(buf->page);
318 EXPORT_SYMBOL(generic_pipe_buf_get);
321 * generic_pipe_buf_confirm - verify contents of the pipe buffer
322 * @info: the pipe that the buffer belongs to
323 * @buf: the buffer to confirm
326 * This function does nothing, because the generic pipe code uses
327 * pages that are always good when inserted into the pipe.
329 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
330 struct pipe_buffer *buf)
334 EXPORT_SYMBOL(generic_pipe_buf_confirm);
337 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
338 * @pipe: the pipe that the buffer belongs to
339 * @buf: the buffer to put a reference to
342 * This function releases a reference to @buf.
344 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
345 struct pipe_buffer *buf)
347 page_cache_release(buf->page);
349 EXPORT_SYMBOL(generic_pipe_buf_release);
351 static const struct pipe_buf_operations anon_pipe_buf_ops = {
353 .map = generic_pipe_buf_map,
354 .unmap = generic_pipe_buf_unmap,
355 .confirm = generic_pipe_buf_confirm,
356 .release = anon_pipe_buf_release,
357 .steal = generic_pipe_buf_steal,
358 .get = generic_pipe_buf_get,
361 static const struct pipe_buf_operations packet_pipe_buf_ops = {
363 .map = generic_pipe_buf_map,
364 .unmap = generic_pipe_buf_unmap,
365 .confirm = generic_pipe_buf_confirm,
366 .release = anon_pipe_buf_release,
367 .steal = generic_pipe_buf_steal,
368 .get = generic_pipe_buf_get,
372 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
373 unsigned long nr_segs, loff_t pos)
375 struct file *filp = iocb->ki_filp;
376 struct pipe_inode_info *pipe = filp->private_data;
379 struct iovec *iov = (struct iovec *)_iov;
382 total_len = iov_length(iov, nr_segs);
383 /* Null read succeeds. */
384 if (unlikely(total_len == 0))
391 int bufs = pipe->nrbufs;
393 int curbuf = pipe->curbuf;
394 struct pipe_buffer *buf = pipe->bufs + curbuf;
395 const struct pipe_buf_operations *ops = buf->ops;
397 size_t chars = buf->len;
400 if (chars > total_len)
403 error = ops->confirm(pipe, buf);
410 atomic = !iov_fault_in_pages_write(iov, chars);
412 addr = ops->map(pipe, buf, atomic);
413 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
414 ops->unmap(pipe, buf, addr);
415 if (unlikely(error)) {
417 * Just retry with the slow path if we failed.
428 buf->offset += chars;
431 /* Was it a packet buffer? Clean up and exit */
432 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
439 ops->release(pipe, buf);
440 curbuf = (curbuf + 1) & (pipe->buffers - 1);
441 pipe->curbuf = curbuf;
442 pipe->nrbufs = --bufs;
447 break; /* common path: read succeeded */
449 if (bufs) /* More to do? */
453 if (!pipe->waiting_writers) {
454 /* syscall merging: Usually we must not sleep
455 * if O_NONBLOCK is set, or if we got some data.
456 * But if a writer sleeps in kernel space, then
457 * we can wait for that data without violating POSIX.
461 if (filp->f_flags & O_NONBLOCK) {
466 if (signal_pending(current)) {
472 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
473 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
479 /* Signal writers asynchronously that there is more room. */
481 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
482 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
489 static inline int is_packetized(struct file *file)
491 return (file->f_flags & O_DIRECT) != 0;
495 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
496 unsigned long nr_segs, loff_t ppos)
498 struct file *filp = iocb->ki_filp;
499 struct pipe_inode_info *pipe = filp->private_data;
502 struct iovec *iov = (struct iovec *)_iov;
506 total_len = iov_length(iov, nr_segs);
507 /* Null write succeeds. */
508 if (unlikely(total_len == 0))
515 if (!pipe->readers) {
516 send_sig(SIGPIPE, current, 0);
521 /* We try to merge small writes */
522 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
523 if (pipe->nrbufs && chars != 0) {
524 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
526 struct pipe_buffer *buf = pipe->bufs + lastbuf;
527 const struct pipe_buf_operations *ops = buf->ops;
528 int offset = buf->offset + buf->len;
530 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
531 int error, atomic = 1;
534 error = ops->confirm(pipe, buf);
538 iov_fault_in_pages_read(iov, chars);
540 addr = ops->map(pipe, buf, atomic);
541 error = pipe_iov_copy_from_user(offset + addr, iov,
543 ops->unmap(pipe, buf, addr);
564 if (!pipe->readers) {
565 send_sig(SIGPIPE, current, 0);
571 if (bufs < pipe->buffers) {
572 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
573 struct pipe_buffer *buf = pipe->bufs + newbuf;
574 struct page *page = pipe->tmp_page;
576 int error, atomic = 1;
579 page = alloc_page(GFP_HIGHUSER);
580 if (unlikely(!page)) {
581 ret = ret ? : -ENOMEM;
584 pipe->tmp_page = page;
586 /* Always wake up, even if the copy fails. Otherwise
587 * we lock up (O_NONBLOCK-)readers that sleep due to
589 * FIXME! Is this really true?
593 if (chars > total_len)
596 iov_fault_in_pages_read(iov, chars);
599 src = kmap_atomic(page);
603 error = pipe_iov_copy_from_user(src, iov, chars,
610 if (unlikely(error)) {
621 /* Insert it into the buffer array */
623 buf->ops = &anon_pipe_buf_ops;
627 if (is_packetized(filp)) {
628 buf->ops = &packet_pipe_buf_ops;
629 buf->flags = PIPE_BUF_FLAG_PACKET;
631 pipe->nrbufs = ++bufs;
632 pipe->tmp_page = NULL;
638 if (bufs < pipe->buffers)
640 if (filp->f_flags & O_NONBLOCK) {
645 if (signal_pending(current)) {
651 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
652 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
655 pipe->waiting_writers++;
657 pipe->waiting_writers--;
662 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
663 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
666 int err = file_update_time(filp);
673 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
675 struct pipe_inode_info *pipe = filp->private_data;
676 int count, buf, nrbufs;
683 nrbufs = pipe->nrbufs;
684 while (--nrbufs >= 0) {
685 count += pipe->bufs[buf].len;
686 buf = (buf+1) & (pipe->buffers - 1);
690 return put_user(count, (int __user *)arg);
696 /* No kernel lock held - fine */
698 pipe_poll(struct file *filp, poll_table *wait)
701 struct pipe_inode_info *pipe = filp->private_data;
704 poll_wait(filp, &pipe->wait, wait);
706 /* Reading only -- no need for acquiring the semaphore. */
707 nrbufs = pipe->nrbufs;
709 if (filp->f_mode & FMODE_READ) {
710 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
711 if (!pipe->writers && filp->f_version != pipe->w_counter)
715 if (filp->f_mode & FMODE_WRITE) {
716 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
718 * Most Unices do not set POLLERR for FIFOs but on Linux they
719 * behave exactly like pipes for poll().
729 pipe_release(struct inode *inode, struct file *file)
731 struct pipe_inode_info *pipe = inode->i_pipe;
735 if (file->f_mode & FMODE_READ)
737 if (file->f_mode & FMODE_WRITE)
740 if (pipe->readers || pipe->writers) {
741 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
742 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
743 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
745 spin_lock(&inode->i_lock);
746 if (!--pipe->files) {
747 inode->i_pipe = NULL;
750 spin_unlock(&inode->i_lock);
754 free_pipe_info(pipe);
760 pipe_fasync(int fd, struct file *filp, int on)
762 struct pipe_inode_info *pipe = filp->private_data;
766 if (filp->f_mode & FMODE_READ)
767 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
768 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
769 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
770 if (retval < 0 && (filp->f_mode & FMODE_READ))
771 /* this can happen only if on == T */
772 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
778 struct pipe_inode_info *alloc_pipe_info(void)
780 struct pipe_inode_info *pipe;
782 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
784 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
786 init_waitqueue_head(&pipe->wait);
787 pipe->r_counter = pipe->w_counter = 1;
788 pipe->buffers = PIPE_DEF_BUFFERS;
789 mutex_init(&pipe->mutex);
798 void free_pipe_info(struct pipe_inode_info *pipe)
802 for (i = 0; i < pipe->buffers; i++) {
803 struct pipe_buffer *buf = pipe->bufs + i;
805 buf->ops->release(pipe, buf);
808 __free_page(pipe->tmp_page);
813 static struct vfsmount *pipe_mnt __read_mostly;
816 * pipefs_dname() is called from d_path().
818 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
820 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
821 dentry->d_inode->i_ino);
824 static const struct dentry_operations pipefs_dentry_operations = {
825 .d_dname = pipefs_dname,
828 static struct inode * get_pipe_inode(void)
830 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
831 struct pipe_inode_info *pipe;
836 inode->i_ino = get_next_ino();
838 pipe = alloc_pipe_info();
842 inode->i_pipe = pipe;
844 pipe->readers = pipe->writers = 1;
845 inode->i_fop = &pipefifo_fops;
848 * Mark the inode dirty from the very beginning,
849 * that way it will never be moved to the dirty
850 * list because "mark_inode_dirty()" will think
851 * that it already _is_ on the dirty list.
853 inode->i_state = I_DIRTY;
854 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
855 inode->i_uid = current_fsuid();
856 inode->i_gid = current_fsgid();
857 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
868 int create_pipe_files(struct file **res, int flags)
871 struct inode *inode = get_pipe_inode();
874 static struct qstr name = { .name = "" };
880 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
883 path.mnt = mntget(pipe_mnt);
885 d_instantiate(path.dentry, inode);
888 f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
892 f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
893 f->private_data = inode->i_pipe;
895 res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
900 res[0]->private_data = inode->i_pipe;
901 res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
908 free_pipe_info(inode->i_pipe);
913 free_pipe_info(inode->i_pipe);
918 static int __do_pipe_flags(int *fd, struct file **files, int flags)
923 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
926 error = create_pipe_files(files, flags);
930 error = get_unused_fd_flags(flags);
935 error = get_unused_fd_flags(flags);
940 audit_fd_pair(fdr, fdw);
953 int do_pipe_flags(int *fd, int flags)
955 struct file *files[2];
956 int error = __do_pipe_flags(fd, files, flags);
958 fd_install(fd[0], files[0]);
959 fd_install(fd[1], files[1]);
965 * sys_pipe() is the normal C calling standard for creating
966 * a pipe. It's not the way Unix traditionally does this, though.
968 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
970 struct file *files[2];
974 error = __do_pipe_flags(fd, files, flags);
976 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
979 put_unused_fd(fd[0]);
980 put_unused_fd(fd[1]);
983 fd_install(fd[0], files[0]);
984 fd_install(fd[1], files[1]);
990 SYSCALL_DEFINE1(pipe, int __user *, fildes)
992 return sys_pipe2(fildes, 0);
995 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
999 while (cur == *cnt) {
1001 if (signal_pending(current))
1004 return cur == *cnt ? -ERESTARTSYS : 0;
1007 static void wake_up_partner(struct pipe_inode_info *pipe)
1009 wake_up_interruptible(&pipe->wait);
1012 static int fifo_open(struct inode *inode, struct file *filp)
1014 struct pipe_inode_info *pipe;
1015 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1019 filp->f_version = 0;
1021 spin_lock(&inode->i_lock);
1022 if (inode->i_pipe) {
1023 pipe = inode->i_pipe;
1025 spin_unlock(&inode->i_lock);
1027 spin_unlock(&inode->i_lock);
1028 pipe = alloc_pipe_info();
1032 spin_lock(&inode->i_lock);
1033 if (unlikely(inode->i_pipe)) {
1034 inode->i_pipe->files++;
1035 spin_unlock(&inode->i_lock);
1036 free_pipe_info(pipe);
1037 pipe = inode->i_pipe;
1039 inode->i_pipe = pipe;
1040 spin_unlock(&inode->i_lock);
1043 filp->private_data = pipe;
1044 /* OK, we have a pipe and it's pinned down */
1048 /* We can only do regular read/write on fifos */
1049 filp->f_mode &= (FMODE_READ | FMODE_WRITE);
1051 switch (filp->f_mode) {
1055 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1056 * opened, even when there is no process writing the FIFO.
1059 if (pipe->readers++ == 0)
1060 wake_up_partner(pipe);
1062 if (!is_pipe && !pipe->writers) {
1063 if ((filp->f_flags & O_NONBLOCK)) {
1064 /* suppress POLLHUP until we have
1066 filp->f_version = pipe->w_counter;
1068 if (wait_for_partner(pipe, &pipe->w_counter))
1077 * POSIX.1 says that O_NONBLOCK means return -1 with
1078 * errno=ENXIO when there is no process reading the FIFO.
1081 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1085 if (!pipe->writers++)
1086 wake_up_partner(pipe);
1088 if (!is_pipe && !pipe->readers) {
1089 if (wait_for_partner(pipe, &pipe->r_counter))
1094 case FMODE_READ | FMODE_WRITE:
1097 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1098 * This implementation will NEVER block on a O_RDWR open, since
1099 * the process can at least talk to itself.
1106 if (pipe->readers == 1 || pipe->writers == 1)
1107 wake_up_partner(pipe);
1116 __pipe_unlock(pipe);
1120 if (!--pipe->readers)
1121 wake_up_interruptible(&pipe->wait);
1126 if (!--pipe->writers)
1127 wake_up_interruptible(&pipe->wait);
1132 spin_lock(&inode->i_lock);
1133 if (!--pipe->files) {
1134 inode->i_pipe = NULL;
1137 spin_unlock(&inode->i_lock);
1138 __pipe_unlock(pipe);
1140 free_pipe_info(pipe);
1144 const struct file_operations pipefifo_fops = {
1146 .llseek = no_llseek,
1147 .read = do_sync_read,
1148 .aio_read = pipe_read,
1149 .write = do_sync_write,
1150 .aio_write = pipe_write,
1152 .unlocked_ioctl = pipe_ioctl,
1153 .release = pipe_release,
1154 .fasync = pipe_fasync,
1158 * Allocate a new array of pipe buffers and copy the info over. Returns the
1159 * pipe size if successful, or return -ERROR on error.
1161 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1163 struct pipe_buffer *bufs;
1166 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1167 * expect a lot of shrink+grow operations, just free and allocate
1168 * again like we would do for growing. If the pipe currently
1169 * contains more buffers than arg, then return busy.
1171 if (nr_pages < pipe->nrbufs)
1174 bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1175 if (unlikely(!bufs))
1179 * The pipe array wraps around, so just start the new one at zero
1180 * and adjust the indexes.
1186 tail = pipe->curbuf + pipe->nrbufs;
1187 if (tail < pipe->buffers)
1190 tail &= (pipe->buffers - 1);
1192 head = pipe->nrbufs - tail;
1194 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1196 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1202 pipe->buffers = nr_pages;
1203 return nr_pages * PAGE_SIZE;
1207 * Currently we rely on the pipe array holding a power-of-2 number
1210 static inline unsigned int round_pipe_size(unsigned int size)
1212 unsigned long nr_pages;
1214 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1215 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1219 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1220 * will return an error.
1222 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1223 size_t *lenp, loff_t *ppos)
1227 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1228 if (ret < 0 || !write)
1231 pipe_max_size = round_pipe_size(pipe_max_size);
1236 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1237 * location, so checking ->i_pipe is not enough to verify that this is a
1240 struct pipe_inode_info *get_pipe_info(struct file *file)
1242 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1245 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1247 struct pipe_inode_info *pipe;
1250 pipe = get_pipe_info(file);
1257 case F_SETPIPE_SZ: {
1258 unsigned int size, nr_pages;
1260 size = round_pipe_size(arg);
1261 nr_pages = size >> PAGE_SHIFT;
1267 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1271 ret = pipe_set_size(pipe, nr_pages);
1275 ret = pipe->buffers * PAGE_SIZE;
1283 __pipe_unlock(pipe);
1287 static const struct super_operations pipefs_ops = {
1288 .destroy_inode = free_inode_nonrcu,
1289 .statfs = simple_statfs,
1293 * pipefs should _never_ be mounted by userland - too much of security hassle,
1294 * no real gain from having the whole whorehouse mounted. So we don't need
1295 * any operations on the root directory. However, we need a non-trivial
1296 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1298 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1299 int flags, const char *dev_name, void *data)
1301 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1302 &pipefs_dentry_operations, PIPEFS_MAGIC);
1305 static struct file_system_type pipe_fs_type = {
1307 .mount = pipefs_mount,
1308 .kill_sb = kill_anon_super,
1311 static int __init init_pipe_fs(void)
1313 int err = register_filesystem(&pipe_fs_type);
1316 pipe_mnt = kern_mount(&pipe_fs_type);
1317 if (IS_ERR(pipe_mnt)) {
1318 err = PTR_ERR(pipe_mnt);
1319 unregister_filesystem(&pipe_fs_type);
1325 fs_initcall(init_pipe_fs);