packaging: Upgrade build required openssl version from 1.1 to 3
[platform/kernel/linux-rpi.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28
29 #include <linux/uaccess.h>
30 #include <asm/ioctls.h>
31
32 #include "internal.h"
33
34 /*
35  * New pipe buffers will be restricted to this size while the user is exceeding
36  * their pipe buffer quota. The general pipe use case needs at least two
37  * buffers: one for data yet to be read, and one for new data. If this is less
38  * than two, then a write to a non-empty pipe may block even if the pipe is not
39  * full. This can occur with GNU make jobserver or similar uses of pipes as
40  * semaphores: multiple processes may be waiting to write tokens back to the
41  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
42  *
43  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
44  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
45  * emptied.
46  */
47 #define PIPE_MIN_DEF_BUFFERS 2
48
49 /*
50  * The max size that a non-root user is allowed to grow the pipe. Can
51  * be set by root in /proc/sys/fs/pipe-max-size
52  */
53 unsigned int pipe_max_size = 1048576;
54
55 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
56  * matches default values.
57  */
58 unsigned long pipe_user_pages_hard;
59 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
60
61 /*
62  * We use head and tail indices that aren't masked off, except at the point of
63  * dereference, but rather they're allowed to wrap naturally.  This means there
64  * isn't a dead spot in the buffer, but the ring has to be a power of two and
65  * <= 2^31.
66  * -- David Howells 2019-09-23.
67  *
68  * Reads with count = 0 should always return 0.
69  * -- Julian Bradfield 1999-06-07.
70  *
71  * FIFOs and Pipes now generate SIGIO for both readers and writers.
72  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
73  *
74  * pipe_read & write cleanup
75  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
76  */
77
78 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
79 {
80         if (pipe->files)
81                 mutex_lock_nested(&pipe->mutex, subclass);
82 }
83
84 void pipe_lock(struct pipe_inode_info *pipe)
85 {
86         /*
87          * pipe_lock() nests non-pipe inode locks (for writing to a file)
88          */
89         pipe_lock_nested(pipe, I_MUTEX_PARENT);
90 }
91 EXPORT_SYMBOL(pipe_lock);
92
93 void pipe_unlock(struct pipe_inode_info *pipe)
94 {
95         if (pipe->files)
96                 mutex_unlock(&pipe->mutex);
97 }
98 EXPORT_SYMBOL(pipe_unlock);
99
100 static inline void __pipe_lock(struct pipe_inode_info *pipe)
101 {
102         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
103 }
104
105 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
106 {
107         mutex_unlock(&pipe->mutex);
108 }
109
110 void pipe_double_lock(struct pipe_inode_info *pipe1,
111                       struct pipe_inode_info *pipe2)
112 {
113         BUG_ON(pipe1 == pipe2);
114
115         if (pipe1 < pipe2) {
116                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
117                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
118         } else {
119                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
120                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
121         }
122 }
123
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125                                   struct pipe_buffer *buf)
126 {
127         struct page *page = buf->page;
128
129         /*
130          * If nobody else uses this page, and we don't already have a
131          * temporary page, let's keep track of it as a one-deep
132          * allocation cache. (Otherwise just release our reference to it)
133          */
134         if (page_count(page) == 1 && !pipe->tmp_page)
135                 pipe->tmp_page = page;
136         else
137                 put_page(page);
138 }
139
140 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
141                 struct pipe_buffer *buf)
142 {
143         struct page *page = buf->page;
144
145         if (page_count(page) != 1)
146                 return false;
147         memcg_kmem_uncharge_page(page, 0);
148         __SetPageLocked(page);
149         return true;
150 }
151
152 /**
153  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
154  * @pipe:       the pipe that the buffer belongs to
155  * @buf:        the buffer to attempt to steal
156  *
157  * Description:
158  *      This function attempts to steal the &struct page attached to
159  *      @buf. If successful, this function returns 0 and returns with
160  *      the page locked. The caller may then reuse the page for whatever
161  *      he wishes; the typical use is insertion into a different file
162  *      page cache.
163  */
164 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165                 struct pipe_buffer *buf)
166 {
167         struct page *page = buf->page;
168
169         /*
170          * A reference of one is golden, that means that the owner of this
171          * page is the only one holding a reference to it. lock the page
172          * and return OK.
173          */
174         if (page_count(page) == 1) {
175                 lock_page(page);
176                 return true;
177         }
178         return false;
179 }
180 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
181
182 /**
183  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184  * @pipe:       the pipe that the buffer belongs to
185  * @buf:        the buffer to get a reference to
186  *
187  * Description:
188  *      This function grabs an extra reference to @buf. It's used in
189  *      the tee() system call, when we duplicate the buffers in one
190  *      pipe into another.
191  */
192 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
193 {
194         return try_get_page(buf->page);
195 }
196 EXPORT_SYMBOL(generic_pipe_buf_get);
197
198 /**
199  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
200  * @pipe:       the pipe that the buffer belongs to
201  * @buf:        the buffer to put a reference to
202  *
203  * Description:
204  *      This function releases a reference to @buf.
205  */
206 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
207                               struct pipe_buffer *buf)
208 {
209         put_page(buf->page);
210 }
211 EXPORT_SYMBOL(generic_pipe_buf_release);
212
213 static const struct pipe_buf_operations anon_pipe_buf_ops = {
214         .release        = anon_pipe_buf_release,
215         .try_steal      = anon_pipe_buf_try_steal,
216         .get            = generic_pipe_buf_get,
217 };
218
219 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
220 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
221 {
222         unsigned int head = READ_ONCE(pipe->head);
223         unsigned int tail = READ_ONCE(pipe->tail);
224         unsigned int writers = READ_ONCE(pipe->writers);
225
226         return !pipe_empty(head, tail) || !writers;
227 }
228
229 static ssize_t
230 pipe_read(struct kiocb *iocb, struct iov_iter *to)
231 {
232         size_t total_len = iov_iter_count(to);
233         struct file *filp = iocb->ki_filp;
234         struct pipe_inode_info *pipe = filp->private_data;
235         bool was_full, wake_next_reader = false;
236         ssize_t ret;
237
238         /* Null read succeeds. */
239         if (unlikely(total_len == 0))
240                 return 0;
241
242         ret = 0;
243         __pipe_lock(pipe);
244
245         /*
246          * We only wake up writers if the pipe was full when we started
247          * reading in order to avoid unnecessary wakeups.
248          *
249          * But when we do wake up writers, we do so using a sync wakeup
250          * (WF_SYNC), because we want them to get going and generate more
251          * data for us.
252          */
253         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
254         for (;;) {
255                 /* Read ->head with a barrier vs post_one_notification() */
256                 unsigned int head = smp_load_acquire(&pipe->head);
257                 unsigned int tail = pipe->tail;
258                 unsigned int mask = pipe->ring_size - 1;
259
260 #ifdef CONFIG_WATCH_QUEUE
261                 if (pipe->note_loss) {
262                         struct watch_notification n;
263
264                         if (total_len < 8) {
265                                 if (ret == 0)
266                                         ret = -ENOBUFS;
267                                 break;
268                         }
269
270                         n.type = WATCH_TYPE_META;
271                         n.subtype = WATCH_META_LOSS_NOTIFICATION;
272                         n.info = watch_sizeof(n);
273                         if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
274                                 if (ret == 0)
275                                         ret = -EFAULT;
276                                 break;
277                         }
278                         ret += sizeof(n);
279                         total_len -= sizeof(n);
280                         pipe->note_loss = false;
281                 }
282 #endif
283
284                 if (!pipe_empty(head, tail)) {
285                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
286                         size_t chars = buf->len;
287                         size_t written;
288                         int error;
289
290                         if (chars > total_len) {
291                                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
292                                         if (ret == 0)
293                                                 ret = -ENOBUFS;
294                                         break;
295                                 }
296                                 chars = total_len;
297                         }
298
299                         error = pipe_buf_confirm(pipe, buf);
300                         if (error) {
301                                 if (!ret)
302                                         ret = error;
303                                 break;
304                         }
305
306                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
307                         if (unlikely(written < chars)) {
308                                 if (!ret)
309                                         ret = -EFAULT;
310                                 break;
311                         }
312                         ret += chars;
313                         buf->offset += chars;
314                         buf->len -= chars;
315
316                         /* Was it a packet buffer? Clean up and exit */
317                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
318                                 total_len = chars;
319                                 buf->len = 0;
320                         }
321
322                         if (!buf->len) {
323                                 pipe_buf_release(pipe, buf);
324                                 spin_lock_irq(&pipe->rd_wait.lock);
325 #ifdef CONFIG_WATCH_QUEUE
326                                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
327                                         pipe->note_loss = true;
328 #endif
329                                 tail++;
330                                 pipe->tail = tail;
331                                 spin_unlock_irq(&pipe->rd_wait.lock);
332                         }
333                         total_len -= chars;
334                         if (!total_len)
335                                 break;  /* common path: read succeeded */
336                         if (!pipe_empty(head, tail))    /* More to do? */
337                                 continue;
338                 }
339
340                 if (!pipe->writers)
341                         break;
342                 if (ret)
343                         break;
344                 if (filp->f_flags & O_NONBLOCK) {
345                         ret = -EAGAIN;
346                         break;
347                 }
348                 __pipe_unlock(pipe);
349
350                 /*
351                  * We only get here if we didn't actually read anything.
352                  *
353                  * However, we could have seen (and removed) a zero-sized
354                  * pipe buffer, and might have made space in the buffers
355                  * that way.
356                  *
357                  * You can't make zero-sized pipe buffers by doing an empty
358                  * write (not even in packet mode), but they can happen if
359                  * the writer gets an EFAULT when trying to fill a buffer
360                  * that already got allocated and inserted in the buffer
361                  * array.
362                  *
363                  * So we still need to wake up any pending writers in the
364                  * _very_ unlikely case that the pipe was full, but we got
365                  * no data.
366                  */
367                 if (unlikely(was_full))
368                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
369                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
370
371                 /*
372                  * But because we didn't read anything, at this point we can
373                  * just return directly with -ERESTARTSYS if we're interrupted,
374                  * since we've done any required wakeups and there's no need
375                  * to mark anything accessed. And we've dropped the lock.
376                  */
377                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
378                         return -ERESTARTSYS;
379
380                 __pipe_lock(pipe);
381                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
382                 wake_next_reader = true;
383         }
384         if (pipe_empty(pipe->head, pipe->tail))
385                 wake_next_reader = false;
386         __pipe_unlock(pipe);
387
388         if (was_full)
389                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
390         if (wake_next_reader)
391                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
392         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
393         if (ret > 0)
394                 file_accessed(filp);
395         return ret;
396 }
397
398 static inline int is_packetized(struct file *file)
399 {
400         return (file->f_flags & O_DIRECT) != 0;
401 }
402
403 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
404 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
405 {
406         unsigned int head = READ_ONCE(pipe->head);
407         unsigned int tail = READ_ONCE(pipe->tail);
408         unsigned int max_usage = READ_ONCE(pipe->max_usage);
409
410         return !pipe_full(head, tail, max_usage) ||
411                 !READ_ONCE(pipe->readers);
412 }
413
414 static ssize_t
415 pipe_write(struct kiocb *iocb, struct iov_iter *from)
416 {
417         struct file *filp = iocb->ki_filp;
418         struct pipe_inode_info *pipe = filp->private_data;
419         unsigned int head;
420         ssize_t ret = 0;
421         size_t total_len = iov_iter_count(from);
422         ssize_t chars;
423         bool was_empty = false;
424         bool wake_next_writer = false;
425
426         /* Null write succeeds. */
427         if (unlikely(total_len == 0))
428                 return 0;
429
430         __pipe_lock(pipe);
431
432         if (!pipe->readers) {
433                 send_sig(SIGPIPE, current, 0);
434                 ret = -EPIPE;
435                 goto out;
436         }
437
438 #ifdef CONFIG_WATCH_QUEUE
439         if (pipe->watch_queue) {
440                 ret = -EXDEV;
441                 goto out;
442         }
443 #endif
444
445         /*
446          * If it wasn't empty we try to merge new data into
447          * the last buffer.
448          *
449          * That naturally merges small writes, but it also
450          * page-aligns the rest of the writes for large writes
451          * spanning multiple pages.
452          */
453         head = pipe->head;
454         was_empty = pipe_empty(head, pipe->tail);
455         chars = total_len & (PAGE_SIZE-1);
456         if (chars && !was_empty) {
457                 unsigned int mask = pipe->ring_size - 1;
458                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
459                 int offset = buf->offset + buf->len;
460
461                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
462                     offset + chars <= PAGE_SIZE) {
463                         ret = pipe_buf_confirm(pipe, buf);
464                         if (ret)
465                                 goto out;
466
467                         ret = copy_page_from_iter(buf->page, offset, chars, from);
468                         if (unlikely(ret < chars)) {
469                                 ret = -EFAULT;
470                                 goto out;
471                         }
472
473                         buf->len += ret;
474                         if (!iov_iter_count(from))
475                                 goto out;
476                 }
477         }
478
479         for (;;) {
480                 if (!pipe->readers) {
481                         send_sig(SIGPIPE, current, 0);
482                         if (!ret)
483                                 ret = -EPIPE;
484                         break;
485                 }
486
487                 head = pipe->head;
488                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
489                         unsigned int mask = pipe->ring_size - 1;
490                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
491                         struct page *page = pipe->tmp_page;
492                         int copied;
493
494                         if (!page) {
495                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
496                                 if (unlikely(!page)) {
497                                         ret = ret ? : -ENOMEM;
498                                         break;
499                                 }
500                                 pipe->tmp_page = page;
501                         }
502
503                         /* Allocate a slot in the ring in advance and attach an
504                          * empty buffer.  If we fault or otherwise fail to use
505                          * it, either the reader will consume it or it'll still
506                          * be there for the next write.
507                          */
508                         spin_lock_irq(&pipe->rd_wait.lock);
509
510                         head = pipe->head;
511                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
512                                 spin_unlock_irq(&pipe->rd_wait.lock);
513                                 continue;
514                         }
515
516                         pipe->head = head + 1;
517                         spin_unlock_irq(&pipe->rd_wait.lock);
518
519                         /* Insert it into the buffer array */
520                         buf = &pipe->bufs[head & mask];
521                         buf->page = page;
522                         buf->ops = &anon_pipe_buf_ops;
523                         buf->offset = 0;
524                         buf->len = 0;
525                         if (is_packetized(filp))
526                                 buf->flags = PIPE_BUF_FLAG_PACKET;
527                         else
528                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
529                         pipe->tmp_page = NULL;
530
531                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
532                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
533                                 if (!ret)
534                                         ret = -EFAULT;
535                                 break;
536                         }
537                         ret += copied;
538                         buf->offset = 0;
539                         buf->len = copied;
540
541                         if (!iov_iter_count(from))
542                                 break;
543                 }
544
545                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
546                         continue;
547
548                 /* Wait for buffer space to become available. */
549                 if (filp->f_flags & O_NONBLOCK) {
550                         if (!ret)
551                                 ret = -EAGAIN;
552                         break;
553                 }
554                 if (signal_pending(current)) {
555                         if (!ret)
556                                 ret = -ERESTARTSYS;
557                         break;
558                 }
559
560                 /*
561                  * We're going to release the pipe lock and wait for more
562                  * space. We wake up any readers if necessary, and then
563                  * after waiting we need to re-check whether the pipe
564                  * become empty while we dropped the lock.
565                  */
566                 __pipe_unlock(pipe);
567                 if (was_empty)
568                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
569                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
570                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
571                 __pipe_lock(pipe);
572                 was_empty = pipe_empty(pipe->head, pipe->tail);
573                 wake_next_writer = true;
574         }
575 out:
576         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
577                 wake_next_writer = false;
578         __pipe_unlock(pipe);
579
580         /*
581          * If we do do a wakeup event, we do a 'sync' wakeup, because we
582          * want the reader to start processing things asap, rather than
583          * leave the data pending.
584          *
585          * This is particularly important for small writes, because of
586          * how (for example) the GNU make jobserver uses small writes to
587          * wake up pending jobs
588          *
589          * Epoll nonsensically wants a wakeup whether the pipe
590          * was already empty or not.
591          */
592         if (was_empty || pipe->poll_usage)
593                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
594         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595         if (wake_next_writer)
596                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
597         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
598                 int err = file_update_time(filp);
599                 if (err)
600                         ret = err;
601                 sb_end_write(file_inode(filp)->i_sb);
602         }
603         return ret;
604 }
605
606 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
607 {
608         struct pipe_inode_info *pipe = filp->private_data;
609         int count, head, tail, mask;
610
611         switch (cmd) {
612         case FIONREAD:
613                 __pipe_lock(pipe);
614                 count = 0;
615                 head = pipe->head;
616                 tail = pipe->tail;
617                 mask = pipe->ring_size - 1;
618
619                 while (tail != head) {
620                         count += pipe->bufs[tail & mask].len;
621                         tail++;
622                 }
623                 __pipe_unlock(pipe);
624
625                 return put_user(count, (int __user *)arg);
626
627 #ifdef CONFIG_WATCH_QUEUE
628         case IOC_WATCH_QUEUE_SET_SIZE: {
629                 int ret;
630                 __pipe_lock(pipe);
631                 ret = watch_queue_set_size(pipe, arg);
632                 __pipe_unlock(pipe);
633                 return ret;
634         }
635
636         case IOC_WATCH_QUEUE_SET_FILTER:
637                 return watch_queue_set_filter(
638                         pipe, (struct watch_notification_filter __user *)arg);
639 #endif
640
641         default:
642                 return -ENOIOCTLCMD;
643         }
644 }
645
646 /* No kernel lock held - fine */
647 static __poll_t
648 pipe_poll(struct file *filp, poll_table *wait)
649 {
650         __poll_t mask;
651         struct pipe_inode_info *pipe = filp->private_data;
652         unsigned int head, tail;
653
654         /* Epoll has some historical nasty semantics, this enables them */
655         WRITE_ONCE(pipe->poll_usage, true);
656
657         /*
658          * Reading pipe state only -- no need for acquiring the semaphore.
659          *
660          * But because this is racy, the code has to add the
661          * entry to the poll table _first_ ..
662          */
663         if (filp->f_mode & FMODE_READ)
664                 poll_wait(filp, &pipe->rd_wait, wait);
665         if (filp->f_mode & FMODE_WRITE)
666                 poll_wait(filp, &pipe->wr_wait, wait);
667
668         /*
669          * .. and only then can you do the racy tests. That way,
670          * if something changes and you got it wrong, the poll
671          * table entry will wake you up and fix it.
672          */
673         head = READ_ONCE(pipe->head);
674         tail = READ_ONCE(pipe->tail);
675
676         mask = 0;
677         if (filp->f_mode & FMODE_READ) {
678                 if (!pipe_empty(head, tail))
679                         mask |= EPOLLIN | EPOLLRDNORM;
680                 if (!pipe->writers && filp->f_version != pipe->w_counter)
681                         mask |= EPOLLHUP;
682         }
683
684         if (filp->f_mode & FMODE_WRITE) {
685                 if (!pipe_full(head, tail, pipe->max_usage))
686                         mask |= EPOLLOUT | EPOLLWRNORM;
687                 /*
688                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
689                  * behave exactly like pipes for poll().
690                  */
691                 if (!pipe->readers)
692                         mask |= EPOLLERR;
693         }
694
695         return mask;
696 }
697
698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
699 {
700         int kill = 0;
701
702         spin_lock(&inode->i_lock);
703         if (!--pipe->files) {
704                 inode->i_pipe = NULL;
705                 kill = 1;
706         }
707         spin_unlock(&inode->i_lock);
708
709         if (kill)
710                 free_pipe_info(pipe);
711 }
712
713 static int
714 pipe_release(struct inode *inode, struct file *file)
715 {
716         struct pipe_inode_info *pipe = file->private_data;
717
718         __pipe_lock(pipe);
719         if (file->f_mode & FMODE_READ)
720                 pipe->readers--;
721         if (file->f_mode & FMODE_WRITE)
722                 pipe->writers--;
723
724         /* Was that the last reader or writer, but not the other side? */
725         if (!pipe->readers != !pipe->writers) {
726                 wake_up_interruptible_all(&pipe->rd_wait);
727                 wake_up_interruptible_all(&pipe->wr_wait);
728                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
729                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730         }
731         __pipe_unlock(pipe);
732
733         put_pipe_info(inode, pipe);
734         return 0;
735 }
736
737 static int
738 pipe_fasync(int fd, struct file *filp, int on)
739 {
740         struct pipe_inode_info *pipe = filp->private_data;
741         int retval = 0;
742
743         __pipe_lock(pipe);
744         if (filp->f_mode & FMODE_READ)
745                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
746         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
747                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
748                 if (retval < 0 && (filp->f_mode & FMODE_READ))
749                         /* this can happen only if on == T */
750                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
751         }
752         __pipe_unlock(pipe);
753         return retval;
754 }
755
756 unsigned long account_pipe_buffers(struct user_struct *user,
757                                    unsigned long old, unsigned long new)
758 {
759         return atomic_long_add_return(new - old, &user->pipe_bufs);
760 }
761
762 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
763 {
764         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
765
766         return soft_limit && user_bufs > soft_limit;
767 }
768
769 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
770 {
771         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
772
773         return hard_limit && user_bufs > hard_limit;
774 }
775
776 bool pipe_is_unprivileged_user(void)
777 {
778         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
779 }
780
781 struct pipe_inode_info *alloc_pipe_info(void)
782 {
783         struct pipe_inode_info *pipe;
784         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
785         struct user_struct *user = get_current_user();
786         unsigned long user_bufs;
787         unsigned int max_size = READ_ONCE(pipe_max_size);
788
789         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
790         if (pipe == NULL)
791                 goto out_free_uid;
792
793         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
794                 pipe_bufs = max_size >> PAGE_SHIFT;
795
796         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
797
798         if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
799                 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
800                 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
801         }
802
803         if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
804                 goto out_revert_acct;
805
806         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
807                              GFP_KERNEL_ACCOUNT);
808
809         if (pipe->bufs) {
810                 init_waitqueue_head(&pipe->rd_wait);
811                 init_waitqueue_head(&pipe->wr_wait);
812                 pipe->r_counter = pipe->w_counter = 1;
813                 pipe->max_usage = pipe_bufs;
814                 pipe->ring_size = pipe_bufs;
815                 pipe->nr_accounted = pipe_bufs;
816                 pipe->user = user;
817                 mutex_init(&pipe->mutex);
818                 return pipe;
819         }
820
821 out_revert_acct:
822         (void) account_pipe_buffers(user, pipe_bufs, 0);
823         kfree(pipe);
824 out_free_uid:
825         free_uid(user);
826         return NULL;
827 }
828
829 void free_pipe_info(struct pipe_inode_info *pipe)
830 {
831         int i;
832
833 #ifdef CONFIG_WATCH_QUEUE
834         if (pipe->watch_queue)
835                 watch_queue_clear(pipe->watch_queue);
836 #endif
837
838         (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
839         free_uid(pipe->user);
840         for (i = 0; i < pipe->ring_size; i++) {
841                 struct pipe_buffer *buf = pipe->bufs + i;
842                 if (buf->ops)
843                         pipe_buf_release(pipe, buf);
844         }
845 #ifdef CONFIG_WATCH_QUEUE
846         if (pipe->watch_queue)
847                 put_watch_queue(pipe->watch_queue);
848 #endif
849         if (pipe->tmp_page)
850                 __free_page(pipe->tmp_page);
851         kfree(pipe->bufs);
852         kfree(pipe);
853 }
854
855 static struct vfsmount *pipe_mnt __read_mostly;
856
857 /*
858  * pipefs_dname() is called from d_path().
859  */
860 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
861 {
862         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
863                                 d_inode(dentry)->i_ino);
864 }
865
866 static const struct dentry_operations pipefs_dentry_operations = {
867         .d_dname        = pipefs_dname,
868 };
869
870 static struct inode * get_pipe_inode(void)
871 {
872         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
873         struct pipe_inode_info *pipe;
874
875         if (!inode)
876                 goto fail_inode;
877
878         inode->i_ino = get_next_ino();
879
880         pipe = alloc_pipe_info();
881         if (!pipe)
882                 goto fail_iput;
883
884         inode->i_pipe = pipe;
885         pipe->files = 2;
886         pipe->readers = pipe->writers = 1;
887         inode->i_fop = &pipefifo_fops;
888
889         /*
890          * Mark the inode dirty from the very beginning,
891          * that way it will never be moved to the dirty
892          * list because "mark_inode_dirty()" will think
893          * that it already _is_ on the dirty list.
894          */
895         inode->i_state = I_DIRTY;
896         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
897         inode->i_uid = current_fsuid();
898         inode->i_gid = current_fsgid();
899         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
900
901         return inode;
902
903 fail_iput:
904         iput(inode);
905
906 fail_inode:
907         return NULL;
908 }
909
910 int create_pipe_files(struct file **res, int flags)
911 {
912         struct inode *inode = get_pipe_inode();
913         struct file *f;
914         int error;
915
916         if (!inode)
917                 return -ENFILE;
918
919         if (flags & O_NOTIFICATION_PIPE) {
920                 error = watch_queue_init(inode->i_pipe);
921                 if (error) {
922                         free_pipe_info(inode->i_pipe);
923                         iput(inode);
924                         return error;
925                 }
926         }
927
928         f = alloc_file_pseudo(inode, pipe_mnt, "",
929                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
930                                 &pipefifo_fops);
931         if (IS_ERR(f)) {
932                 free_pipe_info(inode->i_pipe);
933                 iput(inode);
934                 return PTR_ERR(f);
935         }
936
937         f->private_data = inode->i_pipe;
938
939         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
940                                   &pipefifo_fops);
941         if (IS_ERR(res[0])) {
942                 put_pipe_info(inode, inode->i_pipe);
943                 fput(f);
944                 return PTR_ERR(res[0]);
945         }
946         res[0]->private_data = inode->i_pipe;
947         res[1] = f;
948         stream_open(inode, res[0]);
949         stream_open(inode, res[1]);
950         return 0;
951 }
952
953 static int __do_pipe_flags(int *fd, struct file **files, int flags)
954 {
955         int error;
956         int fdw, fdr;
957
958         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
959                 return -EINVAL;
960
961         error = create_pipe_files(files, flags);
962         if (error)
963                 return error;
964
965         error = get_unused_fd_flags(flags);
966         if (error < 0)
967                 goto err_read_pipe;
968         fdr = error;
969
970         error = get_unused_fd_flags(flags);
971         if (error < 0)
972                 goto err_fdr;
973         fdw = error;
974
975         audit_fd_pair(fdr, fdw);
976         fd[0] = fdr;
977         fd[1] = fdw;
978         return 0;
979
980  err_fdr:
981         put_unused_fd(fdr);
982  err_read_pipe:
983         fput(files[0]);
984         fput(files[1]);
985         return error;
986 }
987
988 int do_pipe_flags(int *fd, int flags)
989 {
990         struct file *files[2];
991         int error = __do_pipe_flags(fd, files, flags);
992         if (!error) {
993                 fd_install(fd[0], files[0]);
994                 fd_install(fd[1], files[1]);
995         }
996         return error;
997 }
998
999 /*
1000  * sys_pipe() is the normal C calling standard for creating
1001  * a pipe. It's not the way Unix traditionally does this, though.
1002  */
1003 static int do_pipe2(int __user *fildes, int flags)
1004 {
1005         struct file *files[2];
1006         int fd[2];
1007         int error;
1008
1009         error = __do_pipe_flags(fd, files, flags);
1010         if (!error) {
1011                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1012                         fput(files[0]);
1013                         fput(files[1]);
1014                         put_unused_fd(fd[0]);
1015                         put_unused_fd(fd[1]);
1016                         error = -EFAULT;
1017                 } else {
1018                         fd_install(fd[0], files[0]);
1019                         fd_install(fd[1], files[1]);
1020                 }
1021         }
1022         return error;
1023 }
1024
1025 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1026 {
1027         return do_pipe2(fildes, flags);
1028 }
1029
1030 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1031 {
1032         return do_pipe2(fildes, 0);
1033 }
1034
1035 /*
1036  * This is the stupid "wait for pipe to be readable or writable"
1037  * model.
1038  *
1039  * See pipe_read/write() for the proper kind of exclusive wait,
1040  * but that requires that we wake up any other readers/writers
1041  * if we then do not end up reading everything (ie the whole
1042  * "wake_next_reader/writer" logic in pipe_read/write()).
1043  */
1044 void pipe_wait_readable(struct pipe_inode_info *pipe)
1045 {
1046         pipe_unlock(pipe);
1047         wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1048         pipe_lock(pipe);
1049 }
1050
1051 void pipe_wait_writable(struct pipe_inode_info *pipe)
1052 {
1053         pipe_unlock(pipe);
1054         wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1055         pipe_lock(pipe);
1056 }
1057
1058 /*
1059  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1060  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1061  * race with the count check and waitqueue prep.
1062  *
1063  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1064  * then check the condition you're waiting for, and only then sleep. But
1065  * because of the pipe lock, we can check the condition before being on
1066  * the wait queue.
1067  *
1068  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1069  */
1070 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1071 {
1072         DEFINE_WAIT(rdwait);
1073         int cur = *cnt;
1074
1075         while (cur == *cnt) {
1076                 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1077                 pipe_unlock(pipe);
1078                 schedule();
1079                 finish_wait(&pipe->rd_wait, &rdwait);
1080                 pipe_lock(pipe);
1081                 if (signal_pending(current))
1082                         break;
1083         }
1084         return cur == *cnt ? -ERESTARTSYS : 0;
1085 }
1086
1087 static void wake_up_partner(struct pipe_inode_info *pipe)
1088 {
1089         wake_up_interruptible_all(&pipe->rd_wait);
1090 }
1091
1092 static int fifo_open(struct inode *inode, struct file *filp)
1093 {
1094         struct pipe_inode_info *pipe;
1095         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1096         int ret;
1097
1098         filp->f_version = 0;
1099
1100         spin_lock(&inode->i_lock);
1101         if (inode->i_pipe) {
1102                 pipe = inode->i_pipe;
1103                 pipe->files++;
1104                 spin_unlock(&inode->i_lock);
1105         } else {
1106                 spin_unlock(&inode->i_lock);
1107                 pipe = alloc_pipe_info();
1108                 if (!pipe)
1109                         return -ENOMEM;
1110                 pipe->files = 1;
1111                 spin_lock(&inode->i_lock);
1112                 if (unlikely(inode->i_pipe)) {
1113                         inode->i_pipe->files++;
1114                         spin_unlock(&inode->i_lock);
1115                         free_pipe_info(pipe);
1116                         pipe = inode->i_pipe;
1117                 } else {
1118                         inode->i_pipe = pipe;
1119                         spin_unlock(&inode->i_lock);
1120                 }
1121         }
1122         filp->private_data = pipe;
1123         /* OK, we have a pipe and it's pinned down */
1124
1125         __pipe_lock(pipe);
1126
1127         /* We can only do regular read/write on fifos */
1128         stream_open(inode, filp);
1129
1130         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1131         case FMODE_READ:
1132         /*
1133          *  O_RDONLY
1134          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1135          *  opened, even when there is no process writing the FIFO.
1136          */
1137                 pipe->r_counter++;
1138                 if (pipe->readers++ == 0)
1139                         wake_up_partner(pipe);
1140
1141                 if (!is_pipe && !pipe->writers) {
1142                         if ((filp->f_flags & O_NONBLOCK)) {
1143                                 /* suppress EPOLLHUP until we have
1144                                  * seen a writer */
1145                                 filp->f_version = pipe->w_counter;
1146                         } else {
1147                                 if (wait_for_partner(pipe, &pipe->w_counter))
1148                                         goto err_rd;
1149                         }
1150                 }
1151                 break;
1152
1153         case FMODE_WRITE:
1154         /*
1155          *  O_WRONLY
1156          *  POSIX.1 says that O_NONBLOCK means return -1 with
1157          *  errno=ENXIO when there is no process reading the FIFO.
1158          */
1159                 ret = -ENXIO;
1160                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1161                         goto err;
1162
1163                 pipe->w_counter++;
1164                 if (!pipe->writers++)
1165                         wake_up_partner(pipe);
1166
1167                 if (!is_pipe && !pipe->readers) {
1168                         if (wait_for_partner(pipe, &pipe->r_counter))
1169                                 goto err_wr;
1170                 }
1171                 break;
1172
1173         case FMODE_READ | FMODE_WRITE:
1174         /*
1175          *  O_RDWR
1176          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1177          *  This implementation will NEVER block on a O_RDWR open, since
1178          *  the process can at least talk to itself.
1179          */
1180
1181                 pipe->readers++;
1182                 pipe->writers++;
1183                 pipe->r_counter++;
1184                 pipe->w_counter++;
1185                 if (pipe->readers == 1 || pipe->writers == 1)
1186                         wake_up_partner(pipe);
1187                 break;
1188
1189         default:
1190                 ret = -EINVAL;
1191                 goto err;
1192         }
1193
1194         /* Ok! */
1195         __pipe_unlock(pipe);
1196         return 0;
1197
1198 err_rd:
1199         if (!--pipe->readers)
1200                 wake_up_interruptible(&pipe->wr_wait);
1201         ret = -ERESTARTSYS;
1202         goto err;
1203
1204 err_wr:
1205         if (!--pipe->writers)
1206                 wake_up_interruptible_all(&pipe->rd_wait);
1207         ret = -ERESTARTSYS;
1208         goto err;
1209
1210 err:
1211         __pipe_unlock(pipe);
1212
1213         put_pipe_info(inode, pipe);
1214         return ret;
1215 }
1216
1217 const struct file_operations pipefifo_fops = {
1218         .open           = fifo_open,
1219         .llseek         = no_llseek,
1220         .read_iter      = pipe_read,
1221         .write_iter     = pipe_write,
1222         .poll           = pipe_poll,
1223         .unlocked_ioctl = pipe_ioctl,
1224         .release        = pipe_release,
1225         .fasync         = pipe_fasync,
1226         .splice_write   = iter_file_splice_write,
1227 };
1228
1229 /*
1230  * Currently we rely on the pipe array holding a power-of-2 number
1231  * of pages. Returns 0 on error.
1232  */
1233 unsigned int round_pipe_size(unsigned long size)
1234 {
1235         if (size > (1U << 31))
1236                 return 0;
1237
1238         /* Minimum pipe size, as required by POSIX */
1239         if (size < PAGE_SIZE)
1240                 return PAGE_SIZE;
1241
1242         return roundup_pow_of_two(size);
1243 }
1244
1245 /*
1246  * Resize the pipe ring to a number of slots.
1247  *
1248  * Note the pipe can be reduced in capacity, but only if the current
1249  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1250  * returned instead.
1251  */
1252 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1253 {
1254         struct pipe_buffer *bufs;
1255         unsigned int head, tail, mask, n;
1256
1257         bufs = kcalloc(nr_slots, sizeof(*bufs),
1258                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1259         if (unlikely(!bufs))
1260                 return -ENOMEM;
1261
1262         spin_lock_irq(&pipe->rd_wait.lock);
1263         mask = pipe->ring_size - 1;
1264         head = pipe->head;
1265         tail = pipe->tail;
1266
1267         n = pipe_occupancy(head, tail);
1268         if (nr_slots < n) {
1269                 spin_unlock_irq(&pipe->rd_wait.lock);
1270                 kfree(bufs);
1271                 return -EBUSY;
1272         }
1273
1274         /*
1275          * The pipe array wraps around, so just start the new one at zero
1276          * and adjust the indices.
1277          */
1278         if (n > 0) {
1279                 unsigned int h = head & mask;
1280                 unsigned int t = tail & mask;
1281                 if (h > t) {
1282                         memcpy(bufs, pipe->bufs + t,
1283                                n * sizeof(struct pipe_buffer));
1284                 } else {
1285                         unsigned int tsize = pipe->ring_size - t;
1286                         if (h > 0)
1287                                 memcpy(bufs + tsize, pipe->bufs,
1288                                        h * sizeof(struct pipe_buffer));
1289                         memcpy(bufs, pipe->bufs + t,
1290                                tsize * sizeof(struct pipe_buffer));
1291                 }
1292         }
1293
1294         head = n;
1295         tail = 0;
1296
1297         kfree(pipe->bufs);
1298         pipe->bufs = bufs;
1299         pipe->ring_size = nr_slots;
1300         if (pipe->max_usage > nr_slots)
1301                 pipe->max_usage = nr_slots;
1302         pipe->tail = tail;
1303         pipe->head = head;
1304
1305         spin_unlock_irq(&pipe->rd_wait.lock);
1306
1307         /* This might have made more room for writers */
1308         wake_up_interruptible(&pipe->wr_wait);
1309         return 0;
1310 }
1311
1312 /*
1313  * Allocate a new array of pipe buffers and copy the info over. Returns the
1314  * pipe size if successful, or return -ERROR on error.
1315  */
1316 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1317 {
1318         unsigned long user_bufs;
1319         unsigned int nr_slots, size;
1320         long ret = 0;
1321
1322 #ifdef CONFIG_WATCH_QUEUE
1323         if (pipe->watch_queue)
1324                 return -EBUSY;
1325 #endif
1326
1327         size = round_pipe_size(arg);
1328         nr_slots = size >> PAGE_SHIFT;
1329
1330         if (!nr_slots)
1331                 return -EINVAL;
1332
1333         /*
1334          * If trying to increase the pipe capacity, check that an
1335          * unprivileged user is not trying to exceed various limits
1336          * (soft limit check here, hard limit check just below).
1337          * Decreasing the pipe capacity is always permitted, even
1338          * if the user is currently over a limit.
1339          */
1340         if (nr_slots > pipe->max_usage &&
1341                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1342                 return -EPERM;
1343
1344         user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1345
1346         if (nr_slots > pipe->max_usage &&
1347                         (too_many_pipe_buffers_hard(user_bufs) ||
1348                          too_many_pipe_buffers_soft(user_bufs)) &&
1349                         pipe_is_unprivileged_user()) {
1350                 ret = -EPERM;
1351                 goto out_revert_acct;
1352         }
1353
1354         ret = pipe_resize_ring(pipe, nr_slots);
1355         if (ret < 0)
1356                 goto out_revert_acct;
1357
1358         pipe->max_usage = nr_slots;
1359         pipe->nr_accounted = nr_slots;
1360         return pipe->max_usage * PAGE_SIZE;
1361
1362 out_revert_acct:
1363         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1364         return ret;
1365 }
1366
1367 /*
1368  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1369  * not enough to verify that this is a pipe.
1370  */
1371 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1372 {
1373         struct pipe_inode_info *pipe = file->private_data;
1374
1375         if (file->f_op != &pipefifo_fops || !pipe)
1376                 return NULL;
1377 #ifdef CONFIG_WATCH_QUEUE
1378         if (for_splice && pipe->watch_queue)
1379                 return NULL;
1380 #endif
1381         return pipe;
1382 }
1383
1384 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1385 {
1386         struct pipe_inode_info *pipe;
1387         long ret;
1388
1389         pipe = get_pipe_info(file, false);
1390         if (!pipe)
1391                 return -EBADF;
1392
1393         __pipe_lock(pipe);
1394
1395         switch (cmd) {
1396         case F_SETPIPE_SZ:
1397                 ret = pipe_set_size(pipe, arg);
1398                 break;
1399         case F_GETPIPE_SZ:
1400                 ret = pipe->max_usage * PAGE_SIZE;
1401                 break;
1402         default:
1403                 ret = -EINVAL;
1404                 break;
1405         }
1406
1407         __pipe_unlock(pipe);
1408         return ret;
1409 }
1410
1411 static const struct super_operations pipefs_ops = {
1412         .destroy_inode = free_inode_nonrcu,
1413         .statfs = simple_statfs,
1414 };
1415
1416 /*
1417  * pipefs should _never_ be mounted by userland - too much of security hassle,
1418  * no real gain from having the whole whorehouse mounted. So we don't need
1419  * any operations on the root directory. However, we need a non-trivial
1420  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1421  */
1422
1423 static int pipefs_init_fs_context(struct fs_context *fc)
1424 {
1425         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1426         if (!ctx)
1427                 return -ENOMEM;
1428         ctx->ops = &pipefs_ops;
1429         ctx->dops = &pipefs_dentry_operations;
1430         return 0;
1431 }
1432
1433 static struct file_system_type pipe_fs_type = {
1434         .name           = "pipefs",
1435         .init_fs_context = pipefs_init_fs_context,
1436         .kill_sb        = kill_anon_super,
1437 };
1438
1439 static int __init init_pipe_fs(void)
1440 {
1441         int err = register_filesystem(&pipe_fs_type);
1442
1443         if (!err) {
1444                 pipe_mnt = kern_mount(&pipe_fs_type);
1445                 if (IS_ERR(pipe_mnt)) {
1446                         err = PTR_ERR(pipe_mnt);
1447                         unregister_filesystem(&pipe_fs_type);
1448                 }
1449         }
1450         return err;
1451 }
1452
1453 fs_initcall(init_pipe_fs);