4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/pipe_fs_i.h>
17 #include <linux/uio.h>
18 #include <linux/highmem.h>
19 #include <linux/pagemap.h>
20 #include <linux/audit.h>
21 #include <linux/syscalls.h>
22 #include <linux/fcntl.h>
24 #include <asm/uaccess.h>
25 #include <asm/ioctls.h>
28 * The max size that a non-root user is allowed to grow the pipe. Can
29 * be set by root in /proc/sys/fs/pipe-max-pages
31 unsigned int pipe_max_pages = PIPE_DEF_BUFFERS * 16;
34 * We use a start+len construction, which provides full use of the
36 * -- Florian Coosmann (FGC)
38 * Reads with count = 0 should always return 0.
39 * -- Julian Bradfield 1999-06-07.
41 * FIFOs and Pipes now generate SIGIO for both readers and writers.
42 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
44 * pipe_read & write cleanup
45 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
48 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
51 mutex_lock_nested(&pipe->inode->i_mutex, subclass);
54 void pipe_lock(struct pipe_inode_info *pipe)
57 * pipe_lock() nests non-pipe inode locks (for writing to a file)
59 pipe_lock_nested(pipe, I_MUTEX_PARENT);
61 EXPORT_SYMBOL(pipe_lock);
63 void pipe_unlock(struct pipe_inode_info *pipe)
66 mutex_unlock(&pipe->inode->i_mutex);
68 EXPORT_SYMBOL(pipe_unlock);
70 void pipe_double_lock(struct pipe_inode_info *pipe1,
71 struct pipe_inode_info *pipe2)
73 BUG_ON(pipe1 == pipe2);
76 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
77 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
79 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
80 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
84 /* Drop the inode semaphore and wait for a pipe event, atomically */
85 void pipe_wait(struct pipe_inode_info *pipe)
90 * Pipes are system-local resources, so sleeping on them
91 * is considered a noninteractive wait:
93 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
96 finish_wait(&pipe->wait, &wait);
101 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
107 while (!iov->iov_len)
109 copy = min_t(unsigned long, len, iov->iov_len);
112 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
115 if (copy_from_user(to, iov->iov_base, copy))
120 iov->iov_base += copy;
121 iov->iov_len -= copy;
127 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
133 while (!iov->iov_len)
135 copy = min_t(unsigned long, len, iov->iov_len);
138 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
141 if (copy_to_user(iov->iov_base, from, copy))
146 iov->iov_base += copy;
147 iov->iov_len -= copy;
153 * Attempt to pre-fault in the user memory, so we can use atomic copies.
154 * Returns the number of bytes not faulted in.
156 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
158 while (!iov->iov_len)
162 unsigned long this_len;
164 this_len = min_t(unsigned long, len, iov->iov_len);
165 if (fault_in_pages_writeable(iov->iov_base, this_len))
176 * Pre-fault in the user memory, so we can use atomic copies.
178 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
180 while (!iov->iov_len)
184 unsigned long this_len;
186 this_len = min_t(unsigned long, len, iov->iov_len);
187 fault_in_pages_readable(iov->iov_base, this_len);
193 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
194 struct pipe_buffer *buf)
196 struct page *page = buf->page;
199 * If nobody else uses this page, and we don't already have a
200 * temporary page, let's keep track of it as a one-deep
201 * allocation cache. (Otherwise just release our reference to it)
203 if (page_count(page) == 1 && !pipe->tmp_page)
204 pipe->tmp_page = page;
206 page_cache_release(page);
210 * generic_pipe_buf_map - virtually map a pipe buffer
211 * @pipe: the pipe that the buffer belongs to
212 * @buf: the buffer that should be mapped
213 * @atomic: whether to use an atomic map
216 * This function returns a kernel virtual address mapping for the
217 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
218 * and the caller has to be careful not to fault before calling
219 * the unmap function.
221 * Note that this function occupies KM_USER0 if @atomic != 0.
223 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
224 struct pipe_buffer *buf, int atomic)
227 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
228 return kmap_atomic(buf->page, KM_USER0);
231 return kmap(buf->page);
233 EXPORT_SYMBOL(generic_pipe_buf_map);
236 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
237 * @pipe: the pipe that the buffer belongs to
238 * @buf: the buffer that should be unmapped
239 * @map_data: the data that the mapping function returned
242 * This function undoes the mapping that ->map() provided.
244 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
245 struct pipe_buffer *buf, void *map_data)
247 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
248 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
249 kunmap_atomic(map_data, KM_USER0);
253 EXPORT_SYMBOL(generic_pipe_buf_unmap);
256 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
257 * @pipe: the pipe that the buffer belongs to
258 * @buf: the buffer to attempt to steal
261 * This function attempts to steal the &struct page attached to
262 * @buf. If successful, this function returns 0 and returns with
263 * the page locked. The caller may then reuse the page for whatever
264 * he wishes; the typical use is insertion into a different file
267 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
268 struct pipe_buffer *buf)
270 struct page *page = buf->page;
273 * A reference of one is golden, that means that the owner of this
274 * page is the only one holding a reference to it. lock the page
277 if (page_count(page) == 1) {
284 EXPORT_SYMBOL(generic_pipe_buf_steal);
287 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
288 * @pipe: the pipe that the buffer belongs to
289 * @buf: the buffer to get a reference to
292 * This function grabs an extra reference to @buf. It's used in
293 * in the tee() system call, when we duplicate the buffers in one
296 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
298 page_cache_get(buf->page);
300 EXPORT_SYMBOL(generic_pipe_buf_get);
303 * generic_pipe_buf_confirm - verify contents of the pipe buffer
304 * @info: the pipe that the buffer belongs to
305 * @buf: the buffer to confirm
308 * This function does nothing, because the generic pipe code uses
309 * pages that are always good when inserted into the pipe.
311 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
312 struct pipe_buffer *buf)
316 EXPORT_SYMBOL(generic_pipe_buf_confirm);
319 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
320 * @pipe: the pipe that the buffer belongs to
321 * @buf: the buffer to put a reference to
324 * This function releases a reference to @buf.
326 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
327 struct pipe_buffer *buf)
329 page_cache_release(buf->page);
331 EXPORT_SYMBOL(generic_pipe_buf_release);
333 static const struct pipe_buf_operations anon_pipe_buf_ops = {
335 .map = generic_pipe_buf_map,
336 .unmap = generic_pipe_buf_unmap,
337 .confirm = generic_pipe_buf_confirm,
338 .release = anon_pipe_buf_release,
339 .steal = generic_pipe_buf_steal,
340 .get = generic_pipe_buf_get,
344 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
345 unsigned long nr_segs, loff_t pos)
347 struct file *filp = iocb->ki_filp;
348 struct inode *inode = filp->f_path.dentry->d_inode;
349 struct pipe_inode_info *pipe;
352 struct iovec *iov = (struct iovec *)_iov;
355 total_len = iov_length(iov, nr_segs);
356 /* Null read succeeds. */
357 if (unlikely(total_len == 0))
362 mutex_lock(&inode->i_mutex);
363 pipe = inode->i_pipe;
365 int bufs = pipe->nrbufs;
367 int curbuf = pipe->curbuf;
368 struct pipe_buffer *buf = pipe->bufs + curbuf;
369 const struct pipe_buf_operations *ops = buf->ops;
371 size_t chars = buf->len;
374 if (chars > total_len)
377 error = ops->confirm(pipe, buf);
384 atomic = !iov_fault_in_pages_write(iov, chars);
386 addr = ops->map(pipe, buf, atomic);
387 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
388 ops->unmap(pipe, buf, addr);
389 if (unlikely(error)) {
391 * Just retry with the slow path if we failed.
402 buf->offset += chars;
406 ops->release(pipe, buf);
407 curbuf = (curbuf + 1) & (pipe->buffers - 1);
408 pipe->curbuf = curbuf;
409 pipe->nrbufs = --bufs;
414 break; /* common path: read succeeded */
416 if (bufs) /* More to do? */
420 if (!pipe->waiting_writers) {
421 /* syscall merging: Usually we must not sleep
422 * if O_NONBLOCK is set, or if we got some data.
423 * But if a writer sleeps in kernel space, then
424 * we can wait for that data without violating POSIX.
428 if (filp->f_flags & O_NONBLOCK) {
433 if (signal_pending(current)) {
439 wake_up_interruptible_sync(&pipe->wait);
440 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
444 mutex_unlock(&inode->i_mutex);
446 /* Signal writers asynchronously that there is more room. */
448 wake_up_interruptible_sync(&pipe->wait);
449 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
457 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
458 unsigned long nr_segs, loff_t ppos)
460 struct file *filp = iocb->ki_filp;
461 struct inode *inode = filp->f_path.dentry->d_inode;
462 struct pipe_inode_info *pipe;
465 struct iovec *iov = (struct iovec *)_iov;
469 total_len = iov_length(iov, nr_segs);
470 /* Null write succeeds. */
471 if (unlikely(total_len == 0))
476 mutex_lock(&inode->i_mutex);
477 pipe = inode->i_pipe;
479 if (!pipe->readers) {
480 send_sig(SIGPIPE, current, 0);
485 /* We try to merge small writes */
486 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
487 if (pipe->nrbufs && chars != 0) {
488 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
490 struct pipe_buffer *buf = pipe->bufs + lastbuf;
491 const struct pipe_buf_operations *ops = buf->ops;
492 int offset = buf->offset + buf->len;
494 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
495 int error, atomic = 1;
498 error = ops->confirm(pipe, buf);
502 iov_fault_in_pages_read(iov, chars);
504 addr = ops->map(pipe, buf, atomic);
505 error = pipe_iov_copy_from_user(offset + addr, iov,
507 ops->unmap(pipe, buf, addr);
528 if (!pipe->readers) {
529 send_sig(SIGPIPE, current, 0);
535 if (bufs < pipe->buffers) {
536 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
537 struct pipe_buffer *buf = pipe->bufs + newbuf;
538 struct page *page = pipe->tmp_page;
540 int error, atomic = 1;
543 page = alloc_page(GFP_HIGHUSER);
544 if (unlikely(!page)) {
545 ret = ret ? : -ENOMEM;
548 pipe->tmp_page = page;
550 /* Always wake up, even if the copy fails. Otherwise
551 * we lock up (O_NONBLOCK-)readers that sleep due to
553 * FIXME! Is this really true?
557 if (chars > total_len)
560 iov_fault_in_pages_read(iov, chars);
563 src = kmap_atomic(page, KM_USER0);
567 error = pipe_iov_copy_from_user(src, iov, chars,
570 kunmap_atomic(src, KM_USER0);
574 if (unlikely(error)) {
585 /* Insert it into the buffer array */
587 buf->ops = &anon_pipe_buf_ops;
590 pipe->nrbufs = ++bufs;
591 pipe->tmp_page = NULL;
597 if (bufs < pipe->buffers)
599 if (filp->f_flags & O_NONBLOCK) {
604 if (signal_pending(current)) {
610 wake_up_interruptible_sync(&pipe->wait);
611 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
614 pipe->waiting_writers++;
616 pipe->waiting_writers--;
619 mutex_unlock(&inode->i_mutex);
621 wake_up_interruptible_sync(&pipe->wait);
622 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
625 file_update_time(filp);
630 bad_pipe_r(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
636 bad_pipe_w(struct file *filp, const char __user *buf, size_t count,
642 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
644 struct inode *inode = filp->f_path.dentry->d_inode;
645 struct pipe_inode_info *pipe;
646 int count, buf, nrbufs;
650 mutex_lock(&inode->i_mutex);
651 pipe = inode->i_pipe;
654 nrbufs = pipe->nrbufs;
655 while (--nrbufs >= 0) {
656 count += pipe->bufs[buf].len;
657 buf = (buf+1) & (pipe->buffers - 1);
659 mutex_unlock(&inode->i_mutex);
661 return put_user(count, (int __user *)arg);
667 /* No kernel lock held - fine */
669 pipe_poll(struct file *filp, poll_table *wait)
672 struct inode *inode = filp->f_path.dentry->d_inode;
673 struct pipe_inode_info *pipe = inode->i_pipe;
676 poll_wait(filp, &pipe->wait, wait);
678 /* Reading only -- no need for acquiring the semaphore. */
679 nrbufs = pipe->nrbufs;
681 if (filp->f_mode & FMODE_READ) {
682 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
683 if (!pipe->writers && filp->f_version != pipe->w_counter)
687 if (filp->f_mode & FMODE_WRITE) {
688 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
690 * Most Unices do not set POLLERR for FIFOs but on Linux they
691 * behave exactly like pipes for poll().
701 pipe_release(struct inode *inode, int decr, int decw)
703 struct pipe_inode_info *pipe;
705 mutex_lock(&inode->i_mutex);
706 pipe = inode->i_pipe;
707 pipe->readers -= decr;
708 pipe->writers -= decw;
710 if (!pipe->readers && !pipe->writers) {
711 free_pipe_info(inode);
713 wake_up_interruptible_sync(&pipe->wait);
714 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
715 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
717 mutex_unlock(&inode->i_mutex);
723 pipe_read_fasync(int fd, struct file *filp, int on)
725 struct inode *inode = filp->f_path.dentry->d_inode;
728 mutex_lock(&inode->i_mutex);
729 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_readers);
730 mutex_unlock(&inode->i_mutex);
737 pipe_write_fasync(int fd, struct file *filp, int on)
739 struct inode *inode = filp->f_path.dentry->d_inode;
742 mutex_lock(&inode->i_mutex);
743 retval = fasync_helper(fd, filp, on, &inode->i_pipe->fasync_writers);
744 mutex_unlock(&inode->i_mutex);
751 pipe_rdwr_fasync(int fd, struct file *filp, int on)
753 struct inode *inode = filp->f_path.dentry->d_inode;
754 struct pipe_inode_info *pipe = inode->i_pipe;
757 mutex_lock(&inode->i_mutex);
758 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
760 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
761 if (retval < 0) /* this can happen only if on == T */
762 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
764 mutex_unlock(&inode->i_mutex);
770 pipe_read_release(struct inode *inode, struct file *filp)
772 return pipe_release(inode, 1, 0);
776 pipe_write_release(struct inode *inode, struct file *filp)
778 return pipe_release(inode, 0, 1);
782 pipe_rdwr_release(struct inode *inode, struct file *filp)
786 decr = (filp->f_mode & FMODE_READ) != 0;
787 decw = (filp->f_mode & FMODE_WRITE) != 0;
788 return pipe_release(inode, decr, decw);
792 pipe_read_open(struct inode *inode, struct file *filp)
796 mutex_lock(&inode->i_mutex);
800 inode->i_pipe->readers++;
803 mutex_unlock(&inode->i_mutex);
809 pipe_write_open(struct inode *inode, struct file *filp)
813 mutex_lock(&inode->i_mutex);
817 inode->i_pipe->writers++;
820 mutex_unlock(&inode->i_mutex);
826 pipe_rdwr_open(struct inode *inode, struct file *filp)
830 mutex_lock(&inode->i_mutex);
834 if (filp->f_mode & FMODE_READ)
835 inode->i_pipe->readers++;
836 if (filp->f_mode & FMODE_WRITE)
837 inode->i_pipe->writers++;
840 mutex_unlock(&inode->i_mutex);
846 * The file_operations structs are not static because they
847 * are also used in linux/fs/fifo.c to do operations on FIFOs.
849 * Pipes reuse fifos' file_operations structs.
851 const struct file_operations read_pipefifo_fops = {
853 .read = do_sync_read,
854 .aio_read = pipe_read,
857 .unlocked_ioctl = pipe_ioctl,
858 .open = pipe_read_open,
859 .release = pipe_read_release,
860 .fasync = pipe_read_fasync,
863 const struct file_operations write_pipefifo_fops = {
866 .write = do_sync_write,
867 .aio_write = pipe_write,
869 .unlocked_ioctl = pipe_ioctl,
870 .open = pipe_write_open,
871 .release = pipe_write_release,
872 .fasync = pipe_write_fasync,
875 const struct file_operations rdwr_pipefifo_fops = {
877 .read = do_sync_read,
878 .aio_read = pipe_read,
879 .write = do_sync_write,
880 .aio_write = pipe_write,
882 .unlocked_ioctl = pipe_ioctl,
883 .open = pipe_rdwr_open,
884 .release = pipe_rdwr_release,
885 .fasync = pipe_rdwr_fasync,
888 struct pipe_inode_info * alloc_pipe_info(struct inode *inode)
890 struct pipe_inode_info *pipe;
892 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
894 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
896 init_waitqueue_head(&pipe->wait);
897 pipe->r_counter = pipe->w_counter = 1;
899 pipe->buffers = PIPE_DEF_BUFFERS;
908 void __free_pipe_info(struct pipe_inode_info *pipe)
912 for (i = 0; i < pipe->buffers; i++) {
913 struct pipe_buffer *buf = pipe->bufs + i;
915 buf->ops->release(pipe, buf);
918 __free_page(pipe->tmp_page);
923 void free_pipe_info(struct inode *inode)
925 __free_pipe_info(inode->i_pipe);
926 inode->i_pipe = NULL;
929 static struct vfsmount *pipe_mnt __read_mostly;
932 * pipefs_dname() is called from d_path().
934 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
936 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
937 dentry->d_inode->i_ino);
940 static const struct dentry_operations pipefs_dentry_operations = {
941 .d_dname = pipefs_dname,
944 static struct inode * get_pipe_inode(void)
946 struct inode *inode = new_inode(pipe_mnt->mnt_sb);
947 struct pipe_inode_info *pipe;
952 pipe = alloc_pipe_info(inode);
955 inode->i_pipe = pipe;
957 pipe->readers = pipe->writers = 1;
958 inode->i_fop = &rdwr_pipefifo_fops;
961 * Mark the inode dirty from the very beginning,
962 * that way it will never be moved to the dirty
963 * list because "mark_inode_dirty()" will think
964 * that it already _is_ on the dirty list.
966 inode->i_state = I_DIRTY;
967 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
968 inode->i_uid = current_fsuid();
969 inode->i_gid = current_fsgid();
970 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
981 struct file *create_write_pipe(int flags)
987 struct qstr name = { .name = "" };
990 inode = get_pipe_inode();
995 path.dentry = d_alloc(pipe_mnt->mnt_sb->s_root, &name);
998 path.mnt = mntget(pipe_mnt);
1000 path.dentry->d_op = &pipefs_dentry_operations;
1001 d_instantiate(path.dentry, inode);
1004 f = alloc_file(&path, FMODE_WRITE, &write_pipefifo_fops);
1007 f->f_mapping = inode->i_mapping;
1009 f->f_flags = O_WRONLY | (flags & O_NONBLOCK);
1015 free_pipe_info(inode);
1017 return ERR_PTR(err);
1020 free_pipe_info(inode);
1023 return ERR_PTR(err);
1026 void free_write_pipe(struct file *f)
1028 free_pipe_info(f->f_dentry->d_inode);
1029 path_put(&f->f_path);
1033 struct file *create_read_pipe(struct file *wrf, int flags)
1035 /* Grab pipe from the writer */
1036 struct file *f = alloc_file(&wrf->f_path, FMODE_READ,
1037 &read_pipefifo_fops);
1039 return ERR_PTR(-ENFILE);
1041 path_get(&wrf->f_path);
1042 f->f_flags = O_RDONLY | (flags & O_NONBLOCK);
1047 int do_pipe_flags(int *fd, int flags)
1049 struct file *fw, *fr;
1053 if (flags & ~(O_CLOEXEC | O_NONBLOCK))
1056 fw = create_write_pipe(flags);
1059 fr = create_read_pipe(fw, flags);
1060 error = PTR_ERR(fr);
1062 goto err_write_pipe;
1064 error = get_unused_fd_flags(flags);
1069 error = get_unused_fd_flags(flags);
1074 audit_fd_pair(fdr, fdw);
1075 fd_install(fdr, fr);
1076 fd_install(fdw, fw);
1085 path_put(&fr->f_path);
1088 free_write_pipe(fw);
1093 * sys_pipe() is the normal C calling standard for creating
1094 * a pipe. It's not the way Unix traditionally does this, though.
1096 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1101 error = do_pipe_flags(fd, flags);
1103 if (copy_to_user(fildes, fd, sizeof(fd))) {
1112 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1114 return sys_pipe2(fildes, 0);
1118 * Allocate a new array of pipe buffers and copy the info over. Returns the
1119 * pipe size if successful, or return -ERROR on error.
1121 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1123 struct pipe_buffer *bufs;
1126 * Must be a power-of-2 currently
1128 if (!is_power_of_2(arg))
1132 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1133 * expect a lot of shrink+grow operations, just free and allocate
1134 * again like we would do for growing. If the pipe currently
1135 * contains more buffers than arg, then return busy.
1137 if (arg < pipe->nrbufs)
1140 bufs = kcalloc(arg, sizeof(struct pipe_buffer), GFP_KERNEL);
1141 if (unlikely(!bufs))
1145 * The pipe array wraps around, so just start the new one at zero
1146 * and adjust the indexes.
1149 const unsigned int tail = pipe->nrbufs & (pipe->buffers - 1);
1150 const unsigned int head = pipe->nrbufs - tail;
1153 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1155 memcpy(bufs + head, pipe->bufs + pipe->curbuf, tail * sizeof(struct pipe_buffer));
1161 pipe->buffers = arg;
1165 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1167 struct pipe_inode_info *pipe;
1170 pipe = file->f_path.dentry->d_inode->i_pipe;
1174 mutex_lock(&pipe->inode->i_mutex);
1178 if (!capable(CAP_SYS_ADMIN) && arg > pipe_max_pages) {
1183 * The pipe needs to be at least 2 pages large to
1184 * guarantee POSIX behaviour.
1190 ret = pipe_set_size(pipe, arg);
1193 ret = pipe->buffers;
1201 mutex_unlock(&pipe->inode->i_mutex);
1206 * pipefs should _never_ be mounted by userland - too much of security hassle,
1207 * no real gain from having the whole whorehouse mounted. So we don't need
1208 * any operations on the root directory. However, we need a non-trivial
1209 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1211 static int pipefs_get_sb(struct file_system_type *fs_type,
1212 int flags, const char *dev_name, void *data,
1213 struct vfsmount *mnt)
1215 return get_sb_pseudo(fs_type, "pipe:", NULL, PIPEFS_MAGIC, mnt);
1218 static struct file_system_type pipe_fs_type = {
1220 .get_sb = pipefs_get_sb,
1221 .kill_sb = kill_anon_super,
1224 static int __init init_pipe_fs(void)
1226 int err = register_filesystem(&pipe_fs_type);
1229 pipe_mnt = kern_mount(&pipe_fs_type);
1230 if (IS_ERR(pipe_mnt)) {
1231 err = PTR_ERR(pipe_mnt);
1232 unregister_filesystem(&pipe_fs_type);
1238 static void __exit exit_pipe_fs(void)
1240 unregister_filesystem(&pipe_fs_type);
1244 fs_initcall(init_pipe_fs);
1245 module_exit(exit_pipe_fs);