1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
48 #define PIPE_MIN_DEF_BUFFERS 2
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
54 static unsigned int pipe_max_size = 1048576;
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
67 * -- David Howells 2019-09-23.
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
82 mutex_lock_nested(&pipe->mutex, subclass);
85 void pipe_lock(struct pipe_inode_info *pipe)
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
92 EXPORT_SYMBOL(pipe_lock);
94 void pipe_unlock(struct pipe_inode_info *pipe)
97 mutex_unlock(&pipe->mutex);
99 EXPORT_SYMBOL(pipe_unlock);
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
108 mutex_unlock(&pipe->mutex);
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
114 BUG_ON(pipe1 == pipe2);
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
128 struct page *page = buf->page;
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
144 struct page *page = buf->page;
146 if (page_count(page) != 1)
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
168 struct page *page = buf->page;
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
175 if (page_count(page) == 1) {
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195 return try_get_page(buf->page);
197 EXPORT_SYMBOL(generic_pipe_buf_get);
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
205 * This function releases a reference to @buf.
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
212 EXPORT_SYMBOL(generic_pipe_buf_release);
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
227 return !pipe_empty(head, tail) || !writers;
231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
233 size_t total_len = iov_iter_count(to);
234 struct file *filp = iocb->ki_filp;
235 struct pipe_inode_info *pipe = filp->private_data;
236 bool was_full, wake_next_reader = false;
239 /* Null read succeeds. */
240 if (unlikely(total_len == 0))
247 * We only wake up writers if the pipe was full when we started
248 * reading in order to avoid unnecessary wakeups.
250 * But when we do wake up writers, we do so using a sync wakeup
251 * (WF_SYNC), because we want them to get going and generate more
254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
256 unsigned int head = pipe->head;
257 unsigned int tail = pipe->tail;
258 unsigned int mask = pipe->ring_size - 1;
260 #ifdef CONFIG_WATCH_QUEUE
261 if (pipe->note_loss) {
262 struct watch_notification n;
270 n.type = WATCH_TYPE_META;
271 n.subtype = WATCH_META_LOSS_NOTIFICATION;
272 n.info = watch_sizeof(n);
273 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
279 total_len -= sizeof(n);
280 pipe->note_loss = false;
284 if (!pipe_empty(head, tail)) {
285 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
286 size_t chars = buf->len;
290 if (chars > total_len) {
291 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
299 error = pipe_buf_confirm(pipe, buf);
306 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
307 if (unlikely(written < chars)) {
313 buf->offset += chars;
316 /* Was it a packet buffer? Clean up and exit */
317 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
323 pipe_buf_release(pipe, buf);
324 spin_lock_irq(&pipe->rd_wait.lock);
325 #ifdef CONFIG_WATCH_QUEUE
326 if (buf->flags & PIPE_BUF_FLAG_LOSS)
327 pipe->note_loss = true;
331 spin_unlock_irq(&pipe->rd_wait.lock);
335 break; /* common path: read succeeded */
336 if (!pipe_empty(head, tail)) /* More to do? */
344 if (filp->f_flags & O_NONBLOCK) {
351 * We only get here if we didn't actually read anything.
353 * However, we could have seen (and removed) a zero-sized
354 * pipe buffer, and might have made space in the buffers
357 * You can't make zero-sized pipe buffers by doing an empty
358 * write (not even in packet mode), but they can happen if
359 * the writer gets an EFAULT when trying to fill a buffer
360 * that already got allocated and inserted in the buffer
363 * So we still need to wake up any pending writers in the
364 * _very_ unlikely case that the pipe was full, but we got
367 if (unlikely(was_full))
368 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
369 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
372 * But because we didn't read anything, at this point we can
373 * just return directly with -ERESTARTSYS if we're interrupted,
374 * since we've done any required wakeups and there's no need
375 * to mark anything accessed. And we've dropped the lock.
377 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
381 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
382 wake_next_reader = true;
384 if (pipe_empty(pipe->head, pipe->tail))
385 wake_next_reader = false;
389 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
390 if (wake_next_reader)
391 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
392 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
398 static inline int is_packetized(struct file *file)
400 return (file->f_flags & O_DIRECT) != 0;
403 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
404 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406 unsigned int head = READ_ONCE(pipe->head);
407 unsigned int tail = READ_ONCE(pipe->tail);
408 unsigned int max_usage = READ_ONCE(pipe->max_usage);
410 return !pipe_full(head, tail, max_usage) ||
411 !READ_ONCE(pipe->readers);
415 pipe_write(struct kiocb *iocb, struct iov_iter *from)
417 struct file *filp = iocb->ki_filp;
418 struct pipe_inode_info *pipe = filp->private_data;
421 size_t total_len = iov_iter_count(from);
423 bool was_empty = false;
424 bool wake_next_writer = false;
426 /* Null write succeeds. */
427 if (unlikely(total_len == 0))
432 if (!pipe->readers) {
433 send_sig(SIGPIPE, current, 0);
438 #ifdef CONFIG_WATCH_QUEUE
439 if (pipe->watch_queue) {
446 * If it wasn't empty we try to merge new data into
449 * That naturally merges small writes, but it also
450 * page-aligns the rest of the writes for large writes
451 * spanning multiple pages.
454 was_empty = pipe_empty(head, pipe->tail);
455 chars = total_len & (PAGE_SIZE-1);
456 if (chars && !was_empty) {
457 unsigned int mask = pipe->ring_size - 1;
458 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
459 int offset = buf->offset + buf->len;
461 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
462 offset + chars <= PAGE_SIZE) {
463 ret = pipe_buf_confirm(pipe, buf);
467 ret = copy_page_from_iter(buf->page, offset, chars, from);
468 if (unlikely(ret < chars)) {
474 if (!iov_iter_count(from))
480 if (!pipe->readers) {
481 send_sig(SIGPIPE, current, 0);
488 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
489 unsigned int mask = pipe->ring_size - 1;
490 struct pipe_buffer *buf = &pipe->bufs[head & mask];
491 struct page *page = pipe->tmp_page;
495 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
496 if (unlikely(!page)) {
497 ret = ret ? : -ENOMEM;
500 pipe->tmp_page = page;
503 /* Allocate a slot in the ring in advance and attach an
504 * empty buffer. If we fault or otherwise fail to use
505 * it, either the reader will consume it or it'll still
506 * be there for the next write.
508 spin_lock_irq(&pipe->rd_wait.lock);
511 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
512 spin_unlock_irq(&pipe->rd_wait.lock);
516 pipe->head = head + 1;
517 spin_unlock_irq(&pipe->rd_wait.lock);
519 /* Insert it into the buffer array */
520 buf = &pipe->bufs[head & mask];
522 buf->ops = &anon_pipe_buf_ops;
525 if (is_packetized(filp))
526 buf->flags = PIPE_BUF_FLAG_PACKET;
528 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
529 pipe->tmp_page = NULL;
531 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
532 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
541 if (!iov_iter_count(from))
545 if (!pipe_full(head, pipe->tail, pipe->max_usage))
548 /* Wait for buffer space to become available. */
549 if (filp->f_flags & O_NONBLOCK) {
554 if (signal_pending(current)) {
561 * We're going to release the pipe lock and wait for more
562 * space. We wake up any readers if necessary, and then
563 * after waiting we need to re-check whether the pipe
564 * become empty while we dropped the lock.
568 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
569 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
570 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
572 was_empty = pipe_empty(pipe->head, pipe->tail);
573 wake_next_writer = true;
576 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
577 wake_next_writer = false;
581 * If we do do a wakeup event, we do a 'sync' wakeup, because we
582 * want the reader to start processing things asap, rather than
583 * leave the data pending.
585 * This is particularly important for small writes, because of
586 * how (for example) the GNU make jobserver uses small writes to
587 * wake up pending jobs
589 * Epoll nonsensically wants a wakeup whether the pipe
590 * was already empty or not.
592 if (was_empty || pipe->poll_usage)
593 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
594 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595 if (wake_next_writer)
596 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
597 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
598 int err = file_update_time(filp);
601 sb_end_write(file_inode(filp)->i_sb);
606 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
608 struct pipe_inode_info *pipe = filp->private_data;
609 int count, head, tail, mask;
617 mask = pipe->ring_size - 1;
619 while (tail != head) {
620 count += pipe->bufs[tail & mask].len;
625 return put_user(count, (int __user *)arg);
627 #ifdef CONFIG_WATCH_QUEUE
628 case IOC_WATCH_QUEUE_SET_SIZE: {
631 ret = watch_queue_set_size(pipe, arg);
636 case IOC_WATCH_QUEUE_SET_FILTER:
637 return watch_queue_set_filter(
638 pipe, (struct watch_notification_filter __user *)arg);
646 /* No kernel lock held - fine */
648 pipe_poll(struct file *filp, poll_table *wait)
651 struct pipe_inode_info *pipe = filp->private_data;
652 unsigned int head, tail;
654 /* Epoll has some historical nasty semantics, this enables them */
655 pipe->poll_usage = 1;
658 * Reading pipe state only -- no need for acquiring the semaphore.
660 * But because this is racy, the code has to add the
661 * entry to the poll table _first_ ..
663 if (filp->f_mode & FMODE_READ)
664 poll_wait(filp, &pipe->rd_wait, wait);
665 if (filp->f_mode & FMODE_WRITE)
666 poll_wait(filp, &pipe->wr_wait, wait);
669 * .. and only then can you do the racy tests. That way,
670 * if something changes and you got it wrong, the poll
671 * table entry will wake you up and fix it.
673 head = READ_ONCE(pipe->head);
674 tail = READ_ONCE(pipe->tail);
677 if (filp->f_mode & FMODE_READ) {
678 if (!pipe_empty(head, tail))
679 mask |= EPOLLIN | EPOLLRDNORM;
680 if (!pipe->writers && filp->f_version != pipe->w_counter)
684 if (filp->f_mode & FMODE_WRITE) {
685 if (!pipe_full(head, tail, pipe->max_usage))
686 mask |= EPOLLOUT | EPOLLWRNORM;
688 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
689 * behave exactly like pipes for poll().
698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
702 spin_lock(&inode->i_lock);
703 if (!--pipe->files) {
704 inode->i_pipe = NULL;
707 spin_unlock(&inode->i_lock);
710 free_pipe_info(pipe);
714 pipe_release(struct inode *inode, struct file *file)
716 struct pipe_inode_info *pipe = file->private_data;
719 if (file->f_mode & FMODE_READ)
721 if (file->f_mode & FMODE_WRITE)
724 /* Was that the last reader or writer, but not the other side? */
725 if (!pipe->readers != !pipe->writers) {
726 wake_up_interruptible_all(&pipe->rd_wait);
727 wake_up_interruptible_all(&pipe->wr_wait);
728 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
729 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
733 put_pipe_info(inode, pipe);
738 pipe_fasync(int fd, struct file *filp, int on)
740 struct pipe_inode_info *pipe = filp->private_data;
744 if (filp->f_mode & FMODE_READ)
745 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
746 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
747 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
748 if (retval < 0 && (filp->f_mode & FMODE_READ))
749 /* this can happen only if on == T */
750 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
756 unsigned long account_pipe_buffers(struct user_struct *user,
757 unsigned long old, unsigned long new)
759 return atomic_long_add_return(new - old, &user->pipe_bufs);
762 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
764 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
766 return soft_limit && user_bufs > soft_limit;
769 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
771 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
773 return hard_limit && user_bufs > hard_limit;
776 bool pipe_is_unprivileged_user(void)
778 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
781 struct pipe_inode_info *alloc_pipe_info(void)
783 struct pipe_inode_info *pipe;
784 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
785 struct user_struct *user = get_current_user();
786 unsigned long user_bufs;
787 unsigned int max_size = READ_ONCE(pipe_max_size);
789 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
793 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
794 pipe_bufs = max_size >> PAGE_SHIFT;
796 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
798 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
799 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
800 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
803 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
804 goto out_revert_acct;
806 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
810 init_waitqueue_head(&pipe->rd_wait);
811 init_waitqueue_head(&pipe->wr_wait);
812 pipe->r_counter = pipe->w_counter = 1;
813 pipe->max_usage = pipe_bufs;
814 pipe->ring_size = pipe_bufs;
815 pipe->nr_accounted = pipe_bufs;
817 mutex_init(&pipe->mutex);
822 (void) account_pipe_buffers(user, pipe_bufs, 0);
829 void free_pipe_info(struct pipe_inode_info *pipe)
833 #ifdef CONFIG_WATCH_QUEUE
834 if (pipe->watch_queue) {
835 watch_queue_clear(pipe->watch_queue);
836 put_watch_queue(pipe->watch_queue);
840 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
841 free_uid(pipe->user);
842 for (i = 0; i < pipe->ring_size; i++) {
843 struct pipe_buffer *buf = pipe->bufs + i;
845 pipe_buf_release(pipe, buf);
848 __free_page(pipe->tmp_page);
853 static struct vfsmount *pipe_mnt __read_mostly;
856 * pipefs_dname() is called from d_path().
858 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
860 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
861 d_inode(dentry)->i_ino);
864 static const struct dentry_operations pipefs_dentry_operations = {
865 .d_dname = pipefs_dname,
868 static struct inode * get_pipe_inode(void)
870 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
871 struct pipe_inode_info *pipe;
876 inode->i_ino = get_next_ino();
878 pipe = alloc_pipe_info();
882 inode->i_pipe = pipe;
884 pipe->readers = pipe->writers = 1;
885 inode->i_fop = &pipefifo_fops;
888 * Mark the inode dirty from the very beginning,
889 * that way it will never be moved to the dirty
890 * list because "mark_inode_dirty()" will think
891 * that it already _is_ on the dirty list.
893 inode->i_state = I_DIRTY;
894 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
895 inode->i_uid = current_fsuid();
896 inode->i_gid = current_fsgid();
897 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
908 int create_pipe_files(struct file **res, int flags)
910 struct inode *inode = get_pipe_inode();
917 if (flags & O_NOTIFICATION_PIPE) {
918 error = watch_queue_init(inode->i_pipe);
920 free_pipe_info(inode->i_pipe);
926 f = alloc_file_pseudo(inode, pipe_mnt, "",
927 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
930 free_pipe_info(inode->i_pipe);
935 f->private_data = inode->i_pipe;
937 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
939 if (IS_ERR(res[0])) {
940 put_pipe_info(inode, inode->i_pipe);
942 return PTR_ERR(res[0]);
944 res[0]->private_data = inode->i_pipe;
946 stream_open(inode, res[0]);
947 stream_open(inode, res[1]);
951 static int __do_pipe_flags(int *fd, struct file **files, int flags)
956 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
959 error = create_pipe_files(files, flags);
963 error = get_unused_fd_flags(flags);
968 error = get_unused_fd_flags(flags);
973 audit_fd_pair(fdr, fdw);
986 int do_pipe_flags(int *fd, int flags)
988 struct file *files[2];
989 int error = __do_pipe_flags(fd, files, flags);
991 fd_install(fd[0], files[0]);
992 fd_install(fd[1], files[1]);
998 * sys_pipe() is the normal C calling standard for creating
999 * a pipe. It's not the way Unix traditionally does this, though.
1001 static int do_pipe2(int __user *fildes, int flags)
1003 struct file *files[2];
1007 error = __do_pipe_flags(fd, files, flags);
1009 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1012 put_unused_fd(fd[0]);
1013 put_unused_fd(fd[1]);
1016 fd_install(fd[0], files[0]);
1017 fd_install(fd[1], files[1]);
1023 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1025 return do_pipe2(fildes, flags);
1028 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1030 return do_pipe2(fildes, 0);
1034 * This is the stupid "wait for pipe to be readable or writable"
1037 * See pipe_read/write() for the proper kind of exclusive wait,
1038 * but that requires that we wake up any other readers/writers
1039 * if we then do not end up reading everything (ie the whole
1040 * "wake_next_reader/writer" logic in pipe_read/write()).
1042 void pipe_wait_readable(struct pipe_inode_info *pipe)
1045 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1049 void pipe_wait_writable(struct pipe_inode_info *pipe)
1052 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1057 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1058 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1059 * race with the count check and waitqueue prep.
1061 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1062 * then check the condition you're waiting for, and only then sleep. But
1063 * because of the pipe lock, we can check the condition before being on
1066 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1068 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1070 DEFINE_WAIT(rdwait);
1073 while (cur == *cnt) {
1074 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1077 finish_wait(&pipe->rd_wait, &rdwait);
1079 if (signal_pending(current))
1082 return cur == *cnt ? -ERESTARTSYS : 0;
1085 static void wake_up_partner(struct pipe_inode_info *pipe)
1087 wake_up_interruptible_all(&pipe->rd_wait);
1090 static int fifo_open(struct inode *inode, struct file *filp)
1092 struct pipe_inode_info *pipe;
1093 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1096 filp->f_version = 0;
1098 spin_lock(&inode->i_lock);
1099 if (inode->i_pipe) {
1100 pipe = inode->i_pipe;
1102 spin_unlock(&inode->i_lock);
1104 spin_unlock(&inode->i_lock);
1105 pipe = alloc_pipe_info();
1109 spin_lock(&inode->i_lock);
1110 if (unlikely(inode->i_pipe)) {
1111 inode->i_pipe->files++;
1112 spin_unlock(&inode->i_lock);
1113 free_pipe_info(pipe);
1114 pipe = inode->i_pipe;
1116 inode->i_pipe = pipe;
1117 spin_unlock(&inode->i_lock);
1120 filp->private_data = pipe;
1121 /* OK, we have a pipe and it's pinned down */
1125 /* We can only do regular read/write on fifos */
1126 stream_open(inode, filp);
1128 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1132 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1133 * opened, even when there is no process writing the FIFO.
1136 if (pipe->readers++ == 0)
1137 wake_up_partner(pipe);
1139 if (!is_pipe && !pipe->writers) {
1140 if ((filp->f_flags & O_NONBLOCK)) {
1141 /* suppress EPOLLHUP until we have
1143 filp->f_version = pipe->w_counter;
1145 if (wait_for_partner(pipe, &pipe->w_counter))
1154 * POSIX.1 says that O_NONBLOCK means return -1 with
1155 * errno=ENXIO when there is no process reading the FIFO.
1158 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1162 if (!pipe->writers++)
1163 wake_up_partner(pipe);
1165 if (!is_pipe && !pipe->readers) {
1166 if (wait_for_partner(pipe, &pipe->r_counter))
1171 case FMODE_READ | FMODE_WRITE:
1174 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1175 * This implementation will NEVER block on a O_RDWR open, since
1176 * the process can at least talk to itself.
1183 if (pipe->readers == 1 || pipe->writers == 1)
1184 wake_up_partner(pipe);
1193 __pipe_unlock(pipe);
1197 if (!--pipe->readers)
1198 wake_up_interruptible(&pipe->wr_wait);
1203 if (!--pipe->writers)
1204 wake_up_interruptible_all(&pipe->rd_wait);
1209 __pipe_unlock(pipe);
1211 put_pipe_info(inode, pipe);
1215 const struct file_operations pipefifo_fops = {
1217 .llseek = no_llseek,
1218 .read_iter = pipe_read,
1219 .write_iter = pipe_write,
1221 .unlocked_ioctl = pipe_ioctl,
1222 .release = pipe_release,
1223 .fasync = pipe_fasync,
1224 .splice_write = iter_file_splice_write,
1228 * Currently we rely on the pipe array holding a power-of-2 number
1229 * of pages. Returns 0 on error.
1231 unsigned int round_pipe_size(unsigned long size)
1233 if (size > (1U << 31))
1236 /* Minimum pipe size, as required by POSIX */
1237 if (size < PAGE_SIZE)
1240 return roundup_pow_of_two(size);
1244 * Resize the pipe ring to a number of slots.
1246 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1248 struct pipe_buffer *bufs;
1249 unsigned int head, tail, mask, n;
1252 * We can shrink the pipe, if arg is greater than the ring occupancy.
1253 * Since we don't expect a lot of shrink+grow operations, just free and
1254 * allocate again like we would do for growing. If the pipe currently
1255 * contains more buffers than arg, then return busy.
1257 mask = pipe->ring_size - 1;
1260 n = pipe_occupancy(pipe->head, pipe->tail);
1264 bufs = kcalloc(nr_slots, sizeof(*bufs),
1265 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1266 if (unlikely(!bufs))
1270 * The pipe array wraps around, so just start the new one at zero
1271 * and adjust the indices.
1274 unsigned int h = head & mask;
1275 unsigned int t = tail & mask;
1277 memcpy(bufs, pipe->bufs + t,
1278 n * sizeof(struct pipe_buffer));
1280 unsigned int tsize = pipe->ring_size - t;
1282 memcpy(bufs + tsize, pipe->bufs,
1283 h * sizeof(struct pipe_buffer));
1284 memcpy(bufs, pipe->bufs + t,
1285 tsize * sizeof(struct pipe_buffer));
1294 pipe->ring_size = nr_slots;
1295 if (pipe->max_usage > nr_slots)
1296 pipe->max_usage = nr_slots;
1300 /* This might have made more room for writers */
1301 wake_up_interruptible(&pipe->wr_wait);
1306 * Allocate a new array of pipe buffers and copy the info over. Returns the
1307 * pipe size if successful, or return -ERROR on error.
1309 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1311 unsigned long user_bufs;
1312 unsigned int nr_slots, size;
1315 #ifdef CONFIG_WATCH_QUEUE
1316 if (pipe->watch_queue)
1320 size = round_pipe_size(arg);
1321 nr_slots = size >> PAGE_SHIFT;
1327 * If trying to increase the pipe capacity, check that an
1328 * unprivileged user is not trying to exceed various limits
1329 * (soft limit check here, hard limit check just below).
1330 * Decreasing the pipe capacity is always permitted, even
1331 * if the user is currently over a limit.
1333 if (nr_slots > pipe->max_usage &&
1334 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1337 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1339 if (nr_slots > pipe->max_usage &&
1340 (too_many_pipe_buffers_hard(user_bufs) ||
1341 too_many_pipe_buffers_soft(user_bufs)) &&
1342 pipe_is_unprivileged_user()) {
1344 goto out_revert_acct;
1347 ret = pipe_resize_ring(pipe, nr_slots);
1349 goto out_revert_acct;
1351 pipe->max_usage = nr_slots;
1352 pipe->nr_accounted = nr_slots;
1353 return pipe->max_usage * PAGE_SIZE;
1356 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1361 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1362 * not enough to verify that this is a pipe.
1364 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1366 struct pipe_inode_info *pipe = file->private_data;
1368 if (file->f_op != &pipefifo_fops || !pipe)
1370 #ifdef CONFIG_WATCH_QUEUE
1371 if (for_splice && pipe->watch_queue)
1377 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1379 struct pipe_inode_info *pipe;
1382 pipe = get_pipe_info(file, false);
1390 ret = pipe_set_size(pipe, arg);
1393 ret = pipe->max_usage * PAGE_SIZE;
1400 __pipe_unlock(pipe);
1404 static const struct super_operations pipefs_ops = {
1405 .destroy_inode = free_inode_nonrcu,
1406 .statfs = simple_statfs,
1410 * pipefs should _never_ be mounted by userland - too much of security hassle,
1411 * no real gain from having the whole whorehouse mounted. So we don't need
1412 * any operations on the root directory. However, we need a non-trivial
1413 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1416 static int pipefs_init_fs_context(struct fs_context *fc)
1418 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1421 ctx->ops = &pipefs_ops;
1422 ctx->dops = &pipefs_dentry_operations;
1426 static struct file_system_type pipe_fs_type = {
1428 .init_fs_context = pipefs_init_fs_context,
1429 .kill_sb = kill_anon_super,
1432 #ifdef CONFIG_SYSCTL
1433 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1435 int write, void *data)
1440 val = round_pipe_size(*lvalp);
1446 unsigned int val = *valp;
1447 *lvalp = (unsigned long) val;
1453 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1454 void *buffer, size_t *lenp, loff_t *ppos)
1456 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1457 do_proc_dopipe_max_size_conv, NULL);
1460 static struct ctl_table fs_pipe_sysctls[] = {
1462 .procname = "pipe-max-size",
1463 .data = &pipe_max_size,
1464 .maxlen = sizeof(pipe_max_size),
1466 .proc_handler = proc_dopipe_max_size,
1469 .procname = "pipe-user-pages-hard",
1470 .data = &pipe_user_pages_hard,
1471 .maxlen = sizeof(pipe_user_pages_hard),
1473 .proc_handler = proc_doulongvec_minmax,
1476 .procname = "pipe-user-pages-soft",
1477 .data = &pipe_user_pages_soft,
1478 .maxlen = sizeof(pipe_user_pages_soft),
1480 .proc_handler = proc_doulongvec_minmax,
1486 static int __init init_pipe_fs(void)
1488 int err = register_filesystem(&pipe_fs_type);
1491 pipe_mnt = kern_mount(&pipe_fs_type);
1492 if (IS_ERR(pipe_mnt)) {
1493 err = PTR_ERR(pipe_mnt);
1494 unregister_filesystem(&pipe_fs_type);
1497 #ifdef CONFIG_SYSCTL
1498 register_sysctl_init("fs", fs_pipe_sysctls);
1503 fs_initcall(init_pipe_fs);