dt-bindings: clock: Add bindings for Raspberry Pi RP1
[platform/kernel/linux-rpi.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81         if (pipe->files)
82                 mutex_lock_nested(&pipe->mutex, subclass);
83 }
84
85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87         /*
88          * pipe_lock() nests non-pipe inode locks (for writing to a file)
89          */
90         pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93
94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96         if (pipe->files)
97                 mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108         mutex_unlock(&pipe->mutex);
109 }
110
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112                       struct pipe_inode_info *pipe2)
113 {
114         BUG_ON(pipe1 == pipe2);
115
116         if (pipe1 < pipe2) {
117                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119         } else {
120                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122         }
123 }
124
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126                                   struct pipe_buffer *buf)
127 {
128         struct page *page = buf->page;
129
130         /*
131          * If nobody else uses this page, and we don't already have a
132          * temporary page, let's keep track of it as a one-deep
133          * allocation cache. (Otherwise just release our reference to it)
134          */
135         if (page_count(page) == 1 && !pipe->tmp_page)
136                 pipe->tmp_page = page;
137         else
138                 put_page(page);
139 }
140
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142                 struct pipe_buffer *buf)
143 {
144         struct page *page = buf->page;
145
146         if (page_count(page) != 1)
147                 return false;
148         memcg_kmem_uncharge_page(page, 0);
149         __SetPageLocked(page);
150         return true;
151 }
152
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:       the pipe that the buffer belongs to
156  * @buf:        the buffer to attempt to steal
157  *
158  * Description:
159  *      This function attempts to steal the &struct page attached to
160  *      @buf. If successful, this function returns 0 and returns with
161  *      the page locked. The caller may then reuse the page for whatever
162  *      he wishes; the typical use is insertion into a different file
163  *      page cache.
164  */
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166                 struct pipe_buffer *buf)
167 {
168         struct page *page = buf->page;
169
170         /*
171          * A reference of one is golden, that means that the owner of this
172          * page is the only one holding a reference to it. lock the page
173          * and return OK.
174          */
175         if (page_count(page) == 1) {
176                 lock_page(page);
177                 return true;
178         }
179         return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:       the pipe that the buffer belongs to
186  * @buf:        the buffer to get a reference to
187  *
188  * Description:
189  *      This function grabs an extra reference to @buf. It's used in
190  *      the tee() system call, when we duplicate the buffers in one
191  *      pipe into another.
192  */
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195         return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:       the pipe that the buffer belongs to
202  * @buf:        the buffer to put a reference to
203  *
204  * Description:
205  *      This function releases a reference to @buf.
206  */
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208                               struct pipe_buffer *buf)
209 {
210         put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215         .release        = anon_pipe_buf_release,
216         .try_steal      = anon_pipe_buf_try_steal,
217         .get            = generic_pipe_buf_get,
218 };
219
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223         unsigned int head = READ_ONCE(pipe->head);
224         unsigned int tail = READ_ONCE(pipe->tail);
225         unsigned int writers = READ_ONCE(pipe->writers);
226
227         return !pipe_empty(head, tail) || !writers;
228 }
229
230 static ssize_t
231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233         size_t total_len = iov_iter_count(to);
234         struct file *filp = iocb->ki_filp;
235         struct pipe_inode_info *pipe = filp->private_data;
236         bool was_full, wake_next_reader = false;
237         ssize_t ret;
238
239         /* Null read succeeds. */
240         if (unlikely(total_len == 0))
241                 return 0;
242
243         ret = 0;
244         __pipe_lock(pipe);
245
246         /*
247          * We only wake up writers if the pipe was full when we started
248          * reading in order to avoid unnecessary wakeups.
249          *
250          * But when we do wake up writers, we do so using a sync wakeup
251          * (WF_SYNC), because we want them to get going and generate more
252          * data for us.
253          */
254         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255         for (;;) {
256                 /* Read ->head with a barrier vs post_one_notification() */
257                 unsigned int head = smp_load_acquire(&pipe->head);
258                 unsigned int tail = pipe->tail;
259                 unsigned int mask = pipe->ring_size - 1;
260
261 #ifdef CONFIG_WATCH_QUEUE
262                 if (pipe->note_loss) {
263                         struct watch_notification n;
264
265                         if (total_len < 8) {
266                                 if (ret == 0)
267                                         ret = -ENOBUFS;
268                                 break;
269                         }
270
271                         n.type = WATCH_TYPE_META;
272                         n.subtype = WATCH_META_LOSS_NOTIFICATION;
273                         n.info = watch_sizeof(n);
274                         if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275                                 if (ret == 0)
276                                         ret = -EFAULT;
277                                 break;
278                         }
279                         ret += sizeof(n);
280                         total_len -= sizeof(n);
281                         pipe->note_loss = false;
282                 }
283 #endif
284
285                 if (!pipe_empty(head, tail)) {
286                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287                         size_t chars = buf->len;
288                         size_t written;
289                         int error;
290
291                         if (chars > total_len) {
292                                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293                                         if (ret == 0)
294                                                 ret = -ENOBUFS;
295                                         break;
296                                 }
297                                 chars = total_len;
298                         }
299
300                         error = pipe_buf_confirm(pipe, buf);
301                         if (error) {
302                                 if (!ret)
303                                         ret = error;
304                                 break;
305                         }
306
307                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308                         if (unlikely(written < chars)) {
309                                 if (!ret)
310                                         ret = -EFAULT;
311                                 break;
312                         }
313                         ret += chars;
314                         buf->offset += chars;
315                         buf->len -= chars;
316
317                         /* Was it a packet buffer? Clean up and exit */
318                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319                                 total_len = chars;
320                                 buf->len = 0;
321                         }
322
323                         if (!buf->len) {
324                                 pipe_buf_release(pipe, buf);
325                                 spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327                                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328                                         pipe->note_loss = true;
329 #endif
330                                 tail++;
331                                 pipe->tail = tail;
332                                 spin_unlock_irq(&pipe->rd_wait.lock);
333                         }
334                         total_len -= chars;
335                         if (!total_len)
336                                 break;  /* common path: read succeeded */
337                         if (!pipe_empty(head, tail))    /* More to do? */
338                                 continue;
339                 }
340
341                 if (!pipe->writers)
342                         break;
343                 if (ret)
344                         break;
345                 if ((filp->f_flags & O_NONBLOCK) ||
346                     (iocb->ki_flags & IOCB_NOWAIT)) {
347                         ret = -EAGAIN;
348                         break;
349                 }
350                 __pipe_unlock(pipe);
351
352                 /*
353                  * We only get here if we didn't actually read anything.
354                  *
355                  * However, we could have seen (and removed) a zero-sized
356                  * pipe buffer, and might have made space in the buffers
357                  * that way.
358                  *
359                  * You can't make zero-sized pipe buffers by doing an empty
360                  * write (not even in packet mode), but they can happen if
361                  * the writer gets an EFAULT when trying to fill a buffer
362                  * that already got allocated and inserted in the buffer
363                  * array.
364                  *
365                  * So we still need to wake up any pending writers in the
366                  * _very_ unlikely case that the pipe was full, but we got
367                  * no data.
368                  */
369                 if (unlikely(was_full))
370                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
371                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
372
373                 /*
374                  * But because we didn't read anything, at this point we can
375                  * just return directly with -ERESTARTSYS if we're interrupted,
376                  * since we've done any required wakeups and there's no need
377                  * to mark anything accessed. And we've dropped the lock.
378                  */
379                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
380                         return -ERESTARTSYS;
381
382                 __pipe_lock(pipe);
383                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
384                 wake_next_reader = true;
385         }
386         if (pipe_empty(pipe->head, pipe->tail))
387                 wake_next_reader = false;
388         __pipe_unlock(pipe);
389
390         if (was_full)
391                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392         if (wake_next_reader)
393                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
394         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395         if (ret > 0)
396                 file_accessed(filp);
397         return ret;
398 }
399
400 static inline int is_packetized(struct file *file)
401 {
402         return (file->f_flags & O_DIRECT) != 0;
403 }
404
405 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
406 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407 {
408         unsigned int head = READ_ONCE(pipe->head);
409         unsigned int tail = READ_ONCE(pipe->tail);
410         unsigned int max_usage = READ_ONCE(pipe->max_usage);
411
412         return !pipe_full(head, tail, max_usage) ||
413                 !READ_ONCE(pipe->readers);
414 }
415
416 static ssize_t
417 pipe_write(struct kiocb *iocb, struct iov_iter *from)
418 {
419         struct file *filp = iocb->ki_filp;
420         struct pipe_inode_info *pipe = filp->private_data;
421         unsigned int head;
422         ssize_t ret = 0;
423         size_t total_len = iov_iter_count(from);
424         ssize_t chars;
425         bool was_empty = false;
426         bool wake_next_writer = false;
427
428         /* Null write succeeds. */
429         if (unlikely(total_len == 0))
430                 return 0;
431
432         __pipe_lock(pipe);
433
434         if (!pipe->readers) {
435                 send_sig(SIGPIPE, current, 0);
436                 ret = -EPIPE;
437                 goto out;
438         }
439
440         if (pipe_has_watch_queue(pipe)) {
441                 ret = -EXDEV;
442                 goto out;
443         }
444
445         /*
446          * If it wasn't empty we try to merge new data into
447          * the last buffer.
448          *
449          * That naturally merges small writes, but it also
450          * page-aligns the rest of the writes for large writes
451          * spanning multiple pages.
452          */
453         head = pipe->head;
454         was_empty = pipe_empty(head, pipe->tail);
455         chars = total_len & (PAGE_SIZE-1);
456         if (chars && !was_empty) {
457                 unsigned int mask = pipe->ring_size - 1;
458                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
459                 int offset = buf->offset + buf->len;
460
461                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
462                     offset + chars <= PAGE_SIZE) {
463                         ret = pipe_buf_confirm(pipe, buf);
464                         if (ret)
465                                 goto out;
466
467                         ret = copy_page_from_iter(buf->page, offset, chars, from);
468                         if (unlikely(ret < chars)) {
469                                 ret = -EFAULT;
470                                 goto out;
471                         }
472
473                         buf->len += ret;
474                         if (!iov_iter_count(from))
475                                 goto out;
476                 }
477         }
478
479         for (;;) {
480                 if (!pipe->readers) {
481                         send_sig(SIGPIPE, current, 0);
482                         if (!ret)
483                                 ret = -EPIPE;
484                         break;
485                 }
486
487                 head = pipe->head;
488                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
489                         unsigned int mask = pipe->ring_size - 1;
490                         struct pipe_buffer *buf;
491                         struct page *page = pipe->tmp_page;
492                         int copied;
493
494                         if (!page) {
495                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
496                                 if (unlikely(!page)) {
497                                         ret = ret ? : -ENOMEM;
498                                         break;
499                                 }
500                                 pipe->tmp_page = page;
501                         }
502
503                         /* Allocate a slot in the ring in advance and attach an
504                          * empty buffer.  If we fault or otherwise fail to use
505                          * it, either the reader will consume it or it'll still
506                          * be there for the next write.
507                          */
508                         spin_lock_irq(&pipe->rd_wait.lock);
509
510                         head = pipe->head;
511                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
512                                 spin_unlock_irq(&pipe->rd_wait.lock);
513                                 continue;
514                         }
515
516                         pipe->head = head + 1;
517                         spin_unlock_irq(&pipe->rd_wait.lock);
518
519                         /* Insert it into the buffer array */
520                         buf = &pipe->bufs[head & mask];
521                         buf->page = page;
522                         buf->ops = &anon_pipe_buf_ops;
523                         buf->offset = 0;
524                         buf->len = 0;
525                         if (is_packetized(filp))
526                                 buf->flags = PIPE_BUF_FLAG_PACKET;
527                         else
528                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
529                         pipe->tmp_page = NULL;
530
531                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
532                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
533                                 if (!ret)
534                                         ret = -EFAULT;
535                                 break;
536                         }
537                         ret += copied;
538                         buf->len = copied;
539
540                         if (!iov_iter_count(from))
541                                 break;
542                 }
543
544                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
545                         continue;
546
547                 /* Wait for buffer space to become available. */
548                 if ((filp->f_flags & O_NONBLOCK) ||
549                     (iocb->ki_flags & IOCB_NOWAIT)) {
550                         if (!ret)
551                                 ret = -EAGAIN;
552                         break;
553                 }
554                 if (signal_pending(current)) {
555                         if (!ret)
556                                 ret = -ERESTARTSYS;
557                         break;
558                 }
559
560                 /*
561                  * We're going to release the pipe lock and wait for more
562                  * space. We wake up any readers if necessary, and then
563                  * after waiting we need to re-check whether the pipe
564                  * become empty while we dropped the lock.
565                  */
566                 __pipe_unlock(pipe);
567                 if (was_empty)
568                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
569                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
570                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
571                 __pipe_lock(pipe);
572                 was_empty = pipe_empty(pipe->head, pipe->tail);
573                 wake_next_writer = true;
574         }
575 out:
576         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
577                 wake_next_writer = false;
578         __pipe_unlock(pipe);
579
580         /*
581          * If we do do a wakeup event, we do a 'sync' wakeup, because we
582          * want the reader to start processing things asap, rather than
583          * leave the data pending.
584          *
585          * This is particularly important for small writes, because of
586          * how (for example) the GNU make jobserver uses small writes to
587          * wake up pending jobs
588          *
589          * Epoll nonsensically wants a wakeup whether the pipe
590          * was already empty or not.
591          */
592         if (was_empty || pipe->poll_usage)
593                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
594         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
595         if (wake_next_writer)
596                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
597         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
598                 int err = file_update_time(filp);
599                 if (err)
600                         ret = err;
601                 sb_end_write(file_inode(filp)->i_sb);
602         }
603         return ret;
604 }
605
606 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
607 {
608         struct pipe_inode_info *pipe = filp->private_data;
609         unsigned int count, head, tail, mask;
610
611         switch (cmd) {
612         case FIONREAD:
613                 __pipe_lock(pipe);
614                 count = 0;
615                 head = pipe->head;
616                 tail = pipe->tail;
617                 mask = pipe->ring_size - 1;
618
619                 while (tail != head) {
620                         count += pipe->bufs[tail & mask].len;
621                         tail++;
622                 }
623                 __pipe_unlock(pipe);
624
625                 return put_user(count, (int __user *)arg);
626
627 #ifdef CONFIG_WATCH_QUEUE
628         case IOC_WATCH_QUEUE_SET_SIZE: {
629                 int ret;
630                 __pipe_lock(pipe);
631                 ret = watch_queue_set_size(pipe, arg);
632                 __pipe_unlock(pipe);
633                 return ret;
634         }
635
636         case IOC_WATCH_QUEUE_SET_FILTER:
637                 return watch_queue_set_filter(
638                         pipe, (struct watch_notification_filter __user *)arg);
639 #endif
640
641         default:
642                 return -ENOIOCTLCMD;
643         }
644 }
645
646 /* No kernel lock held - fine */
647 static __poll_t
648 pipe_poll(struct file *filp, poll_table *wait)
649 {
650         __poll_t mask;
651         struct pipe_inode_info *pipe = filp->private_data;
652         unsigned int head, tail;
653
654         /* Epoll has some historical nasty semantics, this enables them */
655         WRITE_ONCE(pipe->poll_usage, true);
656
657         /*
658          * Reading pipe state only -- no need for acquiring the semaphore.
659          *
660          * But because this is racy, the code has to add the
661          * entry to the poll table _first_ ..
662          */
663         if (filp->f_mode & FMODE_READ)
664                 poll_wait(filp, &pipe->rd_wait, wait);
665         if (filp->f_mode & FMODE_WRITE)
666                 poll_wait(filp, &pipe->wr_wait, wait);
667
668         /*
669          * .. and only then can you do the racy tests. That way,
670          * if something changes and you got it wrong, the poll
671          * table entry will wake you up and fix it.
672          */
673         head = READ_ONCE(pipe->head);
674         tail = READ_ONCE(pipe->tail);
675
676         mask = 0;
677         if (filp->f_mode & FMODE_READ) {
678                 if (!pipe_empty(head, tail))
679                         mask |= EPOLLIN | EPOLLRDNORM;
680                 if (!pipe->writers && filp->f_version != pipe->w_counter)
681                         mask |= EPOLLHUP;
682         }
683
684         if (filp->f_mode & FMODE_WRITE) {
685                 if (!pipe_full(head, tail, pipe->max_usage))
686                         mask |= EPOLLOUT | EPOLLWRNORM;
687                 /*
688                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
689                  * behave exactly like pipes for poll().
690                  */
691                 if (!pipe->readers)
692                         mask |= EPOLLERR;
693         }
694
695         return mask;
696 }
697
698 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
699 {
700         int kill = 0;
701
702         spin_lock(&inode->i_lock);
703         if (!--pipe->files) {
704                 inode->i_pipe = NULL;
705                 kill = 1;
706         }
707         spin_unlock(&inode->i_lock);
708
709         if (kill)
710                 free_pipe_info(pipe);
711 }
712
713 static int
714 pipe_release(struct inode *inode, struct file *file)
715 {
716         struct pipe_inode_info *pipe = file->private_data;
717
718         __pipe_lock(pipe);
719         if (file->f_mode & FMODE_READ)
720                 pipe->readers--;
721         if (file->f_mode & FMODE_WRITE)
722                 pipe->writers--;
723
724         /* Was that the last reader or writer, but not the other side? */
725         if (!pipe->readers != !pipe->writers) {
726                 wake_up_interruptible_all(&pipe->rd_wait);
727                 wake_up_interruptible_all(&pipe->wr_wait);
728                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
729                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
730         }
731         __pipe_unlock(pipe);
732
733         put_pipe_info(inode, pipe);
734         return 0;
735 }
736
737 static int
738 pipe_fasync(int fd, struct file *filp, int on)
739 {
740         struct pipe_inode_info *pipe = filp->private_data;
741         int retval = 0;
742
743         __pipe_lock(pipe);
744         if (filp->f_mode & FMODE_READ)
745                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
746         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
747                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
748                 if (retval < 0 && (filp->f_mode & FMODE_READ))
749                         /* this can happen only if on == T */
750                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
751         }
752         __pipe_unlock(pipe);
753         return retval;
754 }
755
756 unsigned long account_pipe_buffers(struct user_struct *user,
757                                    unsigned long old, unsigned long new)
758 {
759         return atomic_long_add_return(new - old, &user->pipe_bufs);
760 }
761
762 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
763 {
764         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
765
766         return soft_limit && user_bufs > soft_limit;
767 }
768
769 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
770 {
771         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
772
773         return hard_limit && user_bufs > hard_limit;
774 }
775
776 bool pipe_is_unprivileged_user(void)
777 {
778         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
779 }
780
781 struct pipe_inode_info *alloc_pipe_info(void)
782 {
783         struct pipe_inode_info *pipe;
784         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
785         struct user_struct *user = get_current_user();
786         unsigned long user_bufs;
787         unsigned int max_size = READ_ONCE(pipe_max_size);
788
789         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
790         if (pipe == NULL)
791                 goto out_free_uid;
792
793         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
794                 pipe_bufs = max_size >> PAGE_SHIFT;
795
796         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
797
798         if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
799                 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
800                 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
801         }
802
803         if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
804                 goto out_revert_acct;
805
806         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
807                              GFP_KERNEL_ACCOUNT);
808
809         if (pipe->bufs) {
810                 init_waitqueue_head(&pipe->rd_wait);
811                 init_waitqueue_head(&pipe->wr_wait);
812                 pipe->r_counter = pipe->w_counter = 1;
813                 pipe->max_usage = pipe_bufs;
814                 pipe->ring_size = pipe_bufs;
815                 pipe->nr_accounted = pipe_bufs;
816                 pipe->user = user;
817                 mutex_init(&pipe->mutex);
818                 return pipe;
819         }
820
821 out_revert_acct:
822         (void) account_pipe_buffers(user, pipe_bufs, 0);
823         kfree(pipe);
824 out_free_uid:
825         free_uid(user);
826         return NULL;
827 }
828
829 void free_pipe_info(struct pipe_inode_info *pipe)
830 {
831         unsigned int i;
832
833 #ifdef CONFIG_WATCH_QUEUE
834         if (pipe->watch_queue)
835                 watch_queue_clear(pipe->watch_queue);
836 #endif
837
838         (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
839         free_uid(pipe->user);
840         for (i = 0; i < pipe->ring_size; i++) {
841                 struct pipe_buffer *buf = pipe->bufs + i;
842                 if (buf->ops)
843                         pipe_buf_release(pipe, buf);
844         }
845 #ifdef CONFIG_WATCH_QUEUE
846         if (pipe->watch_queue)
847                 put_watch_queue(pipe->watch_queue);
848 #endif
849         if (pipe->tmp_page)
850                 __free_page(pipe->tmp_page);
851         kfree(pipe->bufs);
852         kfree(pipe);
853 }
854
855 static struct vfsmount *pipe_mnt __read_mostly;
856
857 /*
858  * pipefs_dname() is called from d_path().
859  */
860 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
861 {
862         return dynamic_dname(buffer, buflen, "pipe:[%lu]",
863                                 d_inode(dentry)->i_ino);
864 }
865
866 static const struct dentry_operations pipefs_dentry_operations = {
867         .d_dname        = pipefs_dname,
868 };
869
870 static struct inode * get_pipe_inode(void)
871 {
872         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
873         struct pipe_inode_info *pipe;
874
875         if (!inode)
876                 goto fail_inode;
877
878         inode->i_ino = get_next_ino();
879
880         pipe = alloc_pipe_info();
881         if (!pipe)
882                 goto fail_iput;
883
884         inode->i_pipe = pipe;
885         pipe->files = 2;
886         pipe->readers = pipe->writers = 1;
887         inode->i_fop = &pipefifo_fops;
888
889         /*
890          * Mark the inode dirty from the very beginning,
891          * that way it will never be moved to the dirty
892          * list because "mark_inode_dirty()" will think
893          * that it already _is_ on the dirty list.
894          */
895         inode->i_state = I_DIRTY;
896         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
897         inode->i_uid = current_fsuid();
898         inode->i_gid = current_fsgid();
899         inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
900
901         return inode;
902
903 fail_iput:
904         iput(inode);
905
906 fail_inode:
907         return NULL;
908 }
909
910 int create_pipe_files(struct file **res, int flags)
911 {
912         struct inode *inode = get_pipe_inode();
913         struct file *f;
914         int error;
915
916         if (!inode)
917                 return -ENFILE;
918
919         if (flags & O_NOTIFICATION_PIPE) {
920                 error = watch_queue_init(inode->i_pipe);
921                 if (error) {
922                         free_pipe_info(inode->i_pipe);
923                         iput(inode);
924                         return error;
925                 }
926         }
927
928         f = alloc_file_pseudo(inode, pipe_mnt, "",
929                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
930                                 &pipefifo_fops);
931         if (IS_ERR(f)) {
932                 free_pipe_info(inode->i_pipe);
933                 iput(inode);
934                 return PTR_ERR(f);
935         }
936
937         f->private_data = inode->i_pipe;
938
939         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
940                                   &pipefifo_fops);
941         if (IS_ERR(res[0])) {
942                 put_pipe_info(inode, inode->i_pipe);
943                 fput(f);
944                 return PTR_ERR(res[0]);
945         }
946         res[0]->private_data = inode->i_pipe;
947         res[1] = f;
948         stream_open(inode, res[0]);
949         stream_open(inode, res[1]);
950         return 0;
951 }
952
953 static int __do_pipe_flags(int *fd, struct file **files, int flags)
954 {
955         int error;
956         int fdw, fdr;
957
958         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
959                 return -EINVAL;
960
961         error = create_pipe_files(files, flags);
962         if (error)
963                 return error;
964
965         error = get_unused_fd_flags(flags);
966         if (error < 0)
967                 goto err_read_pipe;
968         fdr = error;
969
970         error = get_unused_fd_flags(flags);
971         if (error < 0)
972                 goto err_fdr;
973         fdw = error;
974
975         audit_fd_pair(fdr, fdw);
976         fd[0] = fdr;
977         fd[1] = fdw;
978         /* pipe groks IOCB_NOWAIT */
979         files[0]->f_mode |= FMODE_NOWAIT;
980         files[1]->f_mode |= FMODE_NOWAIT;
981         return 0;
982
983  err_fdr:
984         put_unused_fd(fdr);
985  err_read_pipe:
986         fput(files[0]);
987         fput(files[1]);
988         return error;
989 }
990
991 int do_pipe_flags(int *fd, int flags)
992 {
993         struct file *files[2];
994         int error = __do_pipe_flags(fd, files, flags);
995         if (!error) {
996                 fd_install(fd[0], files[0]);
997                 fd_install(fd[1], files[1]);
998         }
999         return error;
1000 }
1001
1002 /*
1003  * sys_pipe() is the normal C calling standard for creating
1004  * a pipe. It's not the way Unix traditionally does this, though.
1005  */
1006 static int do_pipe2(int __user *fildes, int flags)
1007 {
1008         struct file *files[2];
1009         int fd[2];
1010         int error;
1011
1012         error = __do_pipe_flags(fd, files, flags);
1013         if (!error) {
1014                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1015                         fput(files[0]);
1016                         fput(files[1]);
1017                         put_unused_fd(fd[0]);
1018                         put_unused_fd(fd[1]);
1019                         error = -EFAULT;
1020                 } else {
1021                         fd_install(fd[0], files[0]);
1022                         fd_install(fd[1], files[1]);
1023                 }
1024         }
1025         return error;
1026 }
1027
1028 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1029 {
1030         return do_pipe2(fildes, flags);
1031 }
1032
1033 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1034 {
1035         return do_pipe2(fildes, 0);
1036 }
1037
1038 /*
1039  * This is the stupid "wait for pipe to be readable or writable"
1040  * model.
1041  *
1042  * See pipe_read/write() for the proper kind of exclusive wait,
1043  * but that requires that we wake up any other readers/writers
1044  * if we then do not end up reading everything (ie the whole
1045  * "wake_next_reader/writer" logic in pipe_read/write()).
1046  */
1047 void pipe_wait_readable(struct pipe_inode_info *pipe)
1048 {
1049         pipe_unlock(pipe);
1050         wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1051         pipe_lock(pipe);
1052 }
1053
1054 void pipe_wait_writable(struct pipe_inode_info *pipe)
1055 {
1056         pipe_unlock(pipe);
1057         wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1058         pipe_lock(pipe);
1059 }
1060
1061 /*
1062  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1063  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1064  * race with the count check and waitqueue prep.
1065  *
1066  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1067  * then check the condition you're waiting for, and only then sleep. But
1068  * because of the pipe lock, we can check the condition before being on
1069  * the wait queue.
1070  *
1071  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1072  */
1073 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1074 {
1075         DEFINE_WAIT(rdwait);
1076         int cur = *cnt;
1077
1078         while (cur == *cnt) {
1079                 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1080                 pipe_unlock(pipe);
1081                 schedule();
1082                 finish_wait(&pipe->rd_wait, &rdwait);
1083                 pipe_lock(pipe);
1084                 if (signal_pending(current))
1085                         break;
1086         }
1087         return cur == *cnt ? -ERESTARTSYS : 0;
1088 }
1089
1090 static void wake_up_partner(struct pipe_inode_info *pipe)
1091 {
1092         wake_up_interruptible_all(&pipe->rd_wait);
1093 }
1094
1095 static int fifo_open(struct inode *inode, struct file *filp)
1096 {
1097         struct pipe_inode_info *pipe;
1098         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1099         int ret;
1100
1101         filp->f_version = 0;
1102
1103         spin_lock(&inode->i_lock);
1104         if (inode->i_pipe) {
1105                 pipe = inode->i_pipe;
1106                 pipe->files++;
1107                 spin_unlock(&inode->i_lock);
1108         } else {
1109                 spin_unlock(&inode->i_lock);
1110                 pipe = alloc_pipe_info();
1111                 if (!pipe)
1112                         return -ENOMEM;
1113                 pipe->files = 1;
1114                 spin_lock(&inode->i_lock);
1115                 if (unlikely(inode->i_pipe)) {
1116                         inode->i_pipe->files++;
1117                         spin_unlock(&inode->i_lock);
1118                         free_pipe_info(pipe);
1119                         pipe = inode->i_pipe;
1120                 } else {
1121                         inode->i_pipe = pipe;
1122                         spin_unlock(&inode->i_lock);
1123                 }
1124         }
1125         filp->private_data = pipe;
1126         /* OK, we have a pipe and it's pinned down */
1127
1128         __pipe_lock(pipe);
1129
1130         /* We can only do regular read/write on fifos */
1131         stream_open(inode, filp);
1132
1133         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1134         case FMODE_READ:
1135         /*
1136          *  O_RDONLY
1137          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1138          *  opened, even when there is no process writing the FIFO.
1139          */
1140                 pipe->r_counter++;
1141                 if (pipe->readers++ == 0)
1142                         wake_up_partner(pipe);
1143
1144                 if (!is_pipe && !pipe->writers) {
1145                         if ((filp->f_flags & O_NONBLOCK)) {
1146                                 /* suppress EPOLLHUP until we have
1147                                  * seen a writer */
1148                                 filp->f_version = pipe->w_counter;
1149                         } else {
1150                                 if (wait_for_partner(pipe, &pipe->w_counter))
1151                                         goto err_rd;
1152                         }
1153                 }
1154                 break;
1155
1156         case FMODE_WRITE:
1157         /*
1158          *  O_WRONLY
1159          *  POSIX.1 says that O_NONBLOCK means return -1 with
1160          *  errno=ENXIO when there is no process reading the FIFO.
1161          */
1162                 ret = -ENXIO;
1163                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1164                         goto err;
1165
1166                 pipe->w_counter++;
1167                 if (!pipe->writers++)
1168                         wake_up_partner(pipe);
1169
1170                 if (!is_pipe && !pipe->readers) {
1171                         if (wait_for_partner(pipe, &pipe->r_counter))
1172                                 goto err_wr;
1173                 }
1174                 break;
1175
1176         case FMODE_READ | FMODE_WRITE:
1177         /*
1178          *  O_RDWR
1179          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1180          *  This implementation will NEVER block on a O_RDWR open, since
1181          *  the process can at least talk to itself.
1182          */
1183
1184                 pipe->readers++;
1185                 pipe->writers++;
1186                 pipe->r_counter++;
1187                 pipe->w_counter++;
1188                 if (pipe->readers == 1 || pipe->writers == 1)
1189                         wake_up_partner(pipe);
1190                 break;
1191
1192         default:
1193                 ret = -EINVAL;
1194                 goto err;
1195         }
1196
1197         /* Ok! */
1198         __pipe_unlock(pipe);
1199         return 0;
1200
1201 err_rd:
1202         if (!--pipe->readers)
1203                 wake_up_interruptible(&pipe->wr_wait);
1204         ret = -ERESTARTSYS;
1205         goto err;
1206
1207 err_wr:
1208         if (!--pipe->writers)
1209                 wake_up_interruptible_all(&pipe->rd_wait);
1210         ret = -ERESTARTSYS;
1211         goto err;
1212
1213 err:
1214         __pipe_unlock(pipe);
1215
1216         put_pipe_info(inode, pipe);
1217         return ret;
1218 }
1219
1220 const struct file_operations pipefifo_fops = {
1221         .open           = fifo_open,
1222         .llseek         = no_llseek,
1223         .read_iter      = pipe_read,
1224         .write_iter     = pipe_write,
1225         .poll           = pipe_poll,
1226         .unlocked_ioctl = pipe_ioctl,
1227         .release        = pipe_release,
1228         .fasync         = pipe_fasync,
1229         .splice_write   = iter_file_splice_write,
1230 };
1231
1232 /*
1233  * Currently we rely on the pipe array holding a power-of-2 number
1234  * of pages. Returns 0 on error.
1235  */
1236 unsigned int round_pipe_size(unsigned int size)
1237 {
1238         if (size > (1U << 31))
1239                 return 0;
1240
1241         /* Minimum pipe size, as required by POSIX */
1242         if (size < PAGE_SIZE)
1243                 return PAGE_SIZE;
1244
1245         return roundup_pow_of_two(size);
1246 }
1247
1248 /*
1249  * Resize the pipe ring to a number of slots.
1250  *
1251  * Note the pipe can be reduced in capacity, but only if the current
1252  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1253  * returned instead.
1254  */
1255 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1256 {
1257         struct pipe_buffer *bufs;
1258         unsigned int head, tail, mask, n;
1259
1260         bufs = kcalloc(nr_slots, sizeof(*bufs),
1261                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1262         if (unlikely(!bufs))
1263                 return -ENOMEM;
1264
1265         spin_lock_irq(&pipe->rd_wait.lock);
1266         mask = pipe->ring_size - 1;
1267         head = pipe->head;
1268         tail = pipe->tail;
1269
1270         n = pipe_occupancy(head, tail);
1271         if (nr_slots < n) {
1272                 spin_unlock_irq(&pipe->rd_wait.lock);
1273                 kfree(bufs);
1274                 return -EBUSY;
1275         }
1276
1277         /*
1278          * The pipe array wraps around, so just start the new one at zero
1279          * and adjust the indices.
1280          */
1281         if (n > 0) {
1282                 unsigned int h = head & mask;
1283                 unsigned int t = tail & mask;
1284                 if (h > t) {
1285                         memcpy(bufs, pipe->bufs + t,
1286                                n * sizeof(struct pipe_buffer));
1287                 } else {
1288                         unsigned int tsize = pipe->ring_size - t;
1289                         if (h > 0)
1290                                 memcpy(bufs + tsize, pipe->bufs,
1291                                        h * sizeof(struct pipe_buffer));
1292                         memcpy(bufs, pipe->bufs + t,
1293                                tsize * sizeof(struct pipe_buffer));
1294                 }
1295         }
1296
1297         head = n;
1298         tail = 0;
1299
1300         kfree(pipe->bufs);
1301         pipe->bufs = bufs;
1302         pipe->ring_size = nr_slots;
1303         if (pipe->max_usage > nr_slots)
1304                 pipe->max_usage = nr_slots;
1305         pipe->tail = tail;
1306         pipe->head = head;
1307
1308         if (!pipe_has_watch_queue(pipe)) {
1309                 pipe->max_usage = nr_slots;
1310                 pipe->nr_accounted = nr_slots;
1311         }
1312
1313         spin_unlock_irq(&pipe->rd_wait.lock);
1314
1315         /* This might have made more room for writers */
1316         wake_up_interruptible(&pipe->wr_wait);
1317         return 0;
1318 }
1319
1320 /*
1321  * Allocate a new array of pipe buffers and copy the info over. Returns the
1322  * pipe size if successful, or return -ERROR on error.
1323  */
1324 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned int arg)
1325 {
1326         unsigned long user_bufs;
1327         unsigned int nr_slots, size;
1328         long ret = 0;
1329
1330         if (pipe_has_watch_queue(pipe))
1331                 return -EBUSY;
1332
1333         size = round_pipe_size(arg);
1334         nr_slots = size >> PAGE_SHIFT;
1335
1336         if (!nr_slots)
1337                 return -EINVAL;
1338
1339         /*
1340          * If trying to increase the pipe capacity, check that an
1341          * unprivileged user is not trying to exceed various limits
1342          * (soft limit check here, hard limit check just below).
1343          * Decreasing the pipe capacity is always permitted, even
1344          * if the user is currently over a limit.
1345          */
1346         if (nr_slots > pipe->max_usage &&
1347                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1348                 return -EPERM;
1349
1350         user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1351
1352         if (nr_slots > pipe->max_usage &&
1353                         (too_many_pipe_buffers_hard(user_bufs) ||
1354                          too_many_pipe_buffers_soft(user_bufs)) &&
1355                         pipe_is_unprivileged_user()) {
1356                 ret = -EPERM;
1357                 goto out_revert_acct;
1358         }
1359
1360         ret = pipe_resize_ring(pipe, nr_slots);
1361         if (ret < 0)
1362                 goto out_revert_acct;
1363
1364         return pipe->max_usage * PAGE_SIZE;
1365
1366 out_revert_acct:
1367         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1368         return ret;
1369 }
1370
1371 /*
1372  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1373  * not enough to verify that this is a pipe.
1374  */
1375 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1376 {
1377         struct pipe_inode_info *pipe = file->private_data;
1378
1379         if (file->f_op != &pipefifo_fops || !pipe)
1380                 return NULL;
1381         if (for_splice && pipe_has_watch_queue(pipe))
1382                 return NULL;
1383         return pipe;
1384 }
1385
1386 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned int arg)
1387 {
1388         struct pipe_inode_info *pipe;
1389         long ret;
1390
1391         pipe = get_pipe_info(file, false);
1392         if (!pipe)
1393                 return -EBADF;
1394
1395         __pipe_lock(pipe);
1396
1397         switch (cmd) {
1398         case F_SETPIPE_SZ:
1399                 ret = pipe_set_size(pipe, arg);
1400                 break;
1401         case F_GETPIPE_SZ:
1402                 ret = pipe->max_usage * PAGE_SIZE;
1403                 break;
1404         default:
1405                 ret = -EINVAL;
1406                 break;
1407         }
1408
1409         __pipe_unlock(pipe);
1410         return ret;
1411 }
1412
1413 static const struct super_operations pipefs_ops = {
1414         .destroy_inode = free_inode_nonrcu,
1415         .statfs = simple_statfs,
1416 };
1417
1418 /*
1419  * pipefs should _never_ be mounted by userland - too much of security hassle,
1420  * no real gain from having the whole whorehouse mounted. So we don't need
1421  * any operations on the root directory. However, we need a non-trivial
1422  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1423  */
1424
1425 static int pipefs_init_fs_context(struct fs_context *fc)
1426 {
1427         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1428         if (!ctx)
1429                 return -ENOMEM;
1430         ctx->ops = &pipefs_ops;
1431         ctx->dops = &pipefs_dentry_operations;
1432         return 0;
1433 }
1434
1435 static struct file_system_type pipe_fs_type = {
1436         .name           = "pipefs",
1437         .init_fs_context = pipefs_init_fs_context,
1438         .kill_sb        = kill_anon_super,
1439 };
1440
1441 #ifdef CONFIG_SYSCTL
1442 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1443                                         unsigned int *valp,
1444                                         int write, void *data)
1445 {
1446         if (write) {
1447                 unsigned int val;
1448
1449                 val = round_pipe_size(*lvalp);
1450                 if (val == 0)
1451                         return -EINVAL;
1452
1453                 *valp = val;
1454         } else {
1455                 unsigned int val = *valp;
1456                 *lvalp = (unsigned long) val;
1457         }
1458
1459         return 0;
1460 }
1461
1462 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1463                                 void *buffer, size_t *lenp, loff_t *ppos)
1464 {
1465         return do_proc_douintvec(table, write, buffer, lenp, ppos,
1466                                  do_proc_dopipe_max_size_conv, NULL);
1467 }
1468
1469 static struct ctl_table fs_pipe_sysctls[] = {
1470         {
1471                 .procname       = "pipe-max-size",
1472                 .data           = &pipe_max_size,
1473                 .maxlen         = sizeof(pipe_max_size),
1474                 .mode           = 0644,
1475                 .proc_handler   = proc_dopipe_max_size,
1476         },
1477         {
1478                 .procname       = "pipe-user-pages-hard",
1479                 .data           = &pipe_user_pages_hard,
1480                 .maxlen         = sizeof(pipe_user_pages_hard),
1481                 .mode           = 0644,
1482                 .proc_handler   = proc_doulongvec_minmax,
1483         },
1484         {
1485                 .procname       = "pipe-user-pages-soft",
1486                 .data           = &pipe_user_pages_soft,
1487                 .maxlen         = sizeof(pipe_user_pages_soft),
1488                 .mode           = 0644,
1489                 .proc_handler   = proc_doulongvec_minmax,
1490         },
1491         { }
1492 };
1493 #endif
1494
1495 static int __init init_pipe_fs(void)
1496 {
1497         int err = register_filesystem(&pipe_fs_type);
1498
1499         if (!err) {
1500                 pipe_mnt = kern_mount(&pipe_fs_type);
1501                 if (IS_ERR(pipe_mnt)) {
1502                         err = PTR_ERR(pipe_mnt);
1503                         unregister_filesystem(&pipe_fs_type);
1504                 }
1505         }
1506 #ifdef CONFIG_SYSCTL
1507         register_sysctl_init("fs", fs_pipe_sysctls);
1508 #endif
1509         return err;
1510 }
1511
1512 fs_initcall(init_pipe_fs);