4 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
8 #include <linux/file.h>
9 #include <linux/poll.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
14 #include <linux/log2.h>
15 #include <linux/mount.h>
16 #include <linux/magic.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/uio.h>
19 #include <linux/highmem.h>
20 #include <linux/pagemap.h>
21 #include <linux/audit.h>
22 #include <linux/syscalls.h>
23 #include <linux/fcntl.h>
24 #include <linux/aio.h>
26 #include <asm/uaccess.h>
27 #include <asm/ioctls.h>
32 * The max size that a non-root user is allowed to grow the pipe. Can
33 * be set by root in /proc/sys/fs/pipe-max-size
35 unsigned int pipe_max_size = 1048576;
38 * Minimum pipe size, as required by POSIX
40 unsigned int pipe_min_size = PAGE_SIZE;
43 * We use a start+len construction, which provides full use of the
45 * -- Florian Coosmann (FGC)
47 * Reads with count = 0 should always return 0.
48 * -- Julian Bradfield 1999-06-07.
50 * FIFOs and Pipes now generate SIGIO for both readers and writers.
51 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
53 * pipe_read & write cleanup
54 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
57 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
60 mutex_lock_nested(&pipe->mutex, subclass);
63 void pipe_lock(struct pipe_inode_info *pipe)
66 * pipe_lock() nests non-pipe inode locks (for writing to a file)
68 pipe_lock_nested(pipe, I_MUTEX_PARENT);
70 EXPORT_SYMBOL(pipe_lock);
72 void pipe_unlock(struct pipe_inode_info *pipe)
75 mutex_unlock(&pipe->mutex);
77 EXPORT_SYMBOL(pipe_unlock);
79 static inline void __pipe_lock(struct pipe_inode_info *pipe)
81 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
84 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
86 mutex_unlock(&pipe->mutex);
89 void pipe_double_lock(struct pipe_inode_info *pipe1,
90 struct pipe_inode_info *pipe2)
92 BUG_ON(pipe1 == pipe2);
95 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
96 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
98 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
99 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
103 /* Drop the inode semaphore and wait for a pipe event, atomically */
104 void pipe_wait(struct pipe_inode_info *pipe)
109 * Pipes are system-local resources, so sleeping on them
110 * is considered a noninteractive wait:
112 prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
115 finish_wait(&pipe->wait, &wait);
120 pipe_iov_copy_from_user(void *to, struct iovec *iov, unsigned long len,
126 while (!iov->iov_len)
128 copy = min_t(unsigned long, len, iov->iov_len);
131 if (__copy_from_user_inatomic(to, iov->iov_base, copy))
134 if (copy_from_user(to, iov->iov_base, copy))
139 iov->iov_base += copy;
140 iov->iov_len -= copy;
146 pipe_iov_copy_to_user(struct iovec *iov, const void *from, unsigned long len,
152 while (!iov->iov_len)
154 copy = min_t(unsigned long, len, iov->iov_len);
157 if (__copy_to_user_inatomic(iov->iov_base, from, copy))
160 if (copy_to_user(iov->iov_base, from, copy))
165 iov->iov_base += copy;
166 iov->iov_len -= copy;
172 * Attempt to pre-fault in the user memory, so we can use atomic copies.
173 * Returns the number of bytes not faulted in.
175 static int iov_fault_in_pages_write(struct iovec *iov, unsigned long len)
177 while (!iov->iov_len)
181 unsigned long this_len;
183 this_len = min_t(unsigned long, len, iov->iov_len);
184 if (fault_in_pages_writeable(iov->iov_base, this_len))
195 * Pre-fault in the user memory, so we can use atomic copies.
197 static void iov_fault_in_pages_read(struct iovec *iov, unsigned long len)
199 while (!iov->iov_len)
203 unsigned long this_len;
205 this_len = min_t(unsigned long, len, iov->iov_len);
206 fault_in_pages_readable(iov->iov_base, this_len);
212 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
213 struct pipe_buffer *buf)
215 struct page *page = buf->page;
218 * If nobody else uses this page, and we don't already have a
219 * temporary page, let's keep track of it as a one-deep
220 * allocation cache. (Otherwise just release our reference to it)
222 if (page_count(page) == 1 && !pipe->tmp_page)
223 pipe->tmp_page = page;
225 page_cache_release(page);
229 * generic_pipe_buf_map - virtually map a pipe buffer
230 * @pipe: the pipe that the buffer belongs to
231 * @buf: the buffer that should be mapped
232 * @atomic: whether to use an atomic map
235 * This function returns a kernel virtual address mapping for the
236 * pipe_buffer passed in @buf. If @atomic is set, an atomic map is provided
237 * and the caller has to be careful not to fault before calling
238 * the unmap function.
240 * Note that this function calls kmap_atomic() if @atomic != 0.
242 void *generic_pipe_buf_map(struct pipe_inode_info *pipe,
243 struct pipe_buffer *buf, int atomic)
246 buf->flags |= PIPE_BUF_FLAG_ATOMIC;
247 return kmap_atomic(buf->page);
250 return kmap(buf->page);
252 EXPORT_SYMBOL(generic_pipe_buf_map);
255 * generic_pipe_buf_unmap - unmap a previously mapped pipe buffer
256 * @pipe: the pipe that the buffer belongs to
257 * @buf: the buffer that should be unmapped
258 * @map_data: the data that the mapping function returned
261 * This function undoes the mapping that ->map() provided.
263 void generic_pipe_buf_unmap(struct pipe_inode_info *pipe,
264 struct pipe_buffer *buf, void *map_data)
266 if (buf->flags & PIPE_BUF_FLAG_ATOMIC) {
267 buf->flags &= ~PIPE_BUF_FLAG_ATOMIC;
268 kunmap_atomic(map_data);
272 EXPORT_SYMBOL(generic_pipe_buf_unmap);
275 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
276 * @pipe: the pipe that the buffer belongs to
277 * @buf: the buffer to attempt to steal
280 * This function attempts to steal the &struct page attached to
281 * @buf. If successful, this function returns 0 and returns with
282 * the page locked. The caller may then reuse the page for whatever
283 * he wishes; the typical use is insertion into a different file
286 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
287 struct pipe_buffer *buf)
289 struct page *page = buf->page;
292 * A reference of one is golden, that means that the owner of this
293 * page is the only one holding a reference to it. lock the page
296 if (page_count(page) == 1) {
303 EXPORT_SYMBOL(generic_pipe_buf_steal);
306 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
307 * @pipe: the pipe that the buffer belongs to
308 * @buf: the buffer to get a reference to
311 * This function grabs an extra reference to @buf. It's used in
312 * in the tee() system call, when we duplicate the buffers in one
315 void generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
317 page_cache_get(buf->page);
319 EXPORT_SYMBOL(generic_pipe_buf_get);
322 * generic_pipe_buf_confirm - verify contents of the pipe buffer
323 * @info: the pipe that the buffer belongs to
324 * @buf: the buffer to confirm
327 * This function does nothing, because the generic pipe code uses
328 * pages that are always good when inserted into the pipe.
330 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
331 struct pipe_buffer *buf)
335 EXPORT_SYMBOL(generic_pipe_buf_confirm);
338 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
339 * @pipe: the pipe that the buffer belongs to
340 * @buf: the buffer to put a reference to
343 * This function releases a reference to @buf.
345 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
346 struct pipe_buffer *buf)
348 page_cache_release(buf->page);
350 EXPORT_SYMBOL(generic_pipe_buf_release);
352 static const struct pipe_buf_operations anon_pipe_buf_ops = {
354 .map = generic_pipe_buf_map,
355 .unmap = generic_pipe_buf_unmap,
356 .confirm = generic_pipe_buf_confirm,
357 .release = anon_pipe_buf_release,
358 .steal = generic_pipe_buf_steal,
359 .get = generic_pipe_buf_get,
362 static const struct pipe_buf_operations packet_pipe_buf_ops = {
364 .map = generic_pipe_buf_map,
365 .unmap = generic_pipe_buf_unmap,
366 .confirm = generic_pipe_buf_confirm,
367 .release = anon_pipe_buf_release,
368 .steal = generic_pipe_buf_steal,
369 .get = generic_pipe_buf_get,
373 pipe_read(struct kiocb *iocb, const struct iovec *_iov,
374 unsigned long nr_segs, loff_t pos)
376 struct file *filp = iocb->ki_filp;
377 struct pipe_inode_info *pipe = filp->private_data;
380 struct iovec *iov = (struct iovec *)_iov;
383 total_len = iov_length(iov, nr_segs);
384 /* Null read succeeds. */
385 if (unlikely(total_len == 0))
392 int bufs = pipe->nrbufs;
394 int curbuf = pipe->curbuf;
395 struct pipe_buffer *buf = pipe->bufs + curbuf;
396 const struct pipe_buf_operations *ops = buf->ops;
398 size_t chars = buf->len;
401 if (chars > total_len)
404 error = ops->confirm(pipe, buf);
411 atomic = !iov_fault_in_pages_write(iov, chars);
413 addr = ops->map(pipe, buf, atomic);
414 error = pipe_iov_copy_to_user(iov, addr + buf->offset, chars, atomic);
415 ops->unmap(pipe, buf, addr);
416 if (unlikely(error)) {
418 * Just retry with the slow path if we failed.
429 buf->offset += chars;
432 /* Was it a packet buffer? Clean up and exit */
433 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
440 ops->release(pipe, buf);
441 curbuf = (curbuf + 1) & (pipe->buffers - 1);
442 pipe->curbuf = curbuf;
443 pipe->nrbufs = --bufs;
448 break; /* common path: read succeeded */
450 if (bufs) /* More to do? */
454 if (!pipe->waiting_writers) {
455 /* syscall merging: Usually we must not sleep
456 * if O_NONBLOCK is set, or if we got some data.
457 * But if a writer sleeps in kernel space, then
458 * we can wait for that data without violating POSIX.
462 if (filp->f_flags & O_NONBLOCK) {
467 if (signal_pending(current)) {
473 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
474 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
480 /* Signal writers asynchronously that there is more room. */
482 wake_up_interruptible_sync_poll(&pipe->wait, POLLOUT | POLLWRNORM);
483 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
490 static inline int is_packetized(struct file *file)
492 return (file->f_flags & O_DIRECT) != 0;
496 pipe_write(struct kiocb *iocb, const struct iovec *_iov,
497 unsigned long nr_segs, loff_t ppos)
499 struct file *filp = iocb->ki_filp;
500 struct pipe_inode_info *pipe = filp->private_data;
503 struct iovec *iov = (struct iovec *)_iov;
507 total_len = iov_length(iov, nr_segs);
508 /* Null write succeeds. */
509 if (unlikely(total_len == 0))
516 if (!pipe->readers) {
517 send_sig(SIGPIPE, current, 0);
522 /* We try to merge small writes */
523 chars = total_len & (PAGE_SIZE-1); /* size of the last buffer */
524 if (pipe->nrbufs && chars != 0) {
525 int lastbuf = (pipe->curbuf + pipe->nrbufs - 1) &
527 struct pipe_buffer *buf = pipe->bufs + lastbuf;
528 const struct pipe_buf_operations *ops = buf->ops;
529 int offset = buf->offset + buf->len;
531 if (ops->can_merge && offset + chars <= PAGE_SIZE) {
532 int error, atomic = 1;
535 error = ops->confirm(pipe, buf);
539 iov_fault_in_pages_read(iov, chars);
541 addr = ops->map(pipe, buf, atomic);
542 error = pipe_iov_copy_from_user(offset + addr, iov,
544 ops->unmap(pipe, buf, addr);
565 if (!pipe->readers) {
566 send_sig(SIGPIPE, current, 0);
572 if (bufs < pipe->buffers) {
573 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
574 struct pipe_buffer *buf = pipe->bufs + newbuf;
575 struct page *page = pipe->tmp_page;
577 int error, atomic = 1;
580 page = alloc_page(GFP_HIGHUSER);
581 if (unlikely(!page)) {
582 ret = ret ? : -ENOMEM;
585 pipe->tmp_page = page;
587 /* Always wake up, even if the copy fails. Otherwise
588 * we lock up (O_NONBLOCK-)readers that sleep due to
590 * FIXME! Is this really true?
594 if (chars > total_len)
597 iov_fault_in_pages_read(iov, chars);
600 src = kmap_atomic(page);
604 error = pipe_iov_copy_from_user(src, iov, chars,
611 if (unlikely(error)) {
622 /* Insert it into the buffer array */
624 buf->ops = &anon_pipe_buf_ops;
628 if (is_packetized(filp)) {
629 buf->ops = &packet_pipe_buf_ops;
630 buf->flags = PIPE_BUF_FLAG_PACKET;
632 pipe->nrbufs = ++bufs;
633 pipe->tmp_page = NULL;
639 if (bufs < pipe->buffers)
641 if (filp->f_flags & O_NONBLOCK) {
646 if (signal_pending(current)) {
652 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
653 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
656 pipe->waiting_writers++;
658 pipe->waiting_writers--;
663 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLRDNORM);
664 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
666 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
667 int err = file_update_time(filp);
670 sb_end_write(file_inode(filp)->i_sb);
675 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
677 struct pipe_inode_info *pipe = filp->private_data;
678 int count, buf, nrbufs;
685 nrbufs = pipe->nrbufs;
686 while (--nrbufs >= 0) {
687 count += pipe->bufs[buf].len;
688 buf = (buf+1) & (pipe->buffers - 1);
692 return put_user(count, (int __user *)arg);
698 /* No kernel lock held - fine */
700 pipe_poll(struct file *filp, poll_table *wait)
703 struct pipe_inode_info *pipe = filp->private_data;
706 poll_wait(filp, &pipe->wait, wait);
708 /* Reading only -- no need for acquiring the semaphore. */
709 nrbufs = pipe->nrbufs;
711 if (filp->f_mode & FMODE_READ) {
712 mask = (nrbufs > 0) ? POLLIN | POLLRDNORM : 0;
713 if (!pipe->writers && filp->f_version != pipe->w_counter)
717 if (filp->f_mode & FMODE_WRITE) {
718 mask |= (nrbufs < pipe->buffers) ? POLLOUT | POLLWRNORM : 0;
720 * Most Unices do not set POLLERR for FIFOs but on Linux they
721 * behave exactly like pipes for poll().
730 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
734 spin_lock(&inode->i_lock);
735 if (!--pipe->files) {
736 inode->i_pipe = NULL;
739 spin_unlock(&inode->i_lock);
742 free_pipe_info(pipe);
746 pipe_release(struct inode *inode, struct file *file)
748 struct pipe_inode_info *pipe = file->private_data;
751 if (file->f_mode & FMODE_READ)
753 if (file->f_mode & FMODE_WRITE)
756 if (pipe->readers || pipe->writers) {
757 wake_up_interruptible_sync_poll(&pipe->wait, POLLIN | POLLOUT | POLLRDNORM | POLLWRNORM | POLLERR | POLLHUP);
758 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
759 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
763 put_pipe_info(inode, pipe);
768 pipe_fasync(int fd, struct file *filp, int on)
770 struct pipe_inode_info *pipe = filp->private_data;
774 if (filp->f_mode & FMODE_READ)
775 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
776 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
777 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
778 if (retval < 0 && (filp->f_mode & FMODE_READ))
779 /* this can happen only if on == T */
780 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
786 struct pipe_inode_info *alloc_pipe_info(void)
788 struct pipe_inode_info *pipe;
790 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL);
792 pipe->bufs = kzalloc(sizeof(struct pipe_buffer) * PIPE_DEF_BUFFERS, GFP_KERNEL);
794 init_waitqueue_head(&pipe->wait);
795 pipe->r_counter = pipe->w_counter = 1;
796 pipe->buffers = PIPE_DEF_BUFFERS;
797 mutex_init(&pipe->mutex);
806 void free_pipe_info(struct pipe_inode_info *pipe)
810 for (i = 0; i < pipe->buffers; i++) {
811 struct pipe_buffer *buf = pipe->bufs + i;
813 buf->ops->release(pipe, buf);
816 __free_page(pipe->tmp_page);
821 static struct vfsmount *pipe_mnt __read_mostly;
824 * pipefs_dname() is called from d_path().
826 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
828 return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
829 dentry->d_inode->i_ino);
832 static const struct dentry_operations pipefs_dentry_operations = {
833 .d_dname = pipefs_dname,
836 static struct inode * get_pipe_inode(void)
838 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
839 struct pipe_inode_info *pipe;
844 inode->i_ino = get_next_ino();
846 pipe = alloc_pipe_info();
850 inode->i_pipe = pipe;
852 pipe->readers = pipe->writers = 1;
853 inode->i_fop = &pipefifo_fops;
856 * Mark the inode dirty from the very beginning,
857 * that way it will never be moved to the dirty
858 * list because "mark_inode_dirty()" will think
859 * that it already _is_ on the dirty list.
861 inode->i_state = I_DIRTY;
862 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
863 inode->i_uid = current_fsuid();
864 inode->i_gid = current_fsgid();
865 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
876 int create_pipe_files(struct file **res, int flags)
879 struct inode *inode = get_pipe_inode();
882 static struct qstr name = { .name = "" };
888 path.dentry = d_alloc_pseudo(pipe_mnt->mnt_sb, &name);
891 path.mnt = mntget(pipe_mnt);
893 d_instantiate(path.dentry, inode);
896 f = alloc_file(&path, FMODE_WRITE, &pipefifo_fops);
900 f->f_flags = O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT));
901 f->private_data = inode->i_pipe;
903 res[0] = alloc_file(&path, FMODE_READ, &pipefifo_fops);
908 res[0]->private_data = inode->i_pipe;
909 res[0]->f_flags = O_RDONLY | (flags & O_NONBLOCK);
916 free_pipe_info(inode->i_pipe);
921 free_pipe_info(inode->i_pipe);
926 static int __do_pipe_flags(int *fd, struct file **files, int flags)
931 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
934 error = create_pipe_files(files, flags);
938 error = get_unused_fd_flags(flags);
943 error = get_unused_fd_flags(flags);
948 audit_fd_pair(fdr, fdw);
961 int do_pipe_flags(int *fd, int flags)
963 struct file *files[2];
964 int error = __do_pipe_flags(fd, files, flags);
966 fd_install(fd[0], files[0]);
967 fd_install(fd[1], files[1]);
973 * sys_pipe() is the normal C calling standard for creating
974 * a pipe. It's not the way Unix traditionally does this, though.
976 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
978 struct file *files[2];
982 error = __do_pipe_flags(fd, files, flags);
984 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
987 put_unused_fd(fd[0]);
988 put_unused_fd(fd[1]);
991 fd_install(fd[0], files[0]);
992 fd_install(fd[1], files[1]);
998 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1000 return sys_pipe2(fildes, 0);
1003 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1007 while (cur == *cnt) {
1009 if (signal_pending(current))
1012 return cur == *cnt ? -ERESTARTSYS : 0;
1015 static void wake_up_partner(struct pipe_inode_info *pipe)
1017 wake_up_interruptible(&pipe->wait);
1020 static int fifo_open(struct inode *inode, struct file *filp)
1022 struct pipe_inode_info *pipe;
1023 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1026 filp->f_version = 0;
1028 spin_lock(&inode->i_lock);
1029 if (inode->i_pipe) {
1030 pipe = inode->i_pipe;
1032 spin_unlock(&inode->i_lock);
1034 spin_unlock(&inode->i_lock);
1035 pipe = alloc_pipe_info();
1039 spin_lock(&inode->i_lock);
1040 if (unlikely(inode->i_pipe)) {
1041 inode->i_pipe->files++;
1042 spin_unlock(&inode->i_lock);
1043 free_pipe_info(pipe);
1044 pipe = inode->i_pipe;
1046 inode->i_pipe = pipe;
1047 spin_unlock(&inode->i_lock);
1050 filp->private_data = pipe;
1051 /* OK, we have a pipe and it's pinned down */
1055 /* We can only do regular read/write on fifos */
1056 filp->f_mode &= (FMODE_READ | FMODE_WRITE);
1058 switch (filp->f_mode) {
1062 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1063 * opened, even when there is no process writing the FIFO.
1066 if (pipe->readers++ == 0)
1067 wake_up_partner(pipe);
1069 if (!is_pipe && !pipe->writers) {
1070 if ((filp->f_flags & O_NONBLOCK)) {
1071 /* suppress POLLHUP until we have
1073 filp->f_version = pipe->w_counter;
1075 if (wait_for_partner(pipe, &pipe->w_counter))
1084 * POSIX.1 says that O_NONBLOCK means return -1 with
1085 * errno=ENXIO when there is no process reading the FIFO.
1088 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1092 if (!pipe->writers++)
1093 wake_up_partner(pipe);
1095 if (!is_pipe && !pipe->readers) {
1096 if (wait_for_partner(pipe, &pipe->r_counter))
1101 case FMODE_READ | FMODE_WRITE:
1104 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1105 * This implementation will NEVER block on a O_RDWR open, since
1106 * the process can at least talk to itself.
1113 if (pipe->readers == 1 || pipe->writers == 1)
1114 wake_up_partner(pipe);
1123 __pipe_unlock(pipe);
1127 if (!--pipe->readers)
1128 wake_up_interruptible(&pipe->wait);
1133 if (!--pipe->writers)
1134 wake_up_interruptible(&pipe->wait);
1139 __pipe_unlock(pipe);
1141 put_pipe_info(inode, pipe);
1145 const struct file_operations pipefifo_fops = {
1147 .llseek = no_llseek,
1148 .read = do_sync_read,
1149 .aio_read = pipe_read,
1150 .write = do_sync_write,
1151 .aio_write = pipe_write,
1153 .unlocked_ioctl = pipe_ioctl,
1154 .release = pipe_release,
1155 .fasync = pipe_fasync,
1159 * Allocate a new array of pipe buffers and copy the info over. Returns the
1160 * pipe size if successful, or return -ERROR on error.
1162 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long nr_pages)
1164 struct pipe_buffer *bufs;
1167 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1168 * expect a lot of shrink+grow operations, just free and allocate
1169 * again like we would do for growing. If the pipe currently
1170 * contains more buffers than arg, then return busy.
1172 if (nr_pages < pipe->nrbufs)
1175 bufs = kcalloc(nr_pages, sizeof(*bufs), GFP_KERNEL | __GFP_NOWARN);
1176 if (unlikely(!bufs))
1180 * The pipe array wraps around, so just start the new one at zero
1181 * and adjust the indexes.
1187 tail = pipe->curbuf + pipe->nrbufs;
1188 if (tail < pipe->buffers)
1191 tail &= (pipe->buffers - 1);
1193 head = pipe->nrbufs - tail;
1195 memcpy(bufs, pipe->bufs + pipe->curbuf, head * sizeof(struct pipe_buffer));
1197 memcpy(bufs + head, pipe->bufs, tail * sizeof(struct pipe_buffer));
1203 pipe->buffers = nr_pages;
1204 return nr_pages * PAGE_SIZE;
1208 * Currently we rely on the pipe array holding a power-of-2 number
1211 static inline unsigned int round_pipe_size(unsigned int size)
1213 unsigned long nr_pages;
1215 nr_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1216 return roundup_pow_of_two(nr_pages) << PAGE_SHIFT;
1220 * This should work even if CONFIG_PROC_FS isn't set, as proc_dointvec_minmax
1221 * will return an error.
1223 int pipe_proc_fn(struct ctl_table *table, int write, void __user *buf,
1224 size_t *lenp, loff_t *ppos)
1228 ret = proc_dointvec_minmax(table, write, buf, lenp, ppos);
1229 if (ret < 0 || !write)
1232 pipe_max_size = round_pipe_size(pipe_max_size);
1237 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1238 * location, so checking ->i_pipe is not enough to verify that this is a
1241 struct pipe_inode_info *get_pipe_info(struct file *file)
1243 return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1246 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1248 struct pipe_inode_info *pipe;
1251 pipe = get_pipe_info(file);
1258 case F_SETPIPE_SZ: {
1259 unsigned int size, nr_pages;
1261 size = round_pipe_size(arg);
1262 nr_pages = size >> PAGE_SHIFT;
1268 if (!capable(CAP_SYS_RESOURCE) && size > pipe_max_size) {
1272 ret = pipe_set_size(pipe, nr_pages);
1276 ret = pipe->buffers * PAGE_SIZE;
1284 __pipe_unlock(pipe);
1288 static const struct super_operations pipefs_ops = {
1289 .destroy_inode = free_inode_nonrcu,
1290 .statfs = simple_statfs,
1294 * pipefs should _never_ be mounted by userland - too much of security hassle,
1295 * no real gain from having the whole whorehouse mounted. So we don't need
1296 * any operations on the root directory. However, we need a non-trivial
1297 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1299 static struct dentry *pipefs_mount(struct file_system_type *fs_type,
1300 int flags, const char *dev_name, void *data)
1302 return mount_pseudo(fs_type, "pipe:", &pipefs_ops,
1303 &pipefs_dentry_operations, PIPEFS_MAGIC);
1306 static struct file_system_type pipe_fs_type = {
1308 .mount = pipefs_mount,
1309 .kill_sb = kill_anon_super,
1312 static int __init init_pipe_fs(void)
1314 int err = register_filesystem(&pipe_fs_type);
1317 pipe_mnt = kern_mount(&pipe_fs_type);
1318 if (IS_ERR(pipe_mnt)) {
1319 err = PTR_ERR(pipe_mnt);
1320 unregister_filesystem(&pipe_fs_type);
1326 fs_initcall(init_pipe_fs);