blk-cgroup: pass a gendisk to blkg_destroy_all
[platform/kernel/linux-starfive.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81         if (pipe->files)
82                 mutex_lock_nested(&pipe->mutex, subclass);
83 }
84
85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87         /*
88          * pipe_lock() nests non-pipe inode locks (for writing to a file)
89          */
90         pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93
94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96         if (pipe->files)
97                 mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108         mutex_unlock(&pipe->mutex);
109 }
110
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112                       struct pipe_inode_info *pipe2)
113 {
114         BUG_ON(pipe1 == pipe2);
115
116         if (pipe1 < pipe2) {
117                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119         } else {
120                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122         }
123 }
124
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126                                   struct pipe_buffer *buf)
127 {
128         struct page *page = buf->page;
129
130         /*
131          * If nobody else uses this page, and we don't already have a
132          * temporary page, let's keep track of it as a one-deep
133          * allocation cache. (Otherwise just release our reference to it)
134          */
135         if (page_count(page) == 1 && !pipe->tmp_page)
136                 pipe->tmp_page = page;
137         else
138                 put_page(page);
139 }
140
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142                 struct pipe_buffer *buf)
143 {
144         struct page *page = buf->page;
145
146         if (page_count(page) != 1)
147                 return false;
148         memcg_kmem_uncharge_page(page, 0);
149         __SetPageLocked(page);
150         return true;
151 }
152
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:       the pipe that the buffer belongs to
156  * @buf:        the buffer to attempt to steal
157  *
158  * Description:
159  *      This function attempts to steal the &struct page attached to
160  *      @buf. If successful, this function returns 0 and returns with
161  *      the page locked. The caller may then reuse the page for whatever
162  *      he wishes; the typical use is insertion into a different file
163  *      page cache.
164  */
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166                 struct pipe_buffer *buf)
167 {
168         struct page *page = buf->page;
169
170         /*
171          * A reference of one is golden, that means that the owner of this
172          * page is the only one holding a reference to it. lock the page
173          * and return OK.
174          */
175         if (page_count(page) == 1) {
176                 lock_page(page);
177                 return true;
178         }
179         return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:       the pipe that the buffer belongs to
186  * @buf:        the buffer to get a reference to
187  *
188  * Description:
189  *      This function grabs an extra reference to @buf. It's used in
190  *      the tee() system call, when we duplicate the buffers in one
191  *      pipe into another.
192  */
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195         return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:       the pipe that the buffer belongs to
202  * @buf:        the buffer to put a reference to
203  *
204  * Description:
205  *      This function releases a reference to @buf.
206  */
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208                               struct pipe_buffer *buf)
209 {
210         put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215         .release        = anon_pipe_buf_release,
216         .try_steal      = anon_pipe_buf_try_steal,
217         .get            = generic_pipe_buf_get,
218 };
219
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223         unsigned int head = READ_ONCE(pipe->head);
224         unsigned int tail = READ_ONCE(pipe->tail);
225         unsigned int writers = READ_ONCE(pipe->writers);
226
227         return !pipe_empty(head, tail) || !writers;
228 }
229
230 static ssize_t
231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233         size_t total_len = iov_iter_count(to);
234         struct file *filp = iocb->ki_filp;
235         struct pipe_inode_info *pipe = filp->private_data;
236         bool was_full, wake_next_reader = false;
237         ssize_t ret;
238
239         /* Null read succeeds. */
240         if (unlikely(total_len == 0))
241                 return 0;
242
243         ret = 0;
244         __pipe_lock(pipe);
245
246         /*
247          * We only wake up writers if the pipe was full when we started
248          * reading in order to avoid unnecessary wakeups.
249          *
250          * But when we do wake up writers, we do so using a sync wakeup
251          * (WF_SYNC), because we want them to get going and generate more
252          * data for us.
253          */
254         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255         for (;;) {
256                 /* Read ->head with a barrier vs post_one_notification() */
257                 unsigned int head = smp_load_acquire(&pipe->head);
258                 unsigned int tail = pipe->tail;
259                 unsigned int mask = pipe->ring_size - 1;
260
261 #ifdef CONFIG_WATCH_QUEUE
262                 if (pipe->note_loss) {
263                         struct watch_notification n;
264
265                         if (total_len < 8) {
266                                 if (ret == 0)
267                                         ret = -ENOBUFS;
268                                 break;
269                         }
270
271                         n.type = WATCH_TYPE_META;
272                         n.subtype = WATCH_META_LOSS_NOTIFICATION;
273                         n.info = watch_sizeof(n);
274                         if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275                                 if (ret == 0)
276                                         ret = -EFAULT;
277                                 break;
278                         }
279                         ret += sizeof(n);
280                         total_len -= sizeof(n);
281                         pipe->note_loss = false;
282                 }
283 #endif
284
285                 if (!pipe_empty(head, tail)) {
286                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287                         size_t chars = buf->len;
288                         size_t written;
289                         int error;
290
291                         if (chars > total_len) {
292                                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293                                         if (ret == 0)
294                                                 ret = -ENOBUFS;
295                                         break;
296                                 }
297                                 chars = total_len;
298                         }
299
300                         error = pipe_buf_confirm(pipe, buf);
301                         if (error) {
302                                 if (!ret)
303                                         ret = error;
304                                 break;
305                         }
306
307                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308                         if (unlikely(written < chars)) {
309                                 if (!ret)
310                                         ret = -EFAULT;
311                                 break;
312                         }
313                         ret += chars;
314                         buf->offset += chars;
315                         buf->len -= chars;
316
317                         /* Was it a packet buffer? Clean up and exit */
318                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319                                 total_len = chars;
320                                 buf->len = 0;
321                         }
322
323                         if (!buf->len) {
324                                 pipe_buf_release(pipe, buf);
325                                 spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327                                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328                                         pipe->note_loss = true;
329 #endif
330                                 tail++;
331                                 pipe->tail = tail;
332                                 spin_unlock_irq(&pipe->rd_wait.lock);
333                         }
334                         total_len -= chars;
335                         if (!total_len)
336                                 break;  /* common path: read succeeded */
337                         if (!pipe_empty(head, tail))    /* More to do? */
338                                 continue;
339                 }
340
341                 if (!pipe->writers)
342                         break;
343                 if (ret)
344                         break;
345                 if (filp->f_flags & O_NONBLOCK) {
346                         ret = -EAGAIN;
347                         break;
348                 }
349                 __pipe_unlock(pipe);
350
351                 /*
352                  * We only get here if we didn't actually read anything.
353                  *
354                  * However, we could have seen (and removed) a zero-sized
355                  * pipe buffer, and might have made space in the buffers
356                  * that way.
357                  *
358                  * You can't make zero-sized pipe buffers by doing an empty
359                  * write (not even in packet mode), but they can happen if
360                  * the writer gets an EFAULT when trying to fill a buffer
361                  * that already got allocated and inserted in the buffer
362                  * array.
363                  *
364                  * So we still need to wake up any pending writers in the
365                  * _very_ unlikely case that the pipe was full, but we got
366                  * no data.
367                  */
368                 if (unlikely(was_full))
369                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
370                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371
372                 /*
373                  * But because we didn't read anything, at this point we can
374                  * just return directly with -ERESTARTSYS if we're interrupted,
375                  * since we've done any required wakeups and there's no need
376                  * to mark anything accessed. And we've dropped the lock.
377                  */
378                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
379                         return -ERESTARTSYS;
380
381                 __pipe_lock(pipe);
382                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
383                 wake_next_reader = true;
384         }
385         if (pipe_empty(pipe->head, pipe->tail))
386                 wake_next_reader = false;
387         __pipe_unlock(pipe);
388
389         if (was_full)
390                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
391         if (wake_next_reader)
392                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
393         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
394         if (ret > 0)
395                 file_accessed(filp);
396         return ret;
397 }
398
399 static inline int is_packetized(struct file *file)
400 {
401         return (file->f_flags & O_DIRECT) != 0;
402 }
403
404 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
405 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
406 {
407         unsigned int head = READ_ONCE(pipe->head);
408         unsigned int tail = READ_ONCE(pipe->tail);
409         unsigned int max_usage = READ_ONCE(pipe->max_usage);
410
411         return !pipe_full(head, tail, max_usage) ||
412                 !READ_ONCE(pipe->readers);
413 }
414
415 static ssize_t
416 pipe_write(struct kiocb *iocb, struct iov_iter *from)
417 {
418         struct file *filp = iocb->ki_filp;
419         struct pipe_inode_info *pipe = filp->private_data;
420         unsigned int head;
421         ssize_t ret = 0;
422         size_t total_len = iov_iter_count(from);
423         ssize_t chars;
424         bool was_empty = false;
425         bool wake_next_writer = false;
426
427         /* Null write succeeds. */
428         if (unlikely(total_len == 0))
429                 return 0;
430
431         __pipe_lock(pipe);
432
433         if (!pipe->readers) {
434                 send_sig(SIGPIPE, current, 0);
435                 ret = -EPIPE;
436                 goto out;
437         }
438
439 #ifdef CONFIG_WATCH_QUEUE
440         if (pipe->watch_queue) {
441                 ret = -EXDEV;
442                 goto out;
443         }
444 #endif
445
446         /*
447          * If it wasn't empty we try to merge new data into
448          * the last buffer.
449          *
450          * That naturally merges small writes, but it also
451          * page-aligns the rest of the writes for large writes
452          * spanning multiple pages.
453          */
454         head = pipe->head;
455         was_empty = pipe_empty(head, pipe->tail);
456         chars = total_len & (PAGE_SIZE-1);
457         if (chars && !was_empty) {
458                 unsigned int mask = pipe->ring_size - 1;
459                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
460                 int offset = buf->offset + buf->len;
461
462                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
463                     offset + chars <= PAGE_SIZE) {
464                         ret = pipe_buf_confirm(pipe, buf);
465                         if (ret)
466                                 goto out;
467
468                         ret = copy_page_from_iter(buf->page, offset, chars, from);
469                         if (unlikely(ret < chars)) {
470                                 ret = -EFAULT;
471                                 goto out;
472                         }
473
474                         buf->len += ret;
475                         if (!iov_iter_count(from))
476                                 goto out;
477                 }
478         }
479
480         for (;;) {
481                 if (!pipe->readers) {
482                         send_sig(SIGPIPE, current, 0);
483                         if (!ret)
484                                 ret = -EPIPE;
485                         break;
486                 }
487
488                 head = pipe->head;
489                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
490                         unsigned int mask = pipe->ring_size - 1;
491                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
492                         struct page *page = pipe->tmp_page;
493                         int copied;
494
495                         if (!page) {
496                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
497                                 if (unlikely(!page)) {
498                                         ret = ret ? : -ENOMEM;
499                                         break;
500                                 }
501                                 pipe->tmp_page = page;
502                         }
503
504                         /* Allocate a slot in the ring in advance and attach an
505                          * empty buffer.  If we fault or otherwise fail to use
506                          * it, either the reader will consume it or it'll still
507                          * be there for the next write.
508                          */
509                         spin_lock_irq(&pipe->rd_wait.lock);
510
511                         head = pipe->head;
512                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
513                                 spin_unlock_irq(&pipe->rd_wait.lock);
514                                 continue;
515                         }
516
517                         pipe->head = head + 1;
518                         spin_unlock_irq(&pipe->rd_wait.lock);
519
520                         /* Insert it into the buffer array */
521                         buf = &pipe->bufs[head & mask];
522                         buf->page = page;
523                         buf->ops = &anon_pipe_buf_ops;
524                         buf->offset = 0;
525                         buf->len = 0;
526                         if (is_packetized(filp))
527                                 buf->flags = PIPE_BUF_FLAG_PACKET;
528                         else
529                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
530                         pipe->tmp_page = NULL;
531
532                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
533                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
534                                 if (!ret)
535                                         ret = -EFAULT;
536                                 break;
537                         }
538                         ret += copied;
539                         buf->offset = 0;
540                         buf->len = copied;
541
542                         if (!iov_iter_count(from))
543                                 break;
544                 }
545
546                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
547                         continue;
548
549                 /* Wait for buffer space to become available. */
550                 if (filp->f_flags & O_NONBLOCK) {
551                         if (!ret)
552                                 ret = -EAGAIN;
553                         break;
554                 }
555                 if (signal_pending(current)) {
556                         if (!ret)
557                                 ret = -ERESTARTSYS;
558                         break;
559                 }
560
561                 /*
562                  * We're going to release the pipe lock and wait for more
563                  * space. We wake up any readers if necessary, and then
564                  * after waiting we need to re-check whether the pipe
565                  * become empty while we dropped the lock.
566                  */
567                 __pipe_unlock(pipe);
568                 if (was_empty)
569                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
570                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
571                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
572                 __pipe_lock(pipe);
573                 was_empty = pipe_empty(pipe->head, pipe->tail);
574                 wake_next_writer = true;
575         }
576 out:
577         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
578                 wake_next_writer = false;
579         __pipe_unlock(pipe);
580
581         /*
582          * If we do do a wakeup event, we do a 'sync' wakeup, because we
583          * want the reader to start processing things asap, rather than
584          * leave the data pending.
585          *
586          * This is particularly important for small writes, because of
587          * how (for example) the GNU make jobserver uses small writes to
588          * wake up pending jobs
589          *
590          * Epoll nonsensically wants a wakeup whether the pipe
591          * was already empty or not.
592          */
593         if (was_empty || pipe->poll_usage)
594                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
595         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
596         if (wake_next_writer)
597                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
598         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
599                 int err = file_update_time(filp);
600                 if (err)
601                         ret = err;
602                 sb_end_write(file_inode(filp)->i_sb);
603         }
604         return ret;
605 }
606
607 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
608 {
609         struct pipe_inode_info *pipe = filp->private_data;
610         unsigned int count, head, tail, mask;
611
612         switch (cmd) {
613         case FIONREAD:
614                 __pipe_lock(pipe);
615                 count = 0;
616                 head = pipe->head;
617                 tail = pipe->tail;
618                 mask = pipe->ring_size - 1;
619
620                 while (tail != head) {
621                         count += pipe->bufs[tail & mask].len;
622                         tail++;
623                 }
624                 __pipe_unlock(pipe);
625
626                 return put_user(count, (int __user *)arg);
627
628 #ifdef CONFIG_WATCH_QUEUE
629         case IOC_WATCH_QUEUE_SET_SIZE: {
630                 int ret;
631                 __pipe_lock(pipe);
632                 ret = watch_queue_set_size(pipe, arg);
633                 __pipe_unlock(pipe);
634                 return ret;
635         }
636
637         case IOC_WATCH_QUEUE_SET_FILTER:
638                 return watch_queue_set_filter(
639                         pipe, (struct watch_notification_filter __user *)arg);
640 #endif
641
642         default:
643                 return -ENOIOCTLCMD;
644         }
645 }
646
647 /* No kernel lock held - fine */
648 static __poll_t
649 pipe_poll(struct file *filp, poll_table *wait)
650 {
651         __poll_t mask;
652         struct pipe_inode_info *pipe = filp->private_data;
653         unsigned int head, tail;
654
655         /* Epoll has some historical nasty semantics, this enables them */
656         WRITE_ONCE(pipe->poll_usage, true);
657
658         /*
659          * Reading pipe state only -- no need for acquiring the semaphore.
660          *
661          * But because this is racy, the code has to add the
662          * entry to the poll table _first_ ..
663          */
664         if (filp->f_mode & FMODE_READ)
665                 poll_wait(filp, &pipe->rd_wait, wait);
666         if (filp->f_mode & FMODE_WRITE)
667                 poll_wait(filp, &pipe->wr_wait, wait);
668
669         /*
670          * .. and only then can you do the racy tests. That way,
671          * if something changes and you got it wrong, the poll
672          * table entry will wake you up and fix it.
673          */
674         head = READ_ONCE(pipe->head);
675         tail = READ_ONCE(pipe->tail);
676
677         mask = 0;
678         if (filp->f_mode & FMODE_READ) {
679                 if (!pipe_empty(head, tail))
680                         mask |= EPOLLIN | EPOLLRDNORM;
681                 if (!pipe->writers && filp->f_version != pipe->w_counter)
682                         mask |= EPOLLHUP;
683         }
684
685         if (filp->f_mode & FMODE_WRITE) {
686                 if (!pipe_full(head, tail, pipe->max_usage))
687                         mask |= EPOLLOUT | EPOLLWRNORM;
688                 /*
689                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
690                  * behave exactly like pipes for poll().
691                  */
692                 if (!pipe->readers)
693                         mask |= EPOLLERR;
694         }
695
696         return mask;
697 }
698
699 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
700 {
701         int kill = 0;
702
703         spin_lock(&inode->i_lock);
704         if (!--pipe->files) {
705                 inode->i_pipe = NULL;
706                 kill = 1;
707         }
708         spin_unlock(&inode->i_lock);
709
710         if (kill)
711                 free_pipe_info(pipe);
712 }
713
714 static int
715 pipe_release(struct inode *inode, struct file *file)
716 {
717         struct pipe_inode_info *pipe = file->private_data;
718
719         __pipe_lock(pipe);
720         if (file->f_mode & FMODE_READ)
721                 pipe->readers--;
722         if (file->f_mode & FMODE_WRITE)
723                 pipe->writers--;
724
725         /* Was that the last reader or writer, but not the other side? */
726         if (!pipe->readers != !pipe->writers) {
727                 wake_up_interruptible_all(&pipe->rd_wait);
728                 wake_up_interruptible_all(&pipe->wr_wait);
729                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
730                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731         }
732         __pipe_unlock(pipe);
733
734         put_pipe_info(inode, pipe);
735         return 0;
736 }
737
738 static int
739 pipe_fasync(int fd, struct file *filp, int on)
740 {
741         struct pipe_inode_info *pipe = filp->private_data;
742         int retval = 0;
743
744         __pipe_lock(pipe);
745         if (filp->f_mode & FMODE_READ)
746                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
747         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
748                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
749                 if (retval < 0 && (filp->f_mode & FMODE_READ))
750                         /* this can happen only if on == T */
751                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
752         }
753         __pipe_unlock(pipe);
754         return retval;
755 }
756
757 unsigned long account_pipe_buffers(struct user_struct *user,
758                                    unsigned long old, unsigned long new)
759 {
760         return atomic_long_add_return(new - old, &user->pipe_bufs);
761 }
762
763 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
764 {
765         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
766
767         return soft_limit && user_bufs > soft_limit;
768 }
769
770 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
771 {
772         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
773
774         return hard_limit && user_bufs > hard_limit;
775 }
776
777 bool pipe_is_unprivileged_user(void)
778 {
779         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
780 }
781
782 struct pipe_inode_info *alloc_pipe_info(void)
783 {
784         struct pipe_inode_info *pipe;
785         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
786         struct user_struct *user = get_current_user();
787         unsigned long user_bufs;
788         unsigned int max_size = READ_ONCE(pipe_max_size);
789
790         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
791         if (pipe == NULL)
792                 goto out_free_uid;
793
794         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
795                 pipe_bufs = max_size >> PAGE_SHIFT;
796
797         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
798
799         if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
800                 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
801                 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
802         }
803
804         if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
805                 goto out_revert_acct;
806
807         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
808                              GFP_KERNEL_ACCOUNT);
809
810         if (pipe->bufs) {
811                 init_waitqueue_head(&pipe->rd_wait);
812                 init_waitqueue_head(&pipe->wr_wait);
813                 pipe->r_counter = pipe->w_counter = 1;
814                 pipe->max_usage = pipe_bufs;
815                 pipe->ring_size = pipe_bufs;
816                 pipe->nr_accounted = pipe_bufs;
817                 pipe->user = user;
818                 mutex_init(&pipe->mutex);
819                 return pipe;
820         }
821
822 out_revert_acct:
823         (void) account_pipe_buffers(user, pipe_bufs, 0);
824         kfree(pipe);
825 out_free_uid:
826         free_uid(user);
827         return NULL;
828 }
829
830 void free_pipe_info(struct pipe_inode_info *pipe)
831 {
832         unsigned int i;
833
834 #ifdef CONFIG_WATCH_QUEUE
835         if (pipe->watch_queue)
836                 watch_queue_clear(pipe->watch_queue);
837 #endif
838
839         (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
840         free_uid(pipe->user);
841         for (i = 0; i < pipe->ring_size; i++) {
842                 struct pipe_buffer *buf = pipe->bufs + i;
843                 if (buf->ops)
844                         pipe_buf_release(pipe, buf);
845         }
846 #ifdef CONFIG_WATCH_QUEUE
847         if (pipe->watch_queue)
848                 put_watch_queue(pipe->watch_queue);
849 #endif
850         if (pipe->tmp_page)
851                 __free_page(pipe->tmp_page);
852         kfree(pipe->bufs);
853         kfree(pipe);
854 }
855
856 static struct vfsmount *pipe_mnt __read_mostly;
857
858 /*
859  * pipefs_dname() is called from d_path().
860  */
861 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
862 {
863         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
864                                 d_inode(dentry)->i_ino);
865 }
866
867 static const struct dentry_operations pipefs_dentry_operations = {
868         .d_dname        = pipefs_dname,
869 };
870
871 static struct inode * get_pipe_inode(void)
872 {
873         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
874         struct pipe_inode_info *pipe;
875
876         if (!inode)
877                 goto fail_inode;
878
879         inode->i_ino = get_next_ino();
880
881         pipe = alloc_pipe_info();
882         if (!pipe)
883                 goto fail_iput;
884
885         inode->i_pipe = pipe;
886         pipe->files = 2;
887         pipe->readers = pipe->writers = 1;
888         inode->i_fop = &pipefifo_fops;
889
890         /*
891          * Mark the inode dirty from the very beginning,
892          * that way it will never be moved to the dirty
893          * list because "mark_inode_dirty()" will think
894          * that it already _is_ on the dirty list.
895          */
896         inode->i_state = I_DIRTY;
897         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
898         inode->i_uid = current_fsuid();
899         inode->i_gid = current_fsgid();
900         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
901
902         return inode;
903
904 fail_iput:
905         iput(inode);
906
907 fail_inode:
908         return NULL;
909 }
910
911 int create_pipe_files(struct file **res, int flags)
912 {
913         struct inode *inode = get_pipe_inode();
914         struct file *f;
915         int error;
916
917         if (!inode)
918                 return -ENFILE;
919
920         if (flags & O_NOTIFICATION_PIPE) {
921                 error = watch_queue_init(inode->i_pipe);
922                 if (error) {
923                         free_pipe_info(inode->i_pipe);
924                         iput(inode);
925                         return error;
926                 }
927         }
928
929         f = alloc_file_pseudo(inode, pipe_mnt, "",
930                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
931                                 &pipefifo_fops);
932         if (IS_ERR(f)) {
933                 free_pipe_info(inode->i_pipe);
934                 iput(inode);
935                 return PTR_ERR(f);
936         }
937
938         f->private_data = inode->i_pipe;
939
940         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
941                                   &pipefifo_fops);
942         if (IS_ERR(res[0])) {
943                 put_pipe_info(inode, inode->i_pipe);
944                 fput(f);
945                 return PTR_ERR(res[0]);
946         }
947         res[0]->private_data = inode->i_pipe;
948         res[1] = f;
949         stream_open(inode, res[0]);
950         stream_open(inode, res[1]);
951         return 0;
952 }
953
954 static int __do_pipe_flags(int *fd, struct file **files, int flags)
955 {
956         int error;
957         int fdw, fdr;
958
959         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
960                 return -EINVAL;
961
962         error = create_pipe_files(files, flags);
963         if (error)
964                 return error;
965
966         error = get_unused_fd_flags(flags);
967         if (error < 0)
968                 goto err_read_pipe;
969         fdr = error;
970
971         error = get_unused_fd_flags(flags);
972         if (error < 0)
973                 goto err_fdr;
974         fdw = error;
975
976         audit_fd_pair(fdr, fdw);
977         fd[0] = fdr;
978         fd[1] = fdw;
979         return 0;
980
981  err_fdr:
982         put_unused_fd(fdr);
983  err_read_pipe:
984         fput(files[0]);
985         fput(files[1]);
986         return error;
987 }
988
989 int do_pipe_flags(int *fd, int flags)
990 {
991         struct file *files[2];
992         int error = __do_pipe_flags(fd, files, flags);
993         if (!error) {
994                 fd_install(fd[0], files[0]);
995                 fd_install(fd[1], files[1]);
996         }
997         return error;
998 }
999
1000 /*
1001  * sys_pipe() is the normal C calling standard for creating
1002  * a pipe. It's not the way Unix traditionally does this, though.
1003  */
1004 static int do_pipe2(int __user *fildes, int flags)
1005 {
1006         struct file *files[2];
1007         int fd[2];
1008         int error;
1009
1010         error = __do_pipe_flags(fd, files, flags);
1011         if (!error) {
1012                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1013                         fput(files[0]);
1014                         fput(files[1]);
1015                         put_unused_fd(fd[0]);
1016                         put_unused_fd(fd[1]);
1017                         error = -EFAULT;
1018                 } else {
1019                         fd_install(fd[0], files[0]);
1020                         fd_install(fd[1], files[1]);
1021                 }
1022         }
1023         return error;
1024 }
1025
1026 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1027 {
1028         return do_pipe2(fildes, flags);
1029 }
1030
1031 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1032 {
1033         return do_pipe2(fildes, 0);
1034 }
1035
1036 /*
1037  * This is the stupid "wait for pipe to be readable or writable"
1038  * model.
1039  *
1040  * See pipe_read/write() for the proper kind of exclusive wait,
1041  * but that requires that we wake up any other readers/writers
1042  * if we then do not end up reading everything (ie the whole
1043  * "wake_next_reader/writer" logic in pipe_read/write()).
1044  */
1045 void pipe_wait_readable(struct pipe_inode_info *pipe)
1046 {
1047         pipe_unlock(pipe);
1048         wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1049         pipe_lock(pipe);
1050 }
1051
1052 void pipe_wait_writable(struct pipe_inode_info *pipe)
1053 {
1054         pipe_unlock(pipe);
1055         wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1056         pipe_lock(pipe);
1057 }
1058
1059 /*
1060  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1061  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1062  * race with the count check and waitqueue prep.
1063  *
1064  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1065  * then check the condition you're waiting for, and only then sleep. But
1066  * because of the pipe lock, we can check the condition before being on
1067  * the wait queue.
1068  *
1069  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1070  */
1071 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1072 {
1073         DEFINE_WAIT(rdwait);
1074         int cur = *cnt;
1075
1076         while (cur == *cnt) {
1077                 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1078                 pipe_unlock(pipe);
1079                 schedule();
1080                 finish_wait(&pipe->rd_wait, &rdwait);
1081                 pipe_lock(pipe);
1082                 if (signal_pending(current))
1083                         break;
1084         }
1085         return cur == *cnt ? -ERESTARTSYS : 0;
1086 }
1087
1088 static void wake_up_partner(struct pipe_inode_info *pipe)
1089 {
1090         wake_up_interruptible_all(&pipe->rd_wait);
1091 }
1092
1093 static int fifo_open(struct inode *inode, struct file *filp)
1094 {
1095         struct pipe_inode_info *pipe;
1096         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1097         int ret;
1098
1099         filp->f_version = 0;
1100
1101         spin_lock(&inode->i_lock);
1102         if (inode->i_pipe) {
1103                 pipe = inode->i_pipe;
1104                 pipe->files++;
1105                 spin_unlock(&inode->i_lock);
1106         } else {
1107                 spin_unlock(&inode->i_lock);
1108                 pipe = alloc_pipe_info();
1109                 if (!pipe)
1110                         return -ENOMEM;
1111                 pipe->files = 1;
1112                 spin_lock(&inode->i_lock);
1113                 if (unlikely(inode->i_pipe)) {
1114                         inode->i_pipe->files++;
1115                         spin_unlock(&inode->i_lock);
1116                         free_pipe_info(pipe);
1117                         pipe = inode->i_pipe;
1118                 } else {
1119                         inode->i_pipe = pipe;
1120                         spin_unlock(&inode->i_lock);
1121                 }
1122         }
1123         filp->private_data = pipe;
1124         /* OK, we have a pipe and it's pinned down */
1125
1126         __pipe_lock(pipe);
1127
1128         /* We can only do regular read/write on fifos */
1129         stream_open(inode, filp);
1130
1131         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1132         case FMODE_READ:
1133         /*
1134          *  O_RDONLY
1135          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1136          *  opened, even when there is no process writing the FIFO.
1137          */
1138                 pipe->r_counter++;
1139                 if (pipe->readers++ == 0)
1140                         wake_up_partner(pipe);
1141
1142                 if (!is_pipe && !pipe->writers) {
1143                         if ((filp->f_flags & O_NONBLOCK)) {
1144                                 /* suppress EPOLLHUP until we have
1145                                  * seen a writer */
1146                                 filp->f_version = pipe->w_counter;
1147                         } else {
1148                                 if (wait_for_partner(pipe, &pipe->w_counter))
1149                                         goto err_rd;
1150                         }
1151                 }
1152                 break;
1153
1154         case FMODE_WRITE:
1155         /*
1156          *  O_WRONLY
1157          *  POSIX.1 says that O_NONBLOCK means return -1 with
1158          *  errno=ENXIO when there is no process reading the FIFO.
1159          */
1160                 ret = -ENXIO;
1161                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1162                         goto err;
1163
1164                 pipe->w_counter++;
1165                 if (!pipe->writers++)
1166                         wake_up_partner(pipe);
1167
1168                 if (!is_pipe && !pipe->readers) {
1169                         if (wait_for_partner(pipe, &pipe->r_counter))
1170                                 goto err_wr;
1171                 }
1172                 break;
1173
1174         case FMODE_READ | FMODE_WRITE:
1175         /*
1176          *  O_RDWR
1177          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1178          *  This implementation will NEVER block on a O_RDWR open, since
1179          *  the process can at least talk to itself.
1180          */
1181
1182                 pipe->readers++;
1183                 pipe->writers++;
1184                 pipe->r_counter++;
1185                 pipe->w_counter++;
1186                 if (pipe->readers == 1 || pipe->writers == 1)
1187                         wake_up_partner(pipe);
1188                 break;
1189
1190         default:
1191                 ret = -EINVAL;
1192                 goto err;
1193         }
1194
1195         /* Ok! */
1196         __pipe_unlock(pipe);
1197         return 0;
1198
1199 err_rd:
1200         if (!--pipe->readers)
1201                 wake_up_interruptible(&pipe->wr_wait);
1202         ret = -ERESTARTSYS;
1203         goto err;
1204
1205 err_wr:
1206         if (!--pipe->writers)
1207                 wake_up_interruptible_all(&pipe->rd_wait);
1208         ret = -ERESTARTSYS;
1209         goto err;
1210
1211 err:
1212         __pipe_unlock(pipe);
1213
1214         put_pipe_info(inode, pipe);
1215         return ret;
1216 }
1217
1218 const struct file_operations pipefifo_fops = {
1219         .open           = fifo_open,
1220         .llseek         = no_llseek,
1221         .read_iter      = pipe_read,
1222         .write_iter     = pipe_write,
1223         .poll           = pipe_poll,
1224         .unlocked_ioctl = pipe_ioctl,
1225         .release        = pipe_release,
1226         .fasync         = pipe_fasync,
1227         .splice_write   = iter_file_splice_write,
1228 };
1229
1230 /*
1231  * Currently we rely on the pipe array holding a power-of-2 number
1232  * of pages. Returns 0 on error.
1233  */
1234 unsigned int round_pipe_size(unsigned long size)
1235 {
1236         if (size > (1U << 31))
1237                 return 0;
1238
1239         /* Minimum pipe size, as required by POSIX */
1240         if (size < PAGE_SIZE)
1241                 return PAGE_SIZE;
1242
1243         return roundup_pow_of_two(size);
1244 }
1245
1246 /*
1247  * Resize the pipe ring to a number of slots.
1248  *
1249  * Note the pipe can be reduced in capacity, but only if the current
1250  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1251  * returned instead.
1252  */
1253 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1254 {
1255         struct pipe_buffer *bufs;
1256         unsigned int head, tail, mask, n;
1257
1258         bufs = kcalloc(nr_slots, sizeof(*bufs),
1259                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1260         if (unlikely(!bufs))
1261                 return -ENOMEM;
1262
1263         spin_lock_irq(&pipe->rd_wait.lock);
1264         mask = pipe->ring_size - 1;
1265         head = pipe->head;
1266         tail = pipe->tail;
1267
1268         n = pipe_occupancy(head, tail);
1269         if (nr_slots < n) {
1270                 spin_unlock_irq(&pipe->rd_wait.lock);
1271                 kfree(bufs);
1272                 return -EBUSY;
1273         }
1274
1275         /*
1276          * The pipe array wraps around, so just start the new one at zero
1277          * and adjust the indices.
1278          */
1279         if (n > 0) {
1280                 unsigned int h = head & mask;
1281                 unsigned int t = tail & mask;
1282                 if (h > t) {
1283                         memcpy(bufs, pipe->bufs + t,
1284                                n * sizeof(struct pipe_buffer));
1285                 } else {
1286                         unsigned int tsize = pipe->ring_size - t;
1287                         if (h > 0)
1288                                 memcpy(bufs + tsize, pipe->bufs,
1289                                        h * sizeof(struct pipe_buffer));
1290                         memcpy(bufs, pipe->bufs + t,
1291                                tsize * sizeof(struct pipe_buffer));
1292                 }
1293         }
1294
1295         head = n;
1296         tail = 0;
1297
1298         kfree(pipe->bufs);
1299         pipe->bufs = bufs;
1300         pipe->ring_size = nr_slots;
1301         if (pipe->max_usage > nr_slots)
1302                 pipe->max_usage = nr_slots;
1303         pipe->tail = tail;
1304         pipe->head = head;
1305
1306         spin_unlock_irq(&pipe->rd_wait.lock);
1307
1308         /* This might have made more room for writers */
1309         wake_up_interruptible(&pipe->wr_wait);
1310         return 0;
1311 }
1312
1313 /*
1314  * Allocate a new array of pipe buffers and copy the info over. Returns the
1315  * pipe size if successful, or return -ERROR on error.
1316  */
1317 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1318 {
1319         unsigned long user_bufs;
1320         unsigned int nr_slots, size;
1321         long ret = 0;
1322
1323 #ifdef CONFIG_WATCH_QUEUE
1324         if (pipe->watch_queue)
1325                 return -EBUSY;
1326 #endif
1327
1328         size = round_pipe_size(arg);
1329         nr_slots = size >> PAGE_SHIFT;
1330
1331         if (!nr_slots)
1332                 return -EINVAL;
1333
1334         /*
1335          * If trying to increase the pipe capacity, check that an
1336          * unprivileged user is not trying to exceed various limits
1337          * (soft limit check here, hard limit check just below).
1338          * Decreasing the pipe capacity is always permitted, even
1339          * if the user is currently over a limit.
1340          */
1341         if (nr_slots > pipe->max_usage &&
1342                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1343                 return -EPERM;
1344
1345         user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1346
1347         if (nr_slots > pipe->max_usage &&
1348                         (too_many_pipe_buffers_hard(user_bufs) ||
1349                          too_many_pipe_buffers_soft(user_bufs)) &&
1350                         pipe_is_unprivileged_user()) {
1351                 ret = -EPERM;
1352                 goto out_revert_acct;
1353         }
1354
1355         ret = pipe_resize_ring(pipe, nr_slots);
1356         if (ret < 0)
1357                 goto out_revert_acct;
1358
1359         pipe->max_usage = nr_slots;
1360         pipe->nr_accounted = nr_slots;
1361         return pipe->max_usage * PAGE_SIZE;
1362
1363 out_revert_acct:
1364         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1365         return ret;
1366 }
1367
1368 /*
1369  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1370  * not enough to verify that this is a pipe.
1371  */
1372 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1373 {
1374         struct pipe_inode_info *pipe = file->private_data;
1375
1376         if (file->f_op != &pipefifo_fops || !pipe)
1377                 return NULL;
1378 #ifdef CONFIG_WATCH_QUEUE
1379         if (for_splice && pipe->watch_queue)
1380                 return NULL;
1381 #endif
1382         return pipe;
1383 }
1384
1385 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1386 {
1387         struct pipe_inode_info *pipe;
1388         long ret;
1389
1390         pipe = get_pipe_info(file, false);
1391         if (!pipe)
1392                 return -EBADF;
1393
1394         __pipe_lock(pipe);
1395
1396         switch (cmd) {
1397         case F_SETPIPE_SZ:
1398                 ret = pipe_set_size(pipe, arg);
1399                 break;
1400         case F_GETPIPE_SZ:
1401                 ret = pipe->max_usage * PAGE_SIZE;
1402                 break;
1403         default:
1404                 ret = -EINVAL;
1405                 break;
1406         }
1407
1408         __pipe_unlock(pipe);
1409         return ret;
1410 }
1411
1412 static const struct super_operations pipefs_ops = {
1413         .destroy_inode = free_inode_nonrcu,
1414         .statfs = simple_statfs,
1415 };
1416
1417 /*
1418  * pipefs should _never_ be mounted by userland - too much of security hassle,
1419  * no real gain from having the whole whorehouse mounted. So we don't need
1420  * any operations on the root directory. However, we need a non-trivial
1421  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1422  */
1423
1424 static int pipefs_init_fs_context(struct fs_context *fc)
1425 {
1426         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1427         if (!ctx)
1428                 return -ENOMEM;
1429         ctx->ops = &pipefs_ops;
1430         ctx->dops = &pipefs_dentry_operations;
1431         return 0;
1432 }
1433
1434 static struct file_system_type pipe_fs_type = {
1435         .name           = "pipefs",
1436         .init_fs_context = pipefs_init_fs_context,
1437         .kill_sb        = kill_anon_super,
1438 };
1439
1440 #ifdef CONFIG_SYSCTL
1441 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1442                                         unsigned int *valp,
1443                                         int write, void *data)
1444 {
1445         if (write) {
1446                 unsigned int val;
1447
1448                 val = round_pipe_size(*lvalp);
1449                 if (val == 0)
1450                         return -EINVAL;
1451
1452                 *valp = val;
1453         } else {
1454                 unsigned int val = *valp;
1455                 *lvalp = (unsigned long) val;
1456         }
1457
1458         return 0;
1459 }
1460
1461 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1462                                 void *buffer, size_t *lenp, loff_t *ppos)
1463 {
1464         return do_proc_douintvec(table, write, buffer, lenp, ppos,
1465                                  do_proc_dopipe_max_size_conv, NULL);
1466 }
1467
1468 static struct ctl_table fs_pipe_sysctls[] = {
1469         {
1470                 .procname       = "pipe-max-size",
1471                 .data           = &pipe_max_size,
1472                 .maxlen         = sizeof(pipe_max_size),
1473                 .mode           = 0644,
1474                 .proc_handler   = proc_dopipe_max_size,
1475         },
1476         {
1477                 .procname       = "pipe-user-pages-hard",
1478                 .data           = &pipe_user_pages_hard,
1479                 .maxlen         = sizeof(pipe_user_pages_hard),
1480                 .mode           = 0644,
1481                 .proc_handler   = proc_doulongvec_minmax,
1482         },
1483         {
1484                 .procname       = "pipe-user-pages-soft",
1485                 .data           = &pipe_user_pages_soft,
1486                 .maxlen         = sizeof(pipe_user_pages_soft),
1487                 .mode           = 0644,
1488                 .proc_handler   = proc_doulongvec_minmax,
1489         },
1490         { }
1491 };
1492 #endif
1493
1494 static int __init init_pipe_fs(void)
1495 {
1496         int err = register_filesystem(&pipe_fs_type);
1497
1498         if (!err) {
1499                 pipe_mnt = kern_mount(&pipe_fs_type);
1500                 if (IS_ERR(pipe_mnt)) {
1501                         err = PTR_ERR(pipe_mnt);
1502                         unregister_filesystem(&pipe_fs_type);
1503                 }
1504         }
1505 #ifdef CONFIG_SYSCTL
1506         register_sysctl_init("fs", fs_pipe_sysctls);
1507 #endif
1508         return err;
1509 }
1510
1511 fs_initcall(init_pipe_fs);