58f236c65beabde14a1d51dca78f7f94bd93b50d
[platform/kernel/linux-rpi.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27
28 #include <linux/uaccess.h>
29 #include <asm/ioctls.h>
30
31 #include "internal.h"
32
33 /*
34  * The max size that a non-root user is allowed to grow the pipe. Can
35  * be set by root in /proc/sys/fs/pipe-max-size
36  */
37 unsigned int pipe_max_size = 1048576;
38
39 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
40  * matches default values.
41  */
42 unsigned long pipe_user_pages_hard;
43 unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
44
45 /*
46  * We use head and tail indices that aren't masked off, except at the point of
47  * dereference, but rather they're allowed to wrap naturally.  This means there
48  * isn't a dead spot in the buffer, but the ring has to be a power of two and
49  * <= 2^31.
50  * -- David Howells 2019-09-23.
51  *
52  * Reads with count = 0 should always return 0.
53  * -- Julian Bradfield 1999-06-07.
54  *
55  * FIFOs and Pipes now generate SIGIO for both readers and writers.
56  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
57  *
58  * pipe_read & write cleanup
59  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
60  */
61
62 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
63 {
64         if (pipe->files)
65                 mutex_lock_nested(&pipe->mutex, subclass);
66 }
67
68 void pipe_lock(struct pipe_inode_info *pipe)
69 {
70         /*
71          * pipe_lock() nests non-pipe inode locks (for writing to a file)
72          */
73         pipe_lock_nested(pipe, I_MUTEX_PARENT);
74 }
75 EXPORT_SYMBOL(pipe_lock);
76
77 void pipe_unlock(struct pipe_inode_info *pipe)
78 {
79         if (pipe->files)
80                 mutex_unlock(&pipe->mutex);
81 }
82 EXPORT_SYMBOL(pipe_unlock);
83
84 static inline void __pipe_lock(struct pipe_inode_info *pipe)
85 {
86         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
87 }
88
89 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
90 {
91         mutex_unlock(&pipe->mutex);
92 }
93
94 void pipe_double_lock(struct pipe_inode_info *pipe1,
95                       struct pipe_inode_info *pipe2)
96 {
97         BUG_ON(pipe1 == pipe2);
98
99         if (pipe1 < pipe2) {
100                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
101                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
102         } else {
103                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
104                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
105         }
106 }
107
108 /* Drop the inode semaphore and wait for a pipe event, atomically */
109 void pipe_wait(struct pipe_inode_info *pipe)
110 {
111         DEFINE_WAIT(wait);
112
113         /*
114          * Pipes are system-local resources, so sleeping on them
115          * is considered a noninteractive wait:
116          */
117         prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
118         pipe_unlock(pipe);
119         schedule();
120         finish_wait(&pipe->wait, &wait);
121         pipe_lock(pipe);
122 }
123
124 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
125                                   struct pipe_buffer *buf)
126 {
127         struct page *page = buf->page;
128
129         /*
130          * If nobody else uses this page, and we don't already have a
131          * temporary page, let's keep track of it as a one-deep
132          * allocation cache. (Otherwise just release our reference to it)
133          */
134         if (page_count(page) == 1 && !pipe->tmp_page)
135                 pipe->tmp_page = page;
136         else
137                 put_page(page);
138 }
139
140 static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
141                                struct pipe_buffer *buf)
142 {
143         struct page *page = buf->page;
144
145         if (page_count(page) == 1) {
146                 memcg_kmem_uncharge(page, 0);
147                 __SetPageLocked(page);
148                 return 0;
149         }
150         return 1;
151 }
152
153 /**
154  * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:       the pipe that the buffer belongs to
156  * @buf:        the buffer to attempt to steal
157  *
158  * Description:
159  *      This function attempts to steal the &struct page attached to
160  *      @buf. If successful, this function returns 0 and returns with
161  *      the page locked. The caller may then reuse the page for whatever
162  *      he wishes; the typical use is insertion into a different file
163  *      page cache.
164  */
165 int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
166                            struct pipe_buffer *buf)
167 {
168         struct page *page = buf->page;
169
170         /*
171          * A reference of one is golden, that means that the owner of this
172          * page is the only one holding a reference to it. lock the page
173          * and return OK.
174          */
175         if (page_count(page) == 1) {
176                 lock_page(page);
177                 return 0;
178         }
179
180         return 1;
181 }
182 EXPORT_SYMBOL(generic_pipe_buf_steal);
183
184 /**
185  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
186  * @pipe:       the pipe that the buffer belongs to
187  * @buf:        the buffer to get a reference to
188  *
189  * Description:
190  *      This function grabs an extra reference to @buf. It's used in
191  *      in the tee() system call, when we duplicate the buffers in one
192  *      pipe into another.
193  */
194 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
195 {
196         return try_get_page(buf->page);
197 }
198 EXPORT_SYMBOL(generic_pipe_buf_get);
199
200 /**
201  * generic_pipe_buf_confirm - verify contents of the pipe buffer
202  * @info:       the pipe that the buffer belongs to
203  * @buf:        the buffer to confirm
204  *
205  * Description:
206  *      This function does nothing, because the generic pipe code uses
207  *      pages that are always good when inserted into the pipe.
208  */
209 int generic_pipe_buf_confirm(struct pipe_inode_info *info,
210                              struct pipe_buffer *buf)
211 {
212         return 0;
213 }
214 EXPORT_SYMBOL(generic_pipe_buf_confirm);
215
216 /**
217  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
218  * @pipe:       the pipe that the buffer belongs to
219  * @buf:        the buffer to put a reference to
220  *
221  * Description:
222  *      This function releases a reference to @buf.
223  */
224 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
225                               struct pipe_buffer *buf)
226 {
227         put_page(buf->page);
228 }
229 EXPORT_SYMBOL(generic_pipe_buf_release);
230
231 /* New data written to a pipe may be appended to a buffer with this type. */
232 static const struct pipe_buf_operations anon_pipe_buf_ops = {
233         .confirm = generic_pipe_buf_confirm,
234         .release = anon_pipe_buf_release,
235         .steal = anon_pipe_buf_steal,
236         .get = generic_pipe_buf_get,
237 };
238
239 static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
240         .confirm = generic_pipe_buf_confirm,
241         .release = anon_pipe_buf_release,
242         .steal = anon_pipe_buf_steal,
243         .get = generic_pipe_buf_get,
244 };
245
246 static const struct pipe_buf_operations packet_pipe_buf_ops = {
247         .confirm = generic_pipe_buf_confirm,
248         .release = anon_pipe_buf_release,
249         .steal = anon_pipe_buf_steal,
250         .get = generic_pipe_buf_get,
251 };
252
253 /**
254  * pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
255  * @buf:        the buffer to mark
256  *
257  * Description:
258  *      This function ensures that no future writes will be merged into the
259  *      given &struct pipe_buffer. This is necessary when multiple pipe buffers
260  *      share the same backing page.
261  */
262 void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
263 {
264         if (buf->ops == &anon_pipe_buf_ops)
265                 buf->ops = &anon_pipe_buf_nomerge_ops;
266 }
267
268 static bool pipe_buf_can_merge(struct pipe_buffer *buf)
269 {
270         return buf->ops == &anon_pipe_buf_ops;
271 }
272
273 static ssize_t
274 pipe_read(struct kiocb *iocb, struct iov_iter *to)
275 {
276         size_t total_len = iov_iter_count(to);
277         struct file *filp = iocb->ki_filp;
278         struct pipe_inode_info *pipe = filp->private_data;
279         bool was_full;
280         ssize_t ret;
281
282         /* Null read succeeds. */
283         if (unlikely(total_len == 0))
284                 return 0;
285
286         ret = 0;
287         __pipe_lock(pipe);
288
289         /*
290          * We only wake up writers if the pipe was full when we started
291          * reading in order to avoid unnecessary wakeups.
292          *
293          * But when we do wake up writers, we do so using a sync wakeup
294          * (WF_SYNC), because we want them to get going and generate more
295          * data for us.
296          */
297         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
298         for (;;) {
299                 unsigned int head = pipe->head;
300                 unsigned int tail = pipe->tail;
301                 unsigned int mask = pipe->ring_size - 1;
302
303                 if (!pipe_empty(head, tail)) {
304                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
305                         size_t chars = buf->len;
306                         size_t written;
307                         int error;
308
309                         if (chars > total_len)
310                                 chars = total_len;
311
312                         error = pipe_buf_confirm(pipe, buf);
313                         if (error) {
314                                 if (!ret)
315                                         ret = error;
316                                 break;
317                         }
318
319                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
320                         if (unlikely(written < chars)) {
321                                 if (!ret)
322                                         ret = -EFAULT;
323                                 break;
324                         }
325                         ret += chars;
326                         buf->offset += chars;
327                         buf->len -= chars;
328
329                         /* Was it a packet buffer? Clean up and exit */
330                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
331                                 total_len = chars;
332                                 buf->len = 0;
333                         }
334
335                         if (!buf->len) {
336                                 pipe_buf_release(pipe, buf);
337                                 spin_lock_irq(&pipe->wait.lock);
338                                 tail++;
339                                 pipe->tail = tail;
340                                 spin_unlock_irq(&pipe->wait.lock);
341                         }
342                         total_len -= chars;
343                         if (!total_len)
344                                 break;  /* common path: read succeeded */
345                         if (!pipe_empty(head, tail))    /* More to do? */
346                                 continue;
347                 }
348
349                 if (!pipe->writers)
350                         break;
351                 if (ret)
352                         break;
353                 if (filp->f_flags & O_NONBLOCK) {
354                         ret = -EAGAIN;
355                         break;
356                 }
357                 if (signal_pending(current)) {
358                         if (!ret)
359                                 ret = -ERESTARTSYS;
360                         break;
361                 }
362                 if (was_full) {
363                         wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
364                         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
365                 }
366                 pipe_wait(pipe);
367                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
368         }
369         __pipe_unlock(pipe);
370
371         if (was_full) {
372                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
373                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
374         }
375         if (ret > 0)
376                 file_accessed(filp);
377         return ret;
378 }
379
380 static inline int is_packetized(struct file *file)
381 {
382         return (file->f_flags & O_DIRECT) != 0;
383 }
384
385 static ssize_t
386 pipe_write(struct kiocb *iocb, struct iov_iter *from)
387 {
388         struct file *filp = iocb->ki_filp;
389         struct pipe_inode_info *pipe = filp->private_data;
390         unsigned int head;
391         ssize_t ret = 0;
392         size_t total_len = iov_iter_count(from);
393         ssize_t chars;
394         bool was_empty = false;
395
396         /* Null write succeeds. */
397         if (unlikely(total_len == 0))
398                 return 0;
399
400         __pipe_lock(pipe);
401
402         if (!pipe->readers) {
403                 send_sig(SIGPIPE, current, 0);
404                 ret = -EPIPE;
405                 goto out;
406         }
407
408         /*
409          * Only wake up if the pipe started out empty, since
410          * otherwise there should be no readers waiting.
411          *
412          * If it wasn't empty we try to merge new data into
413          * the last buffer.
414          *
415          * That naturally merges small writes, but it also
416          * page-aligs the rest of the writes for large writes
417          * spanning multiple pages.
418          */
419         head = pipe->head;
420         was_empty = pipe_empty(head, pipe->tail);
421         chars = total_len & (PAGE_SIZE-1);
422         if (chars && !was_empty) {
423                 unsigned int mask = pipe->ring_size - 1;
424                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
425                 int offset = buf->offset + buf->len;
426
427                 if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
428                         ret = pipe_buf_confirm(pipe, buf);
429                         if (ret)
430                                 goto out;
431
432                         ret = copy_page_from_iter(buf->page, offset, chars, from);
433                         if (unlikely(ret < chars)) {
434                                 ret = -EFAULT;
435                                 goto out;
436                         }
437
438                         buf->len += ret;
439                         if (!iov_iter_count(from))
440                                 goto out;
441                 }
442         }
443
444         for (;;) {
445                 if (!pipe->readers) {
446                         send_sig(SIGPIPE, current, 0);
447                         if (!ret)
448                                 ret = -EPIPE;
449                         break;
450                 }
451
452                 head = pipe->head;
453                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
454                         unsigned int mask = pipe->ring_size - 1;
455                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
456                         struct page *page = pipe->tmp_page;
457                         int copied;
458
459                         if (!page) {
460                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
461                                 if (unlikely(!page)) {
462                                         ret = ret ? : -ENOMEM;
463                                         break;
464                                 }
465                                 pipe->tmp_page = page;
466                         }
467
468                         /* Allocate a slot in the ring in advance and attach an
469                          * empty buffer.  If we fault or otherwise fail to use
470                          * it, either the reader will consume it or it'll still
471                          * be there for the next write.
472                          */
473                         spin_lock_irq(&pipe->wait.lock);
474
475                         head = pipe->head;
476                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
477                                 spin_unlock_irq(&pipe->wait.lock);
478                                 continue;
479                         }
480
481                         pipe->head = head + 1;
482                         spin_unlock_irq(&pipe->wait.lock);
483
484                         /* Insert it into the buffer array */
485                         buf = &pipe->bufs[head & mask];
486                         buf->page = page;
487                         buf->ops = &anon_pipe_buf_ops;
488                         buf->offset = 0;
489                         buf->len = 0;
490                         buf->flags = 0;
491                         if (is_packetized(filp)) {
492                                 buf->ops = &packet_pipe_buf_ops;
493                                 buf->flags = PIPE_BUF_FLAG_PACKET;
494                         }
495                         pipe->tmp_page = NULL;
496
497                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
498                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
499                                 if (!ret)
500                                         ret = -EFAULT;
501                                 break;
502                         }
503                         ret += copied;
504                         buf->offset = 0;
505                         buf->len = copied;
506
507                         if (!iov_iter_count(from))
508                                 break;
509                 }
510
511                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
512                         continue;
513
514                 /* Wait for buffer space to become available. */
515                 if (filp->f_flags & O_NONBLOCK) {
516                         if (!ret)
517                                 ret = -EAGAIN;
518                         break;
519                 }
520                 if (signal_pending(current)) {
521                         if (!ret)
522                                 ret = -ERESTARTSYS;
523                         break;
524                 }
525
526                 /*
527                  * We're going to release the pipe lock and wait for more
528                  * space. We wake up any readers if necessary, and then
529                  * after waiting we need to re-check whether the pipe
530                  * become empty while we dropped the lock.
531                  */
532                 if (was_empty) {
533                         wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
534                         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
535                 }
536                 pipe_wait(pipe);
537
538                 was_empty = pipe_empty(head, pipe->tail);
539         }
540 out:
541         __pipe_unlock(pipe);
542
543         /*
544          * If we do do a wakeup event, we do a 'sync' wakeup, because we
545          * want the reader to start processing things asap, rather than
546          * leave the data pending.
547          *
548          * This is particularly important for small writes, because of
549          * how (for example) the GNU make jobserver uses small writes to
550          * wake up pending jobs
551          */
552         if (was_empty) {
553                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
554                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
555         }
556         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
557                 int err = file_update_time(filp);
558                 if (err)
559                         ret = err;
560                 sb_end_write(file_inode(filp)->i_sb);
561         }
562         return ret;
563 }
564
565 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
566 {
567         struct pipe_inode_info *pipe = filp->private_data;
568         int count, head, tail, mask;
569
570         switch (cmd) {
571                 case FIONREAD:
572                         __pipe_lock(pipe);
573                         count = 0;
574                         head = pipe->head;
575                         tail = pipe->tail;
576                         mask = pipe->ring_size - 1;
577
578                         while (tail != head) {
579                                 count += pipe->bufs[tail & mask].len;
580                                 tail++;
581                         }
582                         __pipe_unlock(pipe);
583
584                         return put_user(count, (int __user *)arg);
585                 default:
586                         return -ENOIOCTLCMD;
587         }
588 }
589
590 /* No kernel lock held - fine */
591 static __poll_t
592 pipe_poll(struct file *filp, poll_table *wait)
593 {
594         __poll_t mask;
595         struct pipe_inode_info *pipe = filp->private_data;
596         unsigned int head, tail;
597
598         /*
599          * Reading only -- no need for acquiring the semaphore.
600          *
601          * But because this is racy, the code has to add the
602          * entry to the poll table _first_ ..
603          */
604         poll_wait(filp, &pipe->wait, wait);
605
606         /*
607          * .. and only then can you do the racy tests. That way,
608          * if something changes and you got it wrong, the poll
609          * table entry will wake you up and fix it.
610          */
611         head = READ_ONCE(pipe->head);
612         tail = READ_ONCE(pipe->tail);
613
614         mask = 0;
615         if (filp->f_mode & FMODE_READ) {
616                 if (!pipe_empty(head, tail))
617                         mask |= EPOLLIN | EPOLLRDNORM;
618                 if (!pipe->writers && filp->f_version != pipe->w_counter)
619                         mask |= EPOLLHUP;
620         }
621
622         if (filp->f_mode & FMODE_WRITE) {
623                 if (!pipe_full(head, tail, pipe->max_usage))
624                         mask |= EPOLLOUT | EPOLLWRNORM;
625                 /*
626                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
627                  * behave exactly like pipes for poll().
628                  */
629                 if (!pipe->readers)
630                         mask |= EPOLLERR;
631         }
632
633         return mask;
634 }
635
636 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
637 {
638         int kill = 0;
639
640         spin_lock(&inode->i_lock);
641         if (!--pipe->files) {
642                 inode->i_pipe = NULL;
643                 kill = 1;
644         }
645         spin_unlock(&inode->i_lock);
646
647         if (kill)
648                 free_pipe_info(pipe);
649 }
650
651 static int
652 pipe_release(struct inode *inode, struct file *file)
653 {
654         struct pipe_inode_info *pipe = file->private_data;
655
656         __pipe_lock(pipe);
657         if (file->f_mode & FMODE_READ)
658                 pipe->readers--;
659         if (file->f_mode & FMODE_WRITE)
660                 pipe->writers--;
661
662         if (pipe->readers || pipe->writers) {
663                 wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
664                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
665                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
666         }
667         __pipe_unlock(pipe);
668
669         put_pipe_info(inode, pipe);
670         return 0;
671 }
672
673 static int
674 pipe_fasync(int fd, struct file *filp, int on)
675 {
676         struct pipe_inode_info *pipe = filp->private_data;
677         int retval = 0;
678
679         __pipe_lock(pipe);
680         if (filp->f_mode & FMODE_READ)
681                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
682         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
683                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
684                 if (retval < 0 && (filp->f_mode & FMODE_READ))
685                         /* this can happen only if on == T */
686                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
687         }
688         __pipe_unlock(pipe);
689         return retval;
690 }
691
692 static unsigned long account_pipe_buffers(struct user_struct *user,
693                                  unsigned long old, unsigned long new)
694 {
695         return atomic_long_add_return(new - old, &user->pipe_bufs);
696 }
697
698 static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
699 {
700         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
701
702         return soft_limit && user_bufs > soft_limit;
703 }
704
705 static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
706 {
707         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
708
709         return hard_limit && user_bufs > hard_limit;
710 }
711
712 static bool is_unprivileged_user(void)
713 {
714         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
715 }
716
717 struct pipe_inode_info *alloc_pipe_info(void)
718 {
719         struct pipe_inode_info *pipe;
720         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
721         struct user_struct *user = get_current_user();
722         unsigned long user_bufs;
723         unsigned int max_size = READ_ONCE(pipe_max_size);
724
725         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
726         if (pipe == NULL)
727                 goto out_free_uid;
728
729         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
730                 pipe_bufs = max_size >> PAGE_SHIFT;
731
732         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
733
734         if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
735                 user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
736                 pipe_bufs = 1;
737         }
738
739         if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
740                 goto out_revert_acct;
741
742         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
743                              GFP_KERNEL_ACCOUNT);
744
745         if (pipe->bufs) {
746                 init_waitqueue_head(&pipe->wait);
747                 pipe->r_counter = pipe->w_counter = 1;
748                 pipe->max_usage = pipe_bufs;
749                 pipe->ring_size = pipe_bufs;
750                 pipe->user = user;
751                 mutex_init(&pipe->mutex);
752                 return pipe;
753         }
754
755 out_revert_acct:
756         (void) account_pipe_buffers(user, pipe_bufs, 0);
757         kfree(pipe);
758 out_free_uid:
759         free_uid(user);
760         return NULL;
761 }
762
763 void free_pipe_info(struct pipe_inode_info *pipe)
764 {
765         int i;
766
767         (void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
768         free_uid(pipe->user);
769         for (i = 0; i < pipe->ring_size; i++) {
770                 struct pipe_buffer *buf = pipe->bufs + i;
771                 if (buf->ops)
772                         pipe_buf_release(pipe, buf);
773         }
774         if (pipe->tmp_page)
775                 __free_page(pipe->tmp_page);
776         kfree(pipe->bufs);
777         kfree(pipe);
778 }
779
780 static struct vfsmount *pipe_mnt __read_mostly;
781
782 /*
783  * pipefs_dname() is called from d_path().
784  */
785 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
786 {
787         return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
788                                 d_inode(dentry)->i_ino);
789 }
790
791 static const struct dentry_operations pipefs_dentry_operations = {
792         .d_dname        = pipefs_dname,
793 };
794
795 static struct inode * get_pipe_inode(void)
796 {
797         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
798         struct pipe_inode_info *pipe;
799
800         if (!inode)
801                 goto fail_inode;
802
803         inode->i_ino = get_next_ino();
804
805         pipe = alloc_pipe_info();
806         if (!pipe)
807                 goto fail_iput;
808
809         inode->i_pipe = pipe;
810         pipe->files = 2;
811         pipe->readers = pipe->writers = 1;
812         inode->i_fop = &pipefifo_fops;
813
814         /*
815          * Mark the inode dirty from the very beginning,
816          * that way it will never be moved to the dirty
817          * list because "mark_inode_dirty()" will think
818          * that it already _is_ on the dirty list.
819          */
820         inode->i_state = I_DIRTY;
821         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
822         inode->i_uid = current_fsuid();
823         inode->i_gid = current_fsgid();
824         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
825
826         return inode;
827
828 fail_iput:
829         iput(inode);
830
831 fail_inode:
832         return NULL;
833 }
834
835 int create_pipe_files(struct file **res, int flags)
836 {
837         struct inode *inode = get_pipe_inode();
838         struct file *f;
839
840         if (!inode)
841                 return -ENFILE;
842
843         f = alloc_file_pseudo(inode, pipe_mnt, "",
844                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
845                                 &pipefifo_fops);
846         if (IS_ERR(f)) {
847                 free_pipe_info(inode->i_pipe);
848                 iput(inode);
849                 return PTR_ERR(f);
850         }
851
852         f->private_data = inode->i_pipe;
853
854         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
855                                   &pipefifo_fops);
856         if (IS_ERR(res[0])) {
857                 put_pipe_info(inode, inode->i_pipe);
858                 fput(f);
859                 return PTR_ERR(res[0]);
860         }
861         res[0]->private_data = inode->i_pipe;
862         res[1] = f;
863         stream_open(inode, res[0]);
864         stream_open(inode, res[1]);
865         return 0;
866 }
867
868 static int __do_pipe_flags(int *fd, struct file **files, int flags)
869 {
870         int error;
871         int fdw, fdr;
872
873         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
874                 return -EINVAL;
875
876         error = create_pipe_files(files, flags);
877         if (error)
878                 return error;
879
880         error = get_unused_fd_flags(flags);
881         if (error < 0)
882                 goto err_read_pipe;
883         fdr = error;
884
885         error = get_unused_fd_flags(flags);
886         if (error < 0)
887                 goto err_fdr;
888         fdw = error;
889
890         audit_fd_pair(fdr, fdw);
891         fd[0] = fdr;
892         fd[1] = fdw;
893         return 0;
894
895  err_fdr:
896         put_unused_fd(fdr);
897  err_read_pipe:
898         fput(files[0]);
899         fput(files[1]);
900         return error;
901 }
902
903 int do_pipe_flags(int *fd, int flags)
904 {
905         struct file *files[2];
906         int error = __do_pipe_flags(fd, files, flags);
907         if (!error) {
908                 fd_install(fd[0], files[0]);
909                 fd_install(fd[1], files[1]);
910         }
911         return error;
912 }
913
914 /*
915  * sys_pipe() is the normal C calling standard for creating
916  * a pipe. It's not the way Unix traditionally does this, though.
917  */
918 static int do_pipe2(int __user *fildes, int flags)
919 {
920         struct file *files[2];
921         int fd[2];
922         int error;
923
924         error = __do_pipe_flags(fd, files, flags);
925         if (!error) {
926                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
927                         fput(files[0]);
928                         fput(files[1]);
929                         put_unused_fd(fd[0]);
930                         put_unused_fd(fd[1]);
931                         error = -EFAULT;
932                 } else {
933                         fd_install(fd[0], files[0]);
934                         fd_install(fd[1], files[1]);
935                 }
936         }
937         return error;
938 }
939
940 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
941 {
942         return do_pipe2(fildes, flags);
943 }
944
945 SYSCALL_DEFINE1(pipe, int __user *, fildes)
946 {
947         return do_pipe2(fildes, 0);
948 }
949
950 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
951 {
952         int cur = *cnt;
953
954         while (cur == *cnt) {
955                 pipe_wait(pipe);
956                 if (signal_pending(current))
957                         break;
958         }
959         return cur == *cnt ? -ERESTARTSYS : 0;
960 }
961
962 static void wake_up_partner(struct pipe_inode_info *pipe)
963 {
964         wake_up_interruptible(&pipe->wait);
965 }
966
967 static int fifo_open(struct inode *inode, struct file *filp)
968 {
969         struct pipe_inode_info *pipe;
970         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
971         int ret;
972
973         filp->f_version = 0;
974
975         spin_lock(&inode->i_lock);
976         if (inode->i_pipe) {
977                 pipe = inode->i_pipe;
978                 pipe->files++;
979                 spin_unlock(&inode->i_lock);
980         } else {
981                 spin_unlock(&inode->i_lock);
982                 pipe = alloc_pipe_info();
983                 if (!pipe)
984                         return -ENOMEM;
985                 pipe->files = 1;
986                 spin_lock(&inode->i_lock);
987                 if (unlikely(inode->i_pipe)) {
988                         inode->i_pipe->files++;
989                         spin_unlock(&inode->i_lock);
990                         free_pipe_info(pipe);
991                         pipe = inode->i_pipe;
992                 } else {
993                         inode->i_pipe = pipe;
994                         spin_unlock(&inode->i_lock);
995                 }
996         }
997         filp->private_data = pipe;
998         /* OK, we have a pipe and it's pinned down */
999
1000         __pipe_lock(pipe);
1001
1002         /* We can only do regular read/write on fifos */
1003         stream_open(inode, filp);
1004
1005         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1006         case FMODE_READ:
1007         /*
1008          *  O_RDONLY
1009          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1010          *  opened, even when there is no process writing the FIFO.
1011          */
1012                 pipe->r_counter++;
1013                 if (pipe->readers++ == 0)
1014                         wake_up_partner(pipe);
1015
1016                 if (!is_pipe && !pipe->writers) {
1017                         if ((filp->f_flags & O_NONBLOCK)) {
1018                                 /* suppress EPOLLHUP until we have
1019                                  * seen a writer */
1020                                 filp->f_version = pipe->w_counter;
1021                         } else {
1022                                 if (wait_for_partner(pipe, &pipe->w_counter))
1023                                         goto err_rd;
1024                         }
1025                 }
1026                 break;
1027
1028         case FMODE_WRITE:
1029         /*
1030          *  O_WRONLY
1031          *  POSIX.1 says that O_NONBLOCK means return -1 with
1032          *  errno=ENXIO when there is no process reading the FIFO.
1033          */
1034                 ret = -ENXIO;
1035                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1036                         goto err;
1037
1038                 pipe->w_counter++;
1039                 if (!pipe->writers++)
1040                         wake_up_partner(pipe);
1041
1042                 if (!is_pipe && !pipe->readers) {
1043                         if (wait_for_partner(pipe, &pipe->r_counter))
1044                                 goto err_wr;
1045                 }
1046                 break;
1047
1048         case FMODE_READ | FMODE_WRITE:
1049         /*
1050          *  O_RDWR
1051          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1052          *  This implementation will NEVER block on a O_RDWR open, since
1053          *  the process can at least talk to itself.
1054          */
1055
1056                 pipe->readers++;
1057                 pipe->writers++;
1058                 pipe->r_counter++;
1059                 pipe->w_counter++;
1060                 if (pipe->readers == 1 || pipe->writers == 1)
1061                         wake_up_partner(pipe);
1062                 break;
1063
1064         default:
1065                 ret = -EINVAL;
1066                 goto err;
1067         }
1068
1069         /* Ok! */
1070         __pipe_unlock(pipe);
1071         return 0;
1072
1073 err_rd:
1074         if (!--pipe->readers)
1075                 wake_up_interruptible(&pipe->wait);
1076         ret = -ERESTARTSYS;
1077         goto err;
1078
1079 err_wr:
1080         if (!--pipe->writers)
1081                 wake_up_interruptible(&pipe->wait);
1082         ret = -ERESTARTSYS;
1083         goto err;
1084
1085 err:
1086         __pipe_unlock(pipe);
1087
1088         put_pipe_info(inode, pipe);
1089         return ret;
1090 }
1091
1092 const struct file_operations pipefifo_fops = {
1093         .open           = fifo_open,
1094         .llseek         = no_llseek,
1095         .read_iter      = pipe_read,
1096         .write_iter     = pipe_write,
1097         .poll           = pipe_poll,
1098         .unlocked_ioctl = pipe_ioctl,
1099         .release        = pipe_release,
1100         .fasync         = pipe_fasync,
1101 };
1102
1103 /*
1104  * Currently we rely on the pipe array holding a power-of-2 number
1105  * of pages. Returns 0 on error.
1106  */
1107 unsigned int round_pipe_size(unsigned long size)
1108 {
1109         if (size > (1U << 31))
1110                 return 0;
1111
1112         /* Minimum pipe size, as required by POSIX */
1113         if (size < PAGE_SIZE)
1114                 return PAGE_SIZE;
1115
1116         return roundup_pow_of_two(size);
1117 }
1118
1119 /*
1120  * Allocate a new array of pipe buffers and copy the info over. Returns the
1121  * pipe size if successful, or return -ERROR on error.
1122  */
1123 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1124 {
1125         struct pipe_buffer *bufs;
1126         unsigned int size, nr_slots, head, tail, mask, n;
1127         unsigned long user_bufs;
1128         long ret = 0;
1129
1130         size = round_pipe_size(arg);
1131         nr_slots = size >> PAGE_SHIFT;
1132
1133         if (!nr_slots)
1134                 return -EINVAL;
1135
1136         /*
1137          * If trying to increase the pipe capacity, check that an
1138          * unprivileged user is not trying to exceed various limits
1139          * (soft limit check here, hard limit check just below).
1140          * Decreasing the pipe capacity is always permitted, even
1141          * if the user is currently over a limit.
1142          */
1143         if (nr_slots > pipe->ring_size &&
1144                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1145                 return -EPERM;
1146
1147         user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
1148
1149         if (nr_slots > pipe->ring_size &&
1150                         (too_many_pipe_buffers_hard(user_bufs) ||
1151                          too_many_pipe_buffers_soft(user_bufs)) &&
1152                         is_unprivileged_user()) {
1153                 ret = -EPERM;
1154                 goto out_revert_acct;
1155         }
1156
1157         /*
1158          * We can shrink the pipe, if arg is greater than the ring occupancy.
1159          * Since we don't expect a lot of shrink+grow operations, just free and
1160          * allocate again like we would do for growing.  If the pipe currently
1161          * contains more buffers than arg, then return busy.
1162          */
1163         mask = pipe->ring_size - 1;
1164         head = pipe->head;
1165         tail = pipe->tail;
1166         n = pipe_occupancy(pipe->head, pipe->tail);
1167         if (nr_slots < n) {
1168                 ret = -EBUSY;
1169                 goto out_revert_acct;
1170         }
1171
1172         bufs = kcalloc(nr_slots, sizeof(*bufs),
1173                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1174         if (unlikely(!bufs)) {
1175                 ret = -ENOMEM;
1176                 goto out_revert_acct;
1177         }
1178
1179         /*
1180          * The pipe array wraps around, so just start the new one at zero
1181          * and adjust the indices.
1182          */
1183         if (n > 0) {
1184                 unsigned int h = head & mask;
1185                 unsigned int t = tail & mask;
1186                 if (h > t) {
1187                         memcpy(bufs, pipe->bufs + t,
1188                                n * sizeof(struct pipe_buffer));
1189                 } else {
1190                         unsigned int tsize = pipe->ring_size - t;
1191                         if (h > 0)
1192                                 memcpy(bufs + tsize, pipe->bufs,
1193                                        h * sizeof(struct pipe_buffer));
1194                         memcpy(bufs, pipe->bufs + t,
1195                                tsize * sizeof(struct pipe_buffer));
1196                 }
1197         }
1198
1199         head = n;
1200         tail = 0;
1201
1202         kfree(pipe->bufs);
1203         pipe->bufs = bufs;
1204         pipe->ring_size = nr_slots;
1205         pipe->max_usage = nr_slots;
1206         pipe->tail = tail;
1207         pipe->head = head;
1208         wake_up_interruptible_all(&pipe->wait);
1209         return pipe->max_usage * PAGE_SIZE;
1210
1211 out_revert_acct:
1212         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
1213         return ret;
1214 }
1215
1216 /*
1217  * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1218  * location, so checking ->i_pipe is not enough to verify that this is a
1219  * pipe.
1220  */
1221 struct pipe_inode_info *get_pipe_info(struct file *file)
1222 {
1223         return file->f_op == &pipefifo_fops ? file->private_data : NULL;
1224 }
1225
1226 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1227 {
1228         struct pipe_inode_info *pipe;
1229         long ret;
1230
1231         pipe = get_pipe_info(file);
1232         if (!pipe)
1233                 return -EBADF;
1234
1235         __pipe_lock(pipe);
1236
1237         switch (cmd) {
1238         case F_SETPIPE_SZ:
1239                 ret = pipe_set_size(pipe, arg);
1240                 break;
1241         case F_GETPIPE_SZ:
1242                 ret = pipe->max_usage * PAGE_SIZE;
1243                 break;
1244         default:
1245                 ret = -EINVAL;
1246                 break;
1247         }
1248
1249         __pipe_unlock(pipe);
1250         return ret;
1251 }
1252
1253 static const struct super_operations pipefs_ops = {
1254         .destroy_inode = free_inode_nonrcu,
1255         .statfs = simple_statfs,
1256 };
1257
1258 /*
1259  * pipefs should _never_ be mounted by userland - too much of security hassle,
1260  * no real gain from having the whole whorehouse mounted. So we don't need
1261  * any operations on the root directory. However, we need a non-trivial
1262  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1263  */
1264
1265 static int pipefs_init_fs_context(struct fs_context *fc)
1266 {
1267         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1268         if (!ctx)
1269                 return -ENOMEM;
1270         ctx->ops = &pipefs_ops;
1271         ctx->dops = &pipefs_dentry_operations;
1272         return 0;
1273 }
1274
1275 static struct file_system_type pipe_fs_type = {
1276         .name           = "pipefs",
1277         .init_fs_context = pipefs_init_fs_context,
1278         .kill_sb        = kill_anon_super,
1279 };
1280
1281 static int __init init_pipe_fs(void)
1282 {
1283         int err = register_filesystem(&pipe_fs_type);
1284
1285         if (!err) {
1286                 pipe_mnt = kern_mount(&pipe_fs_type);
1287                 if (IS_ERR(pipe_mnt)) {
1288                         err = PTR_ERR(pipe_mnt);
1289                         unregister_filesystem(&pipe_fs_type);
1290                 }
1291         }
1292         return err;
1293 }
1294
1295 fs_initcall(init_pipe_fs);