Merge tag 'at24-fixes-for-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18
19 #include <cluster/masklog.h>
20
21 #include "ocfs2.h"
22
23 #include "alloc.h"
24 #include "blockcheck.h"
25 #include "dir.h"
26 #include "dlmglue.h"
27 #include "extent_map.h"
28 #include "heartbeat.h"
29 #include "inode.h"
30 #include "journal.h"
31 #include "localalloc.h"
32 #include "slot_map.h"
33 #include "super.h"
34 #include "sysfile.h"
35 #include "uptodate.h"
36 #include "quota.h"
37 #include "file.h"
38 #include "namei.h"
39
40 #include "buffer_head_io.h"
41 #include "ocfs2_trace.h"
42
43 DEFINE_SPINLOCK(trans_inc_lock);
44
45 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
46
47 static int ocfs2_force_read_journal(struct inode *inode);
48 static int ocfs2_recover_node(struct ocfs2_super *osb,
49                               int node_num, int slot_num);
50 static int __ocfs2_recovery_thread(void *arg);
51 static int ocfs2_commit_cache(struct ocfs2_super *osb);
52 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
53 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
54                                       int dirty, int replayed);
55 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
56                                  int slot_num);
57 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
58                                  int slot,
59                                  enum ocfs2_orphan_reco_type orphan_reco_type);
60 static int ocfs2_commit_thread(void *arg);
61 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
62                                             int slot_num,
63                                             struct ocfs2_dinode *la_dinode,
64                                             struct ocfs2_dinode *tl_dinode,
65                                             struct ocfs2_quota_recovery *qrec,
66                                             enum ocfs2_orphan_reco_type orphan_reco_type);
67
68 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
69 {
70         return __ocfs2_wait_on_mount(osb, 0);
71 }
72
73 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
74 {
75         return __ocfs2_wait_on_mount(osb, 1);
76 }
77
78 /*
79  * This replay_map is to track online/offline slots, so we could recover
80  * offline slots during recovery and mount
81  */
82
83 enum ocfs2_replay_state {
84         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
85         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
86         REPLAY_DONE             /* Replay was already queued */
87 };
88
89 struct ocfs2_replay_map {
90         unsigned int rm_slots;
91         enum ocfs2_replay_state rm_state;
92         unsigned char rm_replay_slots[];
93 };
94
95 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
96 {
97         if (!osb->replay_map)
98                 return;
99
100         /* If we've already queued the replay, we don't have any more to do */
101         if (osb->replay_map->rm_state == REPLAY_DONE)
102                 return;
103
104         osb->replay_map->rm_state = state;
105 }
106
107 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
108 {
109         struct ocfs2_replay_map *replay_map;
110         int i, node_num;
111
112         /* If replay map is already set, we don't do it again */
113         if (osb->replay_map)
114                 return 0;
115
116         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
117                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
118
119         if (!replay_map) {
120                 mlog_errno(-ENOMEM);
121                 return -ENOMEM;
122         }
123
124         spin_lock(&osb->osb_lock);
125
126         replay_map->rm_slots = osb->max_slots;
127         replay_map->rm_state = REPLAY_UNNEEDED;
128
129         /* set rm_replay_slots for offline slot(s) */
130         for (i = 0; i < replay_map->rm_slots; i++) {
131                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
132                         replay_map->rm_replay_slots[i] = 1;
133         }
134
135         osb->replay_map = replay_map;
136         spin_unlock(&osb->osb_lock);
137         return 0;
138 }
139
140 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
141                 enum ocfs2_orphan_reco_type orphan_reco_type)
142 {
143         struct ocfs2_replay_map *replay_map = osb->replay_map;
144         int i;
145
146         if (!replay_map)
147                 return;
148
149         if (replay_map->rm_state != REPLAY_NEEDED)
150                 return;
151
152         for (i = 0; i < replay_map->rm_slots; i++)
153                 if (replay_map->rm_replay_slots[i])
154                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
155                                                         NULL, NULL,
156                                                         orphan_reco_type);
157         replay_map->rm_state = REPLAY_DONE;
158 }
159
160 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
161 {
162         struct ocfs2_replay_map *replay_map = osb->replay_map;
163
164         if (!osb->replay_map)
165                 return;
166
167         kfree(replay_map);
168         osb->replay_map = NULL;
169 }
170
171 int ocfs2_recovery_init(struct ocfs2_super *osb)
172 {
173         struct ocfs2_recovery_map *rm;
174
175         mutex_init(&osb->recovery_lock);
176         osb->disable_recovery = 0;
177         osb->recovery_thread_task = NULL;
178         init_waitqueue_head(&osb->recovery_event);
179
180         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
181                      osb->max_slots * sizeof(unsigned int),
182                      GFP_KERNEL);
183         if (!rm) {
184                 mlog_errno(-ENOMEM);
185                 return -ENOMEM;
186         }
187
188         rm->rm_entries = (unsigned int *)((char *)rm +
189                                           sizeof(struct ocfs2_recovery_map));
190         osb->recovery_map = rm;
191
192         return 0;
193 }
194
195 /* we can't grab the goofy sem lock from inside wait_event, so we use
196  * memory barriers to make sure that we'll see the null task before
197  * being woken up */
198 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
199 {
200         mb();
201         return osb->recovery_thread_task != NULL;
202 }
203
204 void ocfs2_recovery_exit(struct ocfs2_super *osb)
205 {
206         struct ocfs2_recovery_map *rm;
207
208         /* disable any new recovery threads and wait for any currently
209          * running ones to exit. Do this before setting the vol_state. */
210         mutex_lock(&osb->recovery_lock);
211         osb->disable_recovery = 1;
212         mutex_unlock(&osb->recovery_lock);
213         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
214
215         /* At this point, we know that no more recovery threads can be
216          * launched, so wait for any recovery completion work to
217          * complete. */
218         if (osb->ocfs2_wq)
219                 flush_workqueue(osb->ocfs2_wq);
220
221         /*
222          * Now that recovery is shut down, and the osb is about to be
223          * freed,  the osb_lock is not taken here.
224          */
225         rm = osb->recovery_map;
226         /* XXX: Should we bug if there are dirty entries? */
227
228         kfree(rm);
229 }
230
231 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
232                                      unsigned int node_num)
233 {
234         int i;
235         struct ocfs2_recovery_map *rm = osb->recovery_map;
236
237         assert_spin_locked(&osb->osb_lock);
238
239         for (i = 0; i < rm->rm_used; i++) {
240                 if (rm->rm_entries[i] == node_num)
241                         return 1;
242         }
243
244         return 0;
245 }
246
247 /* Behaves like test-and-set.  Returns the previous value */
248 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
249                                   unsigned int node_num)
250 {
251         struct ocfs2_recovery_map *rm = osb->recovery_map;
252
253         spin_lock(&osb->osb_lock);
254         if (__ocfs2_recovery_map_test(osb, node_num)) {
255                 spin_unlock(&osb->osb_lock);
256                 return 1;
257         }
258
259         /* XXX: Can this be exploited? Not from o2dlm... */
260         BUG_ON(rm->rm_used >= osb->max_slots);
261
262         rm->rm_entries[rm->rm_used] = node_num;
263         rm->rm_used++;
264         spin_unlock(&osb->osb_lock);
265
266         return 0;
267 }
268
269 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
270                                      unsigned int node_num)
271 {
272         int i;
273         struct ocfs2_recovery_map *rm = osb->recovery_map;
274
275         spin_lock(&osb->osb_lock);
276
277         for (i = 0; i < rm->rm_used; i++) {
278                 if (rm->rm_entries[i] == node_num)
279                         break;
280         }
281
282         if (i < rm->rm_used) {
283                 /* XXX: be careful with the pointer math */
284                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
285                         (rm->rm_used - i - 1) * sizeof(unsigned int));
286                 rm->rm_used--;
287         }
288
289         spin_unlock(&osb->osb_lock);
290 }
291
292 static int ocfs2_commit_cache(struct ocfs2_super *osb)
293 {
294         int status = 0;
295         unsigned int flushed;
296         struct ocfs2_journal *journal = NULL;
297
298         journal = osb->journal;
299
300         /* Flush all pending commits and checkpoint the journal. */
301         down_write(&journal->j_trans_barrier);
302
303         flushed = atomic_read(&journal->j_num_trans);
304         trace_ocfs2_commit_cache_begin(flushed);
305         if (flushed == 0) {
306                 up_write(&journal->j_trans_barrier);
307                 goto finally;
308         }
309
310         jbd2_journal_lock_updates(journal->j_journal);
311         status = jbd2_journal_flush(journal->j_journal, 0);
312         jbd2_journal_unlock_updates(journal->j_journal);
313         if (status < 0) {
314                 up_write(&journal->j_trans_barrier);
315                 mlog_errno(status);
316                 goto finally;
317         }
318
319         ocfs2_inc_trans_id(journal);
320
321         flushed = atomic_read(&journal->j_num_trans);
322         atomic_set(&journal->j_num_trans, 0);
323         up_write(&journal->j_trans_barrier);
324
325         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
326
327         ocfs2_wake_downconvert_thread(osb);
328         wake_up(&journal->j_checkpointed);
329 finally:
330         return status;
331 }
332
333 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
334 {
335         journal_t *journal = osb->journal->j_journal;
336         handle_t *handle;
337
338         BUG_ON(!osb || !osb->journal->j_journal);
339
340         if (ocfs2_is_hard_readonly(osb))
341                 return ERR_PTR(-EROFS);
342
343         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
344         BUG_ON(max_buffs <= 0);
345
346         /* Nested transaction? Just return the handle... */
347         if (journal_current_handle())
348                 return jbd2_journal_start(journal, max_buffs);
349
350         sb_start_intwrite(osb->sb);
351
352         down_read(&osb->journal->j_trans_barrier);
353
354         handle = jbd2_journal_start(journal, max_buffs);
355         if (IS_ERR(handle)) {
356                 up_read(&osb->journal->j_trans_barrier);
357                 sb_end_intwrite(osb->sb);
358
359                 mlog_errno(PTR_ERR(handle));
360
361                 if (is_journal_aborted(journal)) {
362                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
363                         handle = ERR_PTR(-EROFS);
364                 }
365         } else {
366                 if (!ocfs2_mount_local(osb))
367                         atomic_inc(&(osb->journal->j_num_trans));
368         }
369
370         return handle;
371 }
372
373 int ocfs2_commit_trans(struct ocfs2_super *osb,
374                        handle_t *handle)
375 {
376         int ret, nested;
377         struct ocfs2_journal *journal = osb->journal;
378
379         BUG_ON(!handle);
380
381         nested = handle->h_ref > 1;
382         ret = jbd2_journal_stop(handle);
383         if (ret < 0)
384                 mlog_errno(ret);
385
386         if (!nested) {
387                 up_read(&journal->j_trans_barrier);
388                 sb_end_intwrite(osb->sb);
389         }
390
391         return ret;
392 }
393
394 /*
395  * 'nblocks' is what you want to add to the current transaction.
396  *
397  * This might call jbd2_journal_restart() which will commit dirty buffers
398  * and then restart the transaction. Before calling
399  * ocfs2_extend_trans(), any changed blocks should have been
400  * dirtied. After calling it, all blocks which need to be changed must
401  * go through another set of journal_access/journal_dirty calls.
402  *
403  * WARNING: This will not release any semaphores or disk locks taken
404  * during the transaction, so make sure they were taken *before*
405  * start_trans or we'll have ordering deadlocks.
406  *
407  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
408  * good because transaction ids haven't yet been recorded on the
409  * cluster locks associated with this handle.
410  */
411 int ocfs2_extend_trans(handle_t *handle, int nblocks)
412 {
413         int status, old_nblocks;
414
415         BUG_ON(!handle);
416         BUG_ON(nblocks < 0);
417
418         if (!nblocks)
419                 return 0;
420
421         old_nblocks = jbd2_handle_buffer_credits(handle);
422
423         trace_ocfs2_extend_trans(old_nblocks, nblocks);
424
425 #ifdef CONFIG_OCFS2_DEBUG_FS
426         status = 1;
427 #else
428         status = jbd2_journal_extend(handle, nblocks, 0);
429         if (status < 0) {
430                 mlog_errno(status);
431                 goto bail;
432         }
433 #endif
434
435         if (status > 0) {
436                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
437                 status = jbd2_journal_restart(handle,
438                                               old_nblocks + nblocks);
439                 if (status < 0) {
440                         mlog_errno(status);
441                         goto bail;
442                 }
443         }
444
445         status = 0;
446 bail:
447         return status;
448 }
449
450 /*
451  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
452  * If that fails, restart the transaction & regain write access for the
453  * buffer head which is used for metadata modifications.
454  * Taken from Ext4: extend_or_restart_transaction()
455  */
456 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
457 {
458         int status, old_nblks;
459
460         BUG_ON(!handle);
461
462         old_nblks = jbd2_handle_buffer_credits(handle);
463         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
464
465         if (old_nblks < thresh)
466                 return 0;
467
468         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
469         if (status < 0) {
470                 mlog_errno(status);
471                 goto bail;
472         }
473
474         if (status > 0) {
475                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
476                 if (status < 0)
477                         mlog_errno(status);
478         }
479
480 bail:
481         return status;
482 }
483
484
485 struct ocfs2_triggers {
486         struct jbd2_buffer_trigger_type ot_triggers;
487         int                             ot_offset;
488 };
489
490 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
491 {
492         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
493 }
494
495 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
496                                  struct buffer_head *bh,
497                                  void *data, size_t size)
498 {
499         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
500
501         /*
502          * We aren't guaranteed to have the superblock here, so we
503          * must unconditionally compute the ecc data.
504          * __ocfs2_journal_access() will only set the triggers if
505          * metaecc is enabled.
506          */
507         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
508 }
509
510 /*
511  * Quota blocks have their own trigger because the struct ocfs2_block_check
512  * offset depends on the blocksize.
513  */
514 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
515                                  struct buffer_head *bh,
516                                  void *data, size_t size)
517 {
518         struct ocfs2_disk_dqtrailer *dqt =
519                 ocfs2_block_dqtrailer(size, data);
520
521         /*
522          * We aren't guaranteed to have the superblock here, so we
523          * must unconditionally compute the ecc data.
524          * __ocfs2_journal_access() will only set the triggers if
525          * metaecc is enabled.
526          */
527         ocfs2_block_check_compute(data, size, &dqt->dq_check);
528 }
529
530 /*
531  * Directory blocks also have their own trigger because the
532  * struct ocfs2_block_check offset depends on the blocksize.
533  */
534 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
535                                  struct buffer_head *bh,
536                                  void *data, size_t size)
537 {
538         struct ocfs2_dir_block_trailer *trailer =
539                 ocfs2_dir_trailer_from_size(size, data);
540
541         /*
542          * We aren't guaranteed to have the superblock here, so we
543          * must unconditionally compute the ecc data.
544          * __ocfs2_journal_access() will only set the triggers if
545          * metaecc is enabled.
546          */
547         ocfs2_block_check_compute(data, size, &trailer->db_check);
548 }
549
550 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
551                                 struct buffer_head *bh)
552 {
553         mlog(ML_ERROR,
554              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
555              "bh->b_blocknr = %llu\n",
556              (unsigned long)bh,
557              (unsigned long long)bh->b_blocknr);
558
559         ocfs2_error(bh->b_bdev->bd_super,
560                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
561 }
562
563 static struct ocfs2_triggers di_triggers = {
564         .ot_triggers = {
565                 .t_frozen = ocfs2_frozen_trigger,
566                 .t_abort = ocfs2_abort_trigger,
567         },
568         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
569 };
570
571 static struct ocfs2_triggers eb_triggers = {
572         .ot_triggers = {
573                 .t_frozen = ocfs2_frozen_trigger,
574                 .t_abort = ocfs2_abort_trigger,
575         },
576         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
577 };
578
579 static struct ocfs2_triggers rb_triggers = {
580         .ot_triggers = {
581                 .t_frozen = ocfs2_frozen_trigger,
582                 .t_abort = ocfs2_abort_trigger,
583         },
584         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
585 };
586
587 static struct ocfs2_triggers gd_triggers = {
588         .ot_triggers = {
589                 .t_frozen = ocfs2_frozen_trigger,
590                 .t_abort = ocfs2_abort_trigger,
591         },
592         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
593 };
594
595 static struct ocfs2_triggers db_triggers = {
596         .ot_triggers = {
597                 .t_frozen = ocfs2_db_frozen_trigger,
598                 .t_abort = ocfs2_abort_trigger,
599         },
600 };
601
602 static struct ocfs2_triggers xb_triggers = {
603         .ot_triggers = {
604                 .t_frozen = ocfs2_frozen_trigger,
605                 .t_abort = ocfs2_abort_trigger,
606         },
607         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
608 };
609
610 static struct ocfs2_triggers dq_triggers = {
611         .ot_triggers = {
612                 .t_frozen = ocfs2_dq_frozen_trigger,
613                 .t_abort = ocfs2_abort_trigger,
614         },
615 };
616
617 static struct ocfs2_triggers dr_triggers = {
618         .ot_triggers = {
619                 .t_frozen = ocfs2_frozen_trigger,
620                 .t_abort = ocfs2_abort_trigger,
621         },
622         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
623 };
624
625 static struct ocfs2_triggers dl_triggers = {
626         .ot_triggers = {
627                 .t_frozen = ocfs2_frozen_trigger,
628                 .t_abort = ocfs2_abort_trigger,
629         },
630         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
631 };
632
633 static int __ocfs2_journal_access(handle_t *handle,
634                                   struct ocfs2_caching_info *ci,
635                                   struct buffer_head *bh,
636                                   struct ocfs2_triggers *triggers,
637                                   int type)
638 {
639         int status;
640         struct ocfs2_super *osb =
641                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
642
643         BUG_ON(!ci || !ci->ci_ops);
644         BUG_ON(!handle);
645         BUG_ON(!bh);
646
647         trace_ocfs2_journal_access(
648                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
649                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
650
651         /* we can safely remove this assertion after testing. */
652         if (!buffer_uptodate(bh)) {
653                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
654                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
655                      (unsigned long long)bh->b_blocknr, bh->b_state);
656
657                 lock_buffer(bh);
658                 /*
659                  * A previous transaction with a couple of buffer heads fail
660                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
661                  * For current transaction, the bh is just among those error
662                  * bhs which previous transaction handle. We can't just clear
663                  * its BH_Write_EIO and reuse directly, since other bhs are
664                  * not written to disk yet and that will cause metadata
665                  * inconsistency. So we should set fs read-only to avoid
666                  * further damage.
667                  */
668                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
669                         unlock_buffer(bh);
670                         return ocfs2_error(osb->sb, "A previous attempt to "
671                                         "write this buffer head failed\n");
672                 }
673                 unlock_buffer(bh);
674         }
675
676         /* Set the current transaction information on the ci so
677          * that the locking code knows whether it can drop it's locks
678          * on this ci or not. We're protected from the commit
679          * thread updating the current transaction id until
680          * ocfs2_commit_trans() because ocfs2_start_trans() took
681          * j_trans_barrier for us. */
682         ocfs2_set_ci_lock_trans(osb->journal, ci);
683
684         ocfs2_metadata_cache_io_lock(ci);
685         switch (type) {
686         case OCFS2_JOURNAL_ACCESS_CREATE:
687         case OCFS2_JOURNAL_ACCESS_WRITE:
688                 status = jbd2_journal_get_write_access(handle, bh);
689                 break;
690
691         case OCFS2_JOURNAL_ACCESS_UNDO:
692                 status = jbd2_journal_get_undo_access(handle, bh);
693                 break;
694
695         default:
696                 status = -EINVAL;
697                 mlog(ML_ERROR, "Unknown access type!\n");
698         }
699         if (!status && ocfs2_meta_ecc(osb) && triggers)
700                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
701         ocfs2_metadata_cache_io_unlock(ci);
702
703         if (status < 0)
704                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
705                      status, type);
706
707         return status;
708 }
709
710 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
711                             struct buffer_head *bh, int type)
712 {
713         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
714 }
715
716 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
717                             struct buffer_head *bh, int type)
718 {
719         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
720 }
721
722 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
723                             struct buffer_head *bh, int type)
724 {
725         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
726                                       type);
727 }
728
729 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
730                             struct buffer_head *bh, int type)
731 {
732         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
733 }
734
735 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
736                             struct buffer_head *bh, int type)
737 {
738         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
739 }
740
741 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
742                             struct buffer_head *bh, int type)
743 {
744         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
745 }
746
747 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
748                             struct buffer_head *bh, int type)
749 {
750         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
751 }
752
753 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
754                             struct buffer_head *bh, int type)
755 {
756         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
757 }
758
759 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
760                             struct buffer_head *bh, int type)
761 {
762         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
763 }
764
765 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
766                          struct buffer_head *bh, int type)
767 {
768         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
769 }
770
771 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
772 {
773         int status;
774
775         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
776
777         status = jbd2_journal_dirty_metadata(handle, bh);
778         if (status) {
779                 mlog_errno(status);
780                 if (!is_handle_aborted(handle)) {
781                         journal_t *journal = handle->h_transaction->t_journal;
782                         struct super_block *sb = bh->b_bdev->bd_super;
783
784                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
785                                         "Aborting transaction and journal.\n");
786                         handle->h_err = status;
787                         jbd2_journal_abort_handle(handle);
788                         jbd2_journal_abort(journal, status);
789                         ocfs2_abort(sb, "Journal already aborted.\n");
790                 }
791         }
792 }
793
794 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
795
796 void ocfs2_set_journal_params(struct ocfs2_super *osb)
797 {
798         journal_t *journal = osb->journal->j_journal;
799         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
800
801         if (osb->osb_commit_interval)
802                 commit_interval = osb->osb_commit_interval;
803
804         write_lock(&journal->j_state_lock);
805         journal->j_commit_interval = commit_interval;
806         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
807                 journal->j_flags |= JBD2_BARRIER;
808         else
809                 journal->j_flags &= ~JBD2_BARRIER;
810         write_unlock(&journal->j_state_lock);
811 }
812
813 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
814 {
815         int status = -1;
816         struct inode *inode = NULL; /* the journal inode */
817         journal_t *j_journal = NULL;
818         struct ocfs2_dinode *di = NULL;
819         struct buffer_head *bh = NULL;
820         struct ocfs2_super *osb;
821         int inode_lock = 0;
822
823         BUG_ON(!journal);
824
825         osb = journal->j_osb;
826
827         /* already have the inode for our journal */
828         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
829                                             osb->slot_num);
830         if (inode == NULL) {
831                 status = -EACCES;
832                 mlog_errno(status);
833                 goto done;
834         }
835         if (is_bad_inode(inode)) {
836                 mlog(ML_ERROR, "access error (bad inode)\n");
837                 iput(inode);
838                 inode = NULL;
839                 status = -EACCES;
840                 goto done;
841         }
842
843         SET_INODE_JOURNAL(inode);
844         OCFS2_I(inode)->ip_open_count++;
845
846         /* Skip recovery waits here - journal inode metadata never
847          * changes in a live cluster so it can be considered an
848          * exception to the rule. */
849         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
850         if (status < 0) {
851                 if (status != -ERESTARTSYS)
852                         mlog(ML_ERROR, "Could not get lock on journal!\n");
853                 goto done;
854         }
855
856         inode_lock = 1;
857         di = (struct ocfs2_dinode *)bh->b_data;
858
859         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
860                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
861                      i_size_read(inode));
862                 status = -EINVAL;
863                 goto done;
864         }
865
866         trace_ocfs2_journal_init(i_size_read(inode),
867                                  (unsigned long long)inode->i_blocks,
868                                  OCFS2_I(inode)->ip_clusters);
869
870         /* call the kernels journal init function now */
871         j_journal = jbd2_journal_init_inode(inode);
872         if (j_journal == NULL) {
873                 mlog(ML_ERROR, "Linux journal layer error\n");
874                 status = -EINVAL;
875                 goto done;
876         }
877
878         trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
879
880         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
881                   OCFS2_JOURNAL_DIRTY_FL);
882
883         journal->j_journal = j_journal;
884         journal->j_journal->j_submit_inode_data_buffers =
885                 jbd2_journal_submit_inode_data_buffers;
886         journal->j_journal->j_finish_inode_data_buffers =
887                 jbd2_journal_finish_inode_data_buffers;
888         journal->j_inode = inode;
889         journal->j_bh = bh;
890
891         ocfs2_set_journal_params(osb);
892
893         journal->j_state = OCFS2_JOURNAL_LOADED;
894
895         status = 0;
896 done:
897         if (status < 0) {
898                 if (inode_lock)
899                         ocfs2_inode_unlock(inode, 1);
900                 brelse(bh);
901                 if (inode) {
902                         OCFS2_I(inode)->ip_open_count--;
903                         iput(inode);
904                 }
905         }
906
907         return status;
908 }
909
910 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
911 {
912         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
913 }
914
915 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
916 {
917         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
918 }
919
920 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
921                                       int dirty, int replayed)
922 {
923         int status;
924         unsigned int flags;
925         struct ocfs2_journal *journal = osb->journal;
926         struct buffer_head *bh = journal->j_bh;
927         struct ocfs2_dinode *fe;
928
929         fe = (struct ocfs2_dinode *)bh->b_data;
930
931         /* The journal bh on the osb always comes from ocfs2_journal_init()
932          * and was validated there inside ocfs2_inode_lock_full().  It's a
933          * code bug if we mess it up. */
934         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
935
936         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
937         if (dirty)
938                 flags |= OCFS2_JOURNAL_DIRTY_FL;
939         else
940                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
941         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
942
943         if (replayed)
944                 ocfs2_bump_recovery_generation(fe);
945
946         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
947         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
948         if (status < 0)
949                 mlog_errno(status);
950
951         return status;
952 }
953
954 /*
955  * If the journal has been kmalloc'd it needs to be freed after this
956  * call.
957  */
958 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
959 {
960         struct ocfs2_journal *journal = NULL;
961         int status = 0;
962         struct inode *inode = NULL;
963         int num_running_trans = 0;
964
965         BUG_ON(!osb);
966
967         journal = osb->journal;
968         if (!journal)
969                 goto done;
970
971         inode = journal->j_inode;
972
973         if (journal->j_state != OCFS2_JOURNAL_LOADED)
974                 goto done;
975
976         /* need to inc inode use count - jbd2_journal_destroy will iput. */
977         if (!igrab(inode))
978                 BUG();
979
980         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
981         trace_ocfs2_journal_shutdown(num_running_trans);
982
983         /* Do a commit_cache here. It will flush our journal, *and*
984          * release any locks that are still held.
985          * set the SHUTDOWN flag and release the trans lock.
986          * the commit thread will take the trans lock for us below. */
987         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
988
989         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
990          * drop the trans_lock (which we want to hold until we
991          * completely destroy the journal. */
992         if (osb->commit_task) {
993                 /* Wait for the commit thread */
994                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
995                 kthread_stop(osb->commit_task);
996                 osb->commit_task = NULL;
997         }
998
999         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1000
1001         if (ocfs2_mount_local(osb)) {
1002                 jbd2_journal_lock_updates(journal->j_journal);
1003                 status = jbd2_journal_flush(journal->j_journal, 0);
1004                 jbd2_journal_unlock_updates(journal->j_journal);
1005                 if (status < 0)
1006                         mlog_errno(status);
1007         }
1008
1009         /* Shutdown the kernel journal system */
1010         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1011                 /*
1012                  * Do not toggle if flush was unsuccessful otherwise
1013                  * will leave dirty metadata in a "clean" journal
1014                  */
1015                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1016                 if (status < 0)
1017                         mlog_errno(status);
1018         }
1019         journal->j_journal = NULL;
1020
1021         OCFS2_I(inode)->ip_open_count--;
1022
1023         /* unlock our journal */
1024         ocfs2_inode_unlock(inode, 1);
1025
1026         brelse(journal->j_bh);
1027         journal->j_bh = NULL;
1028
1029         journal->j_state = OCFS2_JOURNAL_FREE;
1030
1031 //      up_write(&journal->j_trans_barrier);
1032 done:
1033         iput(inode);
1034 }
1035
1036 static void ocfs2_clear_journal_error(struct super_block *sb,
1037                                       journal_t *journal,
1038                                       int slot)
1039 {
1040         int olderr;
1041
1042         olderr = jbd2_journal_errno(journal);
1043         if (olderr) {
1044                 mlog(ML_ERROR, "File system error %d recorded in "
1045                      "journal %u.\n", olderr, slot);
1046                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1047                      sb->s_id);
1048
1049                 jbd2_journal_ack_err(journal);
1050                 jbd2_journal_clear_err(journal);
1051         }
1052 }
1053
1054 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1055 {
1056         int status = 0;
1057         struct ocfs2_super *osb;
1058
1059         BUG_ON(!journal);
1060
1061         osb = journal->j_osb;
1062
1063         status = jbd2_journal_load(journal->j_journal);
1064         if (status < 0) {
1065                 mlog(ML_ERROR, "Failed to load journal!\n");
1066                 goto done;
1067         }
1068
1069         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1070
1071         if (replayed) {
1072                 jbd2_journal_lock_updates(journal->j_journal);
1073                 status = jbd2_journal_flush(journal->j_journal, 0);
1074                 jbd2_journal_unlock_updates(journal->j_journal);
1075                 if (status < 0)
1076                         mlog_errno(status);
1077         }
1078
1079         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1080         if (status < 0) {
1081                 mlog_errno(status);
1082                 goto done;
1083         }
1084
1085         /* Launch the commit thread */
1086         if (!local) {
1087                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1088                                 "ocfs2cmt-%s", osb->uuid_str);
1089                 if (IS_ERR(osb->commit_task)) {
1090                         status = PTR_ERR(osb->commit_task);
1091                         osb->commit_task = NULL;
1092                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1093                              "error=%d", status);
1094                         goto done;
1095                 }
1096         } else
1097                 osb->commit_task = NULL;
1098
1099 done:
1100         return status;
1101 }
1102
1103
1104 /* 'full' flag tells us whether we clear out all blocks or if we just
1105  * mark the journal clean */
1106 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1107 {
1108         int status;
1109
1110         BUG_ON(!journal);
1111
1112         status = jbd2_journal_wipe(journal->j_journal, full);
1113         if (status < 0) {
1114                 mlog_errno(status);
1115                 goto bail;
1116         }
1117
1118         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1119         if (status < 0)
1120                 mlog_errno(status);
1121
1122 bail:
1123         return status;
1124 }
1125
1126 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1127 {
1128         int empty;
1129         struct ocfs2_recovery_map *rm = osb->recovery_map;
1130
1131         spin_lock(&osb->osb_lock);
1132         empty = (rm->rm_used == 0);
1133         spin_unlock(&osb->osb_lock);
1134
1135         return empty;
1136 }
1137
1138 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1139 {
1140         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1141 }
1142
1143 /*
1144  * JBD Might read a cached version of another nodes journal file. We
1145  * don't want this as this file changes often and we get no
1146  * notification on those changes. The only way to be sure that we've
1147  * got the most up to date version of those blocks then is to force
1148  * read them off disk. Just searching through the buffer cache won't
1149  * work as there may be pages backing this file which are still marked
1150  * up to date. We know things can't change on this file underneath us
1151  * as we have the lock by now :)
1152  */
1153 static int ocfs2_force_read_journal(struct inode *inode)
1154 {
1155         int status = 0;
1156         int i;
1157         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1158         struct buffer_head *bh = NULL;
1159         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1160
1161         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1162         v_blkno = 0;
1163         while (v_blkno < num_blocks) {
1164                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1165                                                      &p_blkno, &p_blocks, NULL);
1166                 if (status < 0) {
1167                         mlog_errno(status);
1168                         goto bail;
1169                 }
1170
1171                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1172                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1173                                         osb->sb->s_blocksize);
1174                         /* block not cached. */
1175                         if (!bh)
1176                                 continue;
1177
1178                         brelse(bh);
1179                         bh = NULL;
1180                         /* We are reading journal data which should not
1181                          * be put in the uptodate cache.
1182                          */
1183                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1184                         if (status < 0) {
1185                                 mlog_errno(status);
1186                                 goto bail;
1187                         }
1188
1189                         brelse(bh);
1190                         bh = NULL;
1191                 }
1192
1193                 v_blkno += p_blocks;
1194         }
1195
1196 bail:
1197         return status;
1198 }
1199
1200 struct ocfs2_la_recovery_item {
1201         struct list_head        lri_list;
1202         int                     lri_slot;
1203         struct ocfs2_dinode     *lri_la_dinode;
1204         struct ocfs2_dinode     *lri_tl_dinode;
1205         struct ocfs2_quota_recovery *lri_qrec;
1206         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1207 };
1208
1209 /* Does the second half of the recovery process. By this point, the
1210  * node is marked clean and can actually be considered recovered,
1211  * hence it's no longer in the recovery map, but there's still some
1212  * cleanup we can do which shouldn't happen within the recovery thread
1213  * as locking in that context becomes very difficult if we are to take
1214  * recovering nodes into account.
1215  *
1216  * NOTE: This function can and will sleep on recovery of other nodes
1217  * during cluster locking, just like any other ocfs2 process.
1218  */
1219 void ocfs2_complete_recovery(struct work_struct *work)
1220 {
1221         int ret = 0;
1222         struct ocfs2_journal *journal =
1223                 container_of(work, struct ocfs2_journal, j_recovery_work);
1224         struct ocfs2_super *osb = journal->j_osb;
1225         struct ocfs2_dinode *la_dinode, *tl_dinode;
1226         struct ocfs2_la_recovery_item *item, *n;
1227         struct ocfs2_quota_recovery *qrec;
1228         enum ocfs2_orphan_reco_type orphan_reco_type;
1229         LIST_HEAD(tmp_la_list);
1230
1231         trace_ocfs2_complete_recovery(
1232                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1233
1234         spin_lock(&journal->j_lock);
1235         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1236         spin_unlock(&journal->j_lock);
1237
1238         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1239                 list_del_init(&item->lri_list);
1240
1241                 ocfs2_wait_on_quotas(osb);
1242
1243                 la_dinode = item->lri_la_dinode;
1244                 tl_dinode = item->lri_tl_dinode;
1245                 qrec = item->lri_qrec;
1246                 orphan_reco_type = item->lri_orphan_reco_type;
1247
1248                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1249                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1250                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1251                         qrec);
1252
1253                 if (la_dinode) {
1254                         ret = ocfs2_complete_local_alloc_recovery(osb,
1255                                                                   la_dinode);
1256                         if (ret < 0)
1257                                 mlog_errno(ret);
1258
1259                         kfree(la_dinode);
1260                 }
1261
1262                 if (tl_dinode) {
1263                         ret = ocfs2_complete_truncate_log_recovery(osb,
1264                                                                    tl_dinode);
1265                         if (ret < 0)
1266                                 mlog_errno(ret);
1267
1268                         kfree(tl_dinode);
1269                 }
1270
1271                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1272                                 orphan_reco_type);
1273                 if (ret < 0)
1274                         mlog_errno(ret);
1275
1276                 if (qrec) {
1277                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1278                                                           item->lri_slot);
1279                         if (ret < 0)
1280                                 mlog_errno(ret);
1281                         /* Recovery info is already freed now */
1282                 }
1283
1284                 kfree(item);
1285         }
1286
1287         trace_ocfs2_complete_recovery_end(ret);
1288 }
1289
1290 /* NOTE: This function always eats your references to la_dinode and
1291  * tl_dinode, either manually on error, or by passing them to
1292  * ocfs2_complete_recovery */
1293 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1294                                             int slot_num,
1295                                             struct ocfs2_dinode *la_dinode,
1296                                             struct ocfs2_dinode *tl_dinode,
1297                                             struct ocfs2_quota_recovery *qrec,
1298                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1299 {
1300         struct ocfs2_la_recovery_item *item;
1301
1302         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1303         if (!item) {
1304                 /* Though we wish to avoid it, we are in fact safe in
1305                  * skipping local alloc cleanup as fsck.ocfs2 is more
1306                  * than capable of reclaiming unused space. */
1307                 kfree(la_dinode);
1308                 kfree(tl_dinode);
1309
1310                 if (qrec)
1311                         ocfs2_free_quota_recovery(qrec);
1312
1313                 mlog_errno(-ENOMEM);
1314                 return;
1315         }
1316
1317         INIT_LIST_HEAD(&item->lri_list);
1318         item->lri_la_dinode = la_dinode;
1319         item->lri_slot = slot_num;
1320         item->lri_tl_dinode = tl_dinode;
1321         item->lri_qrec = qrec;
1322         item->lri_orphan_reco_type = orphan_reco_type;
1323
1324         spin_lock(&journal->j_lock);
1325         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1326         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1327         spin_unlock(&journal->j_lock);
1328 }
1329
1330 /* Called by the mount code to queue recovery the last part of
1331  * recovery for it's own and offline slot(s). */
1332 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1333 {
1334         struct ocfs2_journal *journal = osb->journal;
1335
1336         if (ocfs2_is_hard_readonly(osb))
1337                 return;
1338
1339         /* No need to queue up our truncate_log as regular cleanup will catch
1340          * that */
1341         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1342                                         osb->local_alloc_copy, NULL, NULL,
1343                                         ORPHAN_NEED_TRUNCATE);
1344         ocfs2_schedule_truncate_log_flush(osb, 0);
1345
1346         osb->local_alloc_copy = NULL;
1347
1348         /* queue to recover orphan slots for all offline slots */
1349         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1350         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1351         ocfs2_free_replay_slots(osb);
1352 }
1353
1354 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1355 {
1356         if (osb->quota_rec) {
1357                 ocfs2_queue_recovery_completion(osb->journal,
1358                                                 osb->slot_num,
1359                                                 NULL,
1360                                                 NULL,
1361                                                 osb->quota_rec,
1362                                                 ORPHAN_NEED_TRUNCATE);
1363                 osb->quota_rec = NULL;
1364         }
1365 }
1366
1367 static int __ocfs2_recovery_thread(void *arg)
1368 {
1369         int status, node_num, slot_num;
1370         struct ocfs2_super *osb = arg;
1371         struct ocfs2_recovery_map *rm = osb->recovery_map;
1372         int *rm_quota = NULL;
1373         int rm_quota_used = 0, i;
1374         struct ocfs2_quota_recovery *qrec;
1375
1376         /* Whether the quota supported. */
1377         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1378                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1379                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1380                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1381
1382         status = ocfs2_wait_on_mount(osb);
1383         if (status < 0) {
1384                 goto bail;
1385         }
1386
1387         if (quota_enabled) {
1388                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1389                 if (!rm_quota) {
1390                         status = -ENOMEM;
1391                         goto bail;
1392                 }
1393         }
1394 restart:
1395         status = ocfs2_super_lock(osb, 1);
1396         if (status < 0) {
1397                 mlog_errno(status);
1398                 goto bail;
1399         }
1400
1401         status = ocfs2_compute_replay_slots(osb);
1402         if (status < 0)
1403                 mlog_errno(status);
1404
1405         /* queue recovery for our own slot */
1406         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1407                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1408
1409         spin_lock(&osb->osb_lock);
1410         while (rm->rm_used) {
1411                 /* It's always safe to remove entry zero, as we won't
1412                  * clear it until ocfs2_recover_node() has succeeded. */
1413                 node_num = rm->rm_entries[0];
1414                 spin_unlock(&osb->osb_lock);
1415                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1416                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1417                 if (slot_num == -ENOENT) {
1418                         status = 0;
1419                         goto skip_recovery;
1420                 }
1421
1422                 /* It is a bit subtle with quota recovery. We cannot do it
1423                  * immediately because we have to obtain cluster locks from
1424                  * quota files and we also don't want to just skip it because
1425                  * then quota usage would be out of sync until some node takes
1426                  * the slot. So we remember which nodes need quota recovery
1427                  * and when everything else is done, we recover quotas. */
1428                 if (quota_enabled) {
1429                         for (i = 0; i < rm_quota_used
1430                                         && rm_quota[i] != slot_num; i++)
1431                                 ;
1432
1433                         if (i == rm_quota_used)
1434                                 rm_quota[rm_quota_used++] = slot_num;
1435                 }
1436
1437                 status = ocfs2_recover_node(osb, node_num, slot_num);
1438 skip_recovery:
1439                 if (!status) {
1440                         ocfs2_recovery_map_clear(osb, node_num);
1441                 } else {
1442                         mlog(ML_ERROR,
1443                              "Error %d recovering node %d on device (%u,%u)!\n",
1444                              status, node_num,
1445                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1446                         mlog(ML_ERROR, "Volume requires unmount.\n");
1447                 }
1448
1449                 spin_lock(&osb->osb_lock);
1450         }
1451         spin_unlock(&osb->osb_lock);
1452         trace_ocfs2_recovery_thread_end(status);
1453
1454         /* Refresh all journal recovery generations from disk */
1455         status = ocfs2_check_journals_nolocks(osb);
1456         status = (status == -EROFS) ? 0 : status;
1457         if (status < 0)
1458                 mlog_errno(status);
1459
1460         /* Now it is right time to recover quotas... We have to do this under
1461          * superblock lock so that no one can start using the slot (and crash)
1462          * before we recover it */
1463         if (quota_enabled) {
1464                 for (i = 0; i < rm_quota_used; i++) {
1465                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1466                         if (IS_ERR(qrec)) {
1467                                 status = PTR_ERR(qrec);
1468                                 mlog_errno(status);
1469                                 continue;
1470                         }
1471                         ocfs2_queue_recovery_completion(osb->journal,
1472                                         rm_quota[i],
1473                                         NULL, NULL, qrec,
1474                                         ORPHAN_NEED_TRUNCATE);
1475                 }
1476         }
1477
1478         ocfs2_super_unlock(osb, 1);
1479
1480         /* queue recovery for offline slots */
1481         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1482
1483 bail:
1484         mutex_lock(&osb->recovery_lock);
1485         if (!status && !ocfs2_recovery_completed(osb)) {
1486                 mutex_unlock(&osb->recovery_lock);
1487                 goto restart;
1488         }
1489
1490         ocfs2_free_replay_slots(osb);
1491         osb->recovery_thread_task = NULL;
1492         mb(); /* sync with ocfs2_recovery_thread_running */
1493         wake_up(&osb->recovery_event);
1494
1495         mutex_unlock(&osb->recovery_lock);
1496
1497         if (quota_enabled)
1498                 kfree(rm_quota);
1499
1500         /* no one is callint kthread_stop() for us so the kthread() api
1501          * requires that we call do_exit().  And it isn't exported, but
1502          * complete_and_exit() seems to be a minimal wrapper around it. */
1503         complete_and_exit(NULL, status);
1504 }
1505
1506 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1507 {
1508         mutex_lock(&osb->recovery_lock);
1509
1510         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1511                 osb->disable_recovery, osb->recovery_thread_task,
1512                 osb->disable_recovery ?
1513                 -1 : ocfs2_recovery_map_set(osb, node_num));
1514
1515         if (osb->disable_recovery)
1516                 goto out;
1517
1518         if (osb->recovery_thread_task)
1519                 goto out;
1520
1521         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1522                         "ocfs2rec-%s", osb->uuid_str);
1523         if (IS_ERR(osb->recovery_thread_task)) {
1524                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1525                 osb->recovery_thread_task = NULL;
1526         }
1527
1528 out:
1529         mutex_unlock(&osb->recovery_lock);
1530         wake_up(&osb->recovery_event);
1531 }
1532
1533 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1534                                     int slot_num,
1535                                     struct buffer_head **bh,
1536                                     struct inode **ret_inode)
1537 {
1538         int status = -EACCES;
1539         struct inode *inode = NULL;
1540
1541         BUG_ON(slot_num >= osb->max_slots);
1542
1543         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1544                                             slot_num);
1545         if (!inode || is_bad_inode(inode)) {
1546                 mlog_errno(status);
1547                 goto bail;
1548         }
1549         SET_INODE_JOURNAL(inode);
1550
1551         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1552         if (status < 0) {
1553                 mlog_errno(status);
1554                 goto bail;
1555         }
1556
1557         status = 0;
1558
1559 bail:
1560         if (inode) {
1561                 if (status || !ret_inode)
1562                         iput(inode);
1563                 else
1564                         *ret_inode = inode;
1565         }
1566         return status;
1567 }
1568
1569 /* Does the actual journal replay and marks the journal inode as
1570  * clean. Will only replay if the journal inode is marked dirty. */
1571 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1572                                 int node_num,
1573                                 int slot_num)
1574 {
1575         int status;
1576         int got_lock = 0;
1577         unsigned int flags;
1578         struct inode *inode = NULL;
1579         struct ocfs2_dinode *fe;
1580         journal_t *journal = NULL;
1581         struct buffer_head *bh = NULL;
1582         u32 slot_reco_gen;
1583
1584         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1585         if (status) {
1586                 mlog_errno(status);
1587                 goto done;
1588         }
1589
1590         fe = (struct ocfs2_dinode *)bh->b_data;
1591         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1592         brelse(bh);
1593         bh = NULL;
1594
1595         /*
1596          * As the fs recovery is asynchronous, there is a small chance that
1597          * another node mounted (and recovered) the slot before the recovery
1598          * thread could get the lock. To handle that, we dirty read the journal
1599          * inode for that slot to get the recovery generation. If it is
1600          * different than what we expected, the slot has been recovered.
1601          * If not, it needs recovery.
1602          */
1603         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1604                 trace_ocfs2_replay_journal_recovered(slot_num,
1605                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1606                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1607                 status = -EBUSY;
1608                 goto done;
1609         }
1610
1611         /* Continue with recovery as the journal has not yet been recovered */
1612
1613         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1614         if (status < 0) {
1615                 trace_ocfs2_replay_journal_lock_err(status);
1616                 if (status != -ERESTARTSYS)
1617                         mlog(ML_ERROR, "Could not lock journal!\n");
1618                 goto done;
1619         }
1620         got_lock = 1;
1621
1622         fe = (struct ocfs2_dinode *) bh->b_data;
1623
1624         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1625         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1626
1627         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1628                 trace_ocfs2_replay_journal_skip(node_num);
1629                 /* Refresh recovery generation for the slot */
1630                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1631                 goto done;
1632         }
1633
1634         /* we need to run complete recovery for offline orphan slots */
1635         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1636
1637         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1638                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1639                MINOR(osb->sb->s_dev));
1640
1641         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1642
1643         status = ocfs2_force_read_journal(inode);
1644         if (status < 0) {
1645                 mlog_errno(status);
1646                 goto done;
1647         }
1648
1649         journal = jbd2_journal_init_inode(inode);
1650         if (journal == NULL) {
1651                 mlog(ML_ERROR, "Linux journal layer error\n");
1652                 status = -EIO;
1653                 goto done;
1654         }
1655
1656         status = jbd2_journal_load(journal);
1657         if (status < 0) {
1658                 mlog_errno(status);
1659                 if (!igrab(inode))
1660                         BUG();
1661                 jbd2_journal_destroy(journal);
1662                 goto done;
1663         }
1664
1665         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1666
1667         /* wipe the journal */
1668         jbd2_journal_lock_updates(journal);
1669         status = jbd2_journal_flush(journal, 0);
1670         jbd2_journal_unlock_updates(journal);
1671         if (status < 0)
1672                 mlog_errno(status);
1673
1674         /* This will mark the node clean */
1675         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1676         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1677         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1678
1679         /* Increment recovery generation to indicate successful recovery */
1680         ocfs2_bump_recovery_generation(fe);
1681         osb->slot_recovery_generations[slot_num] =
1682                                         ocfs2_get_recovery_generation(fe);
1683
1684         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1685         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1686         if (status < 0)
1687                 mlog_errno(status);
1688
1689         if (!igrab(inode))
1690                 BUG();
1691
1692         jbd2_journal_destroy(journal);
1693
1694         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1695                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1696                MINOR(osb->sb->s_dev));
1697 done:
1698         /* drop the lock on this nodes journal */
1699         if (got_lock)
1700                 ocfs2_inode_unlock(inode, 1);
1701
1702         iput(inode);
1703         brelse(bh);
1704
1705         return status;
1706 }
1707
1708 /*
1709  * Do the most important parts of node recovery:
1710  *  - Replay it's journal
1711  *  - Stamp a clean local allocator file
1712  *  - Stamp a clean truncate log
1713  *  - Mark the node clean
1714  *
1715  * If this function completes without error, a node in OCFS2 can be
1716  * said to have been safely recovered. As a result, failure during the
1717  * second part of a nodes recovery process (local alloc recovery) is
1718  * far less concerning.
1719  */
1720 static int ocfs2_recover_node(struct ocfs2_super *osb,
1721                               int node_num, int slot_num)
1722 {
1723         int status = 0;
1724         struct ocfs2_dinode *la_copy = NULL;
1725         struct ocfs2_dinode *tl_copy = NULL;
1726
1727         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1728
1729         /* Should not ever be called to recover ourselves -- in that
1730          * case we should've called ocfs2_journal_load instead. */
1731         BUG_ON(osb->node_num == node_num);
1732
1733         status = ocfs2_replay_journal(osb, node_num, slot_num);
1734         if (status < 0) {
1735                 if (status == -EBUSY) {
1736                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1737                         status = 0;
1738                         goto done;
1739                 }
1740                 mlog_errno(status);
1741                 goto done;
1742         }
1743
1744         /* Stamp a clean local alloc file AFTER recovering the journal... */
1745         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1746         if (status < 0) {
1747                 mlog_errno(status);
1748                 goto done;
1749         }
1750
1751         /* An error from begin_truncate_log_recovery is not
1752          * serious enough to warrant halting the rest of
1753          * recovery. */
1754         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1755         if (status < 0)
1756                 mlog_errno(status);
1757
1758         /* Likewise, this would be a strange but ultimately not so
1759          * harmful place to get an error... */
1760         status = ocfs2_clear_slot(osb, slot_num);
1761         if (status < 0)
1762                 mlog_errno(status);
1763
1764         /* This will kfree the memory pointed to by la_copy and tl_copy */
1765         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1766                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1767
1768         status = 0;
1769 done:
1770
1771         return status;
1772 }
1773
1774 /* Test node liveness by trylocking his journal. If we get the lock,
1775  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1776  * still alive (we couldn't get the lock) and < 0 on error. */
1777 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1778                                  int slot_num)
1779 {
1780         int status, flags;
1781         struct inode *inode = NULL;
1782
1783         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1784                                             slot_num);
1785         if (inode == NULL) {
1786                 mlog(ML_ERROR, "access error\n");
1787                 status = -EACCES;
1788                 goto bail;
1789         }
1790         if (is_bad_inode(inode)) {
1791                 mlog(ML_ERROR, "access error (bad inode)\n");
1792                 iput(inode);
1793                 inode = NULL;
1794                 status = -EACCES;
1795                 goto bail;
1796         }
1797         SET_INODE_JOURNAL(inode);
1798
1799         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1800         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1801         if (status < 0) {
1802                 if (status != -EAGAIN)
1803                         mlog_errno(status);
1804                 goto bail;
1805         }
1806
1807         ocfs2_inode_unlock(inode, 1);
1808 bail:
1809         iput(inode);
1810
1811         return status;
1812 }
1813
1814 /* Call this underneath ocfs2_super_lock. It also assumes that the
1815  * slot info struct has been updated from disk. */
1816 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1817 {
1818         unsigned int node_num;
1819         int status, i;
1820         u32 gen;
1821         struct buffer_head *bh = NULL;
1822         struct ocfs2_dinode *di;
1823
1824         /* This is called with the super block cluster lock, so we
1825          * know that the slot map can't change underneath us. */
1826
1827         for (i = 0; i < osb->max_slots; i++) {
1828                 /* Read journal inode to get the recovery generation */
1829                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1830                 if (status) {
1831                         mlog_errno(status);
1832                         goto bail;
1833                 }
1834                 di = (struct ocfs2_dinode *)bh->b_data;
1835                 gen = ocfs2_get_recovery_generation(di);
1836                 brelse(bh);
1837                 bh = NULL;
1838
1839                 spin_lock(&osb->osb_lock);
1840                 osb->slot_recovery_generations[i] = gen;
1841
1842                 trace_ocfs2_mark_dead_nodes(i,
1843                                             osb->slot_recovery_generations[i]);
1844
1845                 if (i == osb->slot_num) {
1846                         spin_unlock(&osb->osb_lock);
1847                         continue;
1848                 }
1849
1850                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1851                 if (status == -ENOENT) {
1852                         spin_unlock(&osb->osb_lock);
1853                         continue;
1854                 }
1855
1856                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1857                         spin_unlock(&osb->osb_lock);
1858                         continue;
1859                 }
1860                 spin_unlock(&osb->osb_lock);
1861
1862                 /* Ok, we have a slot occupied by another node which
1863                  * is not in the recovery map. We trylock his journal
1864                  * file here to test if he's alive. */
1865                 status = ocfs2_trylock_journal(osb, i);
1866                 if (!status) {
1867                         /* Since we're called from mount, we know that
1868                          * the recovery thread can't race us on
1869                          * setting / checking the recovery bits. */
1870                         ocfs2_recovery_thread(osb, node_num);
1871                 } else if ((status < 0) && (status != -EAGAIN)) {
1872                         mlog_errno(status);
1873                         goto bail;
1874                 }
1875         }
1876
1877         status = 0;
1878 bail:
1879         return status;
1880 }
1881
1882 /*
1883  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1884  * randomness to the timeout to minimize multple nodes firing the timer at the
1885  * same time.
1886  */
1887 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1888 {
1889         unsigned long time;
1890
1891         get_random_bytes(&time, sizeof(time));
1892         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1893         return msecs_to_jiffies(time);
1894 }
1895
1896 /*
1897  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1898  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1899  * is done to catch any orphans that are left over in orphan directories.
1900  *
1901  * It scans all slots, even ones that are in use. It does so to handle the
1902  * case described below:
1903  *
1904  *   Node 1 has an inode it was using. The dentry went away due to memory
1905  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1906  *   has the open lock.
1907  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1908  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1909  *   open lock, sees that another node has a PR, and does nothing.
1910  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1911  *   open lock, sees the PR still, and does nothing.
1912  *   Basically, we have to trigger an orphan iput on node 1. The only way
1913  *   for this to happen is if node 1 runs node 2's orphan dir.
1914  *
1915  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1916  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1917  * stored in LVB. If the sequence number has changed, it means some other
1918  * node has done the scan.  This node skips the scan and tracks the
1919  * sequence number.  If the sequence number didn't change, it means a scan
1920  * hasn't happened.  The node queues a scan and increments the
1921  * sequence number in the LVB.
1922  */
1923 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1924 {
1925         struct ocfs2_orphan_scan *os;
1926         int status, i;
1927         u32 seqno = 0;
1928
1929         os = &osb->osb_orphan_scan;
1930
1931         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1932                 goto out;
1933
1934         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1935                                             atomic_read(&os->os_state));
1936
1937         status = ocfs2_orphan_scan_lock(osb, &seqno);
1938         if (status < 0) {
1939                 if (status != -EAGAIN)
1940                         mlog_errno(status);
1941                 goto out;
1942         }
1943
1944         /* Do no queue the tasks if the volume is being umounted */
1945         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1946                 goto unlock;
1947
1948         if (os->os_seqno != seqno) {
1949                 os->os_seqno = seqno;
1950                 goto unlock;
1951         }
1952
1953         for (i = 0; i < osb->max_slots; i++)
1954                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1955                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1956         /*
1957          * We queued a recovery on orphan slots, increment the sequence
1958          * number and update LVB so other node will skip the scan for a while
1959          */
1960         seqno++;
1961         os->os_count++;
1962         os->os_scantime = ktime_get_seconds();
1963 unlock:
1964         ocfs2_orphan_scan_unlock(osb, seqno);
1965 out:
1966         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1967                                           atomic_read(&os->os_state));
1968         return;
1969 }
1970
1971 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1972 static void ocfs2_orphan_scan_work(struct work_struct *work)
1973 {
1974         struct ocfs2_orphan_scan *os;
1975         struct ocfs2_super *osb;
1976
1977         os = container_of(work, struct ocfs2_orphan_scan,
1978                           os_orphan_scan_work.work);
1979         osb = os->os_osb;
1980
1981         mutex_lock(&os->os_lock);
1982         ocfs2_queue_orphan_scan(osb);
1983         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1984                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1985                                       ocfs2_orphan_scan_timeout());
1986         mutex_unlock(&os->os_lock);
1987 }
1988
1989 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1990 {
1991         struct ocfs2_orphan_scan *os;
1992
1993         os = &osb->osb_orphan_scan;
1994         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1995                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1996                 mutex_lock(&os->os_lock);
1997                 cancel_delayed_work(&os->os_orphan_scan_work);
1998                 mutex_unlock(&os->os_lock);
1999         }
2000 }
2001
2002 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2003 {
2004         struct ocfs2_orphan_scan *os;
2005
2006         os = &osb->osb_orphan_scan;
2007         os->os_osb = osb;
2008         os->os_count = 0;
2009         os->os_seqno = 0;
2010         mutex_init(&os->os_lock);
2011         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2012 }
2013
2014 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2015 {
2016         struct ocfs2_orphan_scan *os;
2017
2018         os = &osb->osb_orphan_scan;
2019         os->os_scantime = ktime_get_seconds();
2020         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2021                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2022         else {
2023                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2024                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2025                                    ocfs2_orphan_scan_timeout());
2026         }
2027 }
2028
2029 struct ocfs2_orphan_filldir_priv {
2030         struct dir_context      ctx;
2031         struct inode            *head;
2032         struct ocfs2_super      *osb;
2033         enum ocfs2_orphan_reco_type orphan_reco_type;
2034 };
2035
2036 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2037                                 int name_len, loff_t pos, u64 ino,
2038                                 unsigned type)
2039 {
2040         struct ocfs2_orphan_filldir_priv *p =
2041                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2042         struct inode *iter;
2043
2044         if (name_len == 1 && !strncmp(".", name, 1))
2045                 return 0;
2046         if (name_len == 2 && !strncmp("..", name, 2))
2047                 return 0;
2048
2049         /* do not include dio entry in case of orphan scan */
2050         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2051                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2052                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2053                 return 0;
2054
2055         /* Skip bad inodes so that recovery can continue */
2056         iter = ocfs2_iget(p->osb, ino,
2057                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2058         if (IS_ERR(iter))
2059                 return 0;
2060
2061         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2062                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2063                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2064
2065         /* Skip inodes which are already added to recover list, since dio may
2066          * happen concurrently with unlink/rename */
2067         if (OCFS2_I(iter)->ip_next_orphan) {
2068                 iput(iter);
2069                 return 0;
2070         }
2071
2072         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2073         /* No locking is required for the next_orphan queue as there
2074          * is only ever a single process doing orphan recovery. */
2075         OCFS2_I(iter)->ip_next_orphan = p->head;
2076         p->head = iter;
2077
2078         return 0;
2079 }
2080
2081 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2082                                int slot,
2083                                struct inode **head,
2084                                enum ocfs2_orphan_reco_type orphan_reco_type)
2085 {
2086         int status;
2087         struct inode *orphan_dir_inode = NULL;
2088         struct ocfs2_orphan_filldir_priv priv = {
2089                 .ctx.actor = ocfs2_orphan_filldir,
2090                 .osb = osb,
2091                 .head = *head,
2092                 .orphan_reco_type = orphan_reco_type
2093         };
2094
2095         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2096                                                        ORPHAN_DIR_SYSTEM_INODE,
2097                                                        slot);
2098         if  (!orphan_dir_inode) {
2099                 status = -ENOENT;
2100                 mlog_errno(status);
2101                 return status;
2102         }
2103
2104         inode_lock(orphan_dir_inode);
2105         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2106         if (status < 0) {
2107                 mlog_errno(status);
2108                 goto out;
2109         }
2110
2111         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2112         if (status) {
2113                 mlog_errno(status);
2114                 goto out_cluster;
2115         }
2116
2117         *head = priv.head;
2118
2119 out_cluster:
2120         ocfs2_inode_unlock(orphan_dir_inode, 0);
2121 out:
2122         inode_unlock(orphan_dir_inode);
2123         iput(orphan_dir_inode);
2124         return status;
2125 }
2126
2127 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2128                                               int slot)
2129 {
2130         int ret;
2131
2132         spin_lock(&osb->osb_lock);
2133         ret = !osb->osb_orphan_wipes[slot];
2134         spin_unlock(&osb->osb_lock);
2135         return ret;
2136 }
2137
2138 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2139                                              int slot)
2140 {
2141         spin_lock(&osb->osb_lock);
2142         /* Mark ourselves such that new processes in delete_inode()
2143          * know to quit early. */
2144         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2145         while (osb->osb_orphan_wipes[slot]) {
2146                 /* If any processes are already in the middle of an
2147                  * orphan wipe on this dir, then we need to wait for
2148                  * them. */
2149                 spin_unlock(&osb->osb_lock);
2150                 wait_event_interruptible(osb->osb_wipe_event,
2151                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2152                 spin_lock(&osb->osb_lock);
2153         }
2154         spin_unlock(&osb->osb_lock);
2155 }
2156
2157 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2158                                               int slot)
2159 {
2160         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2161 }
2162
2163 /*
2164  * Orphan recovery. Each mounted node has it's own orphan dir which we
2165  * must run during recovery. Our strategy here is to build a list of
2166  * the inodes in the orphan dir and iget/iput them. The VFS does
2167  * (most) of the rest of the work.
2168  *
2169  * Orphan recovery can happen at any time, not just mount so we have a
2170  * couple of extra considerations.
2171  *
2172  * - We grab as many inodes as we can under the orphan dir lock -
2173  *   doing iget() outside the orphan dir risks getting a reference on
2174  *   an invalid inode.
2175  * - We must be sure not to deadlock with other processes on the
2176  *   system wanting to run delete_inode(). This can happen when they go
2177  *   to lock the orphan dir and the orphan recovery process attempts to
2178  *   iget() inside the orphan dir lock. This can be avoided by
2179  *   advertising our state to ocfs2_delete_inode().
2180  */
2181 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2182                                  int slot,
2183                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2184 {
2185         int ret = 0;
2186         struct inode *inode = NULL;
2187         struct inode *iter;
2188         struct ocfs2_inode_info *oi;
2189         struct buffer_head *di_bh = NULL;
2190         struct ocfs2_dinode *di = NULL;
2191
2192         trace_ocfs2_recover_orphans(slot);
2193
2194         ocfs2_mark_recovering_orphan_dir(osb, slot);
2195         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2196         ocfs2_clear_recovering_orphan_dir(osb, slot);
2197
2198         /* Error here should be noted, but we want to continue with as
2199          * many queued inodes as we've got. */
2200         if (ret)
2201                 mlog_errno(ret);
2202
2203         while (inode) {
2204                 oi = OCFS2_I(inode);
2205                 trace_ocfs2_recover_orphans_iput(
2206                                         (unsigned long long)oi->ip_blkno);
2207
2208                 iter = oi->ip_next_orphan;
2209                 oi->ip_next_orphan = NULL;
2210
2211                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2212                         inode_lock(inode);
2213                         ret = ocfs2_rw_lock(inode, 1);
2214                         if (ret < 0) {
2215                                 mlog_errno(ret);
2216                                 goto unlock_mutex;
2217                         }
2218                         /*
2219                          * We need to take and drop the inode lock to
2220                          * force read inode from disk.
2221                          */
2222                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2223                         if (ret) {
2224                                 mlog_errno(ret);
2225                                 goto unlock_rw;
2226                         }
2227
2228                         di = (struct ocfs2_dinode *)di_bh->b_data;
2229
2230                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2231                                 ret = ocfs2_truncate_file(inode, di_bh,
2232                                                 i_size_read(inode));
2233                                 if (ret < 0) {
2234                                         if (ret != -ENOSPC)
2235                                                 mlog_errno(ret);
2236                                         goto unlock_inode;
2237                                 }
2238
2239                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2240                                                 di_bh, 0, 0);
2241                                 if (ret)
2242                                         mlog_errno(ret);
2243                         }
2244 unlock_inode:
2245                         ocfs2_inode_unlock(inode, 1);
2246                         brelse(di_bh);
2247                         di_bh = NULL;
2248 unlock_rw:
2249                         ocfs2_rw_unlock(inode, 1);
2250 unlock_mutex:
2251                         inode_unlock(inode);
2252
2253                         /* clear dio flag in ocfs2_inode_info */
2254                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2255                 } else {
2256                         spin_lock(&oi->ip_lock);
2257                         /* Set the proper information to get us going into
2258                          * ocfs2_delete_inode. */
2259                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2260                         spin_unlock(&oi->ip_lock);
2261                 }
2262
2263                 iput(inode);
2264                 inode = iter;
2265         }
2266
2267         return ret;
2268 }
2269
2270 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2271 {
2272         /* This check is good because ocfs2 will wait on our recovery
2273          * thread before changing it to something other than MOUNTED
2274          * or DISABLED. */
2275         wait_event(osb->osb_mount_event,
2276                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2277                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2278                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2279
2280         /* If there's an error on mount, then we may never get to the
2281          * MOUNTED flag, but this is set right before
2282          * dismount_volume() so we can trust it. */
2283         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2284                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2285                 mlog(0, "mount error, exiting!\n");
2286                 return -EBUSY;
2287         }
2288
2289         return 0;
2290 }
2291
2292 static int ocfs2_commit_thread(void *arg)
2293 {
2294         int status;
2295         struct ocfs2_super *osb = arg;
2296         struct ocfs2_journal *journal = osb->journal;
2297
2298         /* we can trust j_num_trans here because _should_stop() is only set in
2299          * shutdown and nobody other than ourselves should be able to start
2300          * transactions.  committing on shutdown might take a few iterations
2301          * as final transactions put deleted inodes on the list */
2302         while (!(kthread_should_stop() &&
2303                  atomic_read(&journal->j_num_trans) == 0)) {
2304
2305                 wait_event_interruptible(osb->checkpoint_event,
2306                                          atomic_read(&journal->j_num_trans)
2307                                          || kthread_should_stop());
2308
2309                 status = ocfs2_commit_cache(osb);
2310                 if (status < 0) {
2311                         static unsigned long abort_warn_time;
2312
2313                         /* Warn about this once per minute */
2314                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2315                                 mlog(ML_ERROR, "status = %d, journal is "
2316                                                 "already aborted.\n", status);
2317                         /*
2318                          * After ocfs2_commit_cache() fails, j_num_trans has a
2319                          * non-zero value.  Sleep here to avoid a busy-wait
2320                          * loop.
2321                          */
2322                         msleep_interruptible(1000);
2323                 }
2324
2325                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2326                         mlog(ML_KTHREAD,
2327                              "commit_thread: %u transactions pending on "
2328                              "shutdown\n",
2329                              atomic_read(&journal->j_num_trans));
2330                 }
2331         }
2332
2333         return 0;
2334 }
2335
2336 /* Reads all the journal inodes without taking any cluster locks. Used
2337  * for hard readonly access to determine whether any journal requires
2338  * recovery. Also used to refresh the recovery generation numbers after
2339  * a journal has been recovered by another node.
2340  */
2341 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2342 {
2343         int ret = 0;
2344         unsigned int slot;
2345         struct buffer_head *di_bh = NULL;
2346         struct ocfs2_dinode *di;
2347         int journal_dirty = 0;
2348
2349         for(slot = 0; slot < osb->max_slots; slot++) {
2350                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2351                 if (ret) {
2352                         mlog_errno(ret);
2353                         goto out;
2354                 }
2355
2356                 di = (struct ocfs2_dinode *) di_bh->b_data;
2357
2358                 osb->slot_recovery_generations[slot] =
2359                                         ocfs2_get_recovery_generation(di);
2360
2361                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2362                     OCFS2_JOURNAL_DIRTY_FL)
2363                         journal_dirty = 1;
2364
2365                 brelse(di_bh);
2366                 di_bh = NULL;
2367         }
2368
2369 out:
2370         if (journal_dirty)
2371                 ret = -EROFS;
2372         return ret;
2373 }