e5dcea6cee5ff678b33e78083c7240ddc56e3500
[platform/kernel/linux-rpi.git] / fs / ocfs2 / journal.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * journal.c
5  *
6  * Defines functions of journalling api
7  *
8  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public
12  * License as published by the Free Software Foundation; either
13  * version 2 of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public
21  * License along with this program; if not, write to the
22  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23  * Boston, MA 021110-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
33 #include <linux/delay.h>
34
35 #include <cluster/masklog.h>
36
37 #include "ocfs2.h"
38
39 #include "alloc.h"
40 #include "blockcheck.h"
41 #include "dir.h"
42 #include "dlmglue.h"
43 #include "extent_map.h"
44 #include "heartbeat.h"
45 #include "inode.h"
46 #include "journal.h"
47 #include "localalloc.h"
48 #include "slot_map.h"
49 #include "super.h"
50 #include "sysfile.h"
51 #include "uptodate.h"
52 #include "quota.h"
53 #include "file.h"
54 #include "namei.h"
55
56 #include "buffer_head_io.h"
57 #include "ocfs2_trace.h"
58
59 DEFINE_SPINLOCK(trans_inc_lock);
60
61 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
62
63 static int ocfs2_force_read_journal(struct inode *inode);
64 static int ocfs2_recover_node(struct ocfs2_super *osb,
65                               int node_num, int slot_num);
66 static int __ocfs2_recovery_thread(void *arg);
67 static int ocfs2_commit_cache(struct ocfs2_super *osb);
68 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
69 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
70                                       int dirty, int replayed);
71 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
72                                  int slot_num);
73 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
74                                  int slot,
75                                  enum ocfs2_orphan_reco_type orphan_reco_type);
76 static int ocfs2_commit_thread(void *arg);
77 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
78                                             int slot_num,
79                                             struct ocfs2_dinode *la_dinode,
80                                             struct ocfs2_dinode *tl_dinode,
81                                             struct ocfs2_quota_recovery *qrec,
82                                             enum ocfs2_orphan_reco_type orphan_reco_type);
83
84 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
85 {
86         return __ocfs2_wait_on_mount(osb, 0);
87 }
88
89 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
90 {
91         return __ocfs2_wait_on_mount(osb, 1);
92 }
93
94 /*
95  * This replay_map is to track online/offline slots, so we could recover
96  * offline slots during recovery and mount
97  */
98
99 enum ocfs2_replay_state {
100         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
101         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
102         REPLAY_DONE             /* Replay was already queued */
103 };
104
105 struct ocfs2_replay_map {
106         unsigned int rm_slots;
107         enum ocfs2_replay_state rm_state;
108         unsigned char rm_replay_slots[0];
109 };
110
111 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
112 {
113         if (!osb->replay_map)
114                 return;
115
116         /* If we've already queued the replay, we don't have any more to do */
117         if (osb->replay_map->rm_state == REPLAY_DONE)
118                 return;
119
120         osb->replay_map->rm_state = state;
121 }
122
123 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
124 {
125         struct ocfs2_replay_map *replay_map;
126         int i, node_num;
127
128         /* If replay map is already set, we don't do it again */
129         if (osb->replay_map)
130                 return 0;
131
132         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
133                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
134
135         if (!replay_map) {
136                 mlog_errno(-ENOMEM);
137                 return -ENOMEM;
138         }
139
140         spin_lock(&osb->osb_lock);
141
142         replay_map->rm_slots = osb->max_slots;
143         replay_map->rm_state = REPLAY_UNNEEDED;
144
145         /* set rm_replay_slots for offline slot(s) */
146         for (i = 0; i < replay_map->rm_slots; i++) {
147                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
148                         replay_map->rm_replay_slots[i] = 1;
149         }
150
151         osb->replay_map = replay_map;
152         spin_unlock(&osb->osb_lock);
153         return 0;
154 }
155
156 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
157                 enum ocfs2_orphan_reco_type orphan_reco_type)
158 {
159         struct ocfs2_replay_map *replay_map = osb->replay_map;
160         int i;
161
162         if (!replay_map)
163                 return;
164
165         if (replay_map->rm_state != REPLAY_NEEDED)
166                 return;
167
168         for (i = 0; i < replay_map->rm_slots; i++)
169                 if (replay_map->rm_replay_slots[i])
170                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
171                                                         NULL, NULL,
172                                                         orphan_reco_type);
173         replay_map->rm_state = REPLAY_DONE;
174 }
175
176 static void ocfs2_free_replay_slots(struct ocfs2_super *osb)
177 {
178         struct ocfs2_replay_map *replay_map = osb->replay_map;
179
180         if (!osb->replay_map)
181                 return;
182
183         kfree(replay_map);
184         osb->replay_map = NULL;
185 }
186
187 int ocfs2_recovery_init(struct ocfs2_super *osb)
188 {
189         struct ocfs2_recovery_map *rm;
190
191         mutex_init(&osb->recovery_lock);
192         osb->disable_recovery = 0;
193         osb->recovery_thread_task = NULL;
194         init_waitqueue_head(&osb->recovery_event);
195
196         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
197                      osb->max_slots * sizeof(unsigned int),
198                      GFP_KERNEL);
199         if (!rm) {
200                 mlog_errno(-ENOMEM);
201                 return -ENOMEM;
202         }
203
204         rm->rm_entries = (unsigned int *)((char *)rm +
205                                           sizeof(struct ocfs2_recovery_map));
206         osb->recovery_map = rm;
207
208         return 0;
209 }
210
211 /* we can't grab the goofy sem lock from inside wait_event, so we use
212  * memory barriers to make sure that we'll see the null task before
213  * being woken up */
214 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
215 {
216         mb();
217         return osb->recovery_thread_task != NULL;
218 }
219
220 void ocfs2_recovery_exit(struct ocfs2_super *osb)
221 {
222         struct ocfs2_recovery_map *rm;
223
224         /* disable any new recovery threads and wait for any currently
225          * running ones to exit. Do this before setting the vol_state. */
226         mutex_lock(&osb->recovery_lock);
227         osb->disable_recovery = 1;
228         mutex_unlock(&osb->recovery_lock);
229         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
230
231         /* At this point, we know that no more recovery threads can be
232          * launched, so wait for any recovery completion work to
233          * complete. */
234         flush_workqueue(osb->ocfs2_wq);
235
236         /*
237          * Now that recovery is shut down, and the osb is about to be
238          * freed,  the osb_lock is not taken here.
239          */
240         rm = osb->recovery_map;
241         /* XXX: Should we bug if there are dirty entries? */
242
243         kfree(rm);
244 }
245
246 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
247                                      unsigned int node_num)
248 {
249         int i;
250         struct ocfs2_recovery_map *rm = osb->recovery_map;
251
252         assert_spin_locked(&osb->osb_lock);
253
254         for (i = 0; i < rm->rm_used; i++) {
255                 if (rm->rm_entries[i] == node_num)
256                         return 1;
257         }
258
259         return 0;
260 }
261
262 /* Behaves like test-and-set.  Returns the previous value */
263 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
264                                   unsigned int node_num)
265 {
266         struct ocfs2_recovery_map *rm = osb->recovery_map;
267
268         spin_lock(&osb->osb_lock);
269         if (__ocfs2_recovery_map_test(osb, node_num)) {
270                 spin_unlock(&osb->osb_lock);
271                 return 1;
272         }
273
274         /* XXX: Can this be exploited? Not from o2dlm... */
275         BUG_ON(rm->rm_used >= osb->max_slots);
276
277         rm->rm_entries[rm->rm_used] = node_num;
278         rm->rm_used++;
279         spin_unlock(&osb->osb_lock);
280
281         return 0;
282 }
283
284 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
285                                      unsigned int node_num)
286 {
287         int i;
288         struct ocfs2_recovery_map *rm = osb->recovery_map;
289
290         spin_lock(&osb->osb_lock);
291
292         for (i = 0; i < rm->rm_used; i++) {
293                 if (rm->rm_entries[i] == node_num)
294                         break;
295         }
296
297         if (i < rm->rm_used) {
298                 /* XXX: be careful with the pointer math */
299                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
300                         (rm->rm_used - i - 1) * sizeof(unsigned int));
301                 rm->rm_used--;
302         }
303
304         spin_unlock(&osb->osb_lock);
305 }
306
307 static int ocfs2_commit_cache(struct ocfs2_super *osb)
308 {
309         int status = 0;
310         unsigned int flushed;
311         struct ocfs2_journal *journal = NULL;
312
313         journal = osb->journal;
314
315         /* Flush all pending commits and checkpoint the journal. */
316         down_write(&journal->j_trans_barrier);
317
318         flushed = atomic_read(&journal->j_num_trans);
319         trace_ocfs2_commit_cache_begin(flushed);
320         if (flushed == 0) {
321                 up_write(&journal->j_trans_barrier);
322                 goto finally;
323         }
324
325         jbd2_journal_lock_updates(journal->j_journal);
326         status = jbd2_journal_flush(journal->j_journal);
327         jbd2_journal_unlock_updates(journal->j_journal);
328         if (status < 0) {
329                 up_write(&journal->j_trans_barrier);
330                 mlog_errno(status);
331                 goto finally;
332         }
333
334         ocfs2_inc_trans_id(journal);
335
336         flushed = atomic_read(&journal->j_num_trans);
337         atomic_set(&journal->j_num_trans, 0);
338         up_write(&journal->j_trans_barrier);
339
340         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
341
342         ocfs2_wake_downconvert_thread(osb);
343         wake_up(&journal->j_checkpointed);
344 finally:
345         return status;
346 }
347
348 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
349 {
350         journal_t *journal = osb->journal->j_journal;
351         handle_t *handle;
352
353         BUG_ON(!osb || !osb->journal->j_journal);
354
355         if (ocfs2_is_hard_readonly(osb))
356                 return ERR_PTR(-EROFS);
357
358         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
359         BUG_ON(max_buffs <= 0);
360
361         /* Nested transaction? Just return the handle... */
362         if (journal_current_handle())
363                 return jbd2_journal_start(journal, max_buffs);
364
365         sb_start_intwrite(osb->sb);
366
367         down_read(&osb->journal->j_trans_barrier);
368
369         handle = jbd2_journal_start(journal, max_buffs);
370         if (IS_ERR(handle)) {
371                 up_read(&osb->journal->j_trans_barrier);
372                 sb_end_intwrite(osb->sb);
373
374                 mlog_errno(PTR_ERR(handle));
375
376                 if (is_journal_aborted(journal)) {
377                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
378                         handle = ERR_PTR(-EROFS);
379                 }
380         } else {
381                 if (!ocfs2_mount_local(osb))
382                         atomic_inc(&(osb->journal->j_num_trans));
383         }
384
385         return handle;
386 }
387
388 int ocfs2_commit_trans(struct ocfs2_super *osb,
389                        handle_t *handle)
390 {
391         int ret, nested;
392         struct ocfs2_journal *journal = osb->journal;
393
394         BUG_ON(!handle);
395
396         nested = handle->h_ref > 1;
397         ret = jbd2_journal_stop(handle);
398         if (ret < 0)
399                 mlog_errno(ret);
400
401         if (!nested) {
402                 up_read(&journal->j_trans_barrier);
403                 sb_end_intwrite(osb->sb);
404         }
405
406         return ret;
407 }
408
409 /*
410  * 'nblocks' is what you want to add to the current transaction.
411  *
412  * This might call jbd2_journal_restart() which will commit dirty buffers
413  * and then restart the transaction. Before calling
414  * ocfs2_extend_trans(), any changed blocks should have been
415  * dirtied. After calling it, all blocks which need to be changed must
416  * go through another set of journal_access/journal_dirty calls.
417  *
418  * WARNING: This will not release any semaphores or disk locks taken
419  * during the transaction, so make sure they were taken *before*
420  * start_trans or we'll have ordering deadlocks.
421  *
422  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
423  * good because transaction ids haven't yet been recorded on the
424  * cluster locks associated with this handle.
425  */
426 int ocfs2_extend_trans(handle_t *handle, int nblocks)
427 {
428         int status, old_nblocks;
429
430         BUG_ON(!handle);
431         BUG_ON(nblocks < 0);
432
433         if (!nblocks)
434                 return 0;
435
436         old_nblocks = handle->h_buffer_credits;
437
438         trace_ocfs2_extend_trans(old_nblocks, nblocks);
439
440 #ifdef CONFIG_OCFS2_DEBUG_FS
441         status = 1;
442 #else
443         status = jbd2_journal_extend(handle, nblocks);
444         if (status < 0) {
445                 mlog_errno(status);
446                 goto bail;
447         }
448 #endif
449
450         if (status > 0) {
451                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
452                 status = jbd2_journal_restart(handle,
453                                               old_nblocks + nblocks);
454                 if (status < 0) {
455                         mlog_errno(status);
456                         goto bail;
457                 }
458         }
459
460         status = 0;
461 bail:
462         return status;
463 }
464
465 /*
466  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
467  * If that fails, restart the transaction & regain write access for the
468  * buffer head which is used for metadata modifications.
469  * Taken from Ext4: extend_or_restart_transaction()
470  */
471 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
472 {
473         int status, old_nblks;
474
475         BUG_ON(!handle);
476
477         old_nblks = handle->h_buffer_credits;
478         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
479
480         if (old_nblks < thresh)
481                 return 0;
482
483         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA);
484         if (status < 0) {
485                 mlog_errno(status);
486                 goto bail;
487         }
488
489         if (status > 0) {
490                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
491                 if (status < 0)
492                         mlog_errno(status);
493         }
494
495 bail:
496         return status;
497 }
498
499
500 struct ocfs2_triggers {
501         struct jbd2_buffer_trigger_type ot_triggers;
502         int                             ot_offset;
503 };
504
505 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
506 {
507         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
508 }
509
510 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
511                                  struct buffer_head *bh,
512                                  void *data, size_t size)
513 {
514         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
515
516         /*
517          * We aren't guaranteed to have the superblock here, so we
518          * must unconditionally compute the ecc data.
519          * __ocfs2_journal_access() will only set the triggers if
520          * metaecc is enabled.
521          */
522         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
523 }
524
525 /*
526  * Quota blocks have their own trigger because the struct ocfs2_block_check
527  * offset depends on the blocksize.
528  */
529 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
530                                  struct buffer_head *bh,
531                                  void *data, size_t size)
532 {
533         struct ocfs2_disk_dqtrailer *dqt =
534                 ocfs2_block_dqtrailer(size, data);
535
536         /*
537          * We aren't guaranteed to have the superblock here, so we
538          * must unconditionally compute the ecc data.
539          * __ocfs2_journal_access() will only set the triggers if
540          * metaecc is enabled.
541          */
542         ocfs2_block_check_compute(data, size, &dqt->dq_check);
543 }
544
545 /*
546  * Directory blocks also have their own trigger because the
547  * struct ocfs2_block_check offset depends on the blocksize.
548  */
549 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
550                                  struct buffer_head *bh,
551                                  void *data, size_t size)
552 {
553         struct ocfs2_dir_block_trailer *trailer =
554                 ocfs2_dir_trailer_from_size(size, data);
555
556         /*
557          * We aren't guaranteed to have the superblock here, so we
558          * must unconditionally compute the ecc data.
559          * __ocfs2_journal_access() will only set the triggers if
560          * metaecc is enabled.
561          */
562         ocfs2_block_check_compute(data, size, &trailer->db_check);
563 }
564
565 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
566                                 struct buffer_head *bh)
567 {
568         mlog(ML_ERROR,
569              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
570              "bh->b_blocknr = %llu\n",
571              (unsigned long)bh,
572              (unsigned long long)bh->b_blocknr);
573
574         ocfs2_error(bh->b_bdev->bd_super,
575                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
576 }
577
578 static struct ocfs2_triggers di_triggers = {
579         .ot_triggers = {
580                 .t_frozen = ocfs2_frozen_trigger,
581                 .t_abort = ocfs2_abort_trigger,
582         },
583         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
584 };
585
586 static struct ocfs2_triggers eb_triggers = {
587         .ot_triggers = {
588                 .t_frozen = ocfs2_frozen_trigger,
589                 .t_abort = ocfs2_abort_trigger,
590         },
591         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
592 };
593
594 static struct ocfs2_triggers rb_triggers = {
595         .ot_triggers = {
596                 .t_frozen = ocfs2_frozen_trigger,
597                 .t_abort = ocfs2_abort_trigger,
598         },
599         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
600 };
601
602 static struct ocfs2_triggers gd_triggers = {
603         .ot_triggers = {
604                 .t_frozen = ocfs2_frozen_trigger,
605                 .t_abort = ocfs2_abort_trigger,
606         },
607         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
608 };
609
610 static struct ocfs2_triggers db_triggers = {
611         .ot_triggers = {
612                 .t_frozen = ocfs2_db_frozen_trigger,
613                 .t_abort = ocfs2_abort_trigger,
614         },
615 };
616
617 static struct ocfs2_triggers xb_triggers = {
618         .ot_triggers = {
619                 .t_frozen = ocfs2_frozen_trigger,
620                 .t_abort = ocfs2_abort_trigger,
621         },
622         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
623 };
624
625 static struct ocfs2_triggers dq_triggers = {
626         .ot_triggers = {
627                 .t_frozen = ocfs2_dq_frozen_trigger,
628                 .t_abort = ocfs2_abort_trigger,
629         },
630 };
631
632 static struct ocfs2_triggers dr_triggers = {
633         .ot_triggers = {
634                 .t_frozen = ocfs2_frozen_trigger,
635                 .t_abort = ocfs2_abort_trigger,
636         },
637         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
638 };
639
640 static struct ocfs2_triggers dl_triggers = {
641         .ot_triggers = {
642                 .t_frozen = ocfs2_frozen_trigger,
643                 .t_abort = ocfs2_abort_trigger,
644         },
645         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
646 };
647
648 static int __ocfs2_journal_access(handle_t *handle,
649                                   struct ocfs2_caching_info *ci,
650                                   struct buffer_head *bh,
651                                   struct ocfs2_triggers *triggers,
652                                   int type)
653 {
654         int status;
655         struct ocfs2_super *osb =
656                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
657
658         BUG_ON(!ci || !ci->ci_ops);
659         BUG_ON(!handle);
660         BUG_ON(!bh);
661
662         trace_ocfs2_journal_access(
663                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
664                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
665
666         /* we can safely remove this assertion after testing. */
667         if (!buffer_uptodate(bh)) {
668                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
669                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
670                      (unsigned long long)bh->b_blocknr, bh->b_state);
671
672                 lock_buffer(bh);
673                 /*
674                  * A previous transaction with a couple of buffer heads fail
675                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
676                  * For current transaction, the bh is just among those error
677                  * bhs which previous transaction handle. We can't just clear
678                  * its BH_Write_EIO and reuse directly, since other bhs are
679                  * not written to disk yet and that will cause metadata
680                  * inconsistency. So we should set fs read-only to avoid
681                  * further damage.
682                  */
683                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
684                         unlock_buffer(bh);
685                         return ocfs2_error(osb->sb, "A previous attempt to "
686                                         "write this buffer head failed\n");
687                 }
688                 unlock_buffer(bh);
689         }
690
691         /* Set the current transaction information on the ci so
692          * that the locking code knows whether it can drop it's locks
693          * on this ci or not. We're protected from the commit
694          * thread updating the current transaction id until
695          * ocfs2_commit_trans() because ocfs2_start_trans() took
696          * j_trans_barrier for us. */
697         ocfs2_set_ci_lock_trans(osb->journal, ci);
698
699         ocfs2_metadata_cache_io_lock(ci);
700         switch (type) {
701         case OCFS2_JOURNAL_ACCESS_CREATE:
702         case OCFS2_JOURNAL_ACCESS_WRITE:
703                 status = jbd2_journal_get_write_access(handle, bh);
704                 break;
705
706         case OCFS2_JOURNAL_ACCESS_UNDO:
707                 status = jbd2_journal_get_undo_access(handle, bh);
708                 break;
709
710         default:
711                 status = -EINVAL;
712                 mlog(ML_ERROR, "Unknown access type!\n");
713         }
714         if (!status && ocfs2_meta_ecc(osb) && triggers)
715                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
716         ocfs2_metadata_cache_io_unlock(ci);
717
718         if (status < 0)
719                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
720                      status, type);
721
722         return status;
723 }
724
725 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
726                             struct buffer_head *bh, int type)
727 {
728         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
729 }
730
731 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
732                             struct buffer_head *bh, int type)
733 {
734         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
735 }
736
737 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
738                             struct buffer_head *bh, int type)
739 {
740         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
741                                       type);
742 }
743
744 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
745                             struct buffer_head *bh, int type)
746 {
747         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
748 }
749
750 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
751                             struct buffer_head *bh, int type)
752 {
753         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
754 }
755
756 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
757                             struct buffer_head *bh, int type)
758 {
759         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
760 }
761
762 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
763                             struct buffer_head *bh, int type)
764 {
765         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
766 }
767
768 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
769                             struct buffer_head *bh, int type)
770 {
771         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
772 }
773
774 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
775                             struct buffer_head *bh, int type)
776 {
777         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
778 }
779
780 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
781                          struct buffer_head *bh, int type)
782 {
783         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
784 }
785
786 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
787 {
788         int status;
789
790         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
791
792         status = jbd2_journal_dirty_metadata(handle, bh);
793         if (status) {
794                 mlog_errno(status);
795                 if (!is_handle_aborted(handle)) {
796                         journal_t *journal = handle->h_transaction->t_journal;
797                         struct super_block *sb = bh->b_bdev->bd_super;
798
799                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
800                                         "Aborting transaction and journal.\n");
801                         handle->h_err = status;
802                         jbd2_journal_abort_handle(handle);
803                         jbd2_journal_abort(journal, status);
804                         ocfs2_abort(sb, "Journal already aborted.\n");
805                 }
806         }
807 }
808
809 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
810
811 void ocfs2_set_journal_params(struct ocfs2_super *osb)
812 {
813         journal_t *journal = osb->journal->j_journal;
814         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
815
816         if (osb->osb_commit_interval)
817                 commit_interval = osb->osb_commit_interval;
818
819         write_lock(&journal->j_state_lock);
820         journal->j_commit_interval = commit_interval;
821         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
822                 journal->j_flags |= JBD2_BARRIER;
823         else
824                 journal->j_flags &= ~JBD2_BARRIER;
825         write_unlock(&journal->j_state_lock);
826 }
827
828 int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
829 {
830         int status = -1;
831         struct inode *inode = NULL; /* the journal inode */
832         journal_t *j_journal = NULL;
833         struct ocfs2_dinode *di = NULL;
834         struct buffer_head *bh = NULL;
835         struct ocfs2_super *osb;
836         int inode_lock = 0;
837
838         BUG_ON(!journal);
839
840         osb = journal->j_osb;
841
842         /* already have the inode for our journal */
843         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
844                                             osb->slot_num);
845         if (inode == NULL) {
846                 status = -EACCES;
847                 mlog_errno(status);
848                 goto done;
849         }
850         if (is_bad_inode(inode)) {
851                 mlog(ML_ERROR, "access error (bad inode)\n");
852                 iput(inode);
853                 inode = NULL;
854                 status = -EACCES;
855                 goto done;
856         }
857
858         SET_INODE_JOURNAL(inode);
859         OCFS2_I(inode)->ip_open_count++;
860
861         /* Skip recovery waits here - journal inode metadata never
862          * changes in a live cluster so it can be considered an
863          * exception to the rule. */
864         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
865         if (status < 0) {
866                 if (status != -ERESTARTSYS)
867                         mlog(ML_ERROR, "Could not get lock on journal!\n");
868                 goto done;
869         }
870
871         inode_lock = 1;
872         di = (struct ocfs2_dinode *)bh->b_data;
873
874         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
875                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
876                      i_size_read(inode));
877                 status = -EINVAL;
878                 goto done;
879         }
880
881         trace_ocfs2_journal_init(i_size_read(inode),
882                                  (unsigned long long)inode->i_blocks,
883                                  OCFS2_I(inode)->ip_clusters);
884
885         /* call the kernels journal init function now */
886         j_journal = jbd2_journal_init_inode(inode);
887         if (j_journal == NULL) {
888                 mlog(ML_ERROR, "Linux journal layer error\n");
889                 status = -EINVAL;
890                 goto done;
891         }
892
893         trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
894
895         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
896                   OCFS2_JOURNAL_DIRTY_FL);
897
898         journal->j_journal = j_journal;
899         journal->j_inode = inode;
900         journal->j_bh = bh;
901
902         ocfs2_set_journal_params(osb);
903
904         journal->j_state = OCFS2_JOURNAL_LOADED;
905
906         status = 0;
907 done:
908         if (status < 0) {
909                 if (inode_lock)
910                         ocfs2_inode_unlock(inode, 1);
911                 brelse(bh);
912                 if (inode) {
913                         OCFS2_I(inode)->ip_open_count--;
914                         iput(inode);
915                 }
916         }
917
918         return status;
919 }
920
921 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
922 {
923         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
924 }
925
926 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
927 {
928         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
929 }
930
931 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
932                                       int dirty, int replayed)
933 {
934         int status;
935         unsigned int flags;
936         struct ocfs2_journal *journal = osb->journal;
937         struct buffer_head *bh = journal->j_bh;
938         struct ocfs2_dinode *fe;
939
940         fe = (struct ocfs2_dinode *)bh->b_data;
941
942         /* The journal bh on the osb always comes from ocfs2_journal_init()
943          * and was validated there inside ocfs2_inode_lock_full().  It's a
944          * code bug if we mess it up. */
945         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
946
947         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
948         if (dirty)
949                 flags |= OCFS2_JOURNAL_DIRTY_FL;
950         else
951                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
952         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
953
954         if (replayed)
955                 ocfs2_bump_recovery_generation(fe);
956
957         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
958         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
959         if (status < 0)
960                 mlog_errno(status);
961
962         return status;
963 }
964
965 /*
966  * If the journal has been kmalloc'd it needs to be freed after this
967  * call.
968  */
969 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
970 {
971         struct ocfs2_journal *journal = NULL;
972         int status = 0;
973         struct inode *inode = NULL;
974         int num_running_trans = 0;
975
976         BUG_ON(!osb);
977
978         journal = osb->journal;
979         if (!journal)
980                 goto done;
981
982         inode = journal->j_inode;
983
984         if (journal->j_state != OCFS2_JOURNAL_LOADED)
985                 goto done;
986
987         /* need to inc inode use count - jbd2_journal_destroy will iput. */
988         if (!igrab(inode))
989                 BUG();
990
991         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
992         trace_ocfs2_journal_shutdown(num_running_trans);
993
994         /* Do a commit_cache here. It will flush our journal, *and*
995          * release any locks that are still held.
996          * set the SHUTDOWN flag and release the trans lock.
997          * the commit thread will take the trans lock for us below. */
998         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
999
1000         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1001          * drop the trans_lock (which we want to hold until we
1002          * completely destroy the journal. */
1003         if (osb->commit_task) {
1004                 /* Wait for the commit thread */
1005                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1006                 kthread_stop(osb->commit_task);
1007                 osb->commit_task = NULL;
1008         }
1009
1010         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1011
1012         if (ocfs2_mount_local(osb)) {
1013                 jbd2_journal_lock_updates(journal->j_journal);
1014                 status = jbd2_journal_flush(journal->j_journal);
1015                 jbd2_journal_unlock_updates(journal->j_journal);
1016                 if (status < 0)
1017                         mlog_errno(status);
1018         }
1019
1020         if (status == 0) {
1021                 /*
1022                  * Do not toggle if flush was unsuccessful otherwise
1023                  * will leave dirty metadata in a "clean" journal
1024                  */
1025                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1026                 if (status < 0)
1027                         mlog_errno(status);
1028         }
1029
1030         /* Shutdown the kernel journal system */
1031         jbd2_journal_destroy(journal->j_journal);
1032         journal->j_journal = NULL;
1033
1034         OCFS2_I(inode)->ip_open_count--;
1035
1036         /* unlock our journal */
1037         ocfs2_inode_unlock(inode, 1);
1038
1039         brelse(journal->j_bh);
1040         journal->j_bh = NULL;
1041
1042         journal->j_state = OCFS2_JOURNAL_FREE;
1043
1044 //      up_write(&journal->j_trans_barrier);
1045 done:
1046         iput(inode);
1047 }
1048
1049 static void ocfs2_clear_journal_error(struct super_block *sb,
1050                                       journal_t *journal,
1051                                       int slot)
1052 {
1053         int olderr;
1054
1055         olderr = jbd2_journal_errno(journal);
1056         if (olderr) {
1057                 mlog(ML_ERROR, "File system error %d recorded in "
1058                      "journal %u.\n", olderr, slot);
1059                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1060                      sb->s_id);
1061
1062                 jbd2_journal_ack_err(journal);
1063                 jbd2_journal_clear_err(journal);
1064         }
1065 }
1066
1067 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1068 {
1069         int status = 0;
1070         struct ocfs2_super *osb;
1071
1072         BUG_ON(!journal);
1073
1074         osb = journal->j_osb;
1075
1076         status = jbd2_journal_load(journal->j_journal);
1077         if (status < 0) {
1078                 mlog(ML_ERROR, "Failed to load journal!\n");
1079                 goto done;
1080         }
1081
1082         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1083
1084         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1085         if (status < 0) {
1086                 mlog_errno(status);
1087                 goto done;
1088         }
1089
1090         /* Launch the commit thread */
1091         if (!local) {
1092                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1093                                 "ocfs2cmt-%s", osb->uuid_str);
1094                 if (IS_ERR(osb->commit_task)) {
1095                         status = PTR_ERR(osb->commit_task);
1096                         osb->commit_task = NULL;
1097                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1098                              "error=%d", status);
1099                         goto done;
1100                 }
1101         } else
1102                 osb->commit_task = NULL;
1103
1104 done:
1105         return status;
1106 }
1107
1108
1109 /* 'full' flag tells us whether we clear out all blocks or if we just
1110  * mark the journal clean */
1111 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1112 {
1113         int status;
1114
1115         BUG_ON(!journal);
1116
1117         status = jbd2_journal_wipe(journal->j_journal, full);
1118         if (status < 0) {
1119                 mlog_errno(status);
1120                 goto bail;
1121         }
1122
1123         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1124         if (status < 0)
1125                 mlog_errno(status);
1126
1127 bail:
1128         return status;
1129 }
1130
1131 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1132 {
1133         int empty;
1134         struct ocfs2_recovery_map *rm = osb->recovery_map;
1135
1136         spin_lock(&osb->osb_lock);
1137         empty = (rm->rm_used == 0);
1138         spin_unlock(&osb->osb_lock);
1139
1140         return empty;
1141 }
1142
1143 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1144 {
1145         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1146 }
1147
1148 /*
1149  * JBD Might read a cached version of another nodes journal file. We
1150  * don't want this as this file changes often and we get no
1151  * notification on those changes. The only way to be sure that we've
1152  * got the most up to date version of those blocks then is to force
1153  * read them off disk. Just searching through the buffer cache won't
1154  * work as there may be pages backing this file which are still marked
1155  * up to date. We know things can't change on this file underneath us
1156  * as we have the lock by now :)
1157  */
1158 static int ocfs2_force_read_journal(struct inode *inode)
1159 {
1160         int status = 0;
1161         int i;
1162         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1163         struct buffer_head *bh = NULL;
1164         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1165
1166         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1167         v_blkno = 0;
1168         while (v_blkno < num_blocks) {
1169                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1170                                                      &p_blkno, &p_blocks, NULL);
1171                 if (status < 0) {
1172                         mlog_errno(status);
1173                         goto bail;
1174                 }
1175
1176                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1177                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1178                                         osb->sb->s_blocksize);
1179                         /* block not cached. */
1180                         if (!bh)
1181                                 continue;
1182
1183                         brelse(bh);
1184                         bh = NULL;
1185                         /* We are reading journal data which should not
1186                          * be put in the uptodate cache.
1187                          */
1188                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1189                         if (status < 0) {
1190                                 mlog_errno(status);
1191                                 goto bail;
1192                         }
1193
1194                         brelse(bh);
1195                         bh = NULL;
1196                 }
1197
1198                 v_blkno += p_blocks;
1199         }
1200
1201 bail:
1202         return status;
1203 }
1204
1205 struct ocfs2_la_recovery_item {
1206         struct list_head        lri_list;
1207         int                     lri_slot;
1208         struct ocfs2_dinode     *lri_la_dinode;
1209         struct ocfs2_dinode     *lri_tl_dinode;
1210         struct ocfs2_quota_recovery *lri_qrec;
1211         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1212 };
1213
1214 /* Does the second half of the recovery process. By this point, the
1215  * node is marked clean and can actually be considered recovered,
1216  * hence it's no longer in the recovery map, but there's still some
1217  * cleanup we can do which shouldn't happen within the recovery thread
1218  * as locking in that context becomes very difficult if we are to take
1219  * recovering nodes into account.
1220  *
1221  * NOTE: This function can and will sleep on recovery of other nodes
1222  * during cluster locking, just like any other ocfs2 process.
1223  */
1224 void ocfs2_complete_recovery(struct work_struct *work)
1225 {
1226         int ret = 0;
1227         struct ocfs2_journal *journal =
1228                 container_of(work, struct ocfs2_journal, j_recovery_work);
1229         struct ocfs2_super *osb = journal->j_osb;
1230         struct ocfs2_dinode *la_dinode, *tl_dinode;
1231         struct ocfs2_la_recovery_item *item, *n;
1232         struct ocfs2_quota_recovery *qrec;
1233         enum ocfs2_orphan_reco_type orphan_reco_type;
1234         LIST_HEAD(tmp_la_list);
1235
1236         trace_ocfs2_complete_recovery(
1237                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1238
1239         spin_lock(&journal->j_lock);
1240         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1241         spin_unlock(&journal->j_lock);
1242
1243         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1244                 list_del_init(&item->lri_list);
1245
1246                 ocfs2_wait_on_quotas(osb);
1247
1248                 la_dinode = item->lri_la_dinode;
1249                 tl_dinode = item->lri_tl_dinode;
1250                 qrec = item->lri_qrec;
1251                 orphan_reco_type = item->lri_orphan_reco_type;
1252
1253                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1254                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1255                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1256                         qrec);
1257
1258                 if (la_dinode) {
1259                         ret = ocfs2_complete_local_alloc_recovery(osb,
1260                                                                   la_dinode);
1261                         if (ret < 0)
1262                                 mlog_errno(ret);
1263
1264                         kfree(la_dinode);
1265                 }
1266
1267                 if (tl_dinode) {
1268                         ret = ocfs2_complete_truncate_log_recovery(osb,
1269                                                                    tl_dinode);
1270                         if (ret < 0)
1271                                 mlog_errno(ret);
1272
1273                         kfree(tl_dinode);
1274                 }
1275
1276                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1277                                 orphan_reco_type);
1278                 if (ret < 0)
1279                         mlog_errno(ret);
1280
1281                 if (qrec) {
1282                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1283                                                           item->lri_slot);
1284                         if (ret < 0)
1285                                 mlog_errno(ret);
1286                         /* Recovery info is already freed now */
1287                 }
1288
1289                 kfree(item);
1290         }
1291
1292         trace_ocfs2_complete_recovery_end(ret);
1293 }
1294
1295 /* NOTE: This function always eats your references to la_dinode and
1296  * tl_dinode, either manually on error, or by passing them to
1297  * ocfs2_complete_recovery */
1298 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1299                                             int slot_num,
1300                                             struct ocfs2_dinode *la_dinode,
1301                                             struct ocfs2_dinode *tl_dinode,
1302                                             struct ocfs2_quota_recovery *qrec,
1303                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1304 {
1305         struct ocfs2_la_recovery_item *item;
1306
1307         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1308         if (!item) {
1309                 /* Though we wish to avoid it, we are in fact safe in
1310                  * skipping local alloc cleanup as fsck.ocfs2 is more
1311                  * than capable of reclaiming unused space. */
1312                 kfree(la_dinode);
1313                 kfree(tl_dinode);
1314
1315                 if (qrec)
1316                         ocfs2_free_quota_recovery(qrec);
1317
1318                 mlog_errno(-ENOMEM);
1319                 return;
1320         }
1321
1322         INIT_LIST_HEAD(&item->lri_list);
1323         item->lri_la_dinode = la_dinode;
1324         item->lri_slot = slot_num;
1325         item->lri_tl_dinode = tl_dinode;
1326         item->lri_qrec = qrec;
1327         item->lri_orphan_reco_type = orphan_reco_type;
1328
1329         spin_lock(&journal->j_lock);
1330         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1331         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1332         spin_unlock(&journal->j_lock);
1333 }
1334
1335 /* Called by the mount code to queue recovery the last part of
1336  * recovery for it's own and offline slot(s). */
1337 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1338 {
1339         struct ocfs2_journal *journal = osb->journal;
1340
1341         if (ocfs2_is_hard_readonly(osb))
1342                 return;
1343
1344         /* No need to queue up our truncate_log as regular cleanup will catch
1345          * that */
1346         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1347                                         osb->local_alloc_copy, NULL, NULL,
1348                                         ORPHAN_NEED_TRUNCATE);
1349         ocfs2_schedule_truncate_log_flush(osb, 0);
1350
1351         osb->local_alloc_copy = NULL;
1352
1353         /* queue to recover orphan slots for all offline slots */
1354         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1355         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1356         ocfs2_free_replay_slots(osb);
1357 }
1358
1359 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1360 {
1361         if (osb->quota_rec) {
1362                 ocfs2_queue_recovery_completion(osb->journal,
1363                                                 osb->slot_num,
1364                                                 NULL,
1365                                                 NULL,
1366                                                 osb->quota_rec,
1367                                                 ORPHAN_NEED_TRUNCATE);
1368                 osb->quota_rec = NULL;
1369         }
1370 }
1371
1372 static int __ocfs2_recovery_thread(void *arg)
1373 {
1374         int status, node_num, slot_num;
1375         struct ocfs2_super *osb = arg;
1376         struct ocfs2_recovery_map *rm = osb->recovery_map;
1377         int *rm_quota = NULL;
1378         int rm_quota_used = 0, i;
1379         struct ocfs2_quota_recovery *qrec;
1380
1381         status = ocfs2_wait_on_mount(osb);
1382         if (status < 0) {
1383                 goto bail;
1384         }
1385
1386         rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1387         if (!rm_quota) {
1388                 status = -ENOMEM;
1389                 goto bail;
1390         }
1391 restart:
1392         status = ocfs2_super_lock(osb, 1);
1393         if (status < 0) {
1394                 mlog_errno(status);
1395                 goto bail;
1396         }
1397
1398         status = ocfs2_compute_replay_slots(osb);
1399         if (status < 0)
1400                 mlog_errno(status);
1401
1402         /* queue recovery for our own slot */
1403         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1404                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1405
1406         spin_lock(&osb->osb_lock);
1407         while (rm->rm_used) {
1408                 /* It's always safe to remove entry zero, as we won't
1409                  * clear it until ocfs2_recover_node() has succeeded. */
1410                 node_num = rm->rm_entries[0];
1411                 spin_unlock(&osb->osb_lock);
1412                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1413                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1414                 if (slot_num == -ENOENT) {
1415                         status = 0;
1416                         goto skip_recovery;
1417                 }
1418
1419                 /* It is a bit subtle with quota recovery. We cannot do it
1420                  * immediately because we have to obtain cluster locks from
1421                  * quota files and we also don't want to just skip it because
1422                  * then quota usage would be out of sync until some node takes
1423                  * the slot. So we remember which nodes need quota recovery
1424                  * and when everything else is done, we recover quotas. */
1425                 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1426                 if (i == rm_quota_used)
1427                         rm_quota[rm_quota_used++] = slot_num;
1428
1429                 status = ocfs2_recover_node(osb, node_num, slot_num);
1430 skip_recovery:
1431                 if (!status) {
1432                         ocfs2_recovery_map_clear(osb, node_num);
1433                 } else {
1434                         mlog(ML_ERROR,
1435                              "Error %d recovering node %d on device (%u,%u)!\n",
1436                              status, node_num,
1437                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1438                         mlog(ML_ERROR, "Volume requires unmount.\n");
1439                 }
1440
1441                 spin_lock(&osb->osb_lock);
1442         }
1443         spin_unlock(&osb->osb_lock);
1444         trace_ocfs2_recovery_thread_end(status);
1445
1446         /* Refresh all journal recovery generations from disk */
1447         status = ocfs2_check_journals_nolocks(osb);
1448         status = (status == -EROFS) ? 0 : status;
1449         if (status < 0)
1450                 mlog_errno(status);
1451
1452         /* Now it is right time to recover quotas... We have to do this under
1453          * superblock lock so that no one can start using the slot (and crash)
1454          * before we recover it */
1455         for (i = 0; i < rm_quota_used; i++) {
1456                 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1457                 if (IS_ERR(qrec)) {
1458                         status = PTR_ERR(qrec);
1459                         mlog_errno(status);
1460                         continue;
1461                 }
1462                 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1463                                                 NULL, NULL, qrec,
1464                                                 ORPHAN_NEED_TRUNCATE);
1465         }
1466
1467         ocfs2_super_unlock(osb, 1);
1468
1469         /* queue recovery for offline slots */
1470         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1471
1472 bail:
1473         mutex_lock(&osb->recovery_lock);
1474         if (!status && !ocfs2_recovery_completed(osb)) {
1475                 mutex_unlock(&osb->recovery_lock);
1476                 goto restart;
1477         }
1478
1479         ocfs2_free_replay_slots(osb);
1480         osb->recovery_thread_task = NULL;
1481         mb(); /* sync with ocfs2_recovery_thread_running */
1482         wake_up(&osb->recovery_event);
1483
1484         mutex_unlock(&osb->recovery_lock);
1485
1486         kfree(rm_quota);
1487
1488         /* no one is callint kthread_stop() for us so the kthread() api
1489          * requires that we call do_exit().  And it isn't exported, but
1490          * complete_and_exit() seems to be a minimal wrapper around it. */
1491         complete_and_exit(NULL, status);
1492 }
1493
1494 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1495 {
1496         mutex_lock(&osb->recovery_lock);
1497
1498         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1499                 osb->disable_recovery, osb->recovery_thread_task,
1500                 osb->disable_recovery ?
1501                 -1 : ocfs2_recovery_map_set(osb, node_num));
1502
1503         if (osb->disable_recovery)
1504                 goto out;
1505
1506         if (osb->recovery_thread_task)
1507                 goto out;
1508
1509         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1510                         "ocfs2rec-%s", osb->uuid_str);
1511         if (IS_ERR(osb->recovery_thread_task)) {
1512                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1513                 osb->recovery_thread_task = NULL;
1514         }
1515
1516 out:
1517         mutex_unlock(&osb->recovery_lock);
1518         wake_up(&osb->recovery_event);
1519 }
1520
1521 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1522                                     int slot_num,
1523                                     struct buffer_head **bh,
1524                                     struct inode **ret_inode)
1525 {
1526         int status = -EACCES;
1527         struct inode *inode = NULL;
1528
1529         BUG_ON(slot_num >= osb->max_slots);
1530
1531         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1532                                             slot_num);
1533         if (!inode || is_bad_inode(inode)) {
1534                 mlog_errno(status);
1535                 goto bail;
1536         }
1537         SET_INODE_JOURNAL(inode);
1538
1539         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1540         if (status < 0) {
1541                 mlog_errno(status);
1542                 goto bail;
1543         }
1544
1545         status = 0;
1546
1547 bail:
1548         if (inode) {
1549                 if (status || !ret_inode)
1550                         iput(inode);
1551                 else
1552                         *ret_inode = inode;
1553         }
1554         return status;
1555 }
1556
1557 /* Does the actual journal replay and marks the journal inode as
1558  * clean. Will only replay if the journal inode is marked dirty. */
1559 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1560                                 int node_num,
1561                                 int slot_num)
1562 {
1563         int status;
1564         int got_lock = 0;
1565         unsigned int flags;
1566         struct inode *inode = NULL;
1567         struct ocfs2_dinode *fe;
1568         journal_t *journal = NULL;
1569         struct buffer_head *bh = NULL;
1570         u32 slot_reco_gen;
1571
1572         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1573         if (status) {
1574                 mlog_errno(status);
1575                 goto done;
1576         }
1577
1578         fe = (struct ocfs2_dinode *)bh->b_data;
1579         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1580         brelse(bh);
1581         bh = NULL;
1582
1583         /*
1584          * As the fs recovery is asynchronous, there is a small chance that
1585          * another node mounted (and recovered) the slot before the recovery
1586          * thread could get the lock. To handle that, we dirty read the journal
1587          * inode for that slot to get the recovery generation. If it is
1588          * different than what we expected, the slot has been recovered.
1589          * If not, it needs recovery.
1590          */
1591         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1592                 trace_ocfs2_replay_journal_recovered(slot_num,
1593                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1594                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1595                 status = -EBUSY;
1596                 goto done;
1597         }
1598
1599         /* Continue with recovery as the journal has not yet been recovered */
1600
1601         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1602         if (status < 0) {
1603                 trace_ocfs2_replay_journal_lock_err(status);
1604                 if (status != -ERESTARTSYS)
1605                         mlog(ML_ERROR, "Could not lock journal!\n");
1606                 goto done;
1607         }
1608         got_lock = 1;
1609
1610         fe = (struct ocfs2_dinode *) bh->b_data;
1611
1612         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1613         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1614
1615         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1616                 trace_ocfs2_replay_journal_skip(node_num);
1617                 /* Refresh recovery generation for the slot */
1618                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1619                 goto done;
1620         }
1621
1622         /* we need to run complete recovery for offline orphan slots */
1623         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1624
1625         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1626                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1627                MINOR(osb->sb->s_dev));
1628
1629         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1630
1631         status = ocfs2_force_read_journal(inode);
1632         if (status < 0) {
1633                 mlog_errno(status);
1634                 goto done;
1635         }
1636
1637         journal = jbd2_journal_init_inode(inode);
1638         if (journal == NULL) {
1639                 mlog(ML_ERROR, "Linux journal layer error\n");
1640                 status = -EIO;
1641                 goto done;
1642         }
1643
1644         status = jbd2_journal_load(journal);
1645         if (status < 0) {
1646                 mlog_errno(status);
1647                 if (!igrab(inode))
1648                         BUG();
1649                 jbd2_journal_destroy(journal);
1650                 goto done;
1651         }
1652
1653         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1654
1655         /* wipe the journal */
1656         jbd2_journal_lock_updates(journal);
1657         status = jbd2_journal_flush(journal);
1658         jbd2_journal_unlock_updates(journal);
1659         if (status < 0)
1660                 mlog_errno(status);
1661
1662         /* This will mark the node clean */
1663         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1664         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1665         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1666
1667         /* Increment recovery generation to indicate successful recovery */
1668         ocfs2_bump_recovery_generation(fe);
1669         osb->slot_recovery_generations[slot_num] =
1670                                         ocfs2_get_recovery_generation(fe);
1671
1672         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1673         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1674         if (status < 0)
1675                 mlog_errno(status);
1676
1677         if (!igrab(inode))
1678                 BUG();
1679
1680         jbd2_journal_destroy(journal);
1681
1682         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1683                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1684                MINOR(osb->sb->s_dev));
1685 done:
1686         /* drop the lock on this nodes journal */
1687         if (got_lock)
1688                 ocfs2_inode_unlock(inode, 1);
1689
1690         iput(inode);
1691         brelse(bh);
1692
1693         return status;
1694 }
1695
1696 /*
1697  * Do the most important parts of node recovery:
1698  *  - Replay it's journal
1699  *  - Stamp a clean local allocator file
1700  *  - Stamp a clean truncate log
1701  *  - Mark the node clean
1702  *
1703  * If this function completes without error, a node in OCFS2 can be
1704  * said to have been safely recovered. As a result, failure during the
1705  * second part of a nodes recovery process (local alloc recovery) is
1706  * far less concerning.
1707  */
1708 static int ocfs2_recover_node(struct ocfs2_super *osb,
1709                               int node_num, int slot_num)
1710 {
1711         int status = 0;
1712         struct ocfs2_dinode *la_copy = NULL;
1713         struct ocfs2_dinode *tl_copy = NULL;
1714
1715         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1716
1717         /* Should not ever be called to recover ourselves -- in that
1718          * case we should've called ocfs2_journal_load instead. */
1719         BUG_ON(osb->node_num == node_num);
1720
1721         status = ocfs2_replay_journal(osb, node_num, slot_num);
1722         if (status < 0) {
1723                 if (status == -EBUSY) {
1724                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1725                         status = 0;
1726                         goto done;
1727                 }
1728                 mlog_errno(status);
1729                 goto done;
1730         }
1731
1732         /* Stamp a clean local alloc file AFTER recovering the journal... */
1733         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1734         if (status < 0) {
1735                 mlog_errno(status);
1736                 goto done;
1737         }
1738
1739         /* An error from begin_truncate_log_recovery is not
1740          * serious enough to warrant halting the rest of
1741          * recovery. */
1742         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1743         if (status < 0)
1744                 mlog_errno(status);
1745
1746         /* Likewise, this would be a strange but ultimately not so
1747          * harmful place to get an error... */
1748         status = ocfs2_clear_slot(osb, slot_num);
1749         if (status < 0)
1750                 mlog_errno(status);
1751
1752         /* This will kfree the memory pointed to by la_copy and tl_copy */
1753         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1754                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1755
1756         status = 0;
1757 done:
1758
1759         return status;
1760 }
1761
1762 /* Test node liveness by trylocking his journal. If we get the lock,
1763  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1764  * still alive (we couldn't get the lock) and < 0 on error. */
1765 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1766                                  int slot_num)
1767 {
1768         int status, flags;
1769         struct inode *inode = NULL;
1770
1771         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1772                                             slot_num);
1773         if (inode == NULL) {
1774                 mlog(ML_ERROR, "access error\n");
1775                 status = -EACCES;
1776                 goto bail;
1777         }
1778         if (is_bad_inode(inode)) {
1779                 mlog(ML_ERROR, "access error (bad inode)\n");
1780                 iput(inode);
1781                 inode = NULL;
1782                 status = -EACCES;
1783                 goto bail;
1784         }
1785         SET_INODE_JOURNAL(inode);
1786
1787         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1788         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1789         if (status < 0) {
1790                 if (status != -EAGAIN)
1791                         mlog_errno(status);
1792                 goto bail;
1793         }
1794
1795         ocfs2_inode_unlock(inode, 1);
1796 bail:
1797         iput(inode);
1798
1799         return status;
1800 }
1801
1802 /* Call this underneath ocfs2_super_lock. It also assumes that the
1803  * slot info struct has been updated from disk. */
1804 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1805 {
1806         unsigned int node_num;
1807         int status, i;
1808         u32 gen;
1809         struct buffer_head *bh = NULL;
1810         struct ocfs2_dinode *di;
1811
1812         /* This is called with the super block cluster lock, so we
1813          * know that the slot map can't change underneath us. */
1814
1815         for (i = 0; i < osb->max_slots; i++) {
1816                 /* Read journal inode to get the recovery generation */
1817                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1818                 if (status) {
1819                         mlog_errno(status);
1820                         goto bail;
1821                 }
1822                 di = (struct ocfs2_dinode *)bh->b_data;
1823                 gen = ocfs2_get_recovery_generation(di);
1824                 brelse(bh);
1825                 bh = NULL;
1826
1827                 spin_lock(&osb->osb_lock);
1828                 osb->slot_recovery_generations[i] = gen;
1829
1830                 trace_ocfs2_mark_dead_nodes(i,
1831                                             osb->slot_recovery_generations[i]);
1832
1833                 if (i == osb->slot_num) {
1834                         spin_unlock(&osb->osb_lock);
1835                         continue;
1836                 }
1837
1838                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1839                 if (status == -ENOENT) {
1840                         spin_unlock(&osb->osb_lock);
1841                         continue;
1842                 }
1843
1844                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1845                         spin_unlock(&osb->osb_lock);
1846                         continue;
1847                 }
1848                 spin_unlock(&osb->osb_lock);
1849
1850                 /* Ok, we have a slot occupied by another node which
1851                  * is not in the recovery map. We trylock his journal
1852                  * file here to test if he's alive. */
1853                 status = ocfs2_trylock_journal(osb, i);
1854                 if (!status) {
1855                         /* Since we're called from mount, we know that
1856                          * the recovery thread can't race us on
1857                          * setting / checking the recovery bits. */
1858                         ocfs2_recovery_thread(osb, node_num);
1859                 } else if ((status < 0) && (status != -EAGAIN)) {
1860                         mlog_errno(status);
1861                         goto bail;
1862                 }
1863         }
1864
1865         status = 0;
1866 bail:
1867         return status;
1868 }
1869
1870 /*
1871  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1872  * randomness to the timeout to minimize multple nodes firing the timer at the
1873  * same time.
1874  */
1875 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1876 {
1877         unsigned long time;
1878
1879         get_random_bytes(&time, sizeof(time));
1880         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1881         return msecs_to_jiffies(time);
1882 }
1883
1884 /*
1885  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1886  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1887  * is done to catch any orphans that are left over in orphan directories.
1888  *
1889  * It scans all slots, even ones that are in use. It does so to handle the
1890  * case described below:
1891  *
1892  *   Node 1 has an inode it was using. The dentry went away due to memory
1893  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1894  *   has the open lock.
1895  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1896  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1897  *   open lock, sees that another node has a PR, and does nothing.
1898  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1899  *   open lock, sees the PR still, and does nothing.
1900  *   Basically, we have to trigger an orphan iput on node 1. The only way
1901  *   for this to happen is if node 1 runs node 2's orphan dir.
1902  *
1903  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1904  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1905  * stored in LVB. If the sequence number has changed, it means some other
1906  * node has done the scan.  This node skips the scan and tracks the
1907  * sequence number.  If the sequence number didn't change, it means a scan
1908  * hasn't happened.  The node queues a scan and increments the
1909  * sequence number in the LVB.
1910  */
1911 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1912 {
1913         struct ocfs2_orphan_scan *os;
1914         int status, i;
1915         u32 seqno = 0;
1916
1917         os = &osb->osb_orphan_scan;
1918
1919         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1920                 goto out;
1921
1922         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1923                                             atomic_read(&os->os_state));
1924
1925         status = ocfs2_orphan_scan_lock(osb, &seqno);
1926         if (status < 0) {
1927                 if (status != -EAGAIN)
1928                         mlog_errno(status);
1929                 goto out;
1930         }
1931
1932         /* Do no queue the tasks if the volume is being umounted */
1933         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934                 goto unlock;
1935
1936         if (os->os_seqno != seqno) {
1937                 os->os_seqno = seqno;
1938                 goto unlock;
1939         }
1940
1941         for (i = 0; i < osb->max_slots; i++)
1942                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1943                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1944         /*
1945          * We queued a recovery on orphan slots, increment the sequence
1946          * number and update LVB so other node will skip the scan for a while
1947          */
1948         seqno++;
1949         os->os_count++;
1950         os->os_scantime = ktime_get_seconds();
1951 unlock:
1952         ocfs2_orphan_scan_unlock(osb, seqno);
1953 out:
1954         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1955                                           atomic_read(&os->os_state));
1956         return;
1957 }
1958
1959 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1960 static void ocfs2_orphan_scan_work(struct work_struct *work)
1961 {
1962         struct ocfs2_orphan_scan *os;
1963         struct ocfs2_super *osb;
1964
1965         os = container_of(work, struct ocfs2_orphan_scan,
1966                           os_orphan_scan_work.work);
1967         osb = os->os_osb;
1968
1969         mutex_lock(&os->os_lock);
1970         ocfs2_queue_orphan_scan(osb);
1971         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1972                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1973                                       ocfs2_orphan_scan_timeout());
1974         mutex_unlock(&os->os_lock);
1975 }
1976
1977 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1978 {
1979         struct ocfs2_orphan_scan *os;
1980
1981         os = &osb->osb_orphan_scan;
1982         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1983                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1984                 mutex_lock(&os->os_lock);
1985                 cancel_delayed_work(&os->os_orphan_scan_work);
1986                 mutex_unlock(&os->os_lock);
1987         }
1988 }
1989
1990 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
1991 {
1992         struct ocfs2_orphan_scan *os;
1993
1994         os = &osb->osb_orphan_scan;
1995         os->os_osb = osb;
1996         os->os_count = 0;
1997         os->os_seqno = 0;
1998         mutex_init(&os->os_lock);
1999         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2000 }
2001
2002 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2003 {
2004         struct ocfs2_orphan_scan *os;
2005
2006         os = &osb->osb_orphan_scan;
2007         os->os_scantime = ktime_get_seconds();
2008         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2009                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2010         else {
2011                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2012                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2013                                    ocfs2_orphan_scan_timeout());
2014         }
2015 }
2016
2017 struct ocfs2_orphan_filldir_priv {
2018         struct dir_context      ctx;
2019         struct inode            *head;
2020         struct ocfs2_super      *osb;
2021         enum ocfs2_orphan_reco_type orphan_reco_type;
2022 };
2023
2024 static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2025                                 int name_len, loff_t pos, u64 ino,
2026                                 unsigned type)
2027 {
2028         struct ocfs2_orphan_filldir_priv *p =
2029                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2030         struct inode *iter;
2031
2032         if (name_len == 1 && !strncmp(".", name, 1))
2033                 return 0;
2034         if (name_len == 2 && !strncmp("..", name, 2))
2035                 return 0;
2036
2037         /* do not include dio entry in case of orphan scan */
2038         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2039                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2040                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2041                 return 0;
2042
2043         /* Skip bad inodes so that recovery can continue */
2044         iter = ocfs2_iget(p->osb, ino,
2045                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2046         if (IS_ERR(iter))
2047                 return 0;
2048
2049         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2050                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2051                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2052
2053         /* Skip inodes which are already added to recover list, since dio may
2054          * happen concurrently with unlink/rename */
2055         if (OCFS2_I(iter)->ip_next_orphan) {
2056                 iput(iter);
2057                 return 0;
2058         }
2059
2060         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2061         /* No locking is required for the next_orphan queue as there
2062          * is only ever a single process doing orphan recovery. */
2063         OCFS2_I(iter)->ip_next_orphan = p->head;
2064         p->head = iter;
2065
2066         return 0;
2067 }
2068
2069 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2070                                int slot,
2071                                struct inode **head,
2072                                enum ocfs2_orphan_reco_type orphan_reco_type)
2073 {
2074         int status;
2075         struct inode *orphan_dir_inode = NULL;
2076         struct ocfs2_orphan_filldir_priv priv = {
2077                 .ctx.actor = ocfs2_orphan_filldir,
2078                 .osb = osb,
2079                 .head = *head,
2080                 .orphan_reco_type = orphan_reco_type
2081         };
2082
2083         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2084                                                        ORPHAN_DIR_SYSTEM_INODE,
2085                                                        slot);
2086         if  (!orphan_dir_inode) {
2087                 status = -ENOENT;
2088                 mlog_errno(status);
2089                 return status;
2090         }
2091
2092         inode_lock(orphan_dir_inode);
2093         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2094         if (status < 0) {
2095                 mlog_errno(status);
2096                 goto out;
2097         }
2098
2099         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2100         if (status) {
2101                 mlog_errno(status);
2102                 goto out_cluster;
2103         }
2104
2105         *head = priv.head;
2106
2107 out_cluster:
2108         ocfs2_inode_unlock(orphan_dir_inode, 0);
2109 out:
2110         inode_unlock(orphan_dir_inode);
2111         iput(orphan_dir_inode);
2112         return status;
2113 }
2114
2115 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2116                                               int slot)
2117 {
2118         int ret;
2119
2120         spin_lock(&osb->osb_lock);
2121         ret = !osb->osb_orphan_wipes[slot];
2122         spin_unlock(&osb->osb_lock);
2123         return ret;
2124 }
2125
2126 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2127                                              int slot)
2128 {
2129         spin_lock(&osb->osb_lock);
2130         /* Mark ourselves such that new processes in delete_inode()
2131          * know to quit early. */
2132         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2133         while (osb->osb_orphan_wipes[slot]) {
2134                 /* If any processes are already in the middle of an
2135                  * orphan wipe on this dir, then we need to wait for
2136                  * them. */
2137                 spin_unlock(&osb->osb_lock);
2138                 wait_event_interruptible(osb->osb_wipe_event,
2139                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2140                 spin_lock(&osb->osb_lock);
2141         }
2142         spin_unlock(&osb->osb_lock);
2143 }
2144
2145 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2146                                               int slot)
2147 {
2148         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2149 }
2150
2151 /*
2152  * Orphan recovery. Each mounted node has it's own orphan dir which we
2153  * must run during recovery. Our strategy here is to build a list of
2154  * the inodes in the orphan dir and iget/iput them. The VFS does
2155  * (most) of the rest of the work.
2156  *
2157  * Orphan recovery can happen at any time, not just mount so we have a
2158  * couple of extra considerations.
2159  *
2160  * - We grab as many inodes as we can under the orphan dir lock -
2161  *   doing iget() outside the orphan dir risks getting a reference on
2162  *   an invalid inode.
2163  * - We must be sure not to deadlock with other processes on the
2164  *   system wanting to run delete_inode(). This can happen when they go
2165  *   to lock the orphan dir and the orphan recovery process attempts to
2166  *   iget() inside the orphan dir lock. This can be avoided by
2167  *   advertising our state to ocfs2_delete_inode().
2168  */
2169 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2170                                  int slot,
2171                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2172 {
2173         int ret = 0;
2174         struct inode *inode = NULL;
2175         struct inode *iter;
2176         struct ocfs2_inode_info *oi;
2177         struct buffer_head *di_bh = NULL;
2178         struct ocfs2_dinode *di = NULL;
2179
2180         trace_ocfs2_recover_orphans(slot);
2181
2182         ocfs2_mark_recovering_orphan_dir(osb, slot);
2183         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2184         ocfs2_clear_recovering_orphan_dir(osb, slot);
2185
2186         /* Error here should be noted, but we want to continue with as
2187          * many queued inodes as we've got. */
2188         if (ret)
2189                 mlog_errno(ret);
2190
2191         while (inode) {
2192                 oi = OCFS2_I(inode);
2193                 trace_ocfs2_recover_orphans_iput(
2194                                         (unsigned long long)oi->ip_blkno);
2195
2196                 iter = oi->ip_next_orphan;
2197                 oi->ip_next_orphan = NULL;
2198
2199                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2200                         inode_lock(inode);
2201                         ret = ocfs2_rw_lock(inode, 1);
2202                         if (ret < 0) {
2203                                 mlog_errno(ret);
2204                                 goto unlock_mutex;
2205                         }
2206                         /*
2207                          * We need to take and drop the inode lock to
2208                          * force read inode from disk.
2209                          */
2210                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2211                         if (ret) {
2212                                 mlog_errno(ret);
2213                                 goto unlock_rw;
2214                         }
2215
2216                         di = (struct ocfs2_dinode *)di_bh->b_data;
2217
2218                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2219                                 ret = ocfs2_truncate_file(inode, di_bh,
2220                                                 i_size_read(inode));
2221                                 if (ret < 0) {
2222                                         if (ret != -ENOSPC)
2223                                                 mlog_errno(ret);
2224                                         goto unlock_inode;
2225                                 }
2226
2227                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2228                                                 di_bh, 0, 0);
2229                                 if (ret)
2230                                         mlog_errno(ret);
2231                         }
2232 unlock_inode:
2233                         ocfs2_inode_unlock(inode, 1);
2234                         brelse(di_bh);
2235                         di_bh = NULL;
2236 unlock_rw:
2237                         ocfs2_rw_unlock(inode, 1);
2238 unlock_mutex:
2239                         inode_unlock(inode);
2240
2241                         /* clear dio flag in ocfs2_inode_info */
2242                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2243                 } else {
2244                         spin_lock(&oi->ip_lock);
2245                         /* Set the proper information to get us going into
2246                          * ocfs2_delete_inode. */
2247                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2248                         spin_unlock(&oi->ip_lock);
2249                 }
2250
2251                 iput(inode);
2252                 inode = iter;
2253         }
2254
2255         return ret;
2256 }
2257
2258 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2259 {
2260         /* This check is good because ocfs2 will wait on our recovery
2261          * thread before changing it to something other than MOUNTED
2262          * or DISABLED. */
2263         wait_event(osb->osb_mount_event,
2264                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2265                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2266                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2267
2268         /* If there's an error on mount, then we may never get to the
2269          * MOUNTED flag, but this is set right before
2270          * dismount_volume() so we can trust it. */
2271         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2272                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2273                 mlog(0, "mount error, exiting!\n");
2274                 return -EBUSY;
2275         }
2276
2277         return 0;
2278 }
2279
2280 static int ocfs2_commit_thread(void *arg)
2281 {
2282         int status;
2283         struct ocfs2_super *osb = arg;
2284         struct ocfs2_journal *journal = osb->journal;
2285
2286         /* we can trust j_num_trans here because _should_stop() is only set in
2287          * shutdown and nobody other than ourselves should be able to start
2288          * transactions.  committing on shutdown might take a few iterations
2289          * as final transactions put deleted inodes on the list */
2290         while (!(kthread_should_stop() &&
2291                  atomic_read(&journal->j_num_trans) == 0)) {
2292
2293                 wait_event_interruptible(osb->checkpoint_event,
2294                                          atomic_read(&journal->j_num_trans)
2295                                          || kthread_should_stop());
2296
2297                 status = ocfs2_commit_cache(osb);
2298                 if (status < 0) {
2299                         static unsigned long abort_warn_time;
2300
2301                         /* Warn about this once per minute */
2302                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2303                                 mlog(ML_ERROR, "status = %d, journal is "
2304                                                 "already aborted.\n", status);
2305                         /*
2306                          * After ocfs2_commit_cache() fails, j_num_trans has a
2307                          * non-zero value.  Sleep here to avoid a busy-wait
2308                          * loop.
2309                          */
2310                         msleep_interruptible(1000);
2311                 }
2312
2313                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2314                         mlog(ML_KTHREAD,
2315                              "commit_thread: %u transactions pending on "
2316                              "shutdown\n",
2317                              atomic_read(&journal->j_num_trans));
2318                 }
2319         }
2320
2321         return 0;
2322 }
2323
2324 /* Reads all the journal inodes without taking any cluster locks. Used
2325  * for hard readonly access to determine whether any journal requires
2326  * recovery. Also used to refresh the recovery generation numbers after
2327  * a journal has been recovered by another node.
2328  */
2329 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2330 {
2331         int ret = 0;
2332         unsigned int slot;
2333         struct buffer_head *di_bh = NULL;
2334         struct ocfs2_dinode *di;
2335         int journal_dirty = 0;
2336
2337         for(slot = 0; slot < osb->max_slots; slot++) {
2338                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2339                 if (ret) {
2340                         mlog_errno(ret);
2341                         goto out;
2342                 }
2343
2344                 di = (struct ocfs2_dinode *) di_bh->b_data;
2345
2346                 osb->slot_recovery_generations[slot] =
2347                                         ocfs2_get_recovery_generation(di);
2348
2349                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2350                     OCFS2_JOURNAL_DIRTY_FL)
2351                         journal_dirty = 1;
2352
2353                 brelse(di_bh);
2354                 di_bh = NULL;
2355         }
2356
2357 out:
2358         if (journal_dirty)
2359                 ret = -EROFS;
2360         return ret;
2361 }