1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * File open, close, extend, truncate
7 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 #include <linux/capability.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/uio.h>
17 #include <linux/sched.h>
18 #include <linux/splice.h>
19 #include <linux/mount.h>
20 #include <linux/writeback.h>
21 #include <linux/falloc.h>
22 #include <linux/quotaops.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
26 #include <cluster/masklog.h>
34 #include "extent_map.h"
47 #include "refcounttree.h"
48 #include "ocfs2_trace.h"
50 #include "buffer_head_io.h"
52 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
54 struct ocfs2_file_private *fp;
56 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
61 mutex_init(&fp->fp_mutex);
62 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
63 file->private_data = fp;
68 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
70 struct ocfs2_file_private *fp = file->private_data;
71 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
74 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
75 ocfs2_lock_res_free(&fp->fp_flock);
77 file->private_data = NULL;
81 static int ocfs2_file_open(struct inode *inode, struct file *file)
84 int mode = file->f_flags;
85 struct ocfs2_inode_info *oi = OCFS2_I(inode);
87 trace_ocfs2_file_open(inode, file, file->f_path.dentry,
88 (unsigned long long)oi->ip_blkno,
89 file->f_path.dentry->d_name.len,
90 file->f_path.dentry->d_name.name, mode);
92 if (file->f_mode & FMODE_WRITE) {
93 status = dquot_initialize(inode);
98 spin_lock(&oi->ip_lock);
100 /* Check that the inode hasn't been wiped from disk by another
101 * node. If it hasn't then we're safe as long as we hold the
102 * spin lock until our increment of open count. */
103 if (oi->ip_flags & OCFS2_INODE_DELETED) {
104 spin_unlock(&oi->ip_lock);
111 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
114 spin_unlock(&oi->ip_lock);
116 status = ocfs2_init_file_private(inode, file);
119 * We want to set open count back if we're failing the
122 spin_lock(&oi->ip_lock);
124 spin_unlock(&oi->ip_lock);
127 file->f_mode |= FMODE_NOWAIT;
133 static int ocfs2_file_release(struct inode *inode, struct file *file)
135 struct ocfs2_inode_info *oi = OCFS2_I(inode);
137 spin_lock(&oi->ip_lock);
138 if (!--oi->ip_open_count)
139 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
141 trace_ocfs2_file_release(inode, file, file->f_path.dentry,
143 file->f_path.dentry->d_name.len,
144 file->f_path.dentry->d_name.name,
146 spin_unlock(&oi->ip_lock);
148 ocfs2_free_file_private(inode, file);
153 static int ocfs2_dir_open(struct inode *inode, struct file *file)
155 return ocfs2_init_file_private(inode, file);
158 static int ocfs2_dir_release(struct inode *inode, struct file *file)
160 ocfs2_free_file_private(inode, file);
164 static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
168 struct inode *inode = file->f_mapping->host;
169 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
170 struct ocfs2_inode_info *oi = OCFS2_I(inode);
171 journal_t *journal = osb->journal->j_journal;
174 bool needs_barrier = false;
176 trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
178 file->f_path.dentry->d_name.len,
179 file->f_path.dentry->d_name.name,
180 (unsigned long long)datasync);
182 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
185 err = file_write_and_wait_range(file, start, end);
189 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
190 if (journal->j_flags & JBD2_BARRIER &&
191 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
192 needs_barrier = true;
193 err = jbd2_complete_transaction(journal, commit_tid);
195 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
203 return (err < 0) ? -EIO : 0;
206 int ocfs2_should_update_atime(struct inode *inode,
207 struct vfsmount *vfsmnt)
209 struct timespec64 now;
210 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
212 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
215 if ((inode->i_flags & S_NOATIME) ||
216 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)))
220 * We can be called with no vfsmnt structure - NFSD will
223 * Note that our action here is different than touch_atime() -
224 * if we can't tell whether this is a noatime mount, then we
225 * don't know whether to trust the value of s_atime_quantum.
230 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
231 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
234 if (vfsmnt->mnt_flags & MNT_RELATIME) {
235 struct timespec64 ctime = inode_get_ctime(inode);
237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
238 (timespec64_compare(&inode->i_atime, &ctime) <= 0))
244 now = current_time(inode);
245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
251 int ocfs2_update_inode_atime(struct inode *inode,
252 struct buffer_head *bh)
255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
260 if (IS_ERR(handle)) {
261 ret = PTR_ERR(handle);
266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
267 OCFS2_JOURNAL_ACCESS_WRITE);
274 * Don't use ocfs2_mark_inode_dirty() here as we don't always
275 * have i_rwsem to guard against concurrent changes to other
278 inode->i_atime = current_time(inode);
279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
281 ocfs2_update_inode_fsync_trans(handle, inode, 0);
282 ocfs2_journal_dirty(handle, bh);
285 ocfs2_commit_trans(osb, handle);
290 int ocfs2_set_inode_size(handle_t *handle,
292 struct buffer_head *fe_bh,
297 i_size_write(inode, new_i_size);
298 inode->i_blocks = ocfs2_inode_sector_count(inode);
299 inode->i_mtime = inode_set_ctime_current(inode);
301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
311 int ocfs2_simple_size_update(struct inode *inode,
312 struct buffer_head *di_bh,
316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
317 handle_t *handle = NULL;
319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
320 if (IS_ERR(handle)) {
321 ret = PTR_ERR(handle);
326 ret = ocfs2_set_inode_size(handle, inode, di_bh,
331 ocfs2_update_inode_fsync_trans(handle, inode, 0);
332 ocfs2_commit_trans(osb, handle);
337 static int ocfs2_cow_file_pos(struct inode *inode,
338 struct buffer_head *fe_bh,
342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 unsigned int num_clusters = 0;
344 unsigned int ext_flags = 0;
347 * If the new offset is aligned to the range of the cluster, there is
348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
354 status = ocfs2_get_clusters(inode, cpos, &phys,
355 &num_clusters, &ext_flags);
361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
372 struct buffer_head *fe_bh,
377 struct ocfs2_dinode *di;
381 * We need to CoW the cluster contains the offset if it is reflinked
382 * since we will call ocfs2_zero_range_for_truncate later which will
383 * write "0" from offset to the end of the cluster.
385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
391 /* TODO: This needs to actually orphan the inode in this
394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
395 if (IS_ERR(handle)) {
396 status = PTR_ERR(handle);
401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
402 OCFS2_JOURNAL_ACCESS_WRITE);
409 * Do this before setting i_size.
411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
419 i_size_write(inode, new_i_size);
420 inode->i_mtime = inode_set_ctime_current(inode);
422 di = (struct ocfs2_dinode *) fe_bh->b_data;
423 di->i_size = cpu_to_le64(new_i_size);
424 di->i_ctime = di->i_mtime = cpu_to_le64(inode_get_ctime(inode).tv_sec);
425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec);
426 ocfs2_update_inode_fsync_trans(handle, inode, 0);
428 ocfs2_journal_dirty(handle, fe_bh);
431 ocfs2_commit_trans(osb, handle);
436 int ocfs2_truncate_file(struct inode *inode,
437 struct buffer_head *di_bh,
441 struct ocfs2_dinode *fe = NULL;
442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
445 * already validated it */
446 fe = (struct ocfs2_dinode *) di_bh->b_data;
448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
449 (unsigned long long)le64_to_cpu(fe->i_size),
450 (unsigned long long)new_i_size);
452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
453 "Inode %llu, inode i_size = %lld != di "
454 "i_size = %llu, i_flags = 0x%x\n",
455 (unsigned long long)OCFS2_I(inode)->ip_blkno,
457 (unsigned long long)le64_to_cpu(fe->i_size),
458 le32_to_cpu(fe->i_flags));
460 if (new_i_size > le64_to_cpu(fe->i_size)) {
461 trace_ocfs2_truncate_file_error(
462 (unsigned long long)le64_to_cpu(fe->i_size),
463 (unsigned long long)new_i_size);
469 down_write(&OCFS2_I(inode)->ip_alloc_sem);
471 ocfs2_resv_discard(&osb->osb_la_resmap,
472 &OCFS2_I(inode)->ip_la_data_resv);
475 * The inode lock forced other nodes to sync and drop their
476 * pages, which (correctly) happens even if we have a truncate
477 * without allocation change - ocfs2 cluster sizes can be much
478 * greater than page size, so we have to truncate them
482 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
483 unmap_mapping_range(inode->i_mapping,
484 new_i_size + PAGE_SIZE - 1, 0, 1);
485 truncate_inode_pages(inode->i_mapping, new_i_size);
486 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
487 i_size_read(inode), 1);
491 goto bail_unlock_sem;
494 /* alright, we're going to need to do a full blown alloc size
495 * change. Orphan the inode so that recovery can complete the
496 * truncate if necessary. This does the task of marking
498 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
501 goto bail_unlock_sem;
504 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
505 truncate_inode_pages(inode->i_mapping, new_i_size);
507 status = ocfs2_commit_truncate(osb, inode, di_bh);
510 goto bail_unlock_sem;
513 /* TODO: orphan dir cleanup here. */
515 up_write(&OCFS2_I(inode)->ip_alloc_sem);
518 if (!status && OCFS2_I(inode)->ip_clusters == 0)
519 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
525 * extend file allocation only here.
526 * we'll update all the disk stuff, and oip->alloc_size
528 * expect stuff to be locked, a transaction started and enough data /
529 * metadata reservations in the contexts.
531 * Will return -EAGAIN, and a reason if a restart is needed.
532 * If passed in, *reason will always be set, even in error.
534 int ocfs2_add_inode_data(struct ocfs2_super *osb,
539 struct buffer_head *fe_bh,
541 struct ocfs2_alloc_context *data_ac,
542 struct ocfs2_alloc_context *meta_ac,
543 enum ocfs2_alloc_restarted *reason_ret)
545 struct ocfs2_extent_tree et;
547 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
548 return ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
549 clusters_to_add, mark_unwritten,
550 data_ac, meta_ac, reason_ret);
553 static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
554 u32 clusters_to_add, int mark_unwritten)
557 int restart_func = 0;
560 struct buffer_head *bh = NULL;
561 struct ocfs2_dinode *fe = NULL;
562 handle_t *handle = NULL;
563 struct ocfs2_alloc_context *data_ac = NULL;
564 struct ocfs2_alloc_context *meta_ac = NULL;
565 enum ocfs2_alloc_restarted why = RESTART_NONE;
566 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
567 struct ocfs2_extent_tree et;
571 * Unwritten extent only exists for file systems which
574 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
576 status = ocfs2_read_inode_block(inode, &bh);
581 fe = (struct ocfs2_dinode *) bh->b_data;
584 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
586 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
587 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
594 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
595 handle = ocfs2_start_trans(osb, credits);
596 if (IS_ERR(handle)) {
597 status = PTR_ERR(handle);
603 restarted_transaction:
604 trace_ocfs2_extend_allocation(
605 (unsigned long long)OCFS2_I(inode)->ip_blkno,
606 (unsigned long long)i_size_read(inode),
607 le32_to_cpu(fe->i_clusters), clusters_to_add,
610 status = dquot_alloc_space_nodirty(inode,
611 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
616 /* reserve a write to the file entry early on - that we if we
617 * run out of credits in the allocation path, we can still
619 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
620 OCFS2_JOURNAL_ACCESS_WRITE);
626 prev_clusters = OCFS2_I(inode)->ip_clusters;
628 status = ocfs2_add_inode_data(osb,
638 if ((status < 0) && (status != -EAGAIN)) {
639 if (status != -ENOSPC)
643 ocfs2_update_inode_fsync_trans(handle, inode, 1);
644 ocfs2_journal_dirty(handle, bh);
646 spin_lock(&OCFS2_I(inode)->ip_lock);
647 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
648 spin_unlock(&OCFS2_I(inode)->ip_lock);
649 /* Release unused quota reservation */
650 dquot_free_space(inode,
651 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
654 if (why != RESTART_NONE && clusters_to_add) {
655 if (why == RESTART_META) {
659 BUG_ON(why != RESTART_TRANS);
661 status = ocfs2_allocate_extend_trans(handle, 1);
663 /* handle still has to be committed at
669 goto restarted_transaction;
673 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
674 le32_to_cpu(fe->i_clusters),
675 (unsigned long long)le64_to_cpu(fe->i_size),
676 OCFS2_I(inode)->ip_clusters,
677 (unsigned long long)i_size_read(inode));
680 if (status < 0 && did_quota)
681 dquot_free_space(inode,
682 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
684 ocfs2_commit_trans(osb, handle);
688 ocfs2_free_alloc_context(data_ac);
692 ocfs2_free_alloc_context(meta_ac);
695 if ((!status) && restart_func) {
706 * While a write will already be ordering the data, a truncate will not.
707 * Thus, we need to explicitly order the zeroed pages.
709 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
710 struct buffer_head *di_bh,
714 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
715 handle_t *handle = NULL;
718 if (!ocfs2_should_order_data(inode))
721 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
722 if (IS_ERR(handle)) {
728 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length);
734 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
735 OCFS2_JOURNAL_ACCESS_WRITE);
738 ocfs2_update_inode_fsync_trans(handle, inode, 1);
743 ocfs2_commit_trans(osb, handle);
744 handle = ERR_PTR(ret);
749 /* Some parts of this taken from generic_cont_expand, which turned out
750 * to be too fragile to do exactly what we need without us having to
751 * worry about recursive locking in ->write_begin() and ->write_end(). */
752 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
753 u64 abs_to, struct buffer_head *di_bh)
755 struct address_space *mapping = inode->i_mapping;
757 unsigned long index = abs_from >> PAGE_SHIFT;
760 unsigned zero_from, zero_to, block_start, block_end;
761 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
763 BUG_ON(abs_from >= abs_to);
764 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
765 BUG_ON(abs_from & (inode->i_blkbits - 1));
767 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh,
770 if (IS_ERR(handle)) {
771 ret = PTR_ERR(handle);
775 page = find_or_create_page(mapping, index, GFP_NOFS);
779 goto out_commit_trans;
782 /* Get the offsets within the page that we want to zero */
783 zero_from = abs_from & (PAGE_SIZE - 1);
784 zero_to = abs_to & (PAGE_SIZE - 1);
788 trace_ocfs2_write_zero_page(
789 (unsigned long long)OCFS2_I(inode)->ip_blkno,
790 (unsigned long long)abs_from,
791 (unsigned long long)abs_to,
792 index, zero_from, zero_to);
794 /* We know that zero_from is block aligned */
795 for (block_start = zero_from; block_start < zero_to;
796 block_start = block_end) {
797 block_end = block_start + i_blocksize(inode);
800 * block_start is block-aligned. Bump it by one to force
801 * __block_write_begin and block_commit_write to zero the
804 ret = __block_write_begin(page, block_start + 1, 0,
812 /* must not update i_size! */
813 block_commit_write(page, block_start + 1, block_start + 1);
817 * fs-writeback will release the dirty pages without page lock
818 * whose offset are over inode size, the release happens at
819 * block_write_full_page().
821 i_size_write(inode, abs_to);
822 inode->i_blocks = ocfs2_inode_sector_count(inode);
823 di->i_size = cpu_to_le64((u64)i_size_read(inode));
824 inode->i_mtime = inode_set_ctime_current(inode);
825 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
826 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
827 di->i_mtime_nsec = di->i_ctime_nsec;
829 ocfs2_journal_dirty(handle, di_bh);
830 ocfs2_update_inode_fsync_trans(handle, inode, 1);
838 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
844 * Find the next range to zero. We do this in terms of bytes because
845 * that's what ocfs2_zero_extend() wants, and it is dealing with the
846 * pagecache. We may return multiple extents.
848 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
849 * needs to be zeroed. range_start and range_end return the next zeroing
850 * range. A subsequent call should pass the previous range_end as its
851 * zero_start. If range_end is 0, there's nothing to do.
853 * Unwritten extents are skipped over. Refcounted extents are CoWd.
855 static int ocfs2_zero_extend_get_range(struct inode *inode,
856 struct buffer_head *di_bh,
857 u64 zero_start, u64 zero_end,
858 u64 *range_start, u64 *range_end)
860 int rc = 0, needs_cow = 0;
861 u32 p_cpos, zero_clusters = 0;
863 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
864 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
865 unsigned int num_clusters = 0;
866 unsigned int ext_flags = 0;
868 while (zero_cpos < last_cpos) {
869 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
870 &num_clusters, &ext_flags);
876 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
877 zero_clusters = num_clusters;
878 if (ext_flags & OCFS2_EXT_REFCOUNTED)
883 zero_cpos += num_clusters;
885 if (!zero_clusters) {
890 while ((zero_cpos + zero_clusters) < last_cpos) {
891 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
892 &p_cpos, &num_clusters,
899 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
901 if (ext_flags & OCFS2_EXT_REFCOUNTED)
903 zero_clusters += num_clusters;
905 if ((zero_cpos + zero_clusters) > last_cpos)
906 zero_clusters = last_cpos - zero_cpos;
909 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
910 zero_clusters, UINT_MAX);
917 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
918 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
919 zero_cpos + zero_clusters);
926 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
927 * has made sure that the entire range needs zeroing.
929 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
930 u64 range_end, struct buffer_head *di_bh)
934 u64 zero_pos = range_start;
936 trace_ocfs2_zero_extend_range(
937 (unsigned long long)OCFS2_I(inode)->ip_blkno,
938 (unsigned long long)range_start,
939 (unsigned long long)range_end);
940 BUG_ON(range_start >= range_end);
942 while (zero_pos < range_end) {
943 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
944 if (next_pos > range_end)
945 next_pos = range_end;
946 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
954 * Very large extends have the potential to lock up
955 * the cpu for extended periods of time.
963 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
967 u64 zero_start, range_start = 0, range_end = 0;
968 struct super_block *sb = inode->i_sb;
970 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
971 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
972 (unsigned long long)zero_start,
973 (unsigned long long)i_size_read(inode));
974 while (zero_start < zero_to_size) {
975 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
986 if (range_start < zero_start)
987 range_start = zero_start;
988 if (range_end > zero_to_size)
989 range_end = zero_to_size;
991 ret = ocfs2_zero_extend_range(inode, range_start,
997 zero_start = range_end;
1003 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1004 u64 new_i_size, u64 zero_to)
1007 u32 clusters_to_add;
1008 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1011 * Only quota files call this without a bh, and they can't be
1014 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
1015 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1017 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1018 if (clusters_to_add < oi->ip_clusters)
1019 clusters_to_add = 0;
1021 clusters_to_add -= oi->ip_clusters;
1023 if (clusters_to_add) {
1024 ret = ocfs2_extend_allocation(inode, oi->ip_clusters,
1025 clusters_to_add, 0);
1033 * Call this even if we don't add any clusters to the tree. We
1034 * still need to zero the area between the old i_size and the
1037 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1045 static int ocfs2_extend_file(struct inode *inode,
1046 struct buffer_head *di_bh,
1050 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1054 /* setattr sometimes calls us like this. */
1055 if (new_i_size == 0)
1058 if (i_size_read(inode) == new_i_size)
1060 BUG_ON(new_i_size < i_size_read(inode));
1063 * The alloc sem blocks people in read/write from reading our
1064 * allocation until we're done changing it. We depend on
1065 * i_rwsem to block other extend/truncate calls while we're
1066 * here. We even have to hold it for sparse files because there
1067 * might be some tail zeroing.
1069 down_write(&oi->ip_alloc_sem);
1071 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1073 * We can optimize small extends by keeping the inodes
1076 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1077 up_write(&oi->ip_alloc_sem);
1078 goto out_update_size;
1081 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1083 up_write(&oi->ip_alloc_sem);
1089 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1090 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1092 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1095 up_write(&oi->ip_alloc_sem);
1103 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1111 int ocfs2_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1114 int status = 0, size_change;
1115 int inode_locked = 0;
1116 struct inode *inode = d_inode(dentry);
1117 struct super_block *sb = inode->i_sb;
1118 struct ocfs2_super *osb = OCFS2_SB(sb);
1119 struct buffer_head *bh = NULL;
1120 handle_t *handle = NULL;
1121 struct dquot *transfer_to[MAXQUOTAS] = { };
1124 struct ocfs2_lock_holder oh;
1126 trace_ocfs2_setattr(inode, dentry,
1127 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1128 dentry->d_name.len, dentry->d_name.name,
1129 attr->ia_valid, attr->ia_mode,
1130 from_kuid(&init_user_ns, attr->ia_uid),
1131 from_kgid(&init_user_ns, attr->ia_gid));
1133 /* ensuring we don't even attempt to truncate a symlink */
1134 if (S_ISLNK(inode->i_mode))
1135 attr->ia_valid &= ~ATTR_SIZE;
1137 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1138 | ATTR_GID | ATTR_UID | ATTR_MODE)
1139 if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
1142 status = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1146 if (is_quota_modification(&nop_mnt_idmap, inode, attr)) {
1147 status = dquot_initialize(inode);
1151 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1154 * Here we should wait dio to finish before inode lock
1155 * to avoid a deadlock between ocfs2_setattr() and
1156 * ocfs2_dio_end_io_write()
1158 inode_dio_wait(inode);
1160 status = ocfs2_rw_lock(inode, 1);
1167 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
1170 goto bail_unlock_rw;
1171 } else if (had_lock) {
1173 * As far as we know, ocfs2_setattr() could only be the first
1174 * VFS entry point in the call chain of recursive cluster
1182 * ocfs2_iop_get_acl()
1184 * But, we're not 100% sure if it's always true, because the
1185 * ordering of the VFS entry points in the call chain is out
1186 * of our control. So, we'd better dump the stack here to
1187 * catch the other cases of recursive locking.
1189 mlog(ML_ERROR, "Another case of recursive locking:\n");
1195 status = inode_newsize_ok(inode, attr->ia_size);
1199 if (i_size_read(inode) >= attr->ia_size) {
1200 if (ocfs2_should_order_data(inode)) {
1201 status = ocfs2_begin_ordered_truncate(inode,
1206 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1208 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1210 if (status != -ENOSPC)
1217 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
1218 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
1220 * Gather pointers to quota structures so that allocation /
1221 * freeing of quota structures happens here and not inside
1222 * dquot_transfer() where we have problems with lock ordering
1224 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
1225 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1226 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1227 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
1228 if (IS_ERR(transfer_to[USRQUOTA])) {
1229 status = PTR_ERR(transfer_to[USRQUOTA]);
1230 transfer_to[USRQUOTA] = NULL;
1234 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
1235 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1236 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1237 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
1238 if (IS_ERR(transfer_to[GRPQUOTA])) {
1239 status = PTR_ERR(transfer_to[GRPQUOTA]);
1240 transfer_to[GRPQUOTA] = NULL;
1244 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1245 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1246 2 * ocfs2_quota_trans_credits(sb));
1247 if (IS_ERR(handle)) {
1248 status = PTR_ERR(handle);
1250 goto bail_unlock_alloc;
1252 status = __dquot_transfer(inode, transfer_to);
1256 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1257 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1258 if (IS_ERR(handle)) {
1259 status = PTR_ERR(handle);
1261 goto bail_unlock_alloc;
1265 setattr_copy(&nop_mnt_idmap, inode, attr);
1266 mark_inode_dirty(inode);
1268 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1273 ocfs2_commit_trans(osb, handle);
1275 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1277 if (status && inode_locked) {
1278 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1283 ocfs2_rw_unlock(inode, 1);
1286 /* Release quota pointers in case we acquired them */
1287 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
1288 dqput(transfer_to[qtype]);
1290 if (!status && attr->ia_valid & ATTR_MODE) {
1291 status = ocfs2_acl_chmod(inode, bh);
1296 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
1302 int ocfs2_getattr(struct mnt_idmap *idmap, const struct path *path,
1303 struct kstat *stat, u32 request_mask, unsigned int flags)
1305 struct inode *inode = d_inode(path->dentry);
1306 struct super_block *sb = path->dentry->d_sb;
1307 struct ocfs2_super *osb = sb->s_fs_info;
1310 err = ocfs2_inode_revalidate(path->dentry);
1317 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1319 * If there is inline data in the inode, the inode will normally not
1320 * have data blocks allocated (it may have an external xattr block).
1321 * Report at least one sector for such files, so tools like tar, rsync,
1322 * others don't incorrectly think the file is completely sparse.
1324 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1325 stat->blocks += (stat->size + 511)>>9;
1327 /* We set the blksize from the cluster size for performance */
1328 stat->blksize = osb->s_clustersize;
1334 int ocfs2_permission(struct mnt_idmap *idmap, struct inode *inode,
1338 struct ocfs2_lock_holder oh;
1340 if (mask & MAY_NOT_BLOCK)
1343 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
1347 } else if (had_lock) {
1348 /* See comments in ocfs2_setattr() for details.
1349 * The call chain of this case could be:
1352 * inode_permission()
1353 * ocfs2_permission()
1354 * ocfs2_iop_get_acl()
1356 mlog(ML_ERROR, "Another case of recursive locking:\n");
1360 ret = generic_permission(&nop_mnt_idmap, inode, mask);
1362 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
1367 static int __ocfs2_write_remove_suid(struct inode *inode,
1368 struct buffer_head *bh)
1372 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1373 struct ocfs2_dinode *di;
1375 trace_ocfs2_write_remove_suid(
1376 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1379 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1380 if (IS_ERR(handle)) {
1381 ret = PTR_ERR(handle);
1386 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1387 OCFS2_JOURNAL_ACCESS_WRITE);
1393 inode->i_mode &= ~S_ISUID;
1394 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1395 inode->i_mode &= ~S_ISGID;
1397 di = (struct ocfs2_dinode *) bh->b_data;
1398 di->i_mode = cpu_to_le16(inode->i_mode);
1399 ocfs2_update_inode_fsync_trans(handle, inode, 0);
1401 ocfs2_journal_dirty(handle, bh);
1404 ocfs2_commit_trans(osb, handle);
1409 static int ocfs2_write_remove_suid(struct inode *inode)
1412 struct buffer_head *bh = NULL;
1414 ret = ocfs2_read_inode_block(inode, &bh);
1420 ret = __ocfs2_write_remove_suid(inode, bh);
1427 * Allocate enough extents to cover the region starting at byte offset
1428 * start for len bytes. Existing extents are skipped, any extents
1429 * added are marked as "unwritten".
1431 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1435 u32 cpos, phys_cpos, clusters, alloc_size;
1436 u64 end = start + len;
1437 struct buffer_head *di_bh = NULL;
1439 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1440 ret = ocfs2_read_inode_block(inode, &di_bh);
1447 * Nothing to do if the requested reservation range
1448 * fits within the inode.
1450 if (ocfs2_size_fits_inline_data(di_bh, end))
1453 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1461 * We consider both start and len to be inclusive.
1463 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1464 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1468 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1476 * Hole or existing extent len can be arbitrary, so
1477 * cap it to our own allocation request.
1479 if (alloc_size > clusters)
1480 alloc_size = clusters;
1484 * We already have an allocation at this
1485 * region so we can safely skip it.
1490 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1499 clusters -= alloc_size;
1510 * Truncate a byte range, avoiding pages within partial clusters. This
1511 * preserves those pages for the zeroing code to write to.
1513 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1516 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1518 struct address_space *mapping = inode->i_mapping;
1520 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1521 end = byte_start + byte_len;
1522 end = end & ~(osb->s_clustersize - 1);
1525 unmap_mapping_range(mapping, start, end - start, 0);
1526 truncate_inode_pages_range(mapping, start, end - 1);
1531 * zero out partial blocks of one cluster.
1533 * start: file offset where zero starts, will be made upper block aligned.
1534 * len: it will be trimmed to the end of current cluster if "start + len"
1535 * is bigger than it.
1537 static int ocfs2_zeroout_partial_cluster(struct inode *inode,
1541 u64 start_block, end_block, nr_blocks;
1542 u64 p_block, offset;
1543 u32 cluster, p_cluster, nr_clusters;
1544 struct super_block *sb = inode->i_sb;
1545 u64 end = ocfs2_align_bytes_to_clusters(sb, start);
1547 if (start + len < end)
1550 start_block = ocfs2_blocks_for_bytes(sb, start);
1551 end_block = ocfs2_blocks_for_bytes(sb, end);
1552 nr_blocks = end_block - start_block;
1556 cluster = ocfs2_bytes_to_clusters(sb, start);
1557 ret = ocfs2_get_clusters(inode, cluster, &p_cluster,
1558 &nr_clusters, NULL);
1564 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster);
1565 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset;
1566 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS);
1569 static int ocfs2_zero_partial_clusters(struct inode *inode,
1574 u64 end = start + len;
1575 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1576 unsigned int csize = osb->s_clustersize;
1578 loff_t isize = i_size_read(inode);
1581 * The "start" and "end" values are NOT necessarily part of
1582 * the range whose allocation is being deleted. Rather, this
1583 * is what the user passed in with the request. We must zero
1584 * partial clusters here. There's no need to worry about
1585 * physical allocation - the zeroing code knows to skip holes.
1587 trace_ocfs2_zero_partial_clusters(
1588 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1589 (unsigned long long)start, (unsigned long long)end);
1592 * If both edges are on a cluster boundary then there's no
1593 * zeroing required as the region is part of the allocation to
1596 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1599 /* No page cache for EOF blocks, issue zero out to disk. */
1602 * zeroout eof blocks in last cluster starting from
1603 * "isize" even "start" > "isize" because it is
1604 * complicated to zeroout just at "start" as "start"
1605 * may be not aligned with block size, buffer write
1606 * would be required to do that, but out of eof buffer
1607 * write is not supported.
1609 ret = ocfs2_zeroout_partial_cluster(inode, isize,
1619 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1620 if (IS_ERR(handle)) {
1621 ret = PTR_ERR(handle);
1627 * If start is on a cluster boundary and end is somewhere in another
1628 * cluster, we have not COWed the cluster starting at start, unless
1629 * end is also within the same cluster. So, in this case, we skip this
1630 * first call to ocfs2_zero_range_for_truncate() truncate and move on
1633 if ((start & (csize - 1)) != 0) {
1635 * We want to get the byte offset of the end of the 1st
1638 tmpend = (u64)osb->s_clustersize +
1639 (start & ~(osb->s_clustersize - 1));
1643 trace_ocfs2_zero_partial_clusters_range1(
1644 (unsigned long long)start,
1645 (unsigned long long)tmpend);
1647 ret = ocfs2_zero_range_for_truncate(inode, handle, start,
1655 * This may make start and end equal, but the zeroing
1656 * code will skip any work in that case so there's no
1657 * need to catch it up here.
1659 start = end & ~(osb->s_clustersize - 1);
1661 trace_ocfs2_zero_partial_clusters_range2(
1662 (unsigned long long)start, (unsigned long long)end);
1664 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1668 ocfs2_update_inode_fsync_trans(handle, inode, 1);
1670 ocfs2_commit_trans(osb, handle);
1675 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1678 struct ocfs2_extent_rec *rec = NULL;
1680 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1682 rec = &el->l_recs[i];
1684 if (le32_to_cpu(rec->e_cpos) < pos)
1692 * Helper to calculate the punching pos and length in one run, we handle the
1693 * following three cases in order:
1695 * - remove the entire record
1696 * - remove a partial record
1697 * - no record needs to be removed (hole-punching completed)
1699 static void ocfs2_calc_trunc_pos(struct inode *inode,
1700 struct ocfs2_extent_list *el,
1701 struct ocfs2_extent_rec *rec,
1702 u32 trunc_start, u32 *trunc_cpos,
1703 u32 *trunc_len, u32 *trunc_end,
1704 u64 *blkno, int *done)
1709 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1711 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1713 * remove an entire extent record.
1715 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1717 * Skip holes if any.
1719 if (range < *trunc_end)
1721 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1722 *blkno = le64_to_cpu(rec->e_blkno);
1723 *trunc_end = le32_to_cpu(rec->e_cpos);
1724 } else if (range > trunc_start) {
1726 * remove a partial extent record, which means we're
1727 * removing the last extent record.
1729 *trunc_cpos = trunc_start;
1733 if (range < *trunc_end)
1735 *trunc_len = *trunc_end - trunc_start;
1736 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1737 *blkno = le64_to_cpu(rec->e_blkno) +
1738 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1739 *trunc_end = trunc_start;
1742 * It may have two following possibilities:
1744 * - last record has been removed
1745 * - trunc_start was within a hole
1747 * both two cases mean the completion of hole punching.
1755 int ocfs2_remove_inode_range(struct inode *inode,
1756 struct buffer_head *di_bh, u64 byte_start,
1759 int ret = 0, flags = 0, done = 0, i;
1760 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1762 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1763 struct ocfs2_cached_dealloc_ctxt dealloc;
1764 struct address_space *mapping = inode->i_mapping;
1765 struct ocfs2_extent_tree et;
1766 struct ocfs2_path *path = NULL;
1767 struct ocfs2_extent_list *el = NULL;
1768 struct ocfs2_extent_rec *rec = NULL;
1769 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1770 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1772 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1773 ocfs2_init_dealloc_ctxt(&dealloc);
1775 trace_ocfs2_remove_inode_range(
1776 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1777 (unsigned long long)byte_start,
1778 (unsigned long long)byte_len);
1783 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1784 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1785 byte_start + byte_len, 0);
1791 * There's no need to get fancy with the page cache
1792 * truncate of an inline-data inode. We're talking
1793 * about less than a page here, which will be cached
1794 * in the dinode buffer anyway.
1796 unmap_mapping_range(mapping, 0, 0, 0);
1797 truncate_inode_pages(mapping, 0);
1802 * For reflinks, we may need to CoW 2 clusters which might be
1803 * partially zero'd later, if hole's start and end offset were
1804 * within one cluster(means is not exactly aligned to clustersize).
1807 if (ocfs2_is_refcount_inode(inode)) {
1808 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1814 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1821 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1822 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1823 cluster_in_el = trunc_end;
1825 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1831 path = ocfs2_new_path_from_et(&et);
1838 while (trunc_end > trunc_start) {
1840 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1847 el = path_leaf_el(path);
1849 i = ocfs2_find_rec(el, trunc_end);
1851 * Need to go to previous extent block.
1854 if (path->p_tree_depth == 0)
1857 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1866 * We've reached the leftmost extent block,
1867 * it's safe to leave.
1869 if (cluster_in_el == 0)
1873 * The 'pos' searched for previous extent block is
1874 * always one cluster less than actual trunc_end.
1876 trunc_end = cluster_in_el + 1;
1878 ocfs2_reinit_path(path, 1);
1883 rec = &el->l_recs[i];
1885 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1886 &trunc_len, &trunc_end, &blkno, &done);
1890 flags = rec->e_flags;
1891 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1893 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1894 phys_cpos, trunc_len, flags,
1895 &dealloc, refcount_loc, false);
1901 cluster_in_el = trunc_end;
1903 ocfs2_reinit_path(path, 1);
1906 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1909 ocfs2_free_path(path);
1910 ocfs2_schedule_truncate_log_flush(osb, 1);
1911 ocfs2_run_deallocs(osb, &dealloc);
1917 * Parts of this function taken from xfs_change_file_space()
1919 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1920 loff_t f_pos, unsigned int cmd,
1921 struct ocfs2_space_resv *sr,
1926 loff_t size, orig_isize;
1927 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1928 struct buffer_head *di_bh = NULL;
1930 unsigned long long max_off = inode->i_sb->s_maxbytes;
1932 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1938 * This prevents concurrent writes on other nodes
1940 ret = ocfs2_rw_lock(inode, 1);
1946 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1952 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1954 goto out_inode_unlock;
1957 switch (sr->l_whence) {
1958 case 0: /*SEEK_SET*/
1960 case 1: /*SEEK_CUR*/
1961 sr->l_start += f_pos;
1963 case 2: /*SEEK_END*/
1964 sr->l_start += i_size_read(inode);
1968 goto out_inode_unlock;
1972 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1975 || sr->l_start > max_off
1976 || (sr->l_start + llen) < 0
1977 || (sr->l_start + llen) > max_off) {
1979 goto out_inode_unlock;
1981 size = sr->l_start + sr->l_len;
1983 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
1984 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
1985 if (sr->l_len <= 0) {
1987 goto out_inode_unlock;
1991 if (file && setattr_should_drop_suidgid(&nop_mnt_idmap, file_inode(file))) {
1992 ret = __ocfs2_write_remove_suid(inode, di_bh);
1995 goto out_inode_unlock;
1999 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2001 case OCFS2_IOC_RESVSP:
2002 case OCFS2_IOC_RESVSP64:
2004 * This takes unsigned offsets, but the signed ones we
2005 * pass have been checked against overflow above.
2007 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
2010 case OCFS2_IOC_UNRESVSP:
2011 case OCFS2_IOC_UNRESVSP64:
2012 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
2019 orig_isize = i_size_read(inode);
2020 /* zeroout eof blocks in the cluster. */
2021 if (!ret && change_size && orig_isize < size) {
2022 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize,
2025 i_size_write(inode, size);
2027 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2030 goto out_inode_unlock;
2034 * We update c/mtime for these changes
2036 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
2037 if (IS_ERR(handle)) {
2038 ret = PTR_ERR(handle);
2040 goto out_inode_unlock;
2043 inode->i_mtime = inode_set_ctime_current(inode);
2044 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
2048 if (file && (file->f_flags & O_SYNC))
2051 ocfs2_commit_trans(osb, handle);
2055 ocfs2_inode_unlock(inode, 1);
2057 ocfs2_rw_unlock(inode, 1);
2060 inode_unlock(inode);
2064 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
2065 struct ocfs2_space_resv *sr)
2067 struct inode *inode = file_inode(file);
2068 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2071 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
2072 !ocfs2_writes_unwritten_extents(osb))
2074 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
2075 !ocfs2_sparse_alloc(osb))
2078 if (!S_ISREG(inode->i_mode))
2081 if (!(file->f_mode & FMODE_WRITE))
2084 ret = mnt_want_write_file(file);
2087 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
2088 mnt_drop_write_file(file);
2092 static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
2095 struct inode *inode = file_inode(file);
2096 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2097 struct ocfs2_space_resv sr;
2098 int change_size = 1;
2099 int cmd = OCFS2_IOC_RESVSP64;
2102 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2104 if (!ocfs2_writes_unwritten_extents(osb))
2107 if (mode & FALLOC_FL_KEEP_SIZE) {
2110 ret = inode_newsize_ok(inode, offset + len);
2115 if (mode & FALLOC_FL_PUNCH_HOLE)
2116 cmd = OCFS2_IOC_UNRESVSP64;
2119 sr.l_start = (s64)offset;
2120 sr.l_len = (s64)len;
2122 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
2126 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2130 unsigned int extent_flags;
2131 u32 cpos, clusters, extent_len, phys_cpos;
2132 struct super_block *sb = inode->i_sb;
2134 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2135 !ocfs2_is_refcount_inode(inode) ||
2136 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2139 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2140 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2143 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2150 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2155 if (extent_len > clusters)
2156 extent_len = clusters;
2158 clusters -= extent_len;
2165 static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
2167 int blockmask = inode->i_sb->s_blocksize - 1;
2168 loff_t final_size = pos + count;
2170 if ((pos & blockmask) || (final_size & blockmask))
2175 static int ocfs2_inode_lock_for_extent_tree(struct inode *inode,
2176 struct buffer_head **di_bh,
2184 ret = ocfs2_inode_lock(inode, di_bh, meta_level);
2186 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level);
2192 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2194 down_read(&OCFS2_I(inode)->ip_alloc_sem);
2197 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2199 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem);
2212 ocfs2_inode_unlock(inode, meta_level);
2217 static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode,
2218 struct buffer_head **di_bh,
2223 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2225 up_read(&OCFS2_I(inode)->ip_alloc_sem);
2230 if (meta_level >= 0)
2231 ocfs2_inode_unlock(inode, meta_level);
2234 static int ocfs2_prepare_inode_for_write(struct file *file,
2235 loff_t pos, size_t count, int wait)
2237 int ret = 0, meta_level = 0, overwrite_io = 0;
2239 struct dentry *dentry = file->f_path.dentry;
2240 struct inode *inode = d_inode(dentry);
2241 struct buffer_head *di_bh = NULL;
2246 * We start with a read level meta lock and only jump to an ex
2247 * if we need to make modifications here.
2250 ret = ocfs2_inode_lock_for_extent_tree(inode,
2262 * Check if IO will overwrite allocated blocks in case
2263 * IOCB_NOWAIT flag is set.
2265 if (!wait && !overwrite_io) {
2268 ret = ocfs2_overwrite_io(inode, di_bh, pos, count);
2276 /* Clear suid / sgid if necessary. We do this here
2277 * instead of later in the write path because
2278 * remove_suid() calls ->setattr without any hint that
2279 * we may have already done our cluster locking. Since
2280 * ocfs2_setattr() *must* take cluster locks to
2281 * proceed, this will lead us to recursively lock the
2282 * inode. There's also the dinode i_size state which
2283 * can be lost via setattr during extending writes (we
2284 * set inode->i_size at the end of a write. */
2285 if (setattr_should_drop_suidgid(&nop_mnt_idmap, inode)) {
2286 if (meta_level == 0) {
2287 ocfs2_inode_unlock_for_extent_tree(inode,
2295 ret = ocfs2_write_remove_suid(inode);
2302 ret = ocfs2_check_range_for_refcount(inode, pos, count);
2304 ocfs2_inode_unlock_for_extent_tree(inode,
2310 ret = ocfs2_inode_lock_for_extent_tree(inode,
2321 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2323 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2324 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2337 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
2340 ocfs2_inode_unlock_for_extent_tree(inode,
2349 static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
2350 struct iov_iter *from)
2353 ssize_t written = 0;
2355 size_t count = iov_iter_count(from);
2356 struct file *file = iocb->ki_filp;
2357 struct inode *inode = file_inode(file);
2358 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2359 int full_coherency = !(osb->s_mount_opt &
2360 OCFS2_MOUNT_COHERENCY_BUFFERED);
2361 void *saved_ki_complete = NULL;
2362 int append_write = ((iocb->ki_pos + count) >=
2363 i_size_read(inode) ? 1 : 0);
2364 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2365 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2367 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry,
2368 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2369 file->f_path.dentry->d_name.len,
2370 file->f_path.dentry->d_name.name,
2371 (unsigned int)from->nr_segs); /* GRRRRR */
2373 if (!direct_io && nowait)
2380 if (!inode_trylock(inode))
2386 * Concurrent O_DIRECT writes are allowed with
2387 * mount_option "coherency=buffered".
2388 * For append write, we must take rw EX.
2390 rw_level = (!direct_io || full_coherency || append_write);
2393 ret = ocfs2_try_rw_lock(inode, rw_level);
2395 ret = ocfs2_rw_lock(inode, rw_level);
2403 * O_DIRECT writes with "coherency=full" need to take EX cluster
2404 * inode_lock to guarantee coherency.
2406 if (direct_io && full_coherency) {
2408 * We need to take and drop the inode lock to force
2409 * other nodes to drop their caches. Buffered I/O
2410 * already does this in write_begin().
2413 ret = ocfs2_try_inode_lock(inode, NULL, 1);
2415 ret = ocfs2_inode_lock(inode, NULL, 1);
2422 ocfs2_inode_unlock(inode, 1);
2425 ret = generic_write_checks(iocb, from);
2433 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait);
2440 if (direct_io && !is_sync_kiocb(iocb) &&
2441 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
2443 * Make it a sync io if it's an unaligned aio.
2445 saved_ki_complete = xchg(&iocb->ki_complete, NULL);
2448 /* communicate with ocfs2_dio_end_io */
2449 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2451 written = __generic_file_write_iter(iocb, from);
2452 /* buffered aio wouldn't have proper lock coverage today */
2453 BUG_ON(written == -EIOCBQUEUED && !direct_io);
2456 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2457 * function pointer which is called when o_direct io completes so that
2458 * it can unlock our rw lock.
2459 * Unfortunately there are error cases which call end_io and others
2460 * that don't. so we don't have to unlock the rw_lock if either an
2461 * async dio is going to do it in the future or an end_io after an
2462 * error has already done it.
2464 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2468 if (unlikely(written <= 0))
2471 if (((file->f_flags & O_DSYNC) && !direct_io) ||
2473 ret = filemap_fdatawrite_range(file->f_mapping,
2474 iocb->ki_pos - written,
2480 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2486 ret = filemap_fdatawait_range(file->f_mapping,
2487 iocb->ki_pos - written,
2492 if (saved_ki_complete)
2493 xchg(&iocb->ki_complete, saved_ki_complete);
2496 ocfs2_rw_unlock(inode, rw_level);
2499 inode_unlock(inode);
2506 static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
2507 struct iov_iter *to)
2509 int ret = 0, rw_level = -1, lock_level = 0;
2510 struct file *filp = iocb->ki_filp;
2511 struct inode *inode = file_inode(filp);
2512 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
2513 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0;
2515 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry,
2516 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2517 filp->f_path.dentry->d_name.len,
2518 filp->f_path.dentry->d_name.name,
2519 to->nr_segs); /* GRRRRR */
2528 if (!direct_io && nowait)
2532 * buffered reads protect themselves in ->read_folio(). O_DIRECT reads
2533 * need locks to protect pending reads from racing with truncate.
2537 ret = ocfs2_try_rw_lock(inode, 0);
2539 ret = ocfs2_rw_lock(inode, 0);
2547 /* communicate with ocfs2_dio_end_io */
2548 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2552 * We're fine letting folks race truncates and extending
2553 * writes with read across the cluster, just like they can
2554 * locally. Hence no rw_lock during read.
2556 * Take and drop the meta data lock to update inode fields
2557 * like i_size. This allows the checks down below
2558 * copy_splice_read() a chance of actually working.
2560 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level,
2567 ocfs2_inode_unlock(inode, lock_level);
2569 ret = generic_file_read_iter(iocb, to);
2570 trace_generic_file_read_iter_ret(ret);
2572 /* buffered aio wouldn't have proper lock coverage today */
2573 BUG_ON(ret == -EIOCBQUEUED && !direct_io);
2575 /* see ocfs2_file_write_iter */
2576 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2582 ocfs2_rw_unlock(inode, rw_level);
2587 static ssize_t ocfs2_file_splice_read(struct file *in, loff_t *ppos,
2588 struct pipe_inode_info *pipe,
2589 size_t len, unsigned int flags)
2591 struct inode *inode = file_inode(in);
2595 trace_ocfs2_file_splice_read(inode, in, in->f_path.dentry,
2596 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2597 in->f_path.dentry->d_name.len,
2598 in->f_path.dentry->d_name.name,
2602 * We're fine letting folks race truncates and extending writes with
2603 * read across the cluster, just like they can locally. Hence no
2604 * rw_lock during read.
2606 * Take and drop the meta data lock to update inode fields like i_size.
2607 * This allows the checks down below filemap_splice_read() a chance of
2610 ret = ocfs2_inode_lock_atime(inode, in->f_path.mnt, &lock_level, 1);
2616 ocfs2_inode_unlock(inode, lock_level);
2618 ret = filemap_splice_read(in, ppos, pipe, len, flags);
2619 trace_filemap_splice_read_ret(ret);
2624 /* Refer generic_file_llseek_unlocked() */
2625 static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
2627 struct inode *inode = file->f_mapping->host;
2636 /* SEEK_END requires the OCFS2 inode lock for the file
2637 * because it references the file's size.
2639 ret = ocfs2_inode_lock(inode, NULL, 0);
2644 offset += i_size_read(inode);
2645 ocfs2_inode_unlock(inode, 0);
2649 offset = file->f_pos;
2652 offset += file->f_pos;
2656 ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
2665 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2668 inode_unlock(inode);
2674 static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in,
2675 struct file *file_out, loff_t pos_out,
2676 loff_t len, unsigned int remap_flags)
2678 struct inode *inode_in = file_inode(file_in);
2679 struct inode *inode_out = file_inode(file_out);
2680 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb);
2681 struct buffer_head *in_bh = NULL, *out_bh = NULL;
2682 bool same_inode = (inode_in == inode_out);
2683 loff_t remapped = 0;
2686 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
2688 if (!ocfs2_refcount_tree(osb))
2690 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
2693 /* Lock both files against IO */
2694 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh);
2698 /* Check file eligibility and prepare for block sharing. */
2700 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) ||
2701 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE))
2704 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
2706 if (ret < 0 || len == 0)
2709 /* Lock out changes to the allocation maps and remap. */
2710 down_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2712 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem,
2713 SINGLE_DEPTH_NESTING);
2715 /* Zap any page cache for the destination file's range. */
2716 truncate_inode_pages_range(&inode_out->i_data,
2717 round_down(pos_out, PAGE_SIZE),
2718 round_up(pos_out + len, PAGE_SIZE) - 1);
2720 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in,
2721 inode_out, out_bh, pos_out, len);
2722 up_write(&OCFS2_I(inode_in)->ip_alloc_sem);
2724 up_write(&OCFS2_I(inode_out)->ip_alloc_sem);
2732 * Empty the extent map so that we may get the right extent
2733 * record from the disk.
2735 ocfs2_extent_map_trunc(inode_in, 0);
2736 ocfs2_extent_map_trunc(inode_out, 0);
2738 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len);
2745 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh);
2746 return remapped > 0 ? remapped : ret;
2749 const struct inode_operations ocfs2_file_iops = {
2750 .setattr = ocfs2_setattr,
2751 .getattr = ocfs2_getattr,
2752 .permission = ocfs2_permission,
2753 .listxattr = ocfs2_listxattr,
2754 .fiemap = ocfs2_fiemap,
2755 .get_inode_acl = ocfs2_iop_get_acl,
2756 .set_acl = ocfs2_iop_set_acl,
2757 .fileattr_get = ocfs2_fileattr_get,
2758 .fileattr_set = ocfs2_fileattr_set,
2761 const struct inode_operations ocfs2_special_file_iops = {
2762 .setattr = ocfs2_setattr,
2763 .getattr = ocfs2_getattr,
2764 .permission = ocfs2_permission,
2765 .get_inode_acl = ocfs2_iop_get_acl,
2766 .set_acl = ocfs2_iop_set_acl,
2770 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2771 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2773 const struct file_operations ocfs2_fops = {
2774 .llseek = ocfs2_file_llseek,
2776 .fsync = ocfs2_sync_file,
2777 .release = ocfs2_file_release,
2778 .open = ocfs2_file_open,
2779 .read_iter = ocfs2_file_read_iter,
2780 .write_iter = ocfs2_file_write_iter,
2781 .unlocked_ioctl = ocfs2_ioctl,
2782 #ifdef CONFIG_COMPAT
2783 .compat_ioctl = ocfs2_compat_ioctl,
2786 .flock = ocfs2_flock,
2787 .splice_read = ocfs2_file_splice_read,
2788 .splice_write = iter_file_splice_write,
2789 .fallocate = ocfs2_fallocate,
2790 .remap_file_range = ocfs2_remap_file_range,
2793 WRAP_DIR_ITER(ocfs2_readdir) // FIXME!
2794 const struct file_operations ocfs2_dops = {
2795 .llseek = generic_file_llseek,
2796 .read = generic_read_dir,
2797 .iterate_shared = shared_ocfs2_readdir,
2798 .fsync = ocfs2_sync_file,
2799 .release = ocfs2_dir_release,
2800 .open = ocfs2_dir_open,
2801 .unlocked_ioctl = ocfs2_ioctl,
2802 #ifdef CONFIG_COMPAT
2803 .compat_ioctl = ocfs2_compat_ioctl,
2806 .flock = ocfs2_flock,
2810 * POSIX-lockless variants of our file_operations.
2812 * These will be used if the underlying cluster stack does not support
2813 * posix file locking, if the user passes the "localflocks" mount
2814 * option, or if we have a local-only fs.
2816 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2817 * so we still want it in the case of no stack support for
2818 * plocks. Internally, it will do the right thing when asked to ignore
2821 const struct file_operations ocfs2_fops_no_plocks = {
2822 .llseek = ocfs2_file_llseek,
2824 .fsync = ocfs2_sync_file,
2825 .release = ocfs2_file_release,
2826 .open = ocfs2_file_open,
2827 .read_iter = ocfs2_file_read_iter,
2828 .write_iter = ocfs2_file_write_iter,
2829 .unlocked_ioctl = ocfs2_ioctl,
2830 #ifdef CONFIG_COMPAT
2831 .compat_ioctl = ocfs2_compat_ioctl,
2833 .flock = ocfs2_flock,
2834 .splice_read = filemap_splice_read,
2835 .splice_write = iter_file_splice_write,
2836 .fallocate = ocfs2_fallocate,
2837 .remap_file_range = ocfs2_remap_file_range,
2840 const struct file_operations ocfs2_dops_no_plocks = {
2841 .llseek = generic_file_llseek,
2842 .read = generic_read_dir,
2843 .iterate_shared = shared_ocfs2_readdir,
2844 .fsync = ocfs2_sync_file,
2845 .release = ocfs2_dir_release,
2846 .open = ocfs2_dir_open,
2847 .unlocked_ioctl = ocfs2_ioctl,
2848 #ifdef CONFIG_COMPAT
2849 .compat_ioctl = ocfs2_compat_ioctl,
2851 .flock = ocfs2_flock,