1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
38 #include <linux/quotaops.h>
40 #define MLOG_MASK_PREFIX ML_INODE
41 #include <cluster/masklog.h>
49 #include "extent_map.h"
62 #include "refcounttree.h"
64 #include "buffer_head_io.h"
66 static int ocfs2_sync_inode(struct inode *inode)
68 filemap_fdatawrite(inode->i_mapping);
69 return sync_mapping_buffers(inode->i_mapping);
72 static int ocfs2_init_file_private(struct inode *inode, struct file *file)
74 struct ocfs2_file_private *fp;
76 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
81 mutex_init(&fp->fp_mutex);
82 ocfs2_file_lock_res_init(&fp->fp_flock, fp);
83 file->private_data = fp;
88 static void ocfs2_free_file_private(struct inode *inode, struct file *file)
90 struct ocfs2_file_private *fp = file->private_data;
91 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
94 ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
95 ocfs2_lock_res_free(&fp->fp_flock);
97 file->private_data = NULL;
101 static int ocfs2_file_open(struct inode *inode, struct file *file)
104 int mode = file->f_flags;
105 struct ocfs2_inode_info *oi = OCFS2_I(inode);
107 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
108 file->f_path.dentry->d_name.len, file->f_path.dentry->d_name.name);
110 if (file->f_mode & FMODE_WRITE)
111 dquot_initialize(inode);
113 spin_lock(&oi->ip_lock);
115 /* Check that the inode hasn't been wiped from disk by another
116 * node. If it hasn't then we're safe as long as we hold the
117 * spin lock until our increment of open count. */
118 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
119 spin_unlock(&oi->ip_lock);
126 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
129 spin_unlock(&oi->ip_lock);
131 status = ocfs2_init_file_private(inode, file);
134 * We want to set open count back if we're failing the
137 spin_lock(&oi->ip_lock);
139 spin_unlock(&oi->ip_lock);
147 static int ocfs2_file_release(struct inode *inode, struct file *file)
149 struct ocfs2_inode_info *oi = OCFS2_I(inode);
151 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode, file,
152 file->f_path.dentry->d_name.len,
153 file->f_path.dentry->d_name.name);
155 spin_lock(&oi->ip_lock);
156 if (!--oi->ip_open_count)
157 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
158 spin_unlock(&oi->ip_lock);
160 ocfs2_free_file_private(inode, file);
167 static int ocfs2_dir_open(struct inode *inode, struct file *file)
169 return ocfs2_init_file_private(inode, file);
172 static int ocfs2_dir_release(struct inode *inode, struct file *file)
174 ocfs2_free_file_private(inode, file);
178 static int ocfs2_sync_file(struct file *file, int datasync)
182 struct dentry *dentry = file->f_path.dentry;
183 struct inode *inode = file->f_mapping->host;
184 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
186 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file, dentry, datasync,
187 dentry->d_name.len, dentry->d_name.name);
189 err = ocfs2_sync_inode(dentry->d_inode);
193 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
196 journal = osb->journal->j_journal;
197 err = jbd2_journal_force_commit(journal);
202 return (err < 0) ? -EIO : 0;
205 int ocfs2_should_update_atime(struct inode *inode,
206 struct vfsmount *vfsmnt)
209 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
211 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
214 if ((inode->i_flags & S_NOATIME) ||
215 ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
219 * We can be called with no vfsmnt structure - NFSD will
222 * Note that our action here is different than touch_atime() -
223 * if we can't tell whether this is a noatime mount, then we
224 * don't know whether to trust the value of s_atime_quantum.
229 if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
230 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
233 if (vfsmnt->mnt_flags & MNT_RELATIME) {
234 if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
235 (timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
242 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
248 int ocfs2_update_inode_atime(struct inode *inode,
249 struct buffer_head *bh)
252 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
254 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
258 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
259 if (IS_ERR(handle)) {
260 ret = PTR_ERR(handle);
265 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
266 OCFS2_JOURNAL_ACCESS_WRITE);
273 * Don't use ocfs2_mark_inode_dirty() here as we don't always
274 * have i_mutex to guard against concurrent changes to other
277 inode->i_atime = CURRENT_TIME;
278 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
279 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
280 ocfs2_journal_dirty(handle, bh);
283 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
289 static int ocfs2_set_inode_size(handle_t *handle,
291 struct buffer_head *fe_bh,
297 i_size_write(inode, new_i_size);
298 inode->i_blocks = ocfs2_inode_sector_count(inode);
299 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
312 int ocfs2_simple_size_update(struct inode *inode,
313 struct buffer_head *di_bh,
317 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
318 handle_t *handle = NULL;
320 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
321 if (IS_ERR(handle)) {
322 ret = PTR_ERR(handle);
327 ret = ocfs2_set_inode_size(handle, inode, di_bh,
332 ocfs2_commit_trans(osb, handle);
337 static int ocfs2_cow_file_pos(struct inode *inode,
338 struct buffer_head *fe_bh,
342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
343 unsigned int num_clusters = 0;
344 unsigned int ext_flags = 0;
347 * If the new offset is aligned to the range of the cluster, there is
348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to
351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
354 status = ocfs2_get_clusters(inode, cpos, &phys,
355 &num_clusters, &ext_flags);
361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
370 static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
372 struct buffer_head *fe_bh,
377 struct ocfs2_dinode *di;
383 * We need to CoW the cluster contains the offset if it is reflinked
384 * since we will call ocfs2_zero_range_for_truncate later which will
385 * write "0" from offset to the end of the cluster.
387 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
393 /* TODO: This needs to actually orphan the inode in this
396 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
397 if (IS_ERR(handle)) {
398 status = PTR_ERR(handle);
403 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
404 OCFS2_JOURNAL_ACCESS_WRITE);
411 * Do this before setting i_size.
413 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
414 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
421 i_size_write(inode, new_i_size);
422 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
424 di = (struct ocfs2_dinode *) fe_bh->b_data;
425 di->i_size = cpu_to_le64(new_i_size);
426 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
427 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
429 ocfs2_journal_dirty(handle, fe_bh);
432 ocfs2_commit_trans(osb, handle);
439 static int ocfs2_truncate_file(struct inode *inode,
440 struct buffer_head *di_bh,
444 struct ocfs2_dinode *fe = NULL;
445 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
447 mlog_entry("(inode = %llu, new_i_size = %llu\n",
448 (unsigned long long)OCFS2_I(inode)->ip_blkno,
449 (unsigned long long)new_i_size);
451 /* We trust di_bh because it comes from ocfs2_inode_lock(), which
452 * already validated it */
453 fe = (struct ocfs2_dinode *) di_bh->b_data;
455 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
456 "Inode %llu, inode i_size = %lld != di "
457 "i_size = %llu, i_flags = 0x%x\n",
458 (unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)le64_to_cpu(fe->i_size),
461 le32_to_cpu(fe->i_flags));
463 if (new_i_size > le64_to_cpu(fe->i_size)) {
464 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
465 (unsigned long long)le64_to_cpu(fe->i_size),
466 (unsigned long long)new_i_size);
472 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
473 (unsigned long long)le64_to_cpu(fe->i_blkno),
474 (unsigned long long)le64_to_cpu(fe->i_size),
475 (unsigned long long)new_i_size);
477 /* lets handle the simple truncate cases before doing any more
478 * cluster locking. */
479 if (new_i_size == le64_to_cpu(fe->i_size))
482 down_write(&OCFS2_I(inode)->ip_alloc_sem);
484 ocfs2_resv_discard(&osb->osb_la_resmap,
485 &OCFS2_I(inode)->ip_la_data_resv);
488 * The inode lock forced other nodes to sync and drop their
489 * pages, which (correctly) happens even if we have a truncate
490 * without allocation change - ocfs2 cluster sizes can be much
491 * greater than page size, so we have to truncate them
494 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
495 truncate_inode_pages(inode->i_mapping, new_i_size);
497 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
498 status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
499 i_size_read(inode), 1);
503 goto bail_unlock_sem;
506 /* alright, we're going to need to do a full blown alloc size
507 * change. Orphan the inode so that recovery can complete the
508 * truncate if necessary. This does the task of marking
510 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
513 goto bail_unlock_sem;
516 status = ocfs2_commit_truncate(osb, inode, di_bh);
519 goto bail_unlock_sem;
522 /* TODO: orphan dir cleanup here. */
524 up_write(&OCFS2_I(inode)->ip_alloc_sem);
527 if (!status && OCFS2_I(inode)->ip_clusters == 0)
528 status = ocfs2_try_remove_refcount_tree(inode, di_bh);
535 * extend file allocation only here.
536 * we'll update all the disk stuff, and oip->alloc_size
538 * expect stuff to be locked, a transaction started and enough data /
539 * metadata reservations in the contexts.
541 * Will return -EAGAIN, and a reason if a restart is needed.
542 * If passed in, *reason will always be set, even in error.
544 int ocfs2_add_inode_data(struct ocfs2_super *osb,
549 struct buffer_head *fe_bh,
551 struct ocfs2_alloc_context *data_ac,
552 struct ocfs2_alloc_context *meta_ac,
553 enum ocfs2_alloc_restarted *reason_ret)
556 struct ocfs2_extent_tree et;
558 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
559 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
560 clusters_to_add, mark_unwritten,
561 data_ac, meta_ac, reason_ret);
566 static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
567 u32 clusters_to_add, int mark_unwritten)
570 int restart_func = 0;
573 struct buffer_head *bh = NULL;
574 struct ocfs2_dinode *fe = NULL;
575 handle_t *handle = NULL;
576 struct ocfs2_alloc_context *data_ac = NULL;
577 struct ocfs2_alloc_context *meta_ac = NULL;
578 enum ocfs2_alloc_restarted why;
579 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
580 struct ocfs2_extent_tree et;
583 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add);
586 * This function only exists for file systems which don't
589 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
591 status = ocfs2_read_inode_block(inode, &bh);
596 fe = (struct ocfs2_dinode *) bh->b_data;
599 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
601 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
602 "clusters_to_add = %u\n",
603 (unsigned long long)OCFS2_I(inode)->ip_blkno,
604 (long long)i_size_read(inode), le32_to_cpu(fe->i_clusters),
606 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
607 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
614 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list,
616 handle = ocfs2_start_trans(osb, credits);
617 if (IS_ERR(handle)) {
618 status = PTR_ERR(handle);
624 restarted_transaction:
625 status = dquot_alloc_space_nodirty(inode,
626 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
631 /* reserve a write to the file entry early on - that we if we
632 * run out of credits in the allocation path, we can still
634 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
635 OCFS2_JOURNAL_ACCESS_WRITE);
641 prev_clusters = OCFS2_I(inode)->ip_clusters;
643 status = ocfs2_add_inode_data(osb,
653 if ((status < 0) && (status != -EAGAIN)) {
654 if (status != -ENOSPC)
659 ocfs2_journal_dirty(handle, bh);
661 spin_lock(&OCFS2_I(inode)->ip_lock);
662 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
663 spin_unlock(&OCFS2_I(inode)->ip_lock);
664 /* Release unused quota reservation */
665 dquot_free_space(inode,
666 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
669 if (why != RESTART_NONE && clusters_to_add) {
670 if (why == RESTART_META) {
671 mlog(0, "restarting function.\n");
675 BUG_ON(why != RESTART_TRANS);
677 mlog(0, "restarting transaction.\n");
678 /* TODO: This can be more intelligent. */
679 credits = ocfs2_calc_extend_credits(osb->sb,
682 status = ocfs2_extend_trans(handle, credits);
684 /* handle still has to be committed at
690 goto restarted_transaction;
694 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
695 le32_to_cpu(fe->i_clusters),
696 (unsigned long long)le64_to_cpu(fe->i_size));
697 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
698 OCFS2_I(inode)->ip_clusters, (long long)i_size_read(inode));
701 if (status < 0 && did_quota)
702 dquot_free_space(inode,
703 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
705 ocfs2_commit_trans(osb, handle);
709 ocfs2_free_alloc_context(data_ac);
713 ocfs2_free_alloc_context(meta_ac);
716 if ((!status) && restart_func) {
728 * While a write will already be ordering the data, a truncate will not.
729 * Thus, we need to explicitly order the zeroed pages.
731 static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode)
733 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
734 handle_t *handle = NULL;
737 if (!ocfs2_should_order_data(inode))
740 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
741 if (IS_ERR(handle)) {
747 ret = ocfs2_jbd2_file_inode(handle, inode);
754 ocfs2_commit_trans(osb, handle);
755 handle = ERR_PTR(ret);
760 /* Some parts of this taken from generic_cont_expand, which turned out
761 * to be too fragile to do exactly what we need without us having to
762 * worry about recursive locking in ->write_begin() and ->write_end(). */
763 static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
766 struct address_space *mapping = inode->i_mapping;
768 unsigned long index = abs_from >> PAGE_CACHE_SHIFT;
769 handle_t *handle = NULL;
771 unsigned zero_from, zero_to, block_start, block_end;
773 BUG_ON(abs_from >= abs_to);
774 BUG_ON(abs_to > (((u64)index + 1) << PAGE_CACHE_SHIFT));
775 BUG_ON(abs_from & (inode->i_blkbits - 1));
777 page = grab_cache_page(mapping, index);
784 /* Get the offsets within the page that we want to zero */
785 zero_from = abs_from & (PAGE_CACHE_SIZE - 1);
786 zero_to = abs_to & (PAGE_CACHE_SIZE - 1);
788 zero_to = PAGE_CACHE_SIZE;
791 "abs_from = %llu, abs_to = %llu, index = %lu, zero_from = %u, zero_to = %u\n",
792 (unsigned long long)abs_from, (unsigned long long)abs_to,
793 index, zero_from, zero_to);
795 /* We know that zero_from is block aligned */
796 for (block_start = zero_from; block_start < zero_to;
797 block_start = block_end) {
798 block_end = block_start + (1 << inode->i_blkbits);
801 * block_start is block-aligned. Bump it by one to
802 * force ocfs2_{prepare,commit}_write() to zero the
805 ret = ocfs2_prepare_write_nolock(inode, page,
814 handle = ocfs2_zero_start_ordered_transaction(inode);
815 if (IS_ERR(handle)) {
816 ret = PTR_ERR(handle);
822 /* must not update i_size! */
823 ret = block_commit_write(page, block_start + 1,
832 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
836 page_cache_release(page);
842 * Find the next range to zero. We do this in terms of bytes because
843 * that's what ocfs2_zero_extend() wants, and it is dealing with the
844 * pagecache. We may return multiple extents.
846 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what
847 * needs to be zeroed. range_start and range_end return the next zeroing
848 * range. A subsequent call should pass the previous range_end as its
849 * zero_start. If range_end is 0, there's nothing to do.
851 * Unwritten extents are skipped over. Refcounted extents are CoWd.
853 static int ocfs2_zero_extend_get_range(struct inode *inode,
854 struct buffer_head *di_bh,
855 u64 zero_start, u64 zero_end,
856 u64 *range_start, u64 *range_end)
858 int rc = 0, needs_cow = 0;
859 u32 p_cpos, zero_clusters = 0;
861 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
862 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
863 unsigned int num_clusters = 0;
864 unsigned int ext_flags = 0;
866 while (zero_cpos < last_cpos) {
867 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
868 &num_clusters, &ext_flags);
874 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
875 zero_clusters = num_clusters;
876 if (ext_flags & OCFS2_EXT_REFCOUNTED)
881 zero_cpos += num_clusters;
883 if (!zero_clusters) {
888 while ((zero_cpos + zero_clusters) < last_cpos) {
889 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
890 &p_cpos, &num_clusters,
897 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
899 if (ext_flags & OCFS2_EXT_REFCOUNTED)
901 zero_clusters += num_clusters;
903 if ((zero_cpos + zero_clusters) > last_cpos)
904 zero_clusters = last_cpos - zero_cpos;
907 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, zero_clusters,
915 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
916 *range_end = ocfs2_clusters_to_bytes(inode->i_sb,
917 zero_cpos + zero_clusters);
924 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller
925 * has made sure that the entire range needs zeroing.
927 static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
932 u64 zero_pos = range_start;
934 mlog(0, "range_start = %llu, range_end = %llu\n",
935 (unsigned long long)range_start,
936 (unsigned long long)range_end);
937 BUG_ON(range_start >= range_end);
939 while (zero_pos < range_end) {
940 next_pos = (zero_pos & PAGE_CACHE_MASK) + PAGE_CACHE_SIZE;
941 if (next_pos > range_end)
942 next_pos = range_end;
943 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos);
951 * Very large extends have the potential to lock up
952 * the cpu for extended periods of time.
960 int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
964 u64 zero_start, range_start = 0, range_end = 0;
965 struct super_block *sb = inode->i_sb;
967 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
968 mlog(0, "zero_start %llu for i_size %llu\n",
969 (unsigned long long)zero_start,
970 (unsigned long long)i_size_read(inode));
971 while (zero_start < zero_to_size) {
972 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
983 if (range_start < zero_start)
984 range_start = zero_start;
985 if (range_end > zero_to_size)
986 range_end = zero_to_size;
988 ret = ocfs2_zero_extend_range(inode, range_start,
994 zero_start = range_end;
1000 int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
1001 u64 new_i_size, u64 zero_to)
1004 u32 clusters_to_add;
1005 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1008 * Only quota files call this without a bh, and they can't be
1011 BUG_ON(!di_bh && (oi->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL));
1012 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
1014 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
1015 if (clusters_to_add < oi->ip_clusters)
1016 clusters_to_add = 0;
1018 clusters_to_add -= oi->ip_clusters;
1020 if (clusters_to_add) {
1021 ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
1022 clusters_to_add, 0);
1030 * Call this even if we don't add any clusters to the tree. We
1031 * still need to zero the area between the old i_size and the
1034 ret = ocfs2_zero_extend(inode, di_bh, zero_to);
1042 static int ocfs2_extend_file(struct inode *inode,
1043 struct buffer_head *di_bh,
1047 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1051 /* setattr sometimes calls us like this. */
1052 if (new_i_size == 0)
1055 if (i_size_read(inode) == new_i_size)
1057 BUG_ON(new_i_size < i_size_read(inode));
1060 * The alloc sem blocks people in read/write from reading our
1061 * allocation until we're done changing it. We depend on
1062 * i_mutex to block other extend/truncate calls while we're
1063 * here. We even have to hold it for sparse files because there
1064 * might be some tail zeroing.
1066 down_write(&oi->ip_alloc_sem);
1068 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1070 * We can optimize small extends by keeping the inodes
1073 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
1074 up_write(&oi->ip_alloc_sem);
1075 goto out_update_size;
1078 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1080 up_write(&oi->ip_alloc_sem);
1086 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1087 ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
1089 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
1092 up_write(&oi->ip_alloc_sem);
1100 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
1108 int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
1110 int status = 0, size_change;
1111 struct inode *inode = dentry->d_inode;
1112 struct super_block *sb = inode->i_sb;
1113 struct ocfs2_super *osb = OCFS2_SB(sb);
1114 struct buffer_head *bh = NULL;
1115 handle_t *handle = NULL;
1116 struct dquot *transfer_to[MAXQUOTAS] = { };
1119 mlog_entry("(0x%p, '%.*s')\n", dentry,
1120 dentry->d_name.len, dentry->d_name.name);
1122 /* ensuring we don't even attempt to truncate a symlink */
1123 if (S_ISLNK(inode->i_mode))
1124 attr->ia_valid &= ~ATTR_SIZE;
1126 if (attr->ia_valid & ATTR_MODE)
1127 mlog(0, "mode change: %d\n", attr->ia_mode);
1128 if (attr->ia_valid & ATTR_UID)
1129 mlog(0, "uid change: %d\n", attr->ia_uid);
1130 if (attr->ia_valid & ATTR_GID)
1131 mlog(0, "gid change: %d\n", attr->ia_gid);
1132 if (attr->ia_valid & ATTR_SIZE)
1133 mlog(0, "size change...\n");
1134 if (attr->ia_valid & (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME))
1135 mlog(0, "time change...\n");
1137 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1138 | ATTR_GID | ATTR_UID | ATTR_MODE)
1139 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) {
1140 mlog(0, "can't handle attrs: 0x%x\n", attr->ia_valid);
1144 status = inode_change_ok(inode, attr);
1148 if (is_quota_modification(inode, attr))
1149 dquot_initialize(inode);
1150 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
1152 status = ocfs2_rw_lock(inode, 1);
1159 status = ocfs2_inode_lock(inode, &bh, 1);
1161 if (status != -ENOENT)
1163 goto bail_unlock_rw;
1166 if (size_change && attr->ia_size != i_size_read(inode)) {
1167 status = inode_newsize_ok(inode, attr->ia_size);
1171 if (i_size_read(inode) > attr->ia_size) {
1172 if (ocfs2_should_order_data(inode)) {
1173 status = ocfs2_begin_ordered_truncate(inode,
1178 status = ocfs2_truncate_file(inode, bh, attr->ia_size);
1180 status = ocfs2_extend_file(inode, bh, attr->ia_size);
1182 if (status != -ENOSPC)
1189 if ((attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
1190 (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
1192 * Gather pointers to quota structures so that allocation /
1193 * freeing of quota structures happens here and not inside
1194 * dquot_transfer() where we have problems with lock ordering
1196 if (attr->ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid
1197 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1198 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
1199 transfer_to[USRQUOTA] = dqget(sb, attr->ia_uid,
1201 if (!transfer_to[USRQUOTA]) {
1206 if (attr->ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid
1207 && OCFS2_HAS_RO_COMPAT_FEATURE(sb,
1208 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
1209 transfer_to[GRPQUOTA] = dqget(sb, attr->ia_gid,
1211 if (!transfer_to[GRPQUOTA]) {
1216 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
1217 2 * ocfs2_quota_trans_credits(sb));
1218 if (IS_ERR(handle)) {
1219 status = PTR_ERR(handle);
1223 status = __dquot_transfer(inode, transfer_to);
1227 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1228 if (IS_ERR(handle)) {
1229 status = PTR_ERR(handle);
1236 * This will intentionally not wind up calling simple_setsize(),
1237 * since all the work for a size change has been done above.
1238 * Otherwise, we could get into problems with truncate as
1239 * ip_alloc_sem is used there to protect against i_size
1242 * XXX: this means the conditional below can probably be removed.
1244 if ((attr->ia_valid & ATTR_SIZE) &&
1245 attr->ia_size != i_size_read(inode)) {
1246 status = vmtruncate(inode, attr->ia_size);
1253 setattr_copy(inode, attr);
1254 mark_inode_dirty(inode);
1256 status = ocfs2_mark_inode_dirty(handle, inode, bh);
1261 ocfs2_commit_trans(osb, handle);
1263 ocfs2_inode_unlock(inode, 1);
1266 ocfs2_rw_unlock(inode, 1);
1270 /* Release quota pointers in case we acquired them */
1271 for (qtype = 0; qtype < MAXQUOTAS; qtype++)
1272 dqput(transfer_to[qtype]);
1274 if (!status && attr->ia_valid & ATTR_MODE) {
1275 status = ocfs2_acl_chmod(inode);
1284 int ocfs2_getattr(struct vfsmount *mnt,
1285 struct dentry *dentry,
1288 struct inode *inode = dentry->d_inode;
1289 struct super_block *sb = dentry->d_inode->i_sb;
1290 struct ocfs2_super *osb = sb->s_fs_info;
1295 err = ocfs2_inode_revalidate(dentry);
1302 generic_fillattr(inode, stat);
1304 /* We set the blksize from the cluster size for performance */
1305 stat->blksize = osb->s_clustersize;
1313 int ocfs2_permission(struct inode *inode, int mask)
1319 ret = ocfs2_inode_lock(inode, NULL, 0);
1326 ret = generic_permission(inode, mask, ocfs2_check_acl);
1328 ocfs2_inode_unlock(inode, 0);
1334 static int __ocfs2_write_remove_suid(struct inode *inode,
1335 struct buffer_head *bh)
1339 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1340 struct ocfs2_dinode *di;
1342 mlog_entry("(Inode %llu, mode 0%o)\n",
1343 (unsigned long long)OCFS2_I(inode)->ip_blkno, inode->i_mode);
1345 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1346 if (IS_ERR(handle)) {
1347 ret = PTR_ERR(handle);
1352 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
1353 OCFS2_JOURNAL_ACCESS_WRITE);
1359 inode->i_mode &= ~S_ISUID;
1360 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
1361 inode->i_mode &= ~S_ISGID;
1363 di = (struct ocfs2_dinode *) bh->b_data;
1364 di->i_mode = cpu_to_le16(inode->i_mode);
1366 ocfs2_journal_dirty(handle, bh);
1369 ocfs2_commit_trans(osb, handle);
1376 * Will look for holes and unwritten extents in the range starting at
1377 * pos for count bytes (inclusive).
1379 static int ocfs2_check_range_for_holes(struct inode *inode, loff_t pos,
1383 unsigned int extent_flags;
1384 u32 cpos, clusters, extent_len, phys_cpos;
1385 struct super_block *sb = inode->i_sb;
1387 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
1388 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
1391 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
1398 if (phys_cpos == 0 || (extent_flags & OCFS2_EXT_UNWRITTEN)) {
1403 if (extent_len > clusters)
1404 extent_len = clusters;
1406 clusters -= extent_len;
1413 static int ocfs2_write_remove_suid(struct inode *inode)
1416 struct buffer_head *bh = NULL;
1418 ret = ocfs2_read_inode_block(inode, &bh);
1424 ret = __ocfs2_write_remove_suid(inode, bh);
1431 * Allocate enough extents to cover the region starting at byte offset
1432 * start for len bytes. Existing extents are skipped, any extents
1433 * added are marked as "unwritten".
1435 static int ocfs2_allocate_unwritten_extents(struct inode *inode,
1439 u32 cpos, phys_cpos, clusters, alloc_size;
1440 u64 end = start + len;
1441 struct buffer_head *di_bh = NULL;
1443 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1444 ret = ocfs2_read_inode_block(inode, &di_bh);
1451 * Nothing to do if the requested reservation range
1452 * fits within the inode.
1454 if (ocfs2_size_fits_inline_data(di_bh, end))
1457 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
1465 * We consider both start and len to be inclusive.
1467 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
1468 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
1472 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
1480 * Hole or existing extent len can be arbitrary, so
1481 * cap it to our own allocation request.
1483 if (alloc_size > clusters)
1484 alloc_size = clusters;
1488 * We already have an allocation at this
1489 * region so we can safely skip it.
1494 ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
1503 clusters -= alloc_size;
1514 * Truncate a byte range, avoiding pages within partial clusters. This
1515 * preserves those pages for the zeroing code to write to.
1517 static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
1520 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1522 struct address_space *mapping = inode->i_mapping;
1524 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
1525 end = byte_start + byte_len;
1526 end = end & ~(osb->s_clustersize - 1);
1529 unmap_mapping_range(mapping, start, end - start, 0);
1530 truncate_inode_pages_range(mapping, start, end - 1);
1534 static int ocfs2_zero_partial_clusters(struct inode *inode,
1538 u64 tmpend, end = start + len;
1539 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1540 unsigned int csize = osb->s_clustersize;
1544 * The "start" and "end" values are NOT necessarily part of
1545 * the range whose allocation is being deleted. Rather, this
1546 * is what the user passed in with the request. We must zero
1547 * partial clusters here. There's no need to worry about
1548 * physical allocation - the zeroing code knows to skip holes.
1550 mlog(0, "byte start: %llu, end: %llu\n",
1551 (unsigned long long)start, (unsigned long long)end);
1554 * If both edges are on a cluster boundary then there's no
1555 * zeroing required as the region is part of the allocation to
1558 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
1561 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1562 if (IS_ERR(handle)) {
1563 ret = PTR_ERR(handle);
1569 * We want to get the byte offset of the end of the 1st cluster.
1571 tmpend = (u64)osb->s_clustersize + (start & ~(osb->s_clustersize - 1));
1575 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1576 (unsigned long long)start, (unsigned long long)tmpend);
1578 ret = ocfs2_zero_range_for_truncate(inode, handle, start, tmpend);
1584 * This may make start and end equal, but the zeroing
1585 * code will skip any work in that case so there's no
1586 * need to catch it up here.
1588 start = end & ~(osb->s_clustersize - 1);
1590 mlog(0, "2nd range: start: %llu, end: %llu\n",
1591 (unsigned long long)start, (unsigned long long)end);
1593 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
1598 ocfs2_commit_trans(osb, handle);
1603 static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
1606 struct ocfs2_extent_rec *rec = NULL;
1608 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
1610 rec = &el->l_recs[i];
1612 if (le32_to_cpu(rec->e_cpos) < pos)
1620 * Helper to calculate the punching pos and length in one run, we handle the
1621 * following three cases in order:
1623 * - remove the entire record
1624 * - remove a partial record
1625 * - no record needs to be removed (hole-punching completed)
1627 static void ocfs2_calc_trunc_pos(struct inode *inode,
1628 struct ocfs2_extent_list *el,
1629 struct ocfs2_extent_rec *rec,
1630 u32 trunc_start, u32 *trunc_cpos,
1631 u32 *trunc_len, u32 *trunc_end,
1632 u64 *blkno, int *done)
1637 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1639 if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
1640 *trunc_cpos = le32_to_cpu(rec->e_cpos);
1642 * Skip holes if any.
1644 if (range < *trunc_end)
1646 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
1647 *blkno = le64_to_cpu(rec->e_blkno);
1648 *trunc_end = le32_to_cpu(rec->e_cpos);
1649 } else if (range > trunc_start) {
1650 *trunc_cpos = trunc_start;
1651 *trunc_len = *trunc_end - trunc_start;
1652 coff = trunc_start - le32_to_cpu(rec->e_cpos);
1653 *blkno = le64_to_cpu(rec->e_blkno) +
1654 ocfs2_clusters_to_blocks(inode->i_sb, coff);
1655 *trunc_end = trunc_start;
1658 * It may have two following possibilities:
1660 * - last record has been removed
1661 * - trunc_start was within a hole
1663 * both two cases mean the completion of hole punching.
1671 static int ocfs2_remove_inode_range(struct inode *inode,
1672 struct buffer_head *di_bh, u64 byte_start,
1675 int ret = 0, flags = 0, done = 0, i;
1676 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
1678 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1679 struct ocfs2_cached_dealloc_ctxt dealloc;
1680 struct address_space *mapping = inode->i_mapping;
1681 struct ocfs2_extent_tree et;
1682 struct ocfs2_path *path = NULL;
1683 struct ocfs2_extent_list *el = NULL;
1684 struct ocfs2_extent_rec *rec = NULL;
1685 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1686 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
1688 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
1689 ocfs2_init_dealloc_ctxt(&dealloc);
1694 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1695 ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
1696 byte_start + byte_len, 0);
1702 * There's no need to get fancy with the page cache
1703 * truncate of an inline-data inode. We're talking
1704 * about less than a page here, which will be cached
1705 * in the dinode buffer anyway.
1707 unmap_mapping_range(mapping, 0, 0, 0);
1708 truncate_inode_pages(mapping, 0);
1713 * For reflinks, we may need to CoW 2 clusters which might be
1714 * partially zero'd later, if hole's start and end offset were
1715 * within one cluster(means is not exactly aligned to clustersize).
1718 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) {
1720 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
1726 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
1733 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
1734 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
1735 cluster_in_el = trunc_end;
1737 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, cend: %u\n",
1738 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1739 (unsigned long long)byte_start,
1740 (unsigned long long)byte_len, trunc_start, trunc_end);
1742 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
1748 path = ocfs2_new_path_from_et(&et);
1755 while (trunc_end > trunc_start) {
1757 ret = ocfs2_find_path(INODE_CACHE(inode), path,
1764 el = path_leaf_el(path);
1766 i = ocfs2_find_rec(el, trunc_end);
1768 * Need to go to previous extent block.
1771 if (path->p_tree_depth == 0)
1774 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
1783 * We've reached the leftmost extent block,
1784 * it's safe to leave.
1786 if (cluster_in_el == 0)
1790 * The 'pos' searched for previous extent block is
1791 * always one cluster less than actual trunc_end.
1793 trunc_end = cluster_in_el + 1;
1795 ocfs2_reinit_path(path, 1);
1800 rec = &el->l_recs[i];
1802 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
1803 &trunc_len, &trunc_end, &blkno, &done);
1807 flags = rec->e_flags;
1808 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
1810 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
1811 phys_cpos, trunc_len, flags,
1812 &dealloc, refcount_loc);
1818 cluster_in_el = trunc_end;
1820 ocfs2_reinit_path(path, 1);
1823 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
1826 ocfs2_schedule_truncate_log_flush(osb, 1);
1827 ocfs2_run_deallocs(osb, &dealloc);
1833 * Parts of this function taken from xfs_change_file_space()
1835 static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
1836 loff_t f_pos, unsigned int cmd,
1837 struct ocfs2_space_resv *sr,
1843 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1844 struct buffer_head *di_bh = NULL;
1846 unsigned long long max_off = inode->i_sb->s_maxbytes;
1848 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
1851 mutex_lock(&inode->i_mutex);
1854 * This prevents concurrent writes on other nodes
1856 ret = ocfs2_rw_lock(inode, 1);
1862 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1868 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
1870 goto out_inode_unlock;
1873 switch (sr->l_whence) {
1874 case 0: /*SEEK_SET*/
1876 case 1: /*SEEK_CUR*/
1877 sr->l_start += f_pos;
1879 case 2: /*SEEK_END*/
1880 sr->l_start += i_size_read(inode);
1884 goto out_inode_unlock;
1888 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
1891 || sr->l_start > max_off
1892 || (sr->l_start + llen) < 0
1893 || (sr->l_start + llen) > max_off) {
1895 goto out_inode_unlock;
1897 size = sr->l_start + sr->l_len;
1899 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) {
1900 if (sr->l_len <= 0) {
1902 goto out_inode_unlock;
1906 if (file && should_remove_suid(file->f_path.dentry)) {
1907 ret = __ocfs2_write_remove_suid(inode, di_bh);
1910 goto out_inode_unlock;
1914 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1916 case OCFS2_IOC_RESVSP:
1917 case OCFS2_IOC_RESVSP64:
1919 * This takes unsigned offsets, but the signed ones we
1920 * pass have been checked against overflow above.
1922 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
1925 case OCFS2_IOC_UNRESVSP:
1926 case OCFS2_IOC_UNRESVSP64:
1927 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
1933 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1936 goto out_inode_unlock;
1940 * We update c/mtime for these changes
1942 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1943 if (IS_ERR(handle)) {
1944 ret = PTR_ERR(handle);
1946 goto out_inode_unlock;
1949 if (change_size && i_size_read(inode) < size)
1950 i_size_write(inode, size);
1952 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1953 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
1957 ocfs2_commit_trans(osb, handle);
1961 ocfs2_inode_unlock(inode, 1);
1963 ocfs2_rw_unlock(inode, 1);
1966 mutex_unlock(&inode->i_mutex);
1970 int ocfs2_change_file_space(struct file *file, unsigned int cmd,
1971 struct ocfs2_space_resv *sr)
1973 struct inode *inode = file->f_path.dentry->d_inode;
1974 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1976 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
1977 !ocfs2_writes_unwritten_extents(osb))
1979 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
1980 !ocfs2_sparse_alloc(osb))
1983 if (!S_ISREG(inode->i_mode))
1986 if (!(file->f_mode & FMODE_WRITE))
1989 return __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
1992 static long ocfs2_fallocate(struct inode *inode, int mode, loff_t offset,
1995 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1996 struct ocfs2_space_resv sr;
1997 int change_size = 1;
1999 if (!ocfs2_writes_unwritten_extents(osb))
2002 if (S_ISDIR(inode->i_mode))
2005 if (mode & FALLOC_FL_KEEP_SIZE)
2009 sr.l_start = (s64)offset;
2010 sr.l_len = (s64)len;
2012 return __ocfs2_change_file_space(NULL, inode, offset,
2013 OCFS2_IOC_RESVSP64, &sr, change_size);
2016 int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
2020 unsigned int extent_flags;
2021 u32 cpos, clusters, extent_len, phys_cpos;
2022 struct super_block *sb = inode->i_sb;
2024 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
2025 !(OCFS2_I(inode)->ip_dyn_features & OCFS2_HAS_REFCOUNT_FL) ||
2026 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2029 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
2030 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
2033 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
2040 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
2045 if (extent_len > clusters)
2046 extent_len = clusters;
2048 clusters -= extent_len;
2055 static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
2056 loff_t pos, size_t count,
2060 struct buffer_head *di_bh = NULL;
2061 u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
2063 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
2065 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2073 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
2081 static int ocfs2_prepare_inode_for_write(struct dentry *dentry,
2088 int ret = 0, meta_level = 0;
2089 struct inode *inode = dentry->d_inode;
2090 loff_t saved_pos, end;
2093 * We start with a read level meta lock and only jump to an ex
2094 * if we need to make modifications here.
2097 ret = ocfs2_inode_lock(inode, NULL, meta_level);
2104 /* Clear suid / sgid if necessary. We do this here
2105 * instead of later in the write path because
2106 * remove_suid() calls ->setattr without any hint that
2107 * we may have already done our cluster locking. Since
2108 * ocfs2_setattr() *must* take cluster locks to
2109 * proceeed, this will lead us to recursively lock the
2110 * inode. There's also the dinode i_size state which
2111 * can be lost via setattr during extending writes (we
2112 * set inode->i_size at the end of a write. */
2113 if (should_remove_suid(dentry)) {
2114 if (meta_level == 0) {
2115 ocfs2_inode_unlock(inode, meta_level);
2120 ret = ocfs2_write_remove_suid(inode);
2127 /* work on a copy of ppos until we're sure that we won't have
2128 * to recalculate it due to relocking. */
2130 saved_pos = i_size_read(inode);
2131 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos);
2136 end = saved_pos + count;
2138 ret = ocfs2_check_range_for_refcount(inode, saved_pos, count);
2140 ocfs2_inode_unlock(inode, meta_level);
2143 ret = ocfs2_prepare_inode_for_refcount(inode,
2159 * Skip the O_DIRECT checks if we don't need
2162 if (!direct_io || !(*direct_io))
2166 * There's no sane way to do direct writes to an inode
2169 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2175 * Allowing concurrent direct writes means
2176 * i_size changes wouldn't be synchronized, so
2177 * one node could wind up truncating another
2180 if (end > i_size_read(inode)) {
2186 * We don't fill holes during direct io, so
2187 * check for them here. If any are found, the
2188 * caller will have to retake some cluster
2189 * locks and initiate the io as buffered.
2191 ret = ocfs2_check_range_for_holes(inode, saved_pos, count);
2204 if (meta_level >= 0)
2205 ocfs2_inode_unlock(inode, meta_level);
2211 static ssize_t ocfs2_file_aio_write(struct kiocb *iocb,
2212 const struct iovec *iov,
2213 unsigned long nr_segs,
2216 int ret, direct_io, appending, rw_level, have_alloc_sem = 0;
2217 int can_do_direct, has_refcount = 0;
2218 ssize_t written = 0;
2219 size_t ocount; /* original count */
2220 size_t count; /* after file limit checks */
2221 loff_t old_size, *ppos = &iocb->ki_pos;
2223 struct file *file = iocb->ki_filp;
2224 struct inode *inode = file->f_path.dentry->d_inode;
2225 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2227 mlog_entry("(0x%p, %u, '%.*s')\n", file,
2228 (unsigned int)nr_segs,
2229 file->f_path.dentry->d_name.len,
2230 file->f_path.dentry->d_name.name);
2232 if (iocb->ki_left == 0)
2235 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2237 appending = file->f_flags & O_APPEND ? 1 : 0;
2238 direct_io = file->f_flags & O_DIRECT ? 1 : 0;
2240 mutex_lock(&inode->i_mutex);
2243 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
2245 down_read(&inode->i_alloc_sem);
2249 /* concurrent O_DIRECT writes are allowed */
2250 rw_level = !direct_io;
2251 ret = ocfs2_rw_lock(inode, rw_level);
2257 can_do_direct = direct_io;
2258 ret = ocfs2_prepare_inode_for_write(file->f_path.dentry, ppos,
2259 iocb->ki_left, appending,
2260 &can_do_direct, &has_refcount);
2267 * We can't complete the direct I/O as requested, fall back to
2270 if (direct_io && !can_do_direct) {
2271 ocfs2_rw_unlock(inode, rw_level);
2272 up_read(&inode->i_alloc_sem);
2282 * To later detect whether a journal commit for sync writes is
2283 * necessary, we sample i_size, and cluster count here.
2285 old_size = i_size_read(inode);
2286 old_clusters = OCFS2_I(inode)->ip_clusters;
2288 /* communicate with ocfs2_dio_end_io */
2289 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2291 ret = generic_segment_checks(iov, &nr_segs, &ocount,
2297 ret = generic_write_checks(file, ppos, &count,
2298 S_ISBLK(inode->i_mode));
2303 written = generic_file_direct_write(iocb, iov, &nr_segs, *ppos,
2304 ppos, count, ocount);
2307 * direct write may have instantiated a few
2308 * blocks outside i_size. Trim these off again.
2309 * Don't need i_size_read because we hold i_mutex.
2311 * XXX(hch): this looks buggy because ocfs2 did not
2312 * actually implement ->truncate. Take a look at
2313 * the new truncate sequence and update this accordingly
2315 if (*ppos + count > inode->i_size)
2316 simple_setsize(inode, inode->i_size);
2321 current->backing_dev_info = file->f_mapping->backing_dev_info;
2322 written = generic_file_buffered_write(iocb, iov, nr_segs, *ppos,
2324 current->backing_dev_info = NULL;
2328 /* buffered aio wouldn't have proper lock coverage today */
2329 BUG_ON(ret == -EIOCBQUEUED && !(file->f_flags & O_DIRECT));
2331 if (((file->f_flags & O_DSYNC) && !direct_io) || IS_SYNC(inode) ||
2332 ((file->f_flags & O_DIRECT) && has_refcount)) {
2333 ret = filemap_fdatawrite_range(file->f_mapping, pos,
2338 if (!ret && ((old_size != i_size_read(inode)) ||
2339 (old_clusters != OCFS2_I(inode)->ip_clusters) ||
2341 ret = jbd2_journal_force_commit(osb->journal->j_journal);
2347 ret = filemap_fdatawait_range(file->f_mapping, pos,
2352 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2353 * function pointer which is called when o_direct io completes so that
2354 * it can unlock our rw lock. (it's the clustered equivalent of
2355 * i_alloc_sem; protects truncate from racing with pending ios).
2356 * Unfortunately there are error cases which call end_io and others
2357 * that don't. so we don't have to unlock the rw_lock if either an
2358 * async dio is going to do it in the future or an end_io after an
2359 * error has already done it.
2361 if ((ret == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
2368 ocfs2_rw_unlock(inode, rw_level);
2372 up_read(&inode->i_alloc_sem);
2374 mutex_unlock(&inode->i_mutex);
2382 static int ocfs2_splice_to_file(struct pipe_inode_info *pipe,
2384 struct splice_desc *sd)
2388 ret = ocfs2_prepare_inode_for_write(out->f_path.dentry, &sd->pos,
2389 sd->total_len, 0, NULL, NULL);
2395 return splice_from_pipe_feed(pipe, sd, pipe_to_file);
2398 static ssize_t ocfs2_file_splice_write(struct pipe_inode_info *pipe,
2405 struct address_space *mapping = out->f_mapping;
2406 struct inode *inode = mapping->host;
2407 struct splice_desc sd = {
2414 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out, pipe,
2416 out->f_path.dentry->d_name.len,
2417 out->f_path.dentry->d_name.name);
2420 mutex_lock_nested(&pipe->inode->i_mutex, I_MUTEX_PARENT);
2422 splice_from_pipe_begin(&sd);
2424 ret = splice_from_pipe_next(pipe, &sd);
2428 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2429 ret = ocfs2_rw_lock(inode, 1);
2433 ret = ocfs2_splice_to_file(pipe, out, &sd);
2434 ocfs2_rw_unlock(inode, 1);
2436 mutex_unlock(&inode->i_mutex);
2438 splice_from_pipe_end(pipe, &sd);
2441 mutex_unlock(&pipe->inode->i_mutex);
2444 ret = sd.num_spliced;
2447 unsigned long nr_pages;
2450 nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2452 err = generic_write_sync(out, *ppos, ret);
2458 balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
2465 static ssize_t ocfs2_file_splice_read(struct file *in,
2467 struct pipe_inode_info *pipe,
2471 int ret = 0, lock_level = 0;
2472 struct inode *inode = in->f_path.dentry->d_inode;
2474 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in, pipe,
2476 in->f_path.dentry->d_name.len,
2477 in->f_path.dentry->d_name.name);
2480 * See the comment in ocfs2_file_aio_read()
2482 ret = ocfs2_inode_lock_atime(inode, in->f_vfsmnt, &lock_level);
2487 ocfs2_inode_unlock(inode, lock_level);
2489 ret = generic_file_splice_read(in, ppos, pipe, len, flags);
2496 static ssize_t ocfs2_file_aio_read(struct kiocb *iocb,
2497 const struct iovec *iov,
2498 unsigned long nr_segs,
2501 int ret = 0, rw_level = -1, have_alloc_sem = 0, lock_level = 0;
2502 struct file *filp = iocb->ki_filp;
2503 struct inode *inode = filp->f_path.dentry->d_inode;
2505 mlog_entry("(0x%p, %u, '%.*s')\n", filp,
2506 (unsigned int)nr_segs,
2507 filp->f_path.dentry->d_name.len,
2508 filp->f_path.dentry->d_name.name);
2517 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2518 * need locks to protect pending reads from racing with truncate.
2520 if (filp->f_flags & O_DIRECT) {
2521 down_read(&inode->i_alloc_sem);
2524 ret = ocfs2_rw_lock(inode, 0);
2530 /* communicate with ocfs2_dio_end_io */
2531 ocfs2_iocb_set_rw_locked(iocb, rw_level);
2535 * We're fine letting folks race truncates and extending
2536 * writes with read across the cluster, just like they can
2537 * locally. Hence no rw_lock during read.
2539 * Take and drop the meta data lock to update inode fields
2540 * like i_size. This allows the checks down below
2541 * generic_file_aio_read() a chance of actually working.
2543 ret = ocfs2_inode_lock_atime(inode, filp->f_vfsmnt, &lock_level);
2548 ocfs2_inode_unlock(inode, lock_level);
2550 ret = generic_file_aio_read(iocb, iov, nr_segs, iocb->ki_pos);
2552 mlog(0, "generic_file_aio_read returned -EINVAL\n");
2554 /* buffered aio wouldn't have proper lock coverage today */
2555 BUG_ON(ret == -EIOCBQUEUED && !(filp->f_flags & O_DIRECT));
2557 /* see ocfs2_file_aio_write */
2558 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
2565 up_read(&inode->i_alloc_sem);
2567 ocfs2_rw_unlock(inode, rw_level);
2573 const struct inode_operations ocfs2_file_iops = {
2574 .setattr = ocfs2_setattr,
2575 .getattr = ocfs2_getattr,
2576 .permission = ocfs2_permission,
2577 .setxattr = generic_setxattr,
2578 .getxattr = generic_getxattr,
2579 .listxattr = ocfs2_listxattr,
2580 .removexattr = generic_removexattr,
2581 .fallocate = ocfs2_fallocate,
2582 .fiemap = ocfs2_fiemap,
2585 const struct inode_operations ocfs2_special_file_iops = {
2586 .setattr = ocfs2_setattr,
2587 .getattr = ocfs2_getattr,
2588 .permission = ocfs2_permission,
2592 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
2593 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
2595 const struct file_operations ocfs2_fops = {
2596 .llseek = generic_file_llseek,
2597 .read = do_sync_read,
2598 .write = do_sync_write,
2600 .fsync = ocfs2_sync_file,
2601 .release = ocfs2_file_release,
2602 .open = ocfs2_file_open,
2603 .aio_read = ocfs2_file_aio_read,
2604 .aio_write = ocfs2_file_aio_write,
2605 .unlocked_ioctl = ocfs2_ioctl,
2606 #ifdef CONFIG_COMPAT
2607 .compat_ioctl = ocfs2_compat_ioctl,
2610 .flock = ocfs2_flock,
2611 .splice_read = ocfs2_file_splice_read,
2612 .splice_write = ocfs2_file_splice_write,
2615 const struct file_operations ocfs2_dops = {
2616 .llseek = generic_file_llseek,
2617 .read = generic_read_dir,
2618 .readdir = ocfs2_readdir,
2619 .fsync = ocfs2_sync_file,
2620 .release = ocfs2_dir_release,
2621 .open = ocfs2_dir_open,
2622 .unlocked_ioctl = ocfs2_ioctl,
2623 #ifdef CONFIG_COMPAT
2624 .compat_ioctl = ocfs2_compat_ioctl,
2627 .flock = ocfs2_flock,
2631 * POSIX-lockless variants of our file_operations.
2633 * These will be used if the underlying cluster stack does not support
2634 * posix file locking, if the user passes the "localflocks" mount
2635 * option, or if we have a local-only fs.
2637 * ocfs2_flock is in here because all stacks handle UNIX file locks,
2638 * so we still want it in the case of no stack support for
2639 * plocks. Internally, it will do the right thing when asked to ignore
2642 const struct file_operations ocfs2_fops_no_plocks = {
2643 .llseek = generic_file_llseek,
2644 .read = do_sync_read,
2645 .write = do_sync_write,
2647 .fsync = ocfs2_sync_file,
2648 .release = ocfs2_file_release,
2649 .open = ocfs2_file_open,
2650 .aio_read = ocfs2_file_aio_read,
2651 .aio_write = ocfs2_file_aio_write,
2652 .unlocked_ioctl = ocfs2_ioctl,
2653 #ifdef CONFIG_COMPAT
2654 .compat_ioctl = ocfs2_compat_ioctl,
2656 .flock = ocfs2_flock,
2657 .splice_read = ocfs2_file_splice_read,
2658 .splice_write = ocfs2_file_splice_write,
2661 const struct file_operations ocfs2_dops_no_plocks = {
2662 .llseek = generic_file_llseek,
2663 .read = generic_read_dir,
2664 .readdir = ocfs2_readdir,
2665 .fsync = ocfs2_sync_file,
2666 .release = ocfs2_dir_release,
2667 .open = ocfs2_dir_open,
2668 .unlocked_ioctl = ocfs2_ioctl,
2669 #ifdef CONFIG_COMPAT
2670 .compat_ioctl = ocfs2_compat_ioctl,
2672 .flock = ocfs2_flock,