1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/highmem.h>
9 #include <linux/pagemap.h>
10 #include <asm/byteorder.h>
11 #include <linux/swap.h>
12 #include <linux/mpage.h>
13 #include <linux/quotaops.h>
14 #include <linux/blkdev.h>
15 #include <linux/uio.h>
18 #include <cluster/masklog.h>
25 #include "extent_map.h"
32 #include "refcounttree.h"
33 #include "ocfs2_trace.h"
35 #include "buffer_head_io.h"
40 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
41 struct buffer_head *bh_result, int create)
45 struct ocfs2_dinode *fe = NULL;
46 struct buffer_head *bh = NULL;
47 struct buffer_head *buffer_cache_bh = NULL;
48 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
51 trace_ocfs2_symlink_get_block(
52 (unsigned long long)OCFS2_I(inode)->ip_blkno,
53 (unsigned long long)iblock, bh_result, create);
55 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
57 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
58 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
59 (unsigned long long)iblock);
63 status = ocfs2_read_inode_block(inode, &bh);
68 fe = (struct ocfs2_dinode *) bh->b_data;
70 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
71 le32_to_cpu(fe->i_clusters))) {
73 mlog(ML_ERROR, "block offset is outside the allocated size: "
74 "%llu\n", (unsigned long long)iblock);
78 /* We don't use the page cache to create symlink data, so if
79 * need be, copy it over from the buffer cache. */
80 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
81 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
83 buffer_cache_bh = sb_getblk(osb->sb, blkno);
84 if (!buffer_cache_bh) {
86 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
90 /* we haven't locked out transactions, so a commit
91 * could've happened. Since we've got a reference on
92 * the bh, even if it commits while we're doing the
93 * copy, the data is still good. */
94 if (buffer_jbd(buffer_cache_bh)
95 && ocfs2_inode_is_new(inode)) {
96 kaddr = kmap_atomic(bh_result->b_page);
98 mlog(ML_ERROR, "couldn't kmap!\n");
101 memcpy(kaddr + (bh_result->b_size * iblock),
102 buffer_cache_bh->b_data,
104 kunmap_atomic(kaddr);
105 set_buffer_uptodate(bh_result);
107 brelse(buffer_cache_bh);
110 map_bh(bh_result, inode->i_sb,
111 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121 static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
122 struct buffer_head *bh_result, int create)
125 struct ocfs2_inode_info *oi = OCFS2_I(inode);
127 down_read(&oi->ip_alloc_sem);
128 ret = ocfs2_get_block(inode, iblock, bh_result, create);
129 up_read(&oi->ip_alloc_sem);
134 int ocfs2_get_block(struct inode *inode, sector_t iblock,
135 struct buffer_head *bh_result, int create)
138 unsigned int ext_flags;
139 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
140 u64 p_blkno, count, past_eof;
141 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
143 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
144 (unsigned long long)iblock, bh_result, create);
146 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
147 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
148 inode, inode->i_ino);
150 if (S_ISLNK(inode->i_mode)) {
151 /* this always does I/O for some reason. */
152 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
159 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
160 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
161 (unsigned long long)p_blkno);
165 if (max_blocks < count)
169 * ocfs2 never allocates in this function - the only time we
170 * need to use BH_New is when we're extending i_size on a file
171 * system which doesn't support holes, in which case BH_New
172 * allows __block_write_begin() to zero.
174 * If we see this on a sparse file system, then a truncate has
175 * raced us and removed the cluster. In this case, we clear
176 * the buffers dirty and uptodate bits and let the buffer code
177 * ignore it as a hole.
179 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
180 clear_buffer_dirty(bh_result);
181 clear_buffer_uptodate(bh_result);
185 /* Treat the unwritten extent as a hole for zeroing purposes. */
186 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
187 map_bh(bh_result, inode->i_sb, p_blkno);
189 bh_result->b_size = count << inode->i_blkbits;
191 if (!ocfs2_sparse_alloc(osb)) {
195 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
196 (unsigned long long)iblock,
197 (unsigned long long)p_blkno,
198 (unsigned long long)OCFS2_I(inode)->ip_blkno);
199 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
205 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
207 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
208 (unsigned long long)past_eof);
209 if (create && (iblock >= past_eof))
210 set_buffer_new(bh_result);
219 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
220 struct buffer_head *di_bh)
224 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
226 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
227 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
228 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 size = i_size_read(inode);
234 if (size > PAGE_SIZE ||
235 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
236 ocfs2_error(inode->i_sb,
237 "Inode %llu has with inline data has bad size: %Lu\n",
238 (unsigned long long)OCFS2_I(inode)->ip_blkno,
239 (unsigned long long)size);
243 kaddr = kmap_atomic(page);
245 memcpy(kaddr, di->id2.i_data.id_data, size);
246 /* Clear the remaining part of the page */
247 memset(kaddr + size, 0, PAGE_SIZE - size);
248 flush_dcache_page(page);
249 kunmap_atomic(kaddr);
251 SetPageUptodate(page);
256 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259 struct buffer_head *di_bh = NULL;
261 BUG_ON(!PageLocked(page));
262 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
264 ret = ocfs2_read_inode_block(inode, &di_bh);
270 ret = ocfs2_read_inline_data(inode, page, di_bh);
278 static int ocfs2_readpage(struct file *file, struct page *page)
280 struct inode *inode = page->mapping->host;
281 struct ocfs2_inode_info *oi = OCFS2_I(inode);
282 loff_t start = (loff_t)page->index << PAGE_SHIFT;
285 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
286 (page ? page->index : 0));
288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
290 if (ret == AOP_TRUNCATED_PAGE)
296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
298 * Unlock the page and cycle ip_alloc_sem so that we don't
299 * busyloop waiting for ip_alloc_sem to unlock
301 ret = AOP_TRUNCATED_PAGE;
304 down_read(&oi->ip_alloc_sem);
305 up_read(&oi->ip_alloc_sem);
306 goto out_inode_unlock;
310 * i_size might have just been updated as we grabed the meta lock. We
311 * might now be discovering a truncate that hit on another node.
312 * block_read_full_page->get_block freaks out if it is asked to read
313 * beyond the end of a file, so we check here. Callers
314 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
315 * and notice that the page they just read isn't needed.
317 * XXX sys_readahead() seems to get that wrong?
319 if (start >= i_size_read(inode)) {
320 zero_user(page, 0, PAGE_SIZE);
321 SetPageUptodate(page);
326 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
327 ret = ocfs2_readpage_inline(inode, page);
329 ret = block_read_full_page(page, ocfs2_get_block);
333 up_read(&oi->ip_alloc_sem);
335 ocfs2_inode_unlock(inode, 0);
343 * This is used only for read-ahead. Failures or difficult to handle
344 * situations are safe to ignore.
346 * Right now, we don't bother with BH_Boundary - in-inode extent lists
347 * are quite large (243 extents on 4k blocks), so most inodes don't
348 * grow out to a tree. If need be, detecting boundary extents could
349 * trivially be added in a future version of ocfs2_get_block().
351 static void ocfs2_readahead(struct readahead_control *rac)
354 struct inode *inode = rac->mapping->host;
355 struct ocfs2_inode_info *oi = OCFS2_I(inode);
358 * Use the nonblocking flag for the dlm code to avoid page
359 * lock inversion, but don't bother with retrying.
361 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
365 if (down_read_trylock(&oi->ip_alloc_sem) == 0)
369 * Don't bother with inline-data. There isn't anything
370 * to read-ahead in that case anyway...
372 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 * Check whether a remote node truncated this file - we just
377 * drop out in that case as it's not worth handling here.
379 if (readahead_pos(rac) >= i_size_read(inode))
382 mpage_readahead(rac, ocfs2_get_block);
385 up_read(&oi->ip_alloc_sem);
387 ocfs2_inode_unlock(inode, 0);
390 /* Note: Because we don't support holes, our allocation has
391 * already happened (allocation writes zeros to the file data)
392 * so we don't have to worry about ordered writes in
395 * ->writepage is called during the process of invalidating the page cache
396 * during blocked lock processing. It can't block on any cluster locks
397 * to during block mapping. It's relying on the fact that the block
398 * mapping can't have disappeared under the dirty pages that it is
399 * being asked to write back.
401 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
403 trace_ocfs2_writepage(
404 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
407 return block_write_full_page(page, ocfs2_get_block, wbc);
410 /* Taken from ext3. We don't necessarily need the full blown
411 * functionality yet, but IMHO it's better to cut and paste the whole
412 * thing so we can avoid introducing our own bugs (and easily pick up
413 * their fixes when they happen) --Mark */
414 int walk_page_buffers( handle_t *handle,
415 struct buffer_head *head,
419 int (*fn)( handle_t *handle,
420 struct buffer_head *bh))
422 struct buffer_head *bh;
423 unsigned block_start, block_end;
424 unsigned blocksize = head->b_size;
426 struct buffer_head *next;
428 for ( bh = head, block_start = 0;
429 ret == 0 && (bh != head || !block_start);
430 block_start = block_end, bh = next)
432 next = bh->b_this_page;
433 block_end = block_start + blocksize;
434 if (block_end <= from || block_start >= to) {
435 if (partial && !buffer_uptodate(bh))
439 err = (*fn)(handle, bh);
446 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451 struct inode *inode = mapping->host;
453 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
454 (unsigned long long)block);
457 * The swap code (ab-)uses ->bmap to get a block mapping and then
458 * bypasseѕ the file system for actual I/O. We really can't allow
459 * that on refcounted inodes, so we have to skip out here. And yes,
460 * 0 is the magic code for a bmap error..
462 if (ocfs2_is_refcount_inode(inode))
465 /* We don't need to lock journal system files, since they aren't
466 * accessed concurrently from multiple nodes.
468 if (!INODE_JOURNAL(inode)) {
469 err = ocfs2_inode_lock(inode, NULL, 0);
475 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
479 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 if (!INODE_JOURNAL(inode)) {
483 up_read(&OCFS2_I(inode)->ip_alloc_sem);
484 ocfs2_inode_unlock(inode, 0);
488 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
489 (unsigned long long)block);
495 status = err ? 0 : p_blkno;
500 static int ocfs2_releasepage(struct page *page, gfp_t wait)
502 if (!page_has_buffers(page))
504 return try_to_free_buffers(page);
507 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
512 unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
514 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
517 cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
519 cluster_start = cpos % cpp;
520 cluster_start = cluster_start << osb->s_clustersize_bits;
522 cluster_end = cluster_start + osb->s_clustersize;
525 BUG_ON(cluster_start > PAGE_SIZE);
526 BUG_ON(cluster_end > PAGE_SIZE);
529 *start = cluster_start;
535 * 'from' and 'to' are the region in the page to avoid zeroing.
537 * If pagesize > clustersize, this function will avoid zeroing outside
538 * of the cluster boundary.
540 * from == to == 0 is code for "zero the entire cluster region"
542 static void ocfs2_clear_page_regions(struct page *page,
543 struct ocfs2_super *osb, u32 cpos,
544 unsigned from, unsigned to)
547 unsigned int cluster_start, cluster_end;
549 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
551 kaddr = kmap_atomic(page);
554 if (from > cluster_start)
555 memset(kaddr + cluster_start, 0, from - cluster_start);
556 if (to < cluster_end)
557 memset(kaddr + to, 0, cluster_end - to);
559 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
562 kunmap_atomic(kaddr);
566 * Nonsparse file systems fully allocate before we get to the write
567 * code. This prevents ocfs2_write() from tagging the write as an
568 * allocating one, which means ocfs2_map_page_blocks() might try to
569 * read-in the blocks at the tail of our file. Avoid reading them by
570 * testing i_size against each block offset.
572 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
573 unsigned int block_start)
575 u64 offset = page_offset(page) + block_start;
577 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
580 if (i_size_read(inode) > offset)
587 * Some of this taken from __block_write_begin(). We already have our
588 * mapping by now though, and the entire write will be allocating or
589 * it won't, so not much need to use BH_New.
591 * This will also skip zeroing, which is handled externally.
593 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
594 struct inode *inode, unsigned int from,
595 unsigned int to, int new)
598 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
599 unsigned int block_end, block_start;
600 unsigned int bsize = i_blocksize(inode);
602 if (!page_has_buffers(page))
603 create_empty_buffers(page, bsize, 0);
605 head = page_buffers(page);
606 for (bh = head, block_start = 0; bh != head || !block_start;
607 bh = bh->b_this_page, block_start += bsize) {
608 block_end = block_start + bsize;
610 clear_buffer_new(bh);
613 * Ignore blocks outside of our i/o range -
614 * they may belong to unallocated clusters.
616 if (block_start >= to || block_end <= from) {
617 if (PageUptodate(page))
618 set_buffer_uptodate(bh);
623 * For an allocating write with cluster size >= page
624 * size, we always write the entire page.
629 if (!buffer_mapped(bh)) {
630 map_bh(bh, inode->i_sb, *p_blkno);
631 clean_bdev_bh_alias(bh);
634 if (PageUptodate(page)) {
635 set_buffer_uptodate(bh);
636 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
638 ocfs2_should_read_blk(inode, page, block_start) &&
639 (block_start < from || block_end > to)) {
640 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
644 *p_blkno = *p_blkno + 1;
648 * If we issued read requests - let them complete.
650 while(wait_bh > wait) {
651 wait_on_buffer(*--wait_bh);
652 if (!buffer_uptodate(*wait_bh))
656 if (ret == 0 || !new)
660 * If we get -EIO above, zero out any newly allocated blocks
661 * to avoid exposing stale data.
666 block_end = block_start + bsize;
667 if (block_end <= from)
669 if (block_start >= to)
672 zero_user(page, block_start, bh->b_size);
673 set_buffer_uptodate(bh);
674 mark_buffer_dirty(bh);
677 block_start = block_end;
678 bh = bh->b_this_page;
679 } while (bh != head);
684 #if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
685 #define OCFS2_MAX_CTXT_PAGES 1
687 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
690 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
692 struct ocfs2_unwritten_extent {
693 struct list_head ue_node;
694 struct list_head ue_ip_node;
700 * Describe the state of a single cluster to be written to.
702 struct ocfs2_write_cluster_desc {
706 * Give this a unique field because c_phys eventually gets
710 unsigned c_clear_unwritten;
711 unsigned c_needs_zero;
714 struct ocfs2_write_ctxt {
715 /* Logical cluster position / len of write */
719 /* First cluster allocated in a nonsparse extend */
720 u32 w_first_new_cpos;
722 /* Type of caller. Must be one of buffer, mmap, direct. */
723 ocfs2_write_type_t w_type;
725 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
728 * This is true if page_size > cluster_size.
730 * It triggers a set of special cases during write which might
731 * have to deal with allocating writes to partial pages.
733 unsigned int w_large_pages;
736 * Pages involved in this write.
738 * w_target_page is the page being written to by the user.
740 * w_pages is an array of pages which always contains
741 * w_target_page, and in the case of an allocating write with
742 * page_size < cluster size, it will contain zero'd and mapped
743 * pages adjacent to w_target_page which need to be written
744 * out in so that future reads from that region will get
747 unsigned int w_num_pages;
748 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
749 struct page *w_target_page;
752 * w_target_locked is used for page_mkwrite path indicating no unlocking
753 * against w_target_page in ocfs2_write_end_nolock.
755 unsigned int w_target_locked:1;
758 * ocfs2_write_end() uses this to know what the real range to
759 * write in the target should be.
761 unsigned int w_target_from;
762 unsigned int w_target_to;
765 * We could use journal_current_handle() but this is cleaner,
770 struct buffer_head *w_di_bh;
772 struct ocfs2_cached_dealloc_ctxt w_dealloc;
774 struct list_head w_unwritten_list;
775 unsigned int w_unwritten_count;
778 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
782 for(i = 0; i < num_pages; i++) {
784 unlock_page(pages[i]);
785 mark_page_accessed(pages[i]);
791 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
796 * w_target_locked is only set to true in the page_mkwrite() case.
797 * The intent is to allow us to lock the target page from write_begin()
798 * to write_end(). The caller must hold a ref on w_target_page.
800 if (wc->w_target_locked) {
801 BUG_ON(!wc->w_target_page);
802 for (i = 0; i < wc->w_num_pages; i++) {
803 if (wc->w_target_page == wc->w_pages[i]) {
804 wc->w_pages[i] = NULL;
808 mark_page_accessed(wc->w_target_page);
809 put_page(wc->w_target_page);
811 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
814 static void ocfs2_free_unwritten_list(struct inode *inode,
815 struct list_head *head)
817 struct ocfs2_inode_info *oi = OCFS2_I(inode);
818 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
820 list_for_each_entry_safe(ue, tmp, head, ue_node) {
821 list_del(&ue->ue_node);
822 spin_lock(&oi->ip_lock);
823 list_del(&ue->ue_ip_node);
824 spin_unlock(&oi->ip_lock);
829 static void ocfs2_free_write_ctxt(struct inode *inode,
830 struct ocfs2_write_ctxt *wc)
832 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
833 ocfs2_unlock_pages(wc);
838 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
839 struct ocfs2_super *osb, loff_t pos,
840 unsigned len, ocfs2_write_type_t type,
841 struct buffer_head *di_bh)
844 struct ocfs2_write_ctxt *wc;
846 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
850 wc->w_cpos = pos >> osb->s_clustersize_bits;
851 wc->w_first_new_cpos = UINT_MAX;
852 cend = (pos + len - 1) >> osb->s_clustersize_bits;
853 wc->w_clen = cend - wc->w_cpos + 1;
858 if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
859 wc->w_large_pages = 1;
861 wc->w_large_pages = 0;
863 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
864 INIT_LIST_HEAD(&wc->w_unwritten_list);
872 * If a page has any new buffers, zero them out here, and mark them uptodate
873 * and dirty so they'll be written out (in order to prevent uninitialised
874 * block data from leaking). And clear the new bit.
876 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
878 unsigned int block_start, block_end;
879 struct buffer_head *head, *bh;
881 BUG_ON(!PageLocked(page));
882 if (!page_has_buffers(page))
885 bh = head = page_buffers(page);
888 block_end = block_start + bh->b_size;
890 if (buffer_new(bh)) {
891 if (block_end > from && block_start < to) {
892 if (!PageUptodate(page)) {
895 start = max(from, block_start);
896 end = min(to, block_end);
898 zero_user_segment(page, start, end);
899 set_buffer_uptodate(bh);
902 clear_buffer_new(bh);
903 mark_buffer_dirty(bh);
907 block_start = block_end;
908 bh = bh->b_this_page;
909 } while (bh != head);
913 * Only called when we have a failure during allocating write to write
914 * zero's to the newly allocated region.
916 static void ocfs2_write_failure(struct inode *inode,
917 struct ocfs2_write_ctxt *wc,
918 loff_t user_pos, unsigned user_len)
921 unsigned from = user_pos & (PAGE_SIZE - 1),
922 to = user_pos + user_len;
923 struct page *tmppage;
925 if (wc->w_target_page)
926 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
928 for(i = 0; i < wc->w_num_pages; i++) {
929 tmppage = wc->w_pages[i];
931 if (tmppage && page_has_buffers(tmppage)) {
932 if (ocfs2_should_order_data(inode))
933 ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
936 block_commit_write(tmppage, from, to);
941 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
942 struct ocfs2_write_ctxt *wc,
943 struct page *page, u32 cpos,
944 loff_t user_pos, unsigned user_len,
948 unsigned int map_from = 0, map_to = 0;
949 unsigned int cluster_start, cluster_end;
950 unsigned int user_data_from = 0, user_data_to = 0;
952 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
953 &cluster_start, &cluster_end);
955 /* treat the write as new if the a hole/lseek spanned across
958 new = new | ((i_size_read(inode) <= page_offset(page)) &&
959 (page_offset(page) <= user_pos));
961 if (page == wc->w_target_page) {
962 map_from = user_pos & (PAGE_SIZE - 1);
963 map_to = map_from + user_len;
966 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
967 cluster_start, cluster_end,
970 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
971 map_from, map_to, new);
977 user_data_from = map_from;
978 user_data_to = map_to;
980 map_from = cluster_start;
981 map_to = cluster_end;
985 * If we haven't allocated the new page yet, we
986 * shouldn't be writing it out without copying user
987 * data. This is likely a math error from the caller.
991 map_from = cluster_start;
992 map_to = cluster_end;
994 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
995 cluster_start, cluster_end, new);
1003 * Parts of newly allocated pages need to be zero'd.
1005 * Above, we have also rewritten 'to' and 'from' - as far as
1006 * the rest of the function is concerned, the entire cluster
1007 * range inside of a page needs to be written.
1009 * We can skip this if the page is up to date - it's already
1010 * been zero'd from being read in as a hole.
1012 if (new && !PageUptodate(page))
1013 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1014 cpos, user_data_from, user_data_to);
1016 flush_dcache_page(page);
1023 * This function will only grab one clusters worth of pages.
1025 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1026 struct ocfs2_write_ctxt *wc,
1027 u32 cpos, loff_t user_pos,
1028 unsigned user_len, int new,
1029 struct page *mmap_page)
1032 unsigned long start, target_index, end_index, index;
1033 struct inode *inode = mapping->host;
1036 target_index = user_pos >> PAGE_SHIFT;
1039 * Figure out how many pages we'll be manipulating here. For
1040 * non allocating write, we just change the one
1041 * page. Otherwise, we'll need a whole clusters worth. If we're
1042 * writing past i_size, we only need enough pages to cover the
1043 * last page of the write.
1046 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1047 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1049 * We need the index *past* the last page we could possibly
1050 * touch. This is the page past the end of the write or
1051 * i_size, whichever is greater.
1053 last_byte = max(user_pos + user_len, i_size_read(inode));
1054 BUG_ON(last_byte < 1);
1055 end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
1056 if ((start + wc->w_num_pages) > end_index)
1057 wc->w_num_pages = end_index - start;
1059 wc->w_num_pages = 1;
1060 start = target_index;
1062 end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
1064 for(i = 0; i < wc->w_num_pages; i++) {
1067 if (index >= target_index && index <= end_index &&
1068 wc->w_type == OCFS2_WRITE_MMAP) {
1070 * ocfs2_pagemkwrite() is a little different
1071 * and wants us to directly use the page
1074 lock_page(mmap_page);
1076 /* Exit and let the caller retry */
1077 if (mmap_page->mapping != mapping) {
1078 WARN_ON(mmap_page->mapping);
1079 unlock_page(mmap_page);
1084 get_page(mmap_page);
1085 wc->w_pages[i] = mmap_page;
1086 wc->w_target_locked = true;
1087 } else if (index >= target_index && index <= end_index &&
1088 wc->w_type == OCFS2_WRITE_DIRECT) {
1089 /* Direct write has no mapping page. */
1090 wc->w_pages[i] = NULL;
1093 wc->w_pages[i] = find_or_create_page(mapping, index,
1095 if (!wc->w_pages[i]) {
1101 wait_for_stable_page(wc->w_pages[i]);
1103 if (index == target_index)
1104 wc->w_target_page = wc->w_pages[i];
1108 wc->w_target_locked = false;
1113 * Prepare a single cluster for write one cluster into the file.
1115 static int ocfs2_write_cluster(struct address_space *mapping,
1116 u32 *phys, unsigned int new,
1117 unsigned int clear_unwritten,
1118 unsigned int should_zero,
1119 struct ocfs2_alloc_context *data_ac,
1120 struct ocfs2_alloc_context *meta_ac,
1121 struct ocfs2_write_ctxt *wc, u32 cpos,
1122 loff_t user_pos, unsigned user_len)
1126 struct inode *inode = mapping->host;
1127 struct ocfs2_extent_tree et;
1128 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
1134 * This is safe to call with the page locks - it won't take
1135 * any additional semaphores or cluster locks.
1138 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1139 &tmp_pos, 1, !clear_unwritten,
1140 wc->w_di_bh, wc->w_handle,
1141 data_ac, meta_ac, NULL);
1143 * This shouldn't happen because we must have already
1144 * calculated the correct meta data allocation required. The
1145 * internal tree allocation code should know how to increase
1146 * transaction credits itself.
1148 * If need be, we could handle -EAGAIN for a
1149 * RESTART_TRANS here.
1151 mlog_bug_on_msg(ret == -EAGAIN,
1152 "Inode %llu: EAGAIN return during allocation.\n",
1153 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1158 } else if (clear_unwritten) {
1159 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161 ret = ocfs2_mark_extent_written(inode, &et,
1162 wc->w_handle, cpos, 1, *phys,
1163 meta_ac, &wc->w_dealloc);
1171 * The only reason this should fail is due to an inability to
1172 * find the extent added.
1174 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
1176 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1177 "at logical cluster %u",
1178 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
1184 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
1188 for(i = 0; i < wc->w_num_pages; i++) {
1191 /* This is the direct io target page. */
1192 if (wc->w_pages[i] == NULL) {
1197 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1198 wc->w_pages[i], cpos,
1209 * We only have cleanup to do in case of allocating write.
1212 ocfs2_write_failure(inode, wc, user_pos, user_len);
1219 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1220 struct ocfs2_alloc_context *data_ac,
1221 struct ocfs2_alloc_context *meta_ac,
1222 struct ocfs2_write_ctxt *wc,
1223 loff_t pos, unsigned len)
1227 unsigned int local_len = len;
1228 struct ocfs2_write_cluster_desc *desc;
1229 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1231 for (i = 0; i < wc->w_clen; i++) {
1232 desc = &wc->w_desc[i];
1235 * We have to make sure that the total write passed in
1236 * doesn't extend past a single cluster.
1239 cluster_off = pos & (osb->s_clustersize - 1);
1240 if ((cluster_off + local_len) > osb->s_clustersize)
1241 local_len = osb->s_clustersize - cluster_off;
1243 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
1245 desc->c_clear_unwritten,
1248 wc, desc->c_cpos, pos, local_len);
1264 * ocfs2_write_end() wants to know which parts of the target page it
1265 * should complete the write on. It's easiest to compute them ahead of
1266 * time when a more complete view of the write is available.
1268 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1269 struct ocfs2_write_ctxt *wc,
1270 loff_t pos, unsigned len, int alloc)
1272 struct ocfs2_write_cluster_desc *desc;
1274 wc->w_target_from = pos & (PAGE_SIZE - 1);
1275 wc->w_target_to = wc->w_target_from + len;
1281 * Allocating write - we may have different boundaries based
1282 * on page size and cluster size.
1284 * NOTE: We can no longer compute one value from the other as
1285 * the actual write length and user provided length may be
1289 if (wc->w_large_pages) {
1291 * We only care about the 1st and last cluster within
1292 * our range and whether they should be zero'd or not. Either
1293 * value may be extended out to the start/end of a
1294 * newly allocated cluster.
1296 desc = &wc->w_desc[0];
1297 if (desc->c_needs_zero)
1298 ocfs2_figure_cluster_boundaries(osb,
1303 desc = &wc->w_desc[wc->w_clen - 1];
1304 if (desc->c_needs_zero)
1305 ocfs2_figure_cluster_boundaries(osb,
1310 wc->w_target_from = 0;
1311 wc->w_target_to = PAGE_SIZE;
1316 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1317 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1318 * by the direct io procedure.
1319 * If this is a new extent that allocated by direct io, we should mark it in
1320 * the ip_unwritten_list.
1322 static int ocfs2_unwritten_check(struct inode *inode,
1323 struct ocfs2_write_ctxt *wc,
1324 struct ocfs2_write_cluster_desc *desc)
1326 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1327 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
1330 if (!desc->c_needs_zero)
1334 spin_lock(&oi->ip_lock);
1335 /* Needs not to zero no metter buffer or direct. The one who is zero
1336 * the cluster is doing zero. And he will clear unwritten after all
1337 * cluster io finished. */
1338 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1339 if (desc->c_cpos == ue->ue_cpos) {
1340 BUG_ON(desc->c_new);
1341 desc->c_needs_zero = 0;
1342 desc->c_clear_unwritten = 0;
1347 if (wc->w_type != OCFS2_WRITE_DIRECT)
1351 spin_unlock(&oi->ip_lock);
1352 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1360 /* This direct write will doing zero. */
1361 new->ue_cpos = desc->c_cpos;
1362 new->ue_phys = desc->c_phys;
1363 desc->c_clear_unwritten = 0;
1364 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1365 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1366 wc->w_unwritten_count++;
1369 spin_unlock(&oi->ip_lock);
1376 * Populate each single-cluster write descriptor in the write context
1377 * with information about the i/o to be done.
1379 * Returns the number of clusters that will have to be allocated, as
1380 * well as a worst case estimate of the number of extent records that
1381 * would have to be created during a write to an unwritten region.
1383 static int ocfs2_populate_write_desc(struct inode *inode,
1384 struct ocfs2_write_ctxt *wc,
1385 unsigned int *clusters_to_alloc,
1386 unsigned int *extents_to_split)
1389 struct ocfs2_write_cluster_desc *desc;
1390 unsigned int num_clusters = 0;
1391 unsigned int ext_flags = 0;
1395 *clusters_to_alloc = 0;
1396 *extents_to_split = 0;
1398 for (i = 0; i < wc->w_clen; i++) {
1399 desc = &wc->w_desc[i];
1400 desc->c_cpos = wc->w_cpos + i;
1402 if (num_clusters == 0) {
1404 * Need to look up the next extent record.
1406 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1407 &num_clusters, &ext_flags);
1413 /* We should already CoW the refcountd extent. */
1414 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1417 * Assume worst case - that we're writing in
1418 * the middle of the extent.
1420 * We can assume that the write proceeds from
1421 * left to right, in which case the extent
1422 * insert code is smart enough to coalesce the
1423 * next splits into the previous records created.
1425 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1426 *extents_to_split = *extents_to_split + 2;
1429 * Only increment phys if it doesn't describe
1436 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1437 * file that got extended. w_first_new_cpos tells us
1438 * where the newly allocated clusters are so we can
1441 if (desc->c_cpos >= wc->w_first_new_cpos) {
1443 desc->c_needs_zero = 1;
1446 desc->c_phys = phys;
1449 desc->c_needs_zero = 1;
1450 desc->c_clear_unwritten = 1;
1451 *clusters_to_alloc = *clusters_to_alloc + 1;
1454 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1455 desc->c_clear_unwritten = 1;
1456 desc->c_needs_zero = 1;
1459 ret = ocfs2_unwritten_check(inode, wc, desc);
1473 static int ocfs2_write_begin_inline(struct address_space *mapping,
1474 struct inode *inode,
1475 struct ocfs2_write_ctxt *wc)
1478 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1481 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1484 if (IS_ERR(handle)) {
1485 ret = PTR_ERR(handle);
1490 page = find_or_create_page(mapping, 0, GFP_NOFS);
1492 ocfs2_commit_trans(osb, handle);
1498 * If we don't set w_num_pages then this page won't get unlocked
1499 * and freed on cleanup of the write context.
1501 wc->w_pages[0] = wc->w_target_page = page;
1502 wc->w_num_pages = 1;
1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1505 OCFS2_JOURNAL_ACCESS_WRITE);
1507 ocfs2_commit_trans(osb, handle);
1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 ocfs2_set_inode_data_inline(inode, di);
1516 if (!PageUptodate(page)) {
1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 ocfs2_commit_trans(osb, handle);
1525 wc->w_handle = handle;
1530 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1539 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 struct inode *inode, loff_t pos,
1541 unsigned len, struct page *mmap_page,
1542 struct ocfs2_write_ctxt *wc)
1544 int ret, written = 0;
1545 loff_t end = pos + len;
1546 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1547 struct ocfs2_dinode *di = NULL;
1549 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550 len, (unsigned long long)pos,
1551 oi->ip_dyn_features);
1554 * Handle inodes which already have inline data 1st.
1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 if (mmap_page == NULL &&
1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 goto do_inline_write;
1562 * The write won't fit - we have to give this inode an
1563 * inline extent list now.
1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1572 * Check whether the inode can accept inline data.
1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1578 * Check whether the write can fit.
1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1586 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1593 * This signals to the caller that the data can be written
1598 return written ? written : ret;
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1610 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 struct buffer_head *di_bh,
1612 loff_t pos, unsigned len,
1613 struct ocfs2_write_ctxt *wc)
1616 loff_t newsize = pos + len;
1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1620 if (newsize <= i_size_read(inode))
1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1627 /* There is no wc if this is call from direct. */
1629 wc->w_first_new_cpos =
1630 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1635 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1640 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1641 if (pos > i_size_read(inode))
1642 ret = ocfs2_zero_extend(inode, di_bh, pos);
1647 int ocfs2_write_begin_nolock(struct address_space *mapping,
1648 loff_t pos, unsigned len, ocfs2_write_type_t type,
1649 struct page **pagep, void **fsdata,
1650 struct buffer_head *di_bh, struct page *mmap_page)
1652 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1653 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1654 struct ocfs2_write_ctxt *wc;
1655 struct inode *inode = mapping->host;
1656 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1657 struct ocfs2_dinode *di;
1658 struct ocfs2_alloc_context *data_ac = NULL;
1659 struct ocfs2_alloc_context *meta_ac = NULL;
1661 struct ocfs2_extent_tree et;
1662 int try_free = 1, ret1;
1665 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
1671 if (ocfs2_supports_inline_data(osb)) {
1672 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1684 /* Direct io change i_size late, should not zero tail here. */
1685 if (type != OCFS2_WRITE_DIRECT) {
1686 if (ocfs2_sparse_alloc(osb))
1687 ret = ocfs2_zero_tail(inode, di_bh, pos);
1689 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1697 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1701 } else if (ret == 1) {
1702 clusters_need = wc->w_clen;
1703 ret = ocfs2_refcount_cow(inode, di_bh,
1704 wc->w_cpos, wc->w_clen, UINT_MAX);
1711 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1717 clusters_need += clusters_to_alloc;
1719 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1721 trace_ocfs2_write_begin_nolock(
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (long long)i_size_read(inode),
1724 le32_to_cpu(di->i_clusters),
1725 pos, len, type, mmap_page,
1726 clusters_to_alloc, extents_to_split);
1729 * We set w_target_from, w_target_to here so that
1730 * ocfs2_write_end() knows which range in the target page to
1731 * write out. An allocation requires that we write the entire
1734 if (clusters_to_alloc || extents_to_split) {
1736 * XXX: We are stretching the limits of
1737 * ocfs2_lock_allocators(). It greatly over-estimates
1738 * the work to be done.
1740 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1742 ret = ocfs2_lock_allocators(inode, &et,
1743 clusters_to_alloc, extents_to_split,
1744 &data_ac, &meta_ac);
1751 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1753 credits = ocfs2_calc_extend_credits(inode->i_sb,
1755 } else if (type == OCFS2_WRITE_DIRECT)
1756 /* direct write needs not to start trans if no extents alloc. */
1760 * We have to zero sparse allocated clusters, unwritten extent clusters,
1761 * and non-sparse clusters we just extended. For non-sparse writes,
1762 * we know zeros will only be needed in the first and/or last cluster.
1764 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1765 wc->w_desc[wc->w_clen - 1].c_needs_zero))
1766 cluster_of_pages = 1;
1768 cluster_of_pages = 0;
1770 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
1772 handle = ocfs2_start_trans(osb, credits);
1773 if (IS_ERR(handle)) {
1774 ret = PTR_ERR(handle);
1779 wc->w_handle = handle;
1781 if (clusters_to_alloc) {
1782 ret = dquot_alloc_space_nodirty(inode,
1783 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1788 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1789 OCFS2_JOURNAL_ACCESS_WRITE);
1796 * Fill our page array first. That way we've grabbed enough so
1797 * that we can zero and flush if we error after adding the
1800 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
1801 cluster_of_pages, mmap_page);
1804 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1805 * the target page. In this case, we exit with no error and no target
1806 * page. This will trigger the caller, page_mkwrite(), to re-try
1809 if (type == OCFS2_WRITE_MMAP && ret == -EAGAIN) {
1810 BUG_ON(wc->w_target_page);
1819 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1827 ocfs2_free_alloc_context(data_ac);
1829 ocfs2_free_alloc_context(meta_ac);
1833 *pagep = wc->w_target_page;
1837 if (clusters_to_alloc)
1838 dquot_free_space(inode,
1839 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1841 ocfs2_commit_trans(osb, handle);
1845 * The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
1846 * even in case of error here like ENOSPC and ENOMEM. So, we need
1847 * to unlock the target page manually to prevent deadlocks when
1848 * retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
1851 if (wc->w_target_locked)
1852 unlock_page(mmap_page);
1854 ocfs2_free_write_ctxt(inode, wc);
1857 ocfs2_free_alloc_context(data_ac);
1861 ocfs2_free_alloc_context(meta_ac);
1865 if (ret == -ENOSPC && try_free) {
1867 * Try to free some truncate log so that we can have enough
1868 * clusters to allocate.
1872 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1883 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1884 loff_t pos, unsigned len, unsigned flags,
1885 struct page **pagep, void **fsdata)
1888 struct buffer_head *di_bh = NULL;
1889 struct inode *inode = mapping->host;
1891 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1898 * Take alloc sem here to prevent concurrent lookups. That way
1899 * the mapping, zeroing and tree manipulation within
1900 * ocfs2_write() will be safe against ->readpage(). This
1901 * should also serve to lock out allocation from a shared
1904 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1906 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1907 pagep, fsdata, di_bh, NULL);
1918 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1921 ocfs2_inode_unlock(inode, 1);
1926 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1927 unsigned len, unsigned *copied,
1928 struct ocfs2_dinode *di,
1929 struct ocfs2_write_ctxt *wc)
1933 if (unlikely(*copied < len)) {
1934 if (!PageUptodate(wc->w_target_page)) {
1940 kaddr = kmap_atomic(wc->w_target_page);
1941 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1942 kunmap_atomic(kaddr);
1944 trace_ocfs2_write_end_inline(
1945 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1946 (unsigned long long)pos, *copied,
1947 le16_to_cpu(di->id2.i_data.id_count),
1948 le16_to_cpu(di->i_dyn_features));
1951 int ocfs2_write_end_nolock(struct address_space *mapping,
1952 loff_t pos, unsigned len, unsigned copied, void *fsdata)
1955 unsigned from, to, start = pos & (PAGE_SIZE - 1);
1956 struct inode *inode = mapping->host;
1957 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1958 struct ocfs2_write_ctxt *wc = fsdata;
1959 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1960 handle_t *handle = wc->w_handle;
1961 struct page *tmppage;
1963 BUG_ON(!list_empty(&wc->w_unwritten_list));
1966 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1967 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1975 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1976 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1977 goto out_write_size;
1980 if (unlikely(copied < len) && wc->w_target_page) {
1981 if (!PageUptodate(wc->w_target_page))
1984 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1987 if (wc->w_target_page)
1988 flush_dcache_page(wc->w_target_page);
1990 for(i = 0; i < wc->w_num_pages; i++) {
1991 tmppage = wc->w_pages[i];
1993 /* This is the direct io target page. */
1994 if (tmppage == NULL)
1997 if (tmppage == wc->w_target_page) {
1998 from = wc->w_target_from;
1999 to = wc->w_target_to;
2001 BUG_ON(from > PAGE_SIZE ||
2006 * Pages adjacent to the target (if any) imply
2007 * a hole-filling write in which case we want
2008 * to flush their entire range.
2014 if (page_has_buffers(tmppage)) {
2015 if (handle && ocfs2_should_order_data(inode)) {
2017 ((loff_t)tmppage->index << PAGE_SHIFT) +
2019 loff_t length = to - from;
2020 ocfs2_jbd2_inode_add_write(handle, inode,
2021 start_byte, length);
2023 block_commit_write(tmppage, from, to);
2028 /* Direct io do not update i_size here. */
2029 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2031 if (pos > i_size_read(inode)) {
2032 i_size_write(inode, pos);
2033 mark_inode_dirty(inode);
2035 inode->i_blocks = ocfs2_inode_sector_count(inode);
2036 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2037 inode->i_mtime = inode->i_ctime = current_time(inode);
2038 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2039 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2041 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2044 ocfs2_journal_dirty(handle, wc->w_di_bh);
2047 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2048 * lock, or it will cause a deadlock since journal commit threads holds
2049 * this lock and will ask for the page lock when flushing the data.
2050 * put it here to preserve the unlock order.
2052 ocfs2_unlock_pages(wc);
2055 ocfs2_commit_trans(osb, handle);
2057 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2059 brelse(wc->w_di_bh);
2065 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2066 loff_t pos, unsigned len, unsigned copied,
2067 struct page *page, void *fsdata)
2070 struct inode *inode = mapping->host;
2072 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
2074 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2075 ocfs2_inode_unlock(inode, 1);
2080 struct ocfs2_dio_write_ctxt {
2081 struct list_head dw_zero_list;
2082 unsigned dw_zero_count;
2084 pid_t dw_writer_pid;
2087 static struct ocfs2_dio_write_ctxt *
2088 ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2090 struct ocfs2_dio_write_ctxt *dwc = NULL;
2093 return bh->b_private;
2095 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2098 INIT_LIST_HEAD(&dwc->dw_zero_list);
2099 dwc->dw_zero_count = 0;
2100 dwc->dw_orphaned = 0;
2101 dwc->dw_writer_pid = task_pid_nr(current);
2102 bh->b_private = dwc;
2108 static void ocfs2_dio_free_write_ctx(struct inode *inode,
2109 struct ocfs2_dio_write_ctxt *dwc)
2111 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2116 * TODO: Make this into a generic get_blocks function.
2118 * From do_direct_io in direct-io.c:
2119 * "So what we do is to permit the ->get_blocks function to populate
2120 * bh.b_size with the size of IO which is permitted at this offset and
2123 * This function is called directly from get_more_blocks in direct-io.c.
2125 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2126 * fs_count, map_bh, dio->rw == WRITE);
2128 static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
2129 struct buffer_head *bh_result, int create)
2131 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2132 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2133 struct ocfs2_write_ctxt *wc;
2134 struct ocfs2_write_cluster_desc *desc = NULL;
2135 struct ocfs2_dio_write_ctxt *dwc = NULL;
2136 struct buffer_head *di_bh = NULL;
2138 unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
2139 loff_t pos = iblock << i_blkbits;
2140 sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
2141 unsigned len, total_len = bh_result->b_size;
2142 int ret = 0, first_get_block = 0;
2144 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2145 len = min(total_len, len);
2148 * bh_result->b_size is count in get_more_blocks according to write
2149 * "pos" and "end", we need map twice to return different buffer state:
2150 * 1. area in file size, not set NEW;
2151 * 2. area out file size, set NEW.
2154 * |--------|---------|---------|---------
2155 * |<-------area in file------->|
2158 if ((iblock <= endblk) &&
2159 ((iblock + ((len - 1) >> i_blkbits)) > endblk))
2160 len = (endblk - iblock + 1) << i_blkbits;
2162 mlog(0, "get block of %lu at %llu:%u req %u\n",
2163 inode->i_ino, pos, len, total_len);
2166 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2167 * we may need to add it to orphan dir. So can not fall to fast path
2168 * while file size will be changed.
2170 if (pos + total_len <= i_size_read(inode)) {
2172 /* This is the fast path for re-write. */
2173 ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
2174 if (buffer_mapped(bh_result) &&
2175 !buffer_new(bh_result) &&
2179 /* Clear state set by ocfs2_get_block. */
2180 bh_result->b_state = 0;
2183 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2184 if (unlikely(dwc == NULL)) {
2190 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2191 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2192 !dwc->dw_orphaned) {
2194 * when we are going to alloc extents beyond file size, add the
2195 * inode to orphan dir, so we can recall those spaces when
2196 * system crashed during write.
2198 ret = ocfs2_add_inode_to_orphan(osb, inode);
2203 dwc->dw_orphaned = 1;
2206 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2212 down_write(&oi->ip_alloc_sem);
2214 if (first_get_block) {
2215 if (ocfs2_sparse_alloc(osb))
2216 ret = ocfs2_zero_tail(inode, di_bh, pos);
2218 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2226 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2227 OCFS2_WRITE_DIRECT, NULL,
2228 (void **)&wc, di_bh, NULL);
2234 desc = &wc->w_desc[0];
2236 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2237 BUG_ON(p_blkno == 0);
2238 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2240 map_bh(bh_result, inode->i_sb, p_blkno);
2241 bh_result->b_size = len;
2242 if (desc->c_needs_zero)
2243 set_buffer_new(bh_result);
2245 if (iblock > endblk)
2246 set_buffer_new(bh_result);
2248 /* May sleep in end_io. It should not happen in a irq context. So defer
2249 * it to dio work queue. */
2250 set_buffer_defer_completion(bh_result);
2252 if (!list_empty(&wc->w_unwritten_list)) {
2253 struct ocfs2_unwritten_extent *ue = NULL;
2255 ue = list_first_entry(&wc->w_unwritten_list,
2256 struct ocfs2_unwritten_extent,
2258 BUG_ON(ue->ue_cpos != desc->c_cpos);
2259 /* The physical address may be 0, fill it. */
2260 ue->ue_phys = desc->c_phys;
2262 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2263 dwc->dw_zero_count += wc->w_unwritten_count;
2266 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
2270 up_write(&oi->ip_alloc_sem);
2271 ocfs2_inode_unlock(inode, 1);
2279 static int ocfs2_dio_end_io_write(struct inode *inode,
2280 struct ocfs2_dio_write_ctxt *dwc,
2284 struct ocfs2_cached_dealloc_ctxt dealloc;
2285 struct ocfs2_extent_tree et;
2286 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2287 struct ocfs2_inode_info *oi = OCFS2_I(inode);
2288 struct ocfs2_unwritten_extent *ue = NULL;
2289 struct buffer_head *di_bh = NULL;
2290 struct ocfs2_dinode *di;
2291 struct ocfs2_alloc_context *data_ac = NULL;
2292 struct ocfs2_alloc_context *meta_ac = NULL;
2293 handle_t *handle = NULL;
2294 loff_t end = offset + bytes;
2295 int ret = 0, credits = 0;
2297 ocfs2_init_dealloc_ctxt(&dealloc);
2299 /* We do clear unwritten, delete orphan, change i_size here. If neither
2300 * of these happen, we can skip all this. */
2301 if (list_empty(&dwc->dw_zero_list) &&
2302 end <= i_size_read(inode) &&
2306 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2312 down_write(&oi->ip_alloc_sem);
2314 /* Delete orphan before acquire i_rwsem. */
2315 if (dwc->dw_orphaned) {
2316 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2318 end = end > i_size_read(inode) ? end : 0;
2320 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2326 di = (struct ocfs2_dinode *)di_bh->b_data;
2328 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2330 /* Attach dealloc with extent tree in case that we may reuse extents
2331 * which are already unlinked from current extent tree due to extent
2332 * rotation and merging.
2334 et.et_dealloc = &dealloc;
2336 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2337 &data_ac, &meta_ac);
2343 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2345 handle = ocfs2_start_trans(osb, credits);
2346 if (IS_ERR(handle)) {
2347 ret = PTR_ERR(handle);
2351 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2352 OCFS2_JOURNAL_ACCESS_WRITE);
2358 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2359 ret = ocfs2_mark_extent_written(inode, &et, handle,
2369 if (end > i_size_read(inode)) {
2370 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2375 ocfs2_commit_trans(osb, handle);
2377 up_write(&oi->ip_alloc_sem);
2378 ocfs2_inode_unlock(inode, 1);
2382 ocfs2_free_alloc_context(data_ac);
2384 ocfs2_free_alloc_context(meta_ac);
2385 ocfs2_run_deallocs(osb, &dealloc);
2386 ocfs2_dio_free_write_ctx(inode, dwc);
2392 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2393 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2394 * to protect io on one node from truncation on another.
2396 static int ocfs2_dio_end_io(struct kiocb *iocb,
2401 struct inode *inode = file_inode(iocb->ki_filp);
2405 /* this io's submitter should not have unlocked this before we could */
2406 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2409 mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
2413 ret = ocfs2_dio_end_io_write(inode, private, offset,
2416 ocfs2_dio_free_write_ctx(inode, private);
2419 ocfs2_iocb_clear_rw_locked(iocb);
2421 level = ocfs2_iocb_rw_locked_level(iocb);
2422 ocfs2_rw_unlock(inode, level);
2426 static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2428 struct file *file = iocb->ki_filp;
2429 struct inode *inode = file->f_mapping->host;
2430 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2431 get_block_t *get_block;
2434 * Fallback to buffered I/O if we see an inode without
2437 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2440 /* Fallback to buffered I/O if we do not support append dio. */
2441 if (iocb->ki_pos + iter->count > i_size_read(inode) &&
2442 !ocfs2_supports_append_dio(osb))
2445 if (iov_iter_rw(iter) == READ)
2446 get_block = ocfs2_lock_get_block;
2448 get_block = ocfs2_dio_wr_get_block;
2450 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2452 ocfs2_dio_end_io, NULL, 0);
2455 const struct address_space_operations ocfs2_aops = {
2456 .dirty_folio = block_dirty_folio,
2457 .readpage = ocfs2_readpage,
2458 .readahead = ocfs2_readahead,
2459 .writepage = ocfs2_writepage,
2460 .write_begin = ocfs2_write_begin,
2461 .write_end = ocfs2_write_end,
2463 .direct_IO = ocfs2_direct_IO,
2464 .invalidate_folio = block_invalidate_folio,
2465 .releasepage = ocfs2_releasepage,
2466 .migratepage = buffer_migrate_page,
2467 .is_partially_uptodate = block_is_partially_uptodate,
2468 .error_remove_page = generic_error_remove_page,