1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
11 #include <linux/kernel.h>
17 static const struct INDEX_NAMES {
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
27 * cmp_fnames - Compare two names in index.
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
46 fsize2 = fname_full_size(f2);
50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
67 * cmp_uint - $SII of $Secure and $Q of Quota
69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
86 * cmp_sdh - $SDH of $Secure
88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
95 if (l2 < sizeof(struct SECURITY_KEY))
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
101 /* First value is a hash value itself. */
107 /* Second value is security Id. */
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
130 if ((size_t)data == 1) {
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
142 if (l1 <= sizeof(int))
147 if (l2 < sizeof(int))
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
170 switch (root->type) {
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
181 case NTFS_COLLATION_TYPE_UINTS:
196 struct mft_inode *mi;
197 struct buffer_head *bh;
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
226 data_size = le32_to_cpu(b->res.data_size);
228 if (off >= data_size)
231 bbuf->buf = (ulong *)resident_data(b);
233 bbuf->nbits = data_size * 8;
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
244 valid_size = le64_to_cpu(b->nres.valid_size);
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
261 blocksize = sb->s_blocksize;
263 vbo = off & ~(size_t)sbi->block_mask;
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
276 memset(bh->b_data + voff, 0, blocksize - voff);
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
314 * indx_mark_used - Mark the bit @bit as used.
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
326 __set_bit(bit - bbuf.bit, bbuf.buf);
328 bmp_buf_put(&bbuf, true);
334 * indx_mark_free - Mark the bit @bit as free.
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
346 __clear_bit(bit - bbuf.bit, bbuf.buf);
348 bmp_buf_put(&bbuf, true);
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
381 struct buffer_head *bh;
386 if (vblock >= eblock)
390 vcn = vbo >> sbi->cluster_bits;
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
428 memset(bh->b_data + voff, 0, blocksize - voff);
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
443 if (++vblock >= eblock) {
449 vcn_next = vcn + clen;
451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
458 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
460 size_t pos = find_next_zero_bit(buf, bits, bit);
469 * indx_find_free - Look for free bit.
471 * Return: -1 if no free bits.
473 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 size_t *bit, struct ATTRIB **bitmap)
477 struct ATTR_LIST_ENTRY *le = NULL;
478 const struct INDEX_NAMES *in = &s_index_names[indx->type];
481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
491 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
506 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
508 size_t pos = find_next_bit(buf, bits, bit);
517 * indx_used_bit - Look for used bit.
519 * Return: MINUS_ONE_T if no used bits.
521 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
524 struct ATTR_LIST_ENTRY *le = NULL;
526 const struct INDEX_NAMES *in = &s_index_names[indx->type];
529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
538 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 size_t pos = find_next_bit(resident_data(b), nbits, from);
544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
555 * Find a point at which the index allocation buffer would like to be split.
556 * NOTE: This function should never return 'END' entry NULL returns on error.
558 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
561 const struct NTFS_DE *e = hdr_first_de(hdr);
562 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
565 if (!e || de_is_last(e))
568 esize = le16_to_cpu(e->size);
569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 const struct NTFS_DE *p = e;
574 /* We must not return END entry. */
578 esize = le16_to_cpu(e->size);
585 * hdr_insert_head - Insert some entries at the beginning of the buffer.
587 * It is used to insert entries into a newly-created buffer.
589 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 const void *ins, u32 ins_bytes)
593 struct NTFS_DE *e = hdr_first_de(hdr);
594 u32 used = le32_to_cpu(hdr->used);
599 /* Now we just make room for the inserted entries and jam it in. */
600 to_move = used - le32_to_cpu(hdr->de_off);
601 memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 memcpy(e, ins, ins_bytes);
603 hdr->used = cpu_to_le32(used + ins_bytes);
608 void fnd_clear(struct ntfs_fnd *fnd)
612 for (i = 0; i < fnd->level; i++) {
613 struct indx_node *n = fnd->nodes[i];
619 fnd->nodes[i] = NULL;
625 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
639 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
646 fnd->nodes[i] = NULL;
652 static bool fnd_is_empty(struct ntfs_fnd *fnd)
655 return !fnd->root_de;
657 return !fnd->de[fnd->level - 1];
661 * hdr_find_e - Locate an entry the index buffer.
663 * If no matching entry is found, it returns the first entry which is greater
664 * than the desired entry If the search key is greater than all the entries the
665 * buffer, it returns the 'end' entry. This function does a binary search of the
666 * current index buffer, for the first entry that is <= to the search value.
668 * Return: NULL if error.
670 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
671 const struct INDEX_HDR *hdr, const void *key,
672 size_t key_len, const void *ctx, int *diff)
674 struct NTFS_DE *e, *found = NULL;
675 NTFS_CMP_FUNC cmp = indx->cmp;
676 int min_idx = 0, mid_idx, max_idx = 0;
679 u32 e_size, e_key_len;
680 u32 end = le32_to_cpu(hdr->used);
681 u32 off = le32_to_cpu(hdr->de_off);
685 if (off + sizeof(struct NTFS_DE) > end)
688 e = Add2Ptr(hdr, off);
689 e_size = le16_to_cpu(e->size);
691 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
694 if (!de_is_last(e)) {
699 if (max_idx < table_size)
706 e_key_len = le16_to_cpu(e->key_size);
708 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
711 min_idx = mid_idx + 1;
717 table_size = min(table_size * 2,
718 (int)ARRAY_SIZE(offs));
721 } else if (diff2 < 0) {
723 max_idx = mid_idx - 1;
733 if (min_idx > max_idx) {
738 mid_idx = (min_idx + max_idx) >> 1;
739 e = Add2Ptr(hdr, offs[mid_idx]);
745 * hdr_insert_de - Insert an index entry into the buffer.
747 * 'before' should be a pointer previously returned from hdr_find_e.
749 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
750 struct INDEX_HDR *hdr,
751 const struct NTFS_DE *de,
752 struct NTFS_DE *before, const void *ctx)
755 size_t off = PtrOffset(hdr, before);
756 u32 used = le32_to_cpu(hdr->used);
757 u32 total = le32_to_cpu(hdr->total);
758 u16 de_size = le16_to_cpu(de->size);
760 /* First, check to see if there's enough room. */
761 if (used + de_size > total)
764 /* We know there's enough space, so we know we'll succeed. */
766 /* Check that before is inside Index. */
767 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
768 off + le16_to_cpu(before->size) > total) {
773 /* No insert point is applied. Get it manually. */
774 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
778 off = PtrOffset(hdr, before);
781 /* Now we just make room for the entry and jam it in. */
782 memmove(Add2Ptr(before, de_size), before, used - off);
784 hdr->used = cpu_to_le32(used + de_size);
785 memcpy(before, de, de_size);
791 * hdr_delete_de - Remove an entry from the index buffer.
793 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
796 u32 used = le32_to_cpu(hdr->used);
797 u16 esize = le16_to_cpu(re->size);
798 u32 off = PtrOffset(hdr, re);
799 int bytes = used - (off + esize);
801 if (off >= used || esize < sizeof(struct NTFS_DE) ||
802 bytes < sizeof(struct NTFS_DE))
805 hdr->used = cpu_to_le32(used - esize);
806 memmove(re, Add2Ptr(re, esize), bytes);
811 void indx_clear(struct ntfs_index *indx)
813 run_close(&indx->alloc_run);
814 run_close(&indx->bitmap_run);
817 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
818 const struct ATTRIB *attr, enum index_mutex_classed type)
821 const struct INDEX_ROOT *root = resident_data(attr);
823 /* Check root fields. */
824 if (!root->index_block_clst)
828 indx->idx2vbn_bits = __ffs(root->index_block_clst);
830 t32 = le32_to_cpu(root->index_block_size);
831 indx->index_bits = blksize_bits(t32);
833 /* Check index record size. */
834 if (t32 < sbi->cluster_size) {
835 /* Index record is smaller than a cluster, use 512 blocks. */
836 if (t32 != root->index_block_clst * SECTOR_SIZE)
839 /* Check alignment to a cluster. */
840 if ((sbi->cluster_size >> SECTOR_SHIFT) &
841 (root->index_block_clst - 1)) {
845 indx->vbn2vbo_bits = SECTOR_SHIFT;
847 /* Index record must be a multiple of cluster size. */
848 if (t32 != root->index_block_clst << sbi->cluster_bits)
851 indx->vbn2vbo_bits = sbi->cluster_bits;
854 init_rwsem(&indx->run_lock);
856 indx->cmp = get_cmp_func(root);
857 return indx->cmp ? 0 : -EINVAL;
860 static struct indx_node *indx_new(struct ntfs_index *indx,
861 struct ntfs_inode *ni, CLST vbn,
862 const __le64 *sub_vbn)
867 struct INDEX_HDR *hdr;
868 struct INDEX_BUFFER *index;
869 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
870 u32 bytes = 1u << indx->index_bits;
874 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
876 return ERR_PTR(-ENOMEM);
878 index = kzalloc(bytes, GFP_NOFS);
881 return ERR_PTR(-ENOMEM);
884 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
893 index->rhdr.sign = NTFS_INDX_SIGNATURE;
894 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
895 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
896 index->rhdr.fix_num = cpu_to_le16(fn);
897 index->vbn = cpu_to_le64(vbn);
899 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
900 hdr->de_off = cpu_to_le32(eo);
902 e = Add2Ptr(hdr, eo);
905 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
906 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
908 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
909 de_set_vbn_le(e, *sub_vbn);
912 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
913 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
914 e->flags = NTFS_IE_LAST;
917 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
923 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
924 struct ATTRIB **attr, struct mft_inode **mi)
926 struct ATTR_LIST_ENTRY *le = NULL;
928 const struct INDEX_NAMES *in = &s_index_names[indx->type];
930 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
938 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
941 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
942 struct indx_node *node, int sync)
944 struct INDEX_BUFFER *ib = node->index;
946 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
952 * If ntfs_readdir calls this function
953 * inode is shared locked and no ni_lock.
954 * Use rw_semaphore for read/write access to alloc_run.
956 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
957 struct indx_node **node)
960 struct INDEX_BUFFER *ib;
961 struct runs_tree *run = &indx->alloc_run;
962 struct rw_semaphore *lock = &indx->run_lock;
963 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
964 u32 bytes = 1u << indx->index_bits;
965 struct indx_node *in = *node;
966 const struct INDEX_NAMES *name;
969 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
978 ib = kmalloc(bytes, GFP_NOFS);
986 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
991 if (err == -E_NTFS_FIXUP)
997 name = &s_index_names[indx->type];
999 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1000 run, vbo, vbo + bytes);
1006 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1008 if (err == -E_NTFS_FIXUP)
1015 if (err == -E_NTFS_FIXUP) {
1016 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1024 if (ib != in->index)
1036 * indx_find - Scan NTFS directory for given entry.
1038 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1039 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1040 const void *ctx, int *diff, struct NTFS_DE **entry,
1041 struct ntfs_fnd *fnd)
1045 struct indx_node *node;
1048 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1051 /* Should not happen. */
1056 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1057 if (e && !de_is_last(e) &&
1058 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1064 /* Soft finder reset. */
1067 /* Lookup entry that is <= to the search value. */
1068 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1076 if (*diff >= 0 || !de_has_vcn_ex(e))
1079 /* Read next level. */
1080 err = indx_read(indx, ni, de_get_vbn(e), &node);
1084 /* Lookup entry that is <= to the search value. */
1085 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1088 put_indx_node(node);
1092 fnd_push(fnd, node, e);
1099 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1100 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1101 struct ntfs_fnd *fnd)
1104 struct indx_node *n = NULL;
1107 int level = fnd->level;
1111 e = hdr_first_de(&root->ihdr);
1116 } else if (!level) {
1117 if (de_is_last(fnd->root_de)) {
1122 e = hdr_next_de(&root->ihdr, fnd->root_de);
1127 n = fnd->nodes[level - 1];
1128 e = fnd->de[level - 1];
1133 e = hdr_next_de(&n->index->ihdr, e);
1137 fnd->de[level - 1] = e;
1140 /* Just to avoid tree cycle. */
1145 while (de_has_vcn_ex(e)) {
1146 if (le16_to_cpu(e->size) <
1147 sizeof(struct NTFS_DE) + sizeof(u64)) {
1155 /* Read next level. */
1156 err = indx_read(indx, ni, de_get_vbn(e), &n);
1160 /* Try next level. */
1161 e = hdr_first_de(&n->index->ihdr);
1167 fnd_push(fnd, n, e);
1170 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1180 /* Pop one level. */
1189 n = fnd->nodes[level - 1];
1190 e = fnd->de[level - 1];
1191 } else if (fnd->root_de) {
1194 fnd->root_de = NULL;
1200 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1209 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1210 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1211 size_t *off, struct ntfs_fnd *fnd)
1214 struct indx_node *n = NULL;
1215 struct NTFS_DE *e = NULL;
1220 u32 record_size = ni->mi.sbi->record_size;
1222 /* Use non sorted algorithm. */
1224 /* This is the first call. */
1225 e = hdr_first_de(&root->ihdr);
1231 /* The first call with setup of initial element. */
1232 if (*off >= record_size) {
1233 next_vbn = (((*off - record_size) >> indx->index_bits))
1234 << indx->idx2vbn_bits;
1235 /* Jump inside cycle 'for'. */
1239 /* Start enumeration from root. */
1241 } else if (!fnd->root_de)
1245 /* Check if current entry can be used. */
1246 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1250 /* Continue to enumerate root. */
1251 if (!de_is_last(fnd->root_de)) {
1252 e = hdr_next_de(&root->ihdr, fnd->root_de);
1259 /* Start to enumerate indexes from 0. */
1262 /* Continue to enumerate indexes. */
1263 e2 = fnd->de[fnd->level - 1];
1265 n = fnd->nodes[fnd->level - 1];
1267 if (!de_is_last(e2)) {
1268 e = hdr_next_de(&n->index->ihdr, e2);
1271 fnd->de[fnd->level - 1] = e;
1275 /* Continue with next index. */
1276 next_vbn = le64_to_cpu(n->index->vbn) +
1277 root->index_block_clst;
1281 /* Release current index. */
1288 /* Skip all free indexes. */
1289 bit = next_vbn >> indx->idx2vbn_bits;
1290 err = indx_used_bit(indx, ni, &bit);
1291 if (err == -ENOENT || bit == MINUS_ONE_T) {
1292 /* No used indexes. */
1297 next_used_vbn = bit << indx->idx2vbn_bits;
1299 /* Read buffer into memory. */
1300 err = indx_read(indx, ni, next_used_vbn, &n);
1304 e = hdr_first_de(&n->index->ihdr);
1305 fnd_push(fnd, n, e);
1311 /* Return offset to restore enumerator if necessary. */
1313 /* 'e' points in root, */
1314 *off = PtrOffset(&root->ihdr, e);
1316 /* 'e' points in index, */
1317 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1318 record_size + PtrOffset(&n->index->ihdr, e);
1326 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1328 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1332 struct ntfs_sb_info *sbi = ni->mi.sbi;
1333 struct ATTRIB *bitmap;
1334 struct ATTRIB *alloc;
1335 u32 data_size = 1u << indx->index_bits;
1336 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1337 CLST len = alloc_size >> sbi->cluster_bits;
1338 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1340 struct runs_tree run;
1344 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1349 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1350 &run, 0, len, 0, &alloc, NULL, NULL);
1354 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1356 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1357 in->name_len, &bitmap, NULL, NULL);
1361 if (in->name == I30_NAME) {
1362 ni->vfs_inode.i_size = data_size;
1363 inode_set_bytes(&ni->vfs_inode, alloc_size);
1366 memcpy(&indx->alloc_run, &run, sizeof(run));
1373 mi_remove_attr(NULL, &ni->mi, alloc);
1376 run_deallocate(sbi, &run, false);
1383 * indx_add_allocate - Add clusters to index.
1385 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1391 u64 bmp_size, bmp_size_v;
1392 struct ATTRIB *bmp, *alloc;
1393 struct mft_inode *mi;
1394 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1396 err = indx_find_free(indx, ni, &bit, &bmp);
1400 if (bit != MINUS_ONE_T) {
1404 bmp_size = le64_to_cpu(bmp->nres.data_size);
1405 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1407 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1410 bit = bmp_size << 3;
1413 data_size = (u64)(bit + 1) << indx->index_bits;
1416 /* Increase bitmap. */
1417 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1418 &indx->bitmap_run, bitmap_size(bit + 1),
1424 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1433 /* Increase allocation. */
1434 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1435 &indx->alloc_run, data_size, &data_size, true,
1443 *vbn = bit << indx->idx2vbn_bits;
1448 /* Ops. No space? */
1449 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1450 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1457 * indx_insert_into_root - Attempt to insert an entry into the index root.
1459 * @undo - True if we undoing previous remove.
1460 * If necessary, it will twiddle the index b-tree.
1462 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1463 const struct NTFS_DE *new_de,
1464 struct NTFS_DE *root_de, const void *ctx,
1465 struct ntfs_fnd *fnd, bool undo)
1468 struct NTFS_DE *e, *e0, *re;
1469 struct mft_inode *mi;
1470 struct ATTRIB *attr;
1471 struct INDEX_HDR *hdr;
1472 struct indx_node *n;
1474 __le64 *sub_vbn, t_vbn;
1476 u32 hdr_used, hdr_total, asize, to_move;
1477 u32 root_size, new_root_size;
1478 struct ntfs_sb_info *sbi;
1480 struct INDEX_ROOT *root, *a_root;
1482 /* Get the record this root placed in. */
1483 root = indx_get_root(indx, ni, &attr, &mi);
1489 * hdr_insert_de will succeed if there's
1490 * room the root for the new entry.
1494 new_de_size = le16_to_cpu(new_de->size);
1495 hdr_used = le32_to_cpu(hdr->used);
1496 hdr_total = le32_to_cpu(hdr->total);
1497 asize = le32_to_cpu(attr->size);
1498 root_size = le32_to_cpu(attr->res.data_size);
1500 ds_root = new_de_size + hdr_used - hdr_total;
1502 /* If 'undo' is set then reduce requirements. */
1503 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1504 mi_resize_attr(mi, attr, ds_root)) {
1505 hdr->total = cpu_to_le32(hdr_total + ds_root);
1506 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1514 /* Make a copy of root attribute to restore if error. */
1515 a_root = kmemdup(attr, asize, GFP_NOFS);
1520 * Copy all the non-end entries from
1521 * the index root to the new buffer.
1524 e0 = hdr_first_de(hdr);
1526 /* Calculate the size to copy. */
1527 for (e = e0;; e = hdr_next_de(hdr, e)) {
1535 to_move += le16_to_cpu(e->size);
1541 re = kmemdup(e0, to_move, GFP_NOFS);
1549 if (de_has_vcn(e)) {
1550 t_vbn = de_get_vbn_le(e);
1554 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1556 ds_root = new_root_size - root_size;
1558 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1559 /* Make root external. */
1565 mi_resize_attr(mi, attr, ds_root);
1567 /* Fill first entry (vcn will be set later). */
1568 e = (struct NTFS_DE *)(root + 1);
1569 memset(e, 0, sizeof(struct NTFS_DE));
1570 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1571 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1574 hdr->used = hdr->total =
1575 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1577 fnd->root_de = hdr_first_de(hdr);
1580 /* Create alloc and bitmap attributes (if not). */
1581 err = run_is_empty(&indx->alloc_run)
1582 ? indx_create_allocate(indx, ni, &new_vbn)
1583 : indx_add_allocate(indx, ni, &new_vbn);
1585 /* Layout of record may be changed, so rescan root. */
1586 root = indx_get_root(indx, ni, &attr, &mi);
1589 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1596 if (mi_resize_attr(mi, attr, -ds_root))
1597 memcpy(attr, a_root, asize);
1600 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1605 e = (struct NTFS_DE *)(root + 1);
1606 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1609 /* Now we can create/format the new buffer and copy the entries into. */
1610 n = indx_new(indx, ni, new_vbn, sub_vbn);
1616 hdr = &n->index->ihdr;
1617 hdr_used = le32_to_cpu(hdr->used);
1618 hdr_total = le32_to_cpu(hdr->total);
1620 /* Copy root entries into new buffer. */
1621 hdr_insert_head(hdr, re, to_move);
1623 /* Update bitmap attribute. */
1624 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1626 /* Check if we can insert new entry new index buffer. */
1627 if (hdr_used + new_de_size > hdr_total) {
1629 * This occurs if MFT record is the same or bigger than index
1630 * buffer. Move all root new index and have no space to add
1631 * new entry classic case when MFT record is 1K and index
1632 * buffer 4K the problem should not occurs.
1635 indx_write(indx, ni, n, 0);
1639 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1644 * Now root is a parent for new index buffer.
1645 * Insert NewEntry a new buffer.
1647 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1652 fnd_push(fnd, n, e);
1654 /* Just write updates index into disk. */
1655 indx_write(indx, ni, n, 0);
1669 * indx_insert_into_buffer
1671 * Attempt to insert an entry into an Index Allocation Buffer.
1672 * If necessary, it will split the buffer.
1675 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1676 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1677 const void *ctx, int level, struct ntfs_fnd *fnd)
1680 const struct NTFS_DE *sp;
1681 struct NTFS_DE *e, *de_t, *up_e;
1682 struct indx_node *n2;
1683 struct indx_node *n1 = fnd->nodes[level];
1684 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1685 struct INDEX_HDR *hdr2;
1688 __le64 t_vbn, *sub_vbn;
1691 /* Try the most easy case. */
1692 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1693 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1696 /* Just write updated index into disk. */
1697 indx_write(indx, ni, n1, 0);
1702 * No space to insert into buffer. Split it.
1704 * - Save split point ('cause index buffers will be changed)
1705 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1706 * - Remove all entries (sp including) from TargetBuffer
1707 * - Insert NewEntry into left or right buffer (depending on sp <=>
1709 * - Insert sp into parent buffer (or root)
1710 * - Make sp a parent for new buffer
1712 sp = hdr_find_split(hdr1);
1716 sp_size = le16_to_cpu(sp->size);
1717 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1720 memcpy(up_e, sp, sp_size);
1723 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1724 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1727 t_vbn = de_get_vbn_le(up_e);
1731 /* Allocate on disk a new index allocation buffer. */
1732 err = indx_add_allocate(indx, ni, &new_vbn);
1736 /* Allocate and format memory a new index buffer. */
1737 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1743 hdr2 = &n2->index->ihdr;
1745 /* Make sp a parent for new buffer. */
1746 de_set_vbn(up_e, new_vbn);
1748 /* Copy all the entries <= sp into the new buffer. */
1749 de_t = hdr_first_de(hdr1);
1750 to_copy = PtrOffset(de_t, sp);
1751 hdr_insert_head(hdr2, de_t, to_copy);
1753 /* Remove all entries (sp including) from hdr1. */
1754 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1755 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1756 hdr1->used = cpu_to_le32(used);
1759 * Insert new entry into left or right buffer
1760 * (depending on sp <=> new_de).
1763 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1764 up_e + 1, le16_to_cpu(up_e->key_size),
1770 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1772 indx_write(indx, ni, n1, 0);
1773 indx_write(indx, ni, n2, 0);
1778 * We've finished splitting everybody, so we are ready to
1779 * insert the promoted entry into the parent.
1782 /* Insert in root. */
1783 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1788 * The target buffer's parent is another index buffer.
1789 * TODO: Remove recursion.
1791 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1804 * indx_insert_entry - Insert new entry into index.
1806 * @undo - True if we undoing previous remove.
1808 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1809 const struct NTFS_DE *new_de, const void *ctx,
1810 struct ntfs_fnd *fnd, bool undo)
1815 struct ntfs_fnd *fnd_a = NULL;
1816 struct INDEX_ROOT *root;
1827 root = indx_get_root(indx, ni, NULL, NULL);
1833 if (fnd_is_empty(fnd)) {
1835 * Find the spot the tree where we want to
1836 * insert the new entry.
1838 err = indx_find(indx, ni, root, new_de + 1,
1839 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1852 * The root is also a leaf, so we'll insert the
1853 * new entry into it.
1855 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1861 * Found a leaf buffer, so we'll insert the new entry into it.
1863 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1864 fnd->level - 1, fnd);
1876 * indx_find_buffer - Locate a buffer from the tree.
1878 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1879 struct ntfs_inode *ni,
1880 const struct INDEX_ROOT *root,
1881 __le64 vbn, struct indx_node *n)
1884 const struct NTFS_DE *e;
1885 struct indx_node *r;
1886 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1888 /* Step 1: Scan one level. */
1889 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1891 return ERR_PTR(-EINVAL);
1893 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1900 /* Step2: Do recursion. */
1901 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1903 if (de_has_vcn_ex(e)) {
1904 err = indx_read(indx, ni, de_get_vbn(e), &n);
1906 return ERR_PTR(err);
1908 r = indx_find_buffer(indx, ni, root, vbn, n);
1916 e = Add2Ptr(e, le16_to_cpu(e->size));
1923 * indx_shrink - Deallocate unused tail indexes.
1925 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1932 struct ATTR_LIST_ENTRY *le = NULL;
1933 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1935 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
1943 const unsigned long *bm = resident_data(b);
1945 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
1950 pos = find_next_bit(bm, nbits, bit);
1954 size_t used = MINUS_ONE_T;
1956 nbits = le64_to_cpu(b->nres.data_size) * 8;
1961 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
1965 if (used != MINUS_ONE_T)
1969 new_data = (u64)bit << indx->index_bits;
1971 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1972 &indx->alloc_run, new_data, &new_data, false, NULL);
1976 bpb = bitmap_size(bit);
1977 if (bpb * 8 == nbits)
1980 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1981 &indx->bitmap_run, bpb, &bpb, false, NULL);
1986 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
1987 const struct NTFS_DE *e, bool trim)
1990 struct indx_node *n = NULL;
1991 struct INDEX_HDR *hdr;
1992 CLST vbn = de_get_vbn(e);
1995 err = indx_read(indx, ni, vbn, &n);
1999 hdr = &n->index->ihdr;
2000 /* First, recurse into the children, if any. */
2001 if (hdr_has_subnode(hdr)) {
2002 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2003 indx_free_children(indx, ni, e, false);
2011 i = vbn >> indx->idx2vbn_bits;
2013 * We've gotten rid of the children; add this buffer to the free list.
2015 indx_mark_free(indx, ni, i);
2021 * If there are no used indexes after current free index
2022 * then we can truncate allocation and bitmap.
2023 * Use bitmap to estimate the case.
2025 indx_shrink(indx, ni, i + 1);
2030 * indx_get_entry_to_replace
2032 * Find a replacement entry for a deleted entry.
2033 * Always returns a node entry:
2034 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2036 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2037 struct ntfs_inode *ni,
2038 const struct NTFS_DE *de_next,
2039 struct NTFS_DE **de_to_replace,
2040 struct ntfs_fnd *fnd)
2045 struct NTFS_DE *e, *te, *re;
2046 struct indx_node *n;
2047 struct INDEX_BUFFER *ib;
2049 *de_to_replace = NULL;
2051 /* Find first leaf entry down from de_next. */
2052 vbn = de_get_vbn(de_next);
2055 err = indx_read(indx, ni, vbn, &n);
2059 e = hdr_first_de(&n->index->ihdr);
2060 fnd_push(fnd, n, e);
2062 if (!de_is_last(e)) {
2064 * This buffer is non-empty, so its first entry
2065 * could be used as the replacement entry.
2067 level = fnd->level - 1;
2073 /* This buffer is a node. Continue to go down. */
2074 vbn = de_get_vbn(e);
2080 n = fnd->nodes[level];
2081 te = hdr_first_de(&n->index->ihdr);
2082 /* Copy the candidate entry into the replacement entry buffer. */
2083 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2089 *de_to_replace = re;
2090 memcpy(re, te, le16_to_cpu(te->size));
2092 if (!de_has_vcn(re)) {
2094 * The replacement entry we found doesn't have a sub_vcn.
2095 * increase its size to hold one.
2097 le16_add_cpu(&re->size, sizeof(u64));
2098 re->flags |= NTFS_IE_HAS_SUBNODES;
2101 * The replacement entry we found was a node entry, which
2102 * means that all its child buffers are empty. Return them
2105 indx_free_children(indx, ni, te, true);
2109 * Expunge the replacement entry from its former location,
2110 * and then write that buffer.
2113 e = hdr_delete_de(&ib->ihdr, te);
2116 indx_write(indx, ni, n, 0);
2118 /* Check to see if this action created an empty leaf. */
2119 if (ib_is_leaf(ib) && ib_is_empty(ib))
2128 * indx_delete_entry - Delete an entry from the index.
2130 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2131 const void *key, u32 key_len, const void *ctx)
2134 struct INDEX_ROOT *root;
2135 struct INDEX_HDR *hdr;
2136 struct ntfs_fnd *fnd, *fnd2;
2137 struct INDEX_BUFFER *ib;
2138 struct NTFS_DE *e, *re, *next, *prev, *me;
2139 struct indx_node *n, *n2d = NULL;
2142 struct ATTRIB *attr;
2143 struct mft_inode *mi;
2144 u32 e_size, root_size, new_root_size;
2146 const struct INDEX_NAMES *in;
2160 root = indx_get_root(indx, ni, &attr, &mi);
2166 /* Locate the entry to remove. */
2167 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2179 n = fnd->nodes[level - 1];
2180 e = fnd->de[level - 1];
2189 e_size = le16_to_cpu(e->size);
2191 if (!de_has_vcn_ex(e)) {
2192 /* The entry to delete is a leaf, so we can just rip it out. */
2193 hdr_delete_de(hdr, e);
2196 hdr->total = hdr->used;
2198 /* Shrink resident root attribute. */
2199 mi_resize_attr(mi, attr, 0 - e_size);
2203 indx_write(indx, ni, n, 0);
2206 * Check to see if removing that entry made
2209 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2211 fnd_push(fnd2, n, e);
2215 * The entry we wish to delete is a node buffer, so we
2216 * have to find a replacement for it.
2218 next = de_get_next(e);
2220 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2225 de_set_vbn_le(re, de_get_vbn_le(e));
2226 hdr_delete_de(hdr, e);
2228 err = level ? indx_insert_into_buffer(indx, ni, root,
2232 : indx_insert_into_root(indx, ni, re, e,
2240 * There is no replacement for the current entry.
2241 * This means that the subtree rooted at its node
2242 * is empty, and can be deleted, which turn means
2243 * that the node can just inherit the deleted
2246 indx_free_children(indx, ni, next, true);
2248 de_set_vbn_le(next, de_get_vbn_le(e));
2249 hdr_delete_de(hdr, e);
2251 indx_write(indx, ni, n, 0);
2253 hdr->total = hdr->used;
2255 /* Shrink resident root attribute. */
2256 mi_resize_attr(mi, attr, 0 - e_size);
2261 /* Delete a branch of tree. */
2262 if (!fnd2 || !fnd2->level)
2265 /* Reinit root 'cause it can be changed. */
2266 root = indx_get_root(indx, ni, &attr, &mi);
2273 sub_vbn = fnd2->nodes[0]->index->vbn;
2277 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2279 /* Scan current level. */
2280 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2286 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2289 if (de_is_last(e)) {
2296 /* Do slow search from root. */
2297 struct indx_node *in;
2301 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2308 fnd_push(fnd, in, NULL);
2311 /* Merge fnd2 -> fnd. */
2312 for (level = 0; level < fnd2->level; level++) {
2313 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2314 fnd2->nodes[level] = NULL;
2319 for (level = fnd->level; level; level--) {
2320 struct indx_node *in = fnd->nodes[level - 1];
2323 if (ib_is_empty(ib)) {
2336 e = hdr_first_de(hdr);
2342 if (hdr != &root->ihdr || !de_is_last(e)) {
2344 while (!de_is_last(e)) {
2345 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2348 e = hdr_next_de(hdr, e);
2355 if (sub_vbn != de_get_vbn_le(e)) {
2357 * Didn't find the parent entry, although this buffer
2358 * is the parent trail. Something is corrupt.
2364 if (de_is_last(e)) {
2366 * Since we can't remove the end entry, we'll remove
2367 * its predecessor instead. This means we have to
2368 * transfer the predecessor's sub_vcn to the end entry.
2369 * Note: This index block is not empty, so the
2370 * predecessor must exist.
2377 if (de_has_vcn(prev)) {
2378 de_set_vbn_le(e, de_get_vbn_le(prev));
2379 } else if (de_has_vcn(e)) {
2380 le16_sub_cpu(&e->size, sizeof(u64));
2381 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2382 le32_sub_cpu(&hdr->used, sizeof(u64));
2388 * Copy the current entry into a temporary buffer (stripping
2389 * off its down-pointer, if any) and delete it from the current
2390 * buffer or root, as appropriate.
2392 e_size = le16_to_cpu(e->size);
2393 me = kmemdup(e, e_size, GFP_NOFS);
2399 if (de_has_vcn(me)) {
2400 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2401 le16_sub_cpu(&me->size, sizeof(u64));
2404 hdr_delete_de(hdr, e);
2406 if (hdr == &root->ihdr) {
2408 hdr->total = hdr->used;
2410 /* Shrink resident root attribute. */
2411 mi_resize_attr(mi, attr, 0 - e_size);
2413 indx_write(indx, ni, n2d, 0);
2417 /* Mark unused buffers as free. */
2419 for (; level < fnd->level; level++) {
2420 ib = fnd->nodes[level]->index;
2421 if (ib_is_empty(ib)) {
2422 size_t k = le64_to_cpu(ib->vbn) >>
2425 indx_mark_free(indx, ni, k);
2432 /*fnd->root_de = NULL;*/
2435 * Re-insert the entry into the tree.
2436 * Find the spot the tree where we want to insert the new entry.
2438 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2444 indx_shrink(indx, ni, trim_bit);
2447 * This tree needs to be collapsed down to an empty root.
2448 * Recreate the index root as an empty leaf and free all
2449 * the bits the index allocation bitmap.
2454 in = &s_index_names[indx->type];
2456 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2457 &indx->alloc_run, 0, NULL, false, NULL);
2458 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2460 run_close(&indx->alloc_run);
2462 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2463 &indx->bitmap_run, 0, NULL, false, NULL);
2464 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2466 run_close(&indx->bitmap_run);
2468 root = indx_get_root(indx, ni, &attr, &mi);
2474 root_size = le32_to_cpu(attr->res.data_size);
2476 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2478 if (new_root_size != root_size &&
2479 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2484 /* Fill first entry. */
2485 e = (struct NTFS_DE *)(root + 1);
2489 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2490 e->flags = NTFS_IE_LAST; // 0x02
2496 hdr->used = hdr->total = cpu_to_le32(
2497 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2510 * Update duplicated information in directory entry
2511 * 'dup' - info from MFT record
2513 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2514 const struct ATTR_FILE_NAME *fname,
2515 const struct NTFS_DUP_INFO *dup, int sync)
2518 struct NTFS_DE *e = NULL;
2519 struct ATTR_FILE_NAME *e_fname;
2520 struct ntfs_fnd *fnd;
2521 struct INDEX_ROOT *root;
2522 struct mft_inode *mi;
2523 struct ntfs_index *indx = &ni->dir;
2529 root = indx_get_root(indx, ni, NULL, &mi);
2535 /* Find entry in directory. */
2536 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2551 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2553 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2555 * Nothing to update in index! Try to avoid this call.
2560 memcpy(&e_fname->dup, dup, sizeof(*dup));
2563 /* Directory entry in index. */
2564 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2566 /* Directory entry in directory MFT record. */
2569 err = mi_write(mi, 1);
2571 mark_inode_dirty(&ni->vfs_inode);