1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
8 #include <linux/blkdev.h>
9 #include <linux/buffer_head.h>
11 #include <linux/kernel.h>
17 static const struct INDEX_NAMES {
20 } s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
27 * cmp_fnames - Compare two names in index.
30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
34 static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
46 fsize2 = fname_full_size(f2);
50 both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
55 * If names are equal (case insensitive)
56 * try to compare it case sensitive.
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
67 * cmp_uint - $SII of $Secure and $Q of Quota
69 static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
86 * cmp_sdh - $SDH of $Secure
88 static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
95 if (l2 < sizeof(struct SECURITY_KEY))
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
101 /* First value is a hash value itself. */
107 /* Second value is security Id. */
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
123 static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
130 if ((size_t)data == 1) {
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
134 * k1, k2 - pointers to REPARSE_KEY
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
139 if (l2 <= sizeof(int))
142 if (l1 <= sizeof(int))
147 if (l2 < sizeof(int))
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
168 static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
170 switch (root->type) {
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
181 case NTFS_COLLATION_TYPE_UINTS:
196 struct mft_inode *mi;
197 struct buffer_head *bh;
204 static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
226 data_size = le32_to_cpu(b->res.data_size);
228 if (off >= data_size)
231 bbuf->buf = (ulong *)resident_data(b);
233 bbuf->nbits = data_size * 8;
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
240 /* Looks like filesystem error. */
244 valid_size = le64_to_cpu(b->nres.valid_size);
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
261 blocksize = sb->s_blocksize;
263 vbo = off & ~(size_t)sbi->block_mask;
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
276 memset(bh->b_data + voff, 0, blocksize - voff);
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
286 static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
314 * indx_mark_used - Mark the bit @bit as used.
316 static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
326 __set_bit_le(bit - bbuf.bit, bbuf.buf);
328 bmp_buf_put(&bbuf, true);
334 * indx_mark_free - Mark the bit @bit as free.
336 static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
346 __clear_bit_le(bit - bbuf.bit, bbuf.buf);
348 bmp_buf_put(&bbuf, true);
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
360 static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
381 struct buffer_head *bh;
386 if (vblock >= eblock)
390 vcn = vbo >> sbi->cluster_bits;
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
428 memset(bh->b_data + voff, 0, blocksize - voff);
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
435 (*fn)((ulong *)bh->b_data, from, nbits, ret) :
444 if (++vblock >= eblock) {
450 vcn_next = vcn + clen;
452 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
459 static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
461 size_t pos = find_next_zero_bit_le(buf, bits, bit);
470 * indx_find_free - Look for free bit.
472 * Return: -1 if no free bits.
474 static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
475 size_t *bit, struct ATTRIB **bitmap)
478 struct ATTR_LIST_ENTRY *le = NULL;
479 const struct INDEX_NAMES *in = &s_index_names[indx->type];
482 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
492 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
493 size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
498 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
507 static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
509 size_t pos = find_next_bit_le(buf, bits, bit);
518 * indx_used_bit - Look for used bit.
520 * Return: MINUS_ONE_T if no used bits.
522 int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
525 struct ATTR_LIST_ENTRY *le = NULL;
527 const struct INDEX_NAMES *in = &s_index_names[indx->type];
530 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
539 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
540 size_t pos = find_next_bit_le(resident_data(b), nbits, from);
545 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
556 * Find a point at which the index allocation buffer would like to be split.
557 * NOTE: This function should never return 'END' entry NULL returns on error.
559 static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
562 const struct NTFS_DE *e = hdr_first_de(hdr);
563 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
566 if (!e || de_is_last(e))
569 esize = le16_to_cpu(e->size);
570 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
571 const struct NTFS_DE *p = e;
575 /* We must not return END entry. */
579 esize = le16_to_cpu(e->size);
586 * hdr_insert_head - Insert some entries at the beginning of the buffer.
588 * It is used to insert entries into a newly-created buffer.
590 static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
591 const void *ins, u32 ins_bytes)
594 struct NTFS_DE *e = hdr_first_de(hdr);
595 u32 used = le32_to_cpu(hdr->used);
600 /* Now we just make room for the inserted entries and jam it in. */
601 to_move = used - le32_to_cpu(hdr->de_off);
602 memmove(Add2Ptr(e, ins_bytes), e, to_move);
603 memcpy(e, ins, ins_bytes);
604 hdr->used = cpu_to_le32(used + ins_bytes);
612 * return true if INDEX_HDR is valid
614 static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
616 u32 end = le32_to_cpu(hdr->used);
617 u32 tot = le32_to_cpu(hdr->total);
618 u32 off = le32_to_cpu(hdr->de_off);
620 if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
621 off + sizeof(struct NTFS_DE) > end) {
622 /* incorrect index buffer. */
632 * return true if INDEX_BUFFER seems is valid
634 static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
637 const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
638 u16 fo = le16_to_cpu(rhdr->fix_off);
639 u16 fn = le16_to_cpu(rhdr->fix_num);
641 if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
642 rhdr->sign != NTFS_INDX_SIGNATURE ||
643 fo < sizeof(struct INDEX_BUFFER)
644 /* Check index buffer vbn. */
645 || (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
646 fo + fn * sizeof(short) >= bytes ||
647 fn != ((bytes >> SECTOR_SHIFT) + 1)) {
648 /* incorrect index buffer. */
652 return index_hdr_check(&ib->ihdr,
653 bytes - offsetof(struct INDEX_BUFFER, ihdr));
656 void fnd_clear(struct ntfs_fnd *fnd)
660 for (i = fnd->level - 1; i >= 0; i--) {
661 struct indx_node *n = fnd->nodes[i];
667 fnd->nodes[i] = NULL;
673 static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
678 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
686 static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
693 fnd->nodes[i] = NULL;
699 static bool fnd_is_empty(struct ntfs_fnd *fnd)
702 return !fnd->root_de;
704 return !fnd->de[fnd->level - 1];
708 * hdr_find_e - Locate an entry the index buffer.
710 * If no matching entry is found, it returns the first entry which is greater
711 * than the desired entry If the search key is greater than all the entries the
712 * buffer, it returns the 'end' entry. This function does a binary search of the
713 * current index buffer, for the first entry that is <= to the search value.
715 * Return: NULL if error.
717 static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
718 const struct INDEX_HDR *hdr, const void *key,
719 size_t key_len, const void *ctx, int *diff)
721 struct NTFS_DE *e, *found = NULL;
722 NTFS_CMP_FUNC cmp = indx->cmp;
723 int min_idx = 0, mid_idx, max_idx = 0;
726 u32 e_size, e_key_len;
727 u32 end = le32_to_cpu(hdr->used);
728 u32 off = le32_to_cpu(hdr->de_off);
729 u32 total = le32_to_cpu(hdr->total);
736 if (off + sizeof(struct NTFS_DE) > end)
739 e = Add2Ptr(hdr, off);
740 e_size = le16_to_cpu(e->size);
742 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
745 if (!de_is_last(e)) {
750 if (max_idx < table_size)
757 e_key_len = le16_to_cpu(e->key_size);
759 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
762 min_idx = mid_idx + 1;
768 table_size = min(table_size * 2, (int)ARRAY_SIZE(offs));
771 } else if (diff2 < 0) {
773 max_idx = mid_idx - 1;
783 if (min_idx > max_idx) {
788 mid_idx = (min_idx + max_idx) >> 1;
789 e = Add2Ptr(hdr, offs[mid_idx]);
795 * hdr_insert_de - Insert an index entry into the buffer.
797 * 'before' should be a pointer previously returned from hdr_find_e.
799 static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
800 struct INDEX_HDR *hdr,
801 const struct NTFS_DE *de,
802 struct NTFS_DE *before, const void *ctx)
805 size_t off = PtrOffset(hdr, before);
806 u32 used = le32_to_cpu(hdr->used);
807 u32 total = le32_to_cpu(hdr->total);
808 u16 de_size = le16_to_cpu(de->size);
810 /* First, check to see if there's enough room. */
811 if (used + de_size > total)
814 /* We know there's enough space, so we know we'll succeed. */
816 /* Check that before is inside Index. */
817 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
818 off + le16_to_cpu(before->size) > total) {
823 /* No insert point is applied. Get it manually. */
824 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
828 off = PtrOffset(hdr, before);
831 /* Now we just make room for the entry and jam it in. */
832 memmove(Add2Ptr(before, de_size), before, used - off);
834 hdr->used = cpu_to_le32(used + de_size);
835 memcpy(before, de, de_size);
841 * hdr_delete_de - Remove an entry from the index buffer.
843 static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
846 u32 used = le32_to_cpu(hdr->used);
847 u16 esize = le16_to_cpu(re->size);
848 u32 off = PtrOffset(hdr, re);
849 int bytes = used - (off + esize);
851 /* check INDEX_HDR valid before using INDEX_HDR */
852 if (!check_index_header(hdr, le32_to_cpu(hdr->total)))
855 if (off >= used || esize < sizeof(struct NTFS_DE) ||
856 bytes < sizeof(struct NTFS_DE))
859 hdr->used = cpu_to_le32(used - esize);
860 memmove(re, Add2Ptr(re, esize), bytes);
865 void indx_clear(struct ntfs_index *indx)
867 run_close(&indx->alloc_run);
868 run_close(&indx->bitmap_run);
871 int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
872 const struct ATTRIB *attr, enum index_mutex_classed type)
875 const struct INDEX_ROOT *root = resident_data(attr);
877 t32 = le32_to_cpu(attr->res.data_size);
878 if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
879 !index_hdr_check(&root->ihdr,
880 t32 - offsetof(struct INDEX_ROOT, ihdr))) {
884 /* Check root fields. */
885 if (!root->index_block_clst)
889 indx->idx2vbn_bits = __ffs(root->index_block_clst);
891 t32 = le32_to_cpu(root->index_block_size);
892 indx->index_bits = blksize_bits(t32);
894 /* Check index record size. */
895 if (t32 < sbi->cluster_size) {
896 /* Index record is smaller than a cluster, use 512 blocks. */
897 if (t32 != root->index_block_clst * SECTOR_SIZE)
900 /* Check alignment to a cluster. */
901 if ((sbi->cluster_size >> SECTOR_SHIFT) &
902 (root->index_block_clst - 1)) {
906 indx->vbn2vbo_bits = SECTOR_SHIFT;
908 /* Index record must be a multiple of cluster size. */
909 if (t32 != root->index_block_clst << sbi->cluster_bits)
912 indx->vbn2vbo_bits = sbi->cluster_bits;
915 init_rwsem(&indx->run_lock);
917 indx->cmp = get_cmp_func(root);
924 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
928 static struct indx_node *indx_new(struct ntfs_index *indx,
929 struct ntfs_inode *ni, CLST vbn,
930 const __le64 *sub_vbn)
935 struct INDEX_HDR *hdr;
936 struct INDEX_BUFFER *index;
937 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
938 u32 bytes = 1u << indx->index_bits;
942 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
944 return ERR_PTR(-ENOMEM);
946 index = kzalloc(bytes, GFP_NOFS);
949 return ERR_PTR(-ENOMEM);
952 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
961 index->rhdr.sign = NTFS_INDX_SIGNATURE;
962 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
963 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
964 index->rhdr.fix_num = cpu_to_le16(fn);
965 index->vbn = cpu_to_le64(vbn);
967 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
968 hdr->de_off = cpu_to_le32(eo);
970 e = Add2Ptr(hdr, eo);
973 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
974 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
976 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
977 de_set_vbn_le(e, *sub_vbn);
980 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
981 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
982 e->flags = NTFS_IE_LAST;
985 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
991 struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
992 struct ATTRIB **attr, struct mft_inode **mi)
994 struct ATTR_LIST_ENTRY *le = NULL;
996 const struct INDEX_NAMES *in = &s_index_names[indx->type];
997 struct INDEX_ROOT *root;
999 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
1007 root = resident_data_ex(a, sizeof(struct INDEX_ROOT));
1011 offsetof(struct INDEX_ROOT, ihdr) + le32_to_cpu(root->ihdr.used) >
1012 le32_to_cpu(a->res.data_size)) {
1019 static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
1020 struct indx_node *node, int sync)
1022 struct INDEX_BUFFER *ib = node->index;
1024 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
1030 * If ntfs_readdir calls this function
1031 * inode is shared locked and no ni_lock.
1032 * Use rw_semaphore for read/write access to alloc_run.
1034 int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
1035 struct indx_node **node)
1038 struct INDEX_BUFFER *ib;
1039 struct runs_tree *run = &indx->alloc_run;
1040 struct rw_semaphore *lock = &indx->run_lock;
1041 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
1042 u32 bytes = 1u << indx->index_bits;
1043 struct indx_node *in = *node;
1044 const struct INDEX_NAMES *name;
1047 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
1056 ib = kmalloc(bytes, GFP_NOFS);
1064 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1069 if (err == -E_NTFS_FIXUP)
1075 name = &s_index_names[indx->type];
1077 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1078 run, vbo, vbo + bytes);
1084 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1086 if (err == -E_NTFS_FIXUP)
1093 if (!index_buf_check(ib, bytes, &vbn)) {
1094 ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
1095 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
1100 if (err == -E_NTFS_FIXUP) {
1101 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1105 /* check for index header length */
1106 if (offsetof(struct INDEX_BUFFER, ihdr) + le32_to_cpu(ib->ihdr.used) >
1116 if (ib != in->index)
1128 * indx_find - Scan NTFS directory for given entry.
1130 int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1131 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1132 const void *ctx, int *diff, struct NTFS_DE **entry,
1133 struct ntfs_fnd *fnd)
1137 struct indx_node *node;
1140 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1143 /* Should not happen. */
1148 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1149 if (e && !de_is_last(e) &&
1150 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1156 /* Soft finder reset. */
1159 /* Lookup entry that is <= to the search value. */
1160 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
1168 if (*diff >= 0 || !de_has_vcn_ex(e))
1171 /* Read next level. */
1172 err = indx_read(indx, ni, de_get_vbn(e), &node);
1178 /* Lookup entry that is <= to the search value. */
1179 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1182 put_indx_node(node);
1186 fnd_push(fnd, node, e);
1193 int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1194 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1195 struct ntfs_fnd *fnd)
1198 struct indx_node *n = NULL;
1201 int level = fnd->level;
1205 e = hdr_first_de(&root->ihdr);
1210 } else if (!level) {
1211 if (de_is_last(fnd->root_de)) {
1216 e = hdr_next_de(&root->ihdr, fnd->root_de);
1221 n = fnd->nodes[level - 1];
1222 e = fnd->de[level - 1];
1227 e = hdr_next_de(&n->index->ihdr, e);
1231 fnd->de[level - 1] = e;
1234 /* Just to avoid tree cycle. */
1239 while (de_has_vcn_ex(e)) {
1240 if (le16_to_cpu(e->size) <
1241 sizeof(struct NTFS_DE) + sizeof(u64)) {
1249 /* Read next level. */
1250 err = indx_read(indx, ni, de_get_vbn(e), &n);
1254 /* Try next level. */
1255 e = hdr_first_de(&n->index->ihdr);
1261 fnd_push(fnd, n, e);
1264 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1274 /* Pop one level. */
1283 n = fnd->nodes[level - 1];
1284 e = fnd->de[level - 1];
1285 } else if (fnd->root_de) {
1288 fnd->root_de = NULL;
1294 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1303 int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1304 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1305 size_t *off, struct ntfs_fnd *fnd)
1308 struct indx_node *n = NULL;
1309 struct NTFS_DE *e = NULL;
1314 u32 record_size = ni->mi.sbi->record_size;
1316 /* Use non sorted algorithm. */
1318 /* This is the first call. */
1319 e = hdr_first_de(&root->ihdr);
1325 /* The first call with setup of initial element. */
1326 if (*off >= record_size) {
1327 next_vbn = (((*off - record_size) >> indx->index_bits))
1328 << indx->idx2vbn_bits;
1329 /* Jump inside cycle 'for'. */
1333 /* Start enumeration from root. */
1335 } else if (!fnd->root_de)
1339 /* Check if current entry can be used. */
1340 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1344 /* Continue to enumerate root. */
1345 if (!de_is_last(fnd->root_de)) {
1346 e = hdr_next_de(&root->ihdr, fnd->root_de);
1353 /* Start to enumerate indexes from 0. */
1356 /* Continue to enumerate indexes. */
1357 e2 = fnd->de[fnd->level - 1];
1359 n = fnd->nodes[fnd->level - 1];
1361 if (!de_is_last(e2)) {
1362 e = hdr_next_de(&n->index->ihdr, e2);
1365 fnd->de[fnd->level - 1] = e;
1369 /* Continue with next index. */
1370 next_vbn = le64_to_cpu(n->index->vbn) +
1371 root->index_block_clst;
1375 /* Release current index. */
1382 /* Skip all free indexes. */
1383 bit = next_vbn >> indx->idx2vbn_bits;
1384 err = indx_used_bit(indx, ni, &bit);
1385 if (err == -ENOENT || bit == MINUS_ONE_T) {
1386 /* No used indexes. */
1391 next_used_vbn = bit << indx->idx2vbn_bits;
1393 /* Read buffer into memory. */
1394 err = indx_read(indx, ni, next_used_vbn, &n);
1398 e = hdr_first_de(&n->index->ihdr);
1399 fnd_push(fnd, n, e);
1405 /* Return offset to restore enumerator if necessary. */
1407 /* 'e' points in root, */
1408 *off = PtrOffset(&root->ihdr, e);
1410 /* 'e' points in index, */
1411 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1412 record_size + PtrOffset(&n->index->ihdr, e);
1420 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
1422 static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1426 struct ntfs_sb_info *sbi = ni->mi.sbi;
1427 struct ATTRIB *bitmap;
1428 struct ATTRIB *alloc;
1429 u32 data_size = 1u << indx->index_bits;
1430 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1431 CLST len = alloc_size >> sbi->cluster_bits;
1432 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1434 struct runs_tree run;
1438 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
1439 &alen, 0, NULL, NULL);
1443 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1444 &run, 0, len, 0, &alloc, NULL, NULL);
1448 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1450 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
1451 in->name_len, &bitmap, NULL, NULL);
1455 if (in->name == I30_NAME) {
1456 ni->vfs_inode.i_size = data_size;
1457 inode_set_bytes(&ni->vfs_inode, alloc_size);
1460 memcpy(&indx->alloc_run, &run, sizeof(run));
1467 mi_remove_attr(NULL, &ni->mi, alloc);
1470 run_deallocate(sbi, &run, false);
1477 * indx_add_allocate - Add clusters to index.
1479 static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1485 u64 bmp_size, bmp_size_v;
1486 struct ATTRIB *bmp, *alloc;
1487 struct mft_inode *mi;
1488 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1490 err = indx_find_free(indx, ni, &bit, &bmp);
1494 if (bit != MINUS_ONE_T) {
1498 bmp_size = le64_to_cpu(bmp->nres.data_size);
1499 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1501 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1504 bit = bmp_size << 3;
1507 data_size = (u64)(bit + 1) << indx->index_bits;
1510 /* Increase bitmap. */
1511 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1512 &indx->bitmap_run, bitmap_size(bit + 1),
1518 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1527 /* Increase allocation. */
1528 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1529 &indx->alloc_run, data_size, &data_size, true,
1537 if (in->name == I30_NAME)
1538 ni->vfs_inode.i_size = data_size;
1540 *vbn = bit << indx->idx2vbn_bits;
1545 /* Ops. No space? */
1546 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1547 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1554 * indx_insert_into_root - Attempt to insert an entry into the index root.
1556 * @undo - True if we undoing previous remove.
1557 * If necessary, it will twiddle the index b-tree.
1559 static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1560 const struct NTFS_DE *new_de,
1561 struct NTFS_DE *root_de, const void *ctx,
1562 struct ntfs_fnd *fnd, bool undo)
1565 struct NTFS_DE *e, *e0, *re;
1566 struct mft_inode *mi;
1567 struct ATTRIB *attr;
1568 struct INDEX_HDR *hdr;
1569 struct indx_node *n;
1571 __le64 *sub_vbn, t_vbn;
1573 u32 hdr_used, hdr_total, asize, to_move;
1574 u32 root_size, new_root_size;
1575 struct ntfs_sb_info *sbi;
1577 struct INDEX_ROOT *root, *a_root;
1579 /* Get the record this root placed in. */
1580 root = indx_get_root(indx, ni, &attr, &mi);
1586 * hdr_insert_de will succeed if there's
1587 * room the root for the new entry.
1591 new_de_size = le16_to_cpu(new_de->size);
1592 hdr_used = le32_to_cpu(hdr->used);
1593 hdr_total = le32_to_cpu(hdr->total);
1594 asize = le32_to_cpu(attr->size);
1595 root_size = le32_to_cpu(attr->res.data_size);
1597 ds_root = new_de_size + hdr_used - hdr_total;
1599 /* If 'undo' is set then reduce requirements. */
1600 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1601 mi_resize_attr(mi, attr, ds_root)) {
1602 hdr->total = cpu_to_le32(hdr_total + ds_root);
1603 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1611 /* Make a copy of root attribute to restore if error. */
1612 a_root = kmemdup(attr, asize, GFP_NOFS);
1617 * Copy all the non-end entries from
1618 * the index root to the new buffer.
1621 e0 = hdr_first_de(hdr);
1623 /* Calculate the size to copy. */
1624 for (e = e0;; e = hdr_next_de(hdr, e)) {
1632 to_move += le16_to_cpu(e->size);
1638 re = kmemdup(e0, to_move, GFP_NOFS);
1646 if (de_has_vcn(e)) {
1647 t_vbn = de_get_vbn_le(e);
1651 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1653 ds_root = new_root_size - root_size;
1655 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
1656 /* Make root external. */
1662 mi_resize_attr(mi, attr, ds_root);
1664 /* Fill first entry (vcn will be set later). */
1665 e = (struct NTFS_DE *)(root + 1);
1666 memset(e, 0, sizeof(struct NTFS_DE));
1667 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1668 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1671 hdr->used = hdr->total =
1672 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1674 fnd->root_de = hdr_first_de(hdr);
1677 /* Create alloc and bitmap attributes (if not). */
1678 err = run_is_empty(&indx->alloc_run) ?
1679 indx_create_allocate(indx, ni, &new_vbn) :
1680 indx_add_allocate(indx, ni, &new_vbn);
1682 /* Layout of record may be changed, so rescan root. */
1683 root = indx_get_root(indx, ni, &attr, &mi);
1686 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1693 if (mi_resize_attr(mi, attr, -ds_root)) {
1694 memcpy(attr, a_root, asize);
1697 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1702 e = (struct NTFS_DE *)(root + 1);
1703 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1706 /* Now we can create/format the new buffer and copy the entries into. */
1707 n = indx_new(indx, ni, new_vbn, sub_vbn);
1713 hdr = &n->index->ihdr;
1714 hdr_used = le32_to_cpu(hdr->used);
1715 hdr_total = le32_to_cpu(hdr->total);
1717 /* Copy root entries into new buffer. */
1718 hdr_insert_head(hdr, re, to_move);
1720 /* Update bitmap attribute. */
1721 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1723 /* Check if we can insert new entry new index buffer. */
1724 if (hdr_used + new_de_size > hdr_total) {
1726 * This occurs if MFT record is the same or bigger than index
1727 * buffer. Move all root new index and have no space to add
1728 * new entry classic case when MFT record is 1K and index
1729 * buffer 4K the problem should not occurs.
1732 indx_write(indx, ni, n, 0);
1736 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
1741 * Now root is a parent for new index buffer.
1742 * Insert NewEntry a new buffer.
1744 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1749 fnd_push(fnd, n, e);
1751 /* Just write updates index into disk. */
1752 indx_write(indx, ni, n, 0);
1766 * indx_insert_into_buffer
1768 * Attempt to insert an entry into an Index Allocation Buffer.
1769 * If necessary, it will split the buffer.
1772 indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1773 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1774 const void *ctx, int level, struct ntfs_fnd *fnd)
1777 const struct NTFS_DE *sp;
1778 struct NTFS_DE *e, *de_t, *up_e;
1779 struct indx_node *n2;
1780 struct indx_node *n1 = fnd->nodes[level];
1781 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1782 struct INDEX_HDR *hdr2;
1783 u32 to_copy, used, used1;
1785 __le64 t_vbn, *sub_vbn;
1787 void *hdr1_saved = NULL;
1789 /* Try the most easy case. */
1790 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1791 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1794 /* Just write updated index into disk. */
1795 indx_write(indx, ni, n1, 0);
1800 * No space to insert into buffer. Split it.
1802 * - Save split point ('cause index buffers will be changed)
1803 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1804 * - Remove all entries (sp including) from TargetBuffer
1805 * - Insert NewEntry into left or right buffer (depending on sp <=>
1807 * - Insert sp into parent buffer (or root)
1808 * - Make sp a parent for new buffer
1810 sp = hdr_find_split(hdr1);
1814 sp_size = le16_to_cpu(sp->size);
1815 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
1818 memcpy(up_e, sp, sp_size);
1820 used1 = le32_to_cpu(hdr1->used);
1821 hdr1_saved = kmemdup(hdr1, used1, GFP_NOFS);
1828 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1829 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1832 t_vbn = de_get_vbn_le(up_e);
1836 /* Allocate on disk a new index allocation buffer. */
1837 err = indx_add_allocate(indx, ni, &new_vbn);
1841 /* Allocate and format memory a new index buffer. */
1842 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1848 hdr2 = &n2->index->ihdr;
1850 /* Make sp a parent for new buffer. */
1851 de_set_vbn(up_e, new_vbn);
1853 /* Copy all the entries <= sp into the new buffer. */
1854 de_t = hdr_first_de(hdr1);
1855 to_copy = PtrOffset(de_t, sp);
1856 hdr_insert_head(hdr2, de_t, to_copy);
1858 /* Remove all entries (sp including) from hdr1. */
1859 used = used1 - to_copy - sp_size;
1860 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1861 hdr1->used = cpu_to_le32(used);
1864 * Insert new entry into left or right buffer
1865 * (depending on sp <=> new_de).
1868 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1869 up_e + 1, le16_to_cpu(up_e->key_size),
1875 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1877 indx_write(indx, ni, n1, 0);
1878 indx_write(indx, ni, n2, 0);
1883 * We've finished splitting everybody, so we are ready to
1884 * insert the promoted entry into the parent.
1887 /* Insert in root. */
1888 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
1891 * The target buffer's parent is another index buffer.
1892 * TODO: Remove recursion.
1894 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1900 * Undo critical operations.
1902 indx_mark_free(indx, ni, new_vbn >> indx->idx2vbn_bits);
1903 memcpy(hdr1, hdr1_saved, used1);
1904 indx_write(indx, ni, n1, 0);
1915 * indx_insert_entry - Insert new entry into index.
1917 * @undo - True if we undoing previous remove.
1919 int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1920 const struct NTFS_DE *new_de, const void *ctx,
1921 struct ntfs_fnd *fnd, bool undo)
1926 struct ntfs_fnd *fnd_a = NULL;
1927 struct INDEX_ROOT *root;
1938 root = indx_get_root(indx, ni, NULL, NULL);
1944 if (fnd_is_empty(fnd)) {
1946 * Find the spot the tree where we want to
1947 * insert the new entry.
1949 err = indx_find(indx, ni, root, new_de + 1,
1950 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1963 * The root is also a leaf, so we'll insert the
1964 * new entry into it.
1966 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
1970 * Found a leaf buffer, so we'll insert the new entry into it.
1972 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1973 fnd->level - 1, fnd);
1983 * indx_find_buffer - Locate a buffer from the tree.
1985 static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1986 struct ntfs_inode *ni,
1987 const struct INDEX_ROOT *root,
1988 __le64 vbn, struct indx_node *n)
1991 const struct NTFS_DE *e;
1992 struct indx_node *r;
1993 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1995 /* Step 1: Scan one level. */
1996 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1998 return ERR_PTR(-EINVAL);
2000 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
2007 /* Step2: Do recursion. */
2008 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
2010 if (de_has_vcn_ex(e)) {
2011 err = indx_read(indx, ni, de_get_vbn(e), &n);
2013 return ERR_PTR(err);
2015 r = indx_find_buffer(indx, ni, root, vbn, n);
2023 e = Add2Ptr(e, le16_to_cpu(e->size));
2030 * indx_shrink - Deallocate unused tail indexes.
2032 static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
2039 struct ATTR_LIST_ENTRY *le = NULL;
2040 const struct INDEX_NAMES *in = &s_index_names[indx->type];
2042 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
2050 const unsigned long *bm = resident_data(b);
2052 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
2057 pos = find_next_bit_le(bm, nbits, bit);
2061 size_t used = MINUS_ONE_T;
2063 nbits = le64_to_cpu(b->nres.data_size) * 8;
2068 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2072 if (used != MINUS_ONE_T)
2076 new_data = (u64)bit << indx->index_bits;
2078 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2079 &indx->alloc_run, new_data, &new_data, false, NULL);
2083 if (in->name == I30_NAME)
2084 ni->vfs_inode.i_size = new_data;
2086 bpb = bitmap_size(bit);
2087 if (bpb * 8 == nbits)
2090 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2091 &indx->bitmap_run, bpb, &bpb, false, NULL);
2096 static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2097 const struct NTFS_DE *e, bool trim)
2100 struct indx_node *n = NULL;
2101 struct INDEX_HDR *hdr;
2102 CLST vbn = de_get_vbn(e);
2105 err = indx_read(indx, ni, vbn, &n);
2109 hdr = &n->index->ihdr;
2110 /* First, recurse into the children, if any. */
2111 if (hdr_has_subnode(hdr)) {
2112 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2113 indx_free_children(indx, ni, e, false);
2121 i = vbn >> indx->idx2vbn_bits;
2123 * We've gotten rid of the children; add this buffer to the free list.
2125 indx_mark_free(indx, ni, i);
2131 * If there are no used indexes after current free index
2132 * then we can truncate allocation and bitmap.
2133 * Use bitmap to estimate the case.
2135 indx_shrink(indx, ni, i + 1);
2140 * indx_get_entry_to_replace
2142 * Find a replacement entry for a deleted entry.
2143 * Always returns a node entry:
2144 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
2146 static int indx_get_entry_to_replace(struct ntfs_index *indx,
2147 struct ntfs_inode *ni,
2148 const struct NTFS_DE *de_next,
2149 struct NTFS_DE **de_to_replace,
2150 struct ntfs_fnd *fnd)
2155 struct NTFS_DE *e, *te, *re;
2156 struct indx_node *n;
2157 struct INDEX_BUFFER *ib;
2159 *de_to_replace = NULL;
2161 /* Find first leaf entry down from de_next. */
2162 vbn = de_get_vbn(de_next);
2165 err = indx_read(indx, ni, vbn, &n);
2169 e = hdr_first_de(&n->index->ihdr);
2170 fnd_push(fnd, n, e);
2172 if (!de_is_last(e)) {
2174 * This buffer is non-empty, so its first entry
2175 * could be used as the replacement entry.
2177 level = fnd->level - 1;
2183 /* This buffer is a node. Continue to go down. */
2184 vbn = de_get_vbn(e);
2190 n = fnd->nodes[level];
2191 te = hdr_first_de(&n->index->ihdr);
2192 /* Copy the candidate entry into the replacement entry buffer. */
2193 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
2199 *de_to_replace = re;
2200 memcpy(re, te, le16_to_cpu(te->size));
2202 if (!de_has_vcn(re)) {
2204 * The replacement entry we found doesn't have a sub_vcn.
2205 * increase its size to hold one.
2207 le16_add_cpu(&re->size, sizeof(u64));
2208 re->flags |= NTFS_IE_HAS_SUBNODES;
2211 * The replacement entry we found was a node entry, which
2212 * means that all its child buffers are empty. Return them
2215 indx_free_children(indx, ni, te, true);
2219 * Expunge the replacement entry from its former location,
2220 * and then write that buffer.
2223 e = hdr_delete_de(&ib->ihdr, te);
2226 indx_write(indx, ni, n, 0);
2228 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2229 /* An empty leaf. */
2239 * indx_delete_entry - Delete an entry from the index.
2241 int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2242 const void *key, u32 key_len, const void *ctx)
2245 struct INDEX_ROOT *root;
2246 struct INDEX_HDR *hdr;
2247 struct ntfs_fnd *fnd, *fnd2;
2248 struct INDEX_BUFFER *ib;
2249 struct NTFS_DE *e, *re, *next, *prev, *me;
2250 struct indx_node *n, *n2d = NULL;
2253 struct ATTRIB *attr;
2254 struct mft_inode *mi;
2255 u32 e_size, root_size, new_root_size;
2257 const struct INDEX_NAMES *in;
2271 root = indx_get_root(indx, ni, &attr, &mi);
2277 /* Locate the entry to remove. */
2278 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2290 n = fnd->nodes[level - 1];
2291 e = fnd->de[level - 1];
2300 e_size = le16_to_cpu(e->size);
2302 if (!de_has_vcn_ex(e)) {
2303 /* The entry to delete is a leaf, so we can just rip it out. */
2304 hdr_delete_de(hdr, e);
2307 hdr->total = hdr->used;
2309 /* Shrink resident root attribute. */
2310 mi_resize_attr(mi, attr, 0 - e_size);
2314 indx_write(indx, ni, n, 0);
2317 * Check to see if removing that entry made
2320 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2322 fnd_push(fnd2, n, e);
2326 * The entry we wish to delete is a node buffer, so we
2327 * have to find a replacement for it.
2329 next = de_get_next(e);
2331 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2336 de_set_vbn_le(re, de_get_vbn_le(e));
2337 hdr_delete_de(hdr, e);
2339 err = level ? indx_insert_into_buffer(indx, ni, root,
2343 indx_insert_into_root(indx, ni, re, e,
2351 * There is no replacement for the current entry.
2352 * This means that the subtree rooted at its node
2353 * is empty, and can be deleted, which turn means
2354 * that the node can just inherit the deleted
2357 indx_free_children(indx, ni, next, true);
2359 de_set_vbn_le(next, de_get_vbn_le(e));
2360 hdr_delete_de(hdr, e);
2362 indx_write(indx, ni, n, 0);
2364 hdr->total = hdr->used;
2366 /* Shrink resident root attribute. */
2367 mi_resize_attr(mi, attr, 0 - e_size);
2372 /* Delete a branch of tree. */
2373 if (!fnd2 || !fnd2->level)
2376 /* Reinit root 'cause it can be changed. */
2377 root = indx_get_root(indx, ni, &attr, &mi);
2384 sub_vbn = fnd2->nodes[0]->index->vbn;
2388 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2390 /* Scan current level. */
2391 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2397 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2400 if (de_is_last(e)) {
2407 /* Do slow search from root. */
2408 struct indx_node *in;
2412 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2419 fnd_push(fnd, in, NULL);
2422 /* Merge fnd2 -> fnd. */
2423 for (level = 0; level < fnd2->level; level++) {
2424 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2425 fnd2->nodes[level] = NULL;
2430 for (level = fnd->level; level; level--) {
2431 struct indx_node *in = fnd->nodes[level - 1];
2434 if (ib_is_empty(ib)) {
2447 e = hdr_first_de(hdr);
2453 if (hdr != &root->ihdr || !de_is_last(e)) {
2455 while (!de_is_last(e)) {
2456 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2459 e = hdr_next_de(hdr, e);
2466 if (sub_vbn != de_get_vbn_le(e)) {
2468 * Didn't find the parent entry, although this buffer
2469 * is the parent trail. Something is corrupt.
2475 if (de_is_last(e)) {
2477 * Since we can't remove the end entry, we'll remove
2478 * its predecessor instead. This means we have to
2479 * transfer the predecessor's sub_vcn to the end entry.
2480 * Note: This index block is not empty, so the
2481 * predecessor must exist.
2488 if (de_has_vcn(prev)) {
2489 de_set_vbn_le(e, de_get_vbn_le(prev));
2490 } else if (de_has_vcn(e)) {
2491 le16_sub_cpu(&e->size, sizeof(u64));
2492 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2493 le32_sub_cpu(&hdr->used, sizeof(u64));
2499 * Copy the current entry into a temporary buffer (stripping
2500 * off its down-pointer, if any) and delete it from the current
2501 * buffer or root, as appropriate.
2503 e_size = le16_to_cpu(e->size);
2504 me = kmemdup(e, e_size, GFP_NOFS);
2510 if (de_has_vcn(me)) {
2511 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2512 le16_sub_cpu(&me->size, sizeof(u64));
2515 hdr_delete_de(hdr, e);
2517 if (hdr == &root->ihdr) {
2519 hdr->total = hdr->used;
2521 /* Shrink resident root attribute. */
2522 mi_resize_attr(mi, attr, 0 - e_size);
2524 indx_write(indx, ni, n2d, 0);
2528 /* Mark unused buffers as free. */
2530 for (; level < fnd->level; level++) {
2531 ib = fnd->nodes[level]->index;
2532 if (ib_is_empty(ib)) {
2533 size_t k = le64_to_cpu(ib->vbn) >>
2536 indx_mark_free(indx, ni, k);
2543 /*fnd->root_de = NULL;*/
2546 * Re-insert the entry into the tree.
2547 * Find the spot the tree where we want to insert the new entry.
2549 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
2555 indx_shrink(indx, ni, trim_bit);
2558 * This tree needs to be collapsed down to an empty root.
2559 * Recreate the index root as an empty leaf and free all
2560 * the bits the index allocation bitmap.
2565 in = &s_index_names[indx->type];
2567 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2568 &indx->alloc_run, 0, NULL, false, NULL);
2569 if (in->name == I30_NAME)
2570 ni->vfs_inode.i_size = 0;
2572 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2574 run_close(&indx->alloc_run);
2576 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2577 &indx->bitmap_run, 0, NULL, false, NULL);
2578 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2580 run_close(&indx->bitmap_run);
2582 root = indx_get_root(indx, ni, &attr, &mi);
2588 root_size = le32_to_cpu(attr->res.data_size);
2590 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2592 if (new_root_size != root_size &&
2593 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2598 /* Fill first entry. */
2599 e = (struct NTFS_DE *)(root + 1);
2603 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2604 e->flags = NTFS_IE_LAST; // 0x02
2610 hdr->used = hdr->total = cpu_to_le32(
2611 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2624 * Update duplicated information in directory entry
2625 * 'dup' - info from MFT record
2627 int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2628 const struct ATTR_FILE_NAME *fname,
2629 const struct NTFS_DUP_INFO *dup, int sync)
2632 struct NTFS_DE *e = NULL;
2633 struct ATTR_FILE_NAME *e_fname;
2634 struct ntfs_fnd *fnd;
2635 struct INDEX_ROOT *root;
2636 struct mft_inode *mi;
2637 struct ntfs_index *indx = &ni->dir;
2643 root = indx_get_root(indx, ni, NULL, &mi);
2649 /* Find entry in directory. */
2650 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2665 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2667 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
2669 * Nothing to update in index! Try to avoid this call.
2674 memcpy(&e_fname->dup, dup, sizeof(*dup));
2677 /* Directory entry in index. */
2678 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2680 /* Directory entry in directory MFT record. */
2683 err = mi_write(mi, 1);
2685 mark_inode_dirty(&ni->vfs_inode);