Merge tag 'gpio-fixes-for-v6.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-rpi.git] / fs / ntfs3 / fslog.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7
8 #include <linux/blkdev.h>
9 #include <linux/fs.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16
17 /*
18  * LOG FILE structs
19  */
20
21 // clang-format off
22
23 #define MaxLogFileSize     0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages  0x30
26
27 struct RESTART_HDR {
28         struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29         __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30         __le32 page_size;     // 0x14: Log page size used for this log file.
31         __le16 ra_off;        // 0x18:
32         __le16 minor_ver;     // 0x1A:
33         __le16 major_ver;     // 0x1C:
34         __le16 fixups[];
35 };
36
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
39
40 struct CLIENT_REC {
41         __le64 oldest_lsn;
42         __le64 restart_lsn; // 0x08:
43         __le16 prev_client; // 0x10:
44         __le16 next_client; // 0x12:
45         __le16 seq_num;     // 0x14:
46         u8 align[6];        // 0x16:
47         __le32 name_bytes;  // 0x1C: In bytes.
48         __le16 name[32];    // 0x20: Name of client.
49 };
50
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
52
53 /* Two copies of these will exist at the beginning of the log file */
54 struct RESTART_AREA {
55         __le64 current_lsn;    // 0x00: Current logical end of log file.
56         __le16 log_clients;    // 0x08: Maximum number of clients.
57         __le16 client_idx[2];  // 0x0A: Free/use index into the client record arrays.
58         __le16 flags;          // 0x0E: See RESTART_SINGLE_PAGE_IO.
59         __le32 seq_num_bits;   // 0x10: The number of bits in sequence number.
60         __le16 ra_len;         // 0x14:
61         __le16 client_off;     // 0x16:
62         __le64 l_size;         // 0x18: Usable log file size.
63         __le32 last_lsn_data_len; // 0x20:
64         __le16 rec_hdr_len;    // 0x24: Log page data offset.
65         __le16 data_off;       // 0x26: Log page data length.
66         __le32 open_log_count; // 0x28:
67         __le32 align[5];       // 0x2C:
68         struct CLIENT_REC clients[]; // 0x40:
69 };
70
71 struct LOG_REC_HDR {
72         __le16 redo_op;      // 0x00:  NTFS_LOG_OPERATION
73         __le16 undo_op;      // 0x02:  NTFS_LOG_OPERATION
74         __le16 redo_off;     // 0x04:  Offset to Redo record.
75         __le16 redo_len;     // 0x06:  Redo length.
76         __le16 undo_off;     // 0x08:  Offset to Undo record.
77         __le16 undo_len;     // 0x0A:  Undo length.
78         __le16 target_attr;  // 0x0C:
79         __le16 lcns_follow;  // 0x0E:
80         __le16 record_off;   // 0x10:
81         __le16 attr_off;     // 0x12:
82         __le16 cluster_off;  // 0x14:
83         __le16 reserved;     // 0x16:
84         __le64 target_vcn;   // 0x18:
85         __le64 page_lcns[];  // 0x20:
86 };
87
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
89
90 #define RESTART_ENTRY_ALLOCATED    0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
92
93 struct RESTART_TABLE {
94         __le16 size;       // 0x00: In bytes
95         __le16 used;       // 0x02: Entries
96         __le16 total;      // 0x04: Entries
97         __le16 res[3];     // 0x06:
98         __le32 free_goal;  // 0x0C:
99         __le32 first_free; // 0x10:
100         __le32 last_free;  // 0x14:
101
102 };
103
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
105
106 struct ATTR_NAME_ENTRY {
107         __le16 off; // Offset in the Open attribute Table.
108         __le16 name_bytes;
109         __le16 name[];
110 };
111
112 struct OPEN_ATTR_ENRTY {
113         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114         __le32 bytes_per_index; // 0x04:
115         enum ATTR_TYPE type;    // 0x08:
116         u8 is_dirty_pages;      // 0x0C:
117         u8 is_attr_name;        // 0x0B: Faked field to manage 'ptr'
118         u8 name_len;            // 0x0C: Faked field to manage 'ptr'
119         u8 res;
120         struct MFT_REF ref;     // 0x10: File Reference of file containing attribute
121         __le64 open_record_lsn; // 0x18:
122         void *ptr;              // 0x20:
123 };
124
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
128         __le32 ptr;             // 0x04:
129         struct MFT_REF ref;     // 0x08:
130         __le64 open_record_lsn; // 0x10:
131         u8 is_dirty_pages;      // 0x18:
132         u8 is_attr_name;        // 0x19:
133         u8 res1[2];
134         enum ATTR_TYPE type;    // 0x1C:
135         u8 name_len;            // 0x20: In wchar
136         u8 res2[3];
137         __le32 AttributeName;   // 0x24:
138         __le32 bytes_per_index; // 0x28:
139 };
140
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
144
145 /*
146  * One entry exists in the Dirty Pages Table for each page which is dirty at
147  * the time the Restart Area is written.
148  */
149 struct DIR_PAGE_ENTRY {
150         __le32 next;         // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151         __le32 target_attr;  // 0x04: Index into the Open attribute Table
152         __le32 transfer_len; // 0x08:
153         __le32 lcns_follow;  // 0x0C:
154         __le64 vcn;          // 0x10: Vcn of dirty page
155         __le64 oldest_lsn;   // 0x18:
156         __le64 page_lcns[];  // 0x20:
157 };
158
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
160
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163         __le32 next;            // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164         __le32 target_attr;     // 0x04: Index into the Open attribute Table
165         __le32 transfer_len;    // 0x08:
166         __le32 lcns_follow;     // 0x0C:
167         __le32 reserved;        // 0x10:
168         __le32 vcn_low;         // 0x14: Vcn of dirty page
169         __le32 vcn_hi;          // 0x18: Vcn of dirty page
170         __le32 oldest_lsn_low;  // 0x1C:
171         __le32 oldest_lsn_hi;   // 0x1C:
172         __le32 page_lcns_low;   // 0x24:
173         __le32 page_lcns_hi;    // 0x24:
174 };
175
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
178
179 enum transact_state {
180         TransactionUninitialized = 0,
181         TransactionActive,
182         TransactionPrepared,
183         TransactionCommitted
184 };
185
186 struct TRANSACTION_ENTRY {
187         __le32 next;          // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188         u8 transact_state;    // 0x04:
189         u8 reserved[3];       // 0x05:
190         __le64 first_lsn;     // 0x08:
191         __le64 prev_lsn;      // 0x10:
192         __le64 undo_next_lsn; // 0x18:
193         __le32 undo_records;  // 0x20: Number of undo log records pending abort
194         __le32 undo_len;      // 0x24: Total undo size
195 };
196
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
198
199 struct NTFS_RESTART {
200         __le32 major_ver;             // 0x00:
201         __le32 minor_ver;             // 0x04:
202         __le64 check_point_start;     // 0x08:
203         __le64 open_attr_table_lsn;   // 0x10:
204         __le64 attr_names_lsn;        // 0x18:
205         __le64 dirty_pages_table_lsn; // 0x20:
206         __le64 transact_table_lsn;    // 0x28:
207         __le32 open_attr_len;         // 0x30: In bytes
208         __le32 attr_names_len;        // 0x34: In bytes
209         __le32 dirty_pages_len;       // 0x38: In bytes
210         __le32 transact_table_len;    // 0x3C: In bytes
211 };
212
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
214
215 struct NEW_ATTRIBUTE_SIZES {
216         __le64 alloc_size;
217         __le64 valid_size;
218         __le64 data_size;
219         __le64 total_size;
220 };
221
222 struct BITMAP_RANGE {
223         __le32 bitmap_off;
224         __le32 bits;
225 };
226
227 struct LCN_RANGE {
228         __le64 lcn;
229         __le64 len;
230 };
231
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord  cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
235
236 /* This is used to uniquely identify a client for a particular log file. */
237 struct CLIENT_ID {
238         __le16 seq_num;
239         __le16 client_idx;
240 };
241
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244         __le64 this_lsn;                // 0x00:
245         __le64 client_prev_lsn;         // 0x08:
246         __le64 client_undo_next_lsn;    // 0x10:
247         __le32 client_data_len;         // 0x18:
248         struct CLIENT_ID client;        // 0x1C: Owner of this log record.
249         __le32 record_type;             // 0x20: LfsClientRecord or LfsClientRestart.
250         __le32 transact_id;             // 0x24:
251         __le16 flags;                   // 0x28: LOG_RECORD_MULTI_PAGE
252         u8 align[6];                    // 0x2A:
253 };
254
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
256
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
258
259 struct LFS_RECORD {
260         __le16 next_record_off; // 0x00: Offset of the free space in the page,
261         u8 align[6];            // 0x02:
262         __le64 last_end_lsn;    // 0x08: lsn for the last log record which ends on the page,
263 };
264
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
266
267 struct RECORD_PAGE_HDR {
268         struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269         __le32 rflags;                  // 0x10: See LOG_PAGE_LOG_RECORD_END
270         __le16 page_count;              // 0x14:
271         __le16 page_pos;                // 0x16:
272         struct LFS_RECORD record_hdr;   // 0x18:
273         __le16 fixups[10];              // 0x28:
274         __le32 file_off;                // 0x3c: Used when major version >= 2
275 };
276
277 // clang-format on
278
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
281
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
283 {
284         return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
285 }
286
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
288
289 /*
290  * END of NTFS LOG structures
291  */
292
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
295
296 enum NTFS_LOG_OPERATION {
297
298         Noop = 0x00,
299         CompensationLogRecord = 0x01,
300         InitializeFileRecordSegment = 0x02,
301         DeallocateFileRecordSegment = 0x03,
302         WriteEndOfFileRecordSegment = 0x04,
303         CreateAttribute = 0x05,
304         DeleteAttribute = 0x06,
305         UpdateResidentValue = 0x07,
306         UpdateNonresidentValue = 0x08,
307         UpdateMappingPairs = 0x09,
308         DeleteDirtyClusters = 0x0A,
309         SetNewAttributeSizes = 0x0B,
310         AddIndexEntryRoot = 0x0C,
311         DeleteIndexEntryRoot = 0x0D,
312         AddIndexEntryAllocation = 0x0E,
313         DeleteIndexEntryAllocation = 0x0F,
314         WriteEndOfIndexBuffer = 0x10,
315         SetIndexEntryVcnRoot = 0x11,
316         SetIndexEntryVcnAllocation = 0x12,
317         UpdateFileNameRoot = 0x13,
318         UpdateFileNameAllocation = 0x14,
319         SetBitsInNonresidentBitMap = 0x15,
320         ClearBitsInNonresidentBitMap = 0x16,
321         HotFix = 0x17,
322         EndTopLevelAction = 0x18,
323         PrepareTransaction = 0x19,
324         CommitTransaction = 0x1A,
325         ForgetTransaction = 0x1B,
326         OpenNonresidentAttribute = 0x1C,
327         OpenAttributeTableDump = 0x1D,
328         AttributeNamesDump = 0x1E,
329         DirtyPageTableDump = 0x1F,
330         TransactionTableDump = 0x20,
331         UpdateRecordDataRoot = 0x21,
332         UpdateRecordDataAllocation = 0x22,
333
334         UpdateRelativeDataInIndex =
335                 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336         UpdateRelativeDataInIndex2 = 0x24,
337         ZeroEndOfFileRecord = 0x25,
338 };
339
340 /*
341  * Array for log records which require a target attribute.
342  * A true indicates that the corresponding restart operation
343  * requires a target attribute.
344  */
345 static const u8 AttributeRequired[] = {
346         0xFC, 0xFB, 0xFF, 0x10, 0x06,
347 };
348
349 static inline bool is_target_required(u16 op)
350 {
351         bool ret = op <= UpdateRecordDataAllocation &&
352                    (AttributeRequired[op >> 3] >> (op & 7) & 1);
353         return ret;
354 }
355
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
357 {
358         switch (op) {
359         case Noop:
360         case DeleteDirtyClusters:
361         case HotFix:
362         case EndTopLevelAction:
363         case PrepareTransaction:
364         case CommitTransaction:
365         case ForgetTransaction:
366         case CompensationLogRecord:
367         case OpenNonresidentAttribute:
368         case OpenAttributeTableDump:
369         case AttributeNamesDump:
370         case DirtyPageTableDump:
371         case TransactionTableDump:
372                 return true;
373         default:
374                 return false;
375         }
376 }
377
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
379
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
382 {
383         return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384                sizeof(struct RESTART_TABLE);
385 }
386
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
389 {
390         u16 t16 = le16_to_cpu(lr->lcns_follow);
391
392         return struct_size(lr, page_lcns, max_t(u16, 1, t16));
393 }
394
395 struct lcb {
396         struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397         struct LOG_REC_HDR *log_rec;
398         u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399         struct CLIENT_ID client;
400         bool alloc; // If true the we should deallocate 'log_rec'.
401 };
402
403 static void lcb_put(struct lcb *lcb)
404 {
405         if (lcb->alloc)
406                 kfree(lcb->log_rec);
407         kfree(lcb->lrh);
408         kfree(lcb);
409 }
410
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413                                      __le16 next_client, u64 *oldest_lsn)
414 {
415         while (next_client != LFS_NO_CLIENT_LE) {
416                 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417                 u64 lsn = le64_to_cpu(cr->oldest_lsn);
418
419                 /* Ignore this block if it's oldest lsn is 0. */
420                 if (lsn && lsn < *oldest_lsn)
421                         *oldest_lsn = lsn;
422
423                 next_client = cr->next_client;
424         }
425 }
426
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428                                          const struct RESTART_HDR *rhdr)
429 {
430         u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431         u32 page_size = le32_to_cpu(rhdr->page_size);
432         u32 end_usa;
433         u16 ro;
434
435         if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436             sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
437                 return false;
438         }
439
440         /* Check that if the file offset isn't 0, it is the system page size. */
441         if (file_off && file_off != sys_page)
442                 return false;
443
444         /* Check support version 1.1+. */
445         if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
446                 return false;
447
448         if (le16_to_cpu(rhdr->major_ver) > 2)
449                 return false;
450
451         ro = le16_to_cpu(rhdr->ra_off);
452         if (!IS_ALIGNED(ro, 8) || ro > sys_page)
453                 return false;
454
455         end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456         end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
457
458         if (ro < end_usa)
459                 return false;
460
461         return true;
462 }
463
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
465 {
466         const struct RESTART_AREA *ra;
467         u16 cl, fl, ul;
468         u32 off, l_size, file_dat_bits, file_size_round;
469         u16 ro = le16_to_cpu(rhdr->ra_off);
470         u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
471
472         if (ro + offsetof(struct RESTART_AREA, l_size) >
473             SECTOR_SIZE - sizeof(short))
474                 return false;
475
476         ra = Add2Ptr(rhdr, ro);
477         cl = le16_to_cpu(ra->log_clients);
478
479         if (cl > 1)
480                 return false;
481
482         off = le16_to_cpu(ra->client_off);
483
484         if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
485                 return false;
486
487         off += cl * sizeof(struct CLIENT_REC);
488
489         if (off > sys_page)
490                 return false;
491
492         /*
493          * Check the restart length field and whether the entire
494          * restart area is contained that length.
495          */
496         if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497             off > le16_to_cpu(ra->ra_len)) {
498                 return false;
499         }
500
501         /*
502          * As a final check make sure that the use list and the free list
503          * are either empty or point to a valid client.
504          */
505         fl = le16_to_cpu(ra->client_idx[0]);
506         ul = le16_to_cpu(ra->client_idx[1]);
507         if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508             (ul != LFS_NO_CLIENT && ul >= cl))
509                 return false;
510
511         /* Make sure the sequence number bits match the log file size. */
512         l_size = le64_to_cpu(ra->l_size);
513
514         file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515         file_size_round = 1u << (file_dat_bits + 3);
516         if (file_size_round != l_size &&
517             (file_size_round < l_size || (file_size_round / 2) > l_size)) {
518                 return false;
519         }
520
521         /* The log page data offset and record header length must be quad-aligned. */
522         if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523             !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
524                 return false;
525
526         return true;
527 }
528
529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
530                                         bool usa_error)
531 {
532         u16 ro = le16_to_cpu(rhdr->ra_off);
533         const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534         u16 ra_len = le16_to_cpu(ra->ra_len);
535         const struct CLIENT_REC *ca;
536         u32 i;
537
538         if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
539                 return false;
540
541         /* Find the start of the client array. */
542         ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
543
544         /*
545          * Start with the free list.
546          * Check that all the clients are valid and that there isn't a cycle.
547          * Do the in-use list on the second pass.
548          */
549         for (i = 0; i < 2; i++) {
550                 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551                 bool first_client = true;
552                 u16 clients = le16_to_cpu(ra->log_clients);
553
554                 while (client_idx != LFS_NO_CLIENT) {
555                         const struct CLIENT_REC *cr;
556
557                         if (!clients ||
558                             client_idx >= le16_to_cpu(ra->log_clients))
559                                 return false;
560
561                         clients -= 1;
562                         cr = ca + client_idx;
563
564                         client_idx = le16_to_cpu(cr->next_client);
565
566                         if (first_client) {
567                                 first_client = false;
568                                 if (cr->prev_client != LFS_NO_CLIENT_LE)
569                                         return false;
570                         }
571                 }
572         }
573
574         return true;
575 }
576
577 /*
578  * remove_client
579  *
580  * Remove a client record from a client record list an restart area.
581  */
582 static inline void remove_client(struct CLIENT_REC *ca,
583                                  const struct CLIENT_REC *cr, __le16 *head)
584 {
585         if (cr->prev_client == LFS_NO_CLIENT_LE)
586                 *head = cr->next_client;
587         else
588                 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
589
590         if (cr->next_client != LFS_NO_CLIENT_LE)
591                 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
592 }
593
594 /*
595  * add_client - Add a client record to the start of a list.
596  */
597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
598 {
599         struct CLIENT_REC *cr = ca + index;
600
601         cr->prev_client = LFS_NO_CLIENT_LE;
602         cr->next_client = *head;
603
604         if (*head != LFS_NO_CLIENT_LE)
605                 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
606
607         *head = cpu_to_le16(index);
608 }
609
610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
611 {
612         __le32 *e;
613         u32 bprt;
614         u16 rsize = t ? le16_to_cpu(t->size) : 0;
615
616         if (!c) {
617                 if (!t || !t->total)
618                         return NULL;
619                 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
620         } else {
621                 e = Add2Ptr(c, rsize);
622         }
623
624         /* Loop until we hit the first one allocated, or the end of the list. */
625         for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626              e = Add2Ptr(e, rsize)) {
627                 if (*e == RESTART_ENTRY_ALLOCATED_LE)
628                         return e;
629         }
630         return NULL;
631 }
632
633 /*
634  * find_dp - Search for a @vcn in Dirty Page Table.
635  */
636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637                                              u32 target_attr, u64 vcn)
638 {
639         __le32 ta = cpu_to_le32(target_attr);
640         struct DIR_PAGE_ENTRY *dp = NULL;
641
642         while ((dp = enum_rstbl(dptbl, dp))) {
643                 u64 dp_vcn = le64_to_cpu(dp->vcn);
644
645                 if (dp->target_attr == ta && vcn >= dp_vcn &&
646                     vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
647                         return dp;
648                 }
649         }
650         return NULL;
651 }
652
653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
654 {
655         if (use_default)
656                 page_size = DefaultLogPageSize;
657
658         /* Round the file size down to a system page boundary. */
659         *l_size &= ~(page_size - 1);
660
661         /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
662         if (*l_size < (MinLogRecordPages + 2) * page_size)
663                 return 0;
664
665         return page_size;
666 }
667
668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669                           u32 bytes_per_attr_entry)
670 {
671         u16 t16;
672
673         if (bytes < sizeof(struct LOG_REC_HDR))
674                 return false;
675         if (!tr)
676                 return false;
677
678         if ((tr - sizeof(struct RESTART_TABLE)) %
679             sizeof(struct TRANSACTION_ENTRY))
680                 return false;
681
682         if (le16_to_cpu(lr->redo_off) & 7)
683                 return false;
684
685         if (le16_to_cpu(lr->undo_off) & 7)
686                 return false;
687
688         if (lr->target_attr)
689                 goto check_lcns;
690
691         if (is_target_required(le16_to_cpu(lr->redo_op)))
692                 return false;
693
694         if (is_target_required(le16_to_cpu(lr->undo_op)))
695                 return false;
696
697 check_lcns:
698         if (!lr->lcns_follow)
699                 goto check_length;
700
701         t16 = le16_to_cpu(lr->target_attr);
702         if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
703                 return false;
704
705 check_length:
706         if (bytes < lrh_length(lr))
707                 return false;
708
709         return true;
710 }
711
712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
713 {
714         u32 ts;
715         u32 i, off;
716         u16 rsize = le16_to_cpu(rt->size);
717         u16 ne = le16_to_cpu(rt->used);
718         u32 ff = le32_to_cpu(rt->first_free);
719         u32 lf = le32_to_cpu(rt->last_free);
720
721         ts = rsize * ne + sizeof(struct RESTART_TABLE);
722
723         if (!rsize || rsize > bytes ||
724             rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725             le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726             (ff && ff < sizeof(struct RESTART_TABLE)) ||
727             (lf && lf < sizeof(struct RESTART_TABLE))) {
728                 return false;
729         }
730
731         /*
732          * Verify each entry is either allocated or points
733          * to a valid offset the table.
734          */
735         for (i = 0; i < ne; i++) {
736                 off = le32_to_cpu(*(__le32 *)Add2Ptr(
737                         rt, i * rsize + sizeof(struct RESTART_TABLE)));
738
739                 if (off != RESTART_ENTRY_ALLOCATED && off &&
740                     (off < sizeof(struct RESTART_TABLE) ||
741                      ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
742                         return false;
743                 }
744         }
745
746         /*
747          * Walk through the list headed by the first entry to make
748          * sure none of the entries are currently being used.
749          */
750         for (off = ff; off;) {
751                 if (off == RESTART_ENTRY_ALLOCATED)
752                         return false;
753
754                 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
755         }
756
757         return true;
758 }
759
760 /*
761  * free_rsttbl_idx - Free a previously allocated index a Restart Table.
762  */
763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
764 {
765         __le32 *e;
766         u32 lf = le32_to_cpu(rt->last_free);
767         __le32 off_le = cpu_to_le32(off);
768
769         e = Add2Ptr(rt, off);
770
771         if (off < le32_to_cpu(rt->free_goal)) {
772                 *e = rt->first_free;
773                 rt->first_free = off_le;
774                 if (!lf)
775                         rt->last_free = off_le;
776         } else {
777                 if (lf)
778                         *(__le32 *)Add2Ptr(rt, lf) = off_le;
779                 else
780                         rt->first_free = off_le;
781
782                 rt->last_free = off_le;
783                 *e = 0;
784         }
785
786         le16_sub_cpu(&rt->total, 1);
787 }
788
789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
790 {
791         __le32 *e, *last_free;
792         u32 off;
793         u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794         u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
795         struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
796
797         if (!t)
798                 return NULL;
799
800         t->size = cpu_to_le16(esize);
801         t->used = cpu_to_le16(used);
802         t->free_goal = cpu_to_le32(~0u);
803         t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804         t->last_free = cpu_to_le32(lf);
805
806         e = (__le32 *)(t + 1);
807         last_free = Add2Ptr(t, lf);
808
809         for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810              e = Add2Ptr(e, esize), off += esize) {
811                 *e = cpu_to_le32(off);
812         }
813         return t;
814 }
815
816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817                                                   u32 add, u32 free_goal)
818 {
819         u16 esize = le16_to_cpu(tbl->size);
820         __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821         u32 used = le16_to_cpu(tbl->used);
822         struct RESTART_TABLE *rt;
823
824         rt = init_rsttbl(esize, used + add);
825         if (!rt)
826                 return NULL;
827
828         memcpy(rt + 1, tbl + 1, esize * used);
829
830         rt->free_goal = free_goal == ~0u ?
831                                 cpu_to_le32(~0u) :
832                                 cpu_to_le32(sizeof(struct RESTART_TABLE) +
833                                             free_goal * esize);
834
835         if (tbl->first_free) {
836                 rt->first_free = tbl->first_free;
837                 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
838         } else {
839                 rt->first_free = osize;
840         }
841
842         rt->total = tbl->total;
843
844         kfree(tbl);
845         return rt;
846 }
847
848 /*
849  * alloc_rsttbl_idx
850  *
851  * Allocate an index from within a previously initialized Restart Table.
852  */
853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
854 {
855         u32 off;
856         __le32 *e;
857         struct RESTART_TABLE *t = *tbl;
858
859         if (!t->first_free) {
860                 *tbl = t = extend_rsttbl(t, 16, ~0u);
861                 if (!t)
862                         return NULL;
863         }
864
865         off = le32_to_cpu(t->first_free);
866
867         /* Dequeue this entry and zero it. */
868         e = Add2Ptr(t, off);
869
870         t->first_free = *e;
871
872         memset(e, 0, le16_to_cpu(t->size));
873
874         *e = RESTART_ENTRY_ALLOCATED_LE;
875
876         /* If list is going empty, then we fix the last_free as well. */
877         if (!t->first_free)
878                 t->last_free = 0;
879
880         le16_add_cpu(&t->total, 1);
881
882         return Add2Ptr(t, off);
883 }
884
885 /*
886  * alloc_rsttbl_from_idx
887  *
888  * Allocate a specific index from within a previously initialized Restart Table.
889  */
890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
891 {
892         u32 off;
893         __le32 *e;
894         struct RESTART_TABLE *rt = *tbl;
895         u32 bytes = bytes_per_rt(rt);
896         u16 esize = le16_to_cpu(rt->size);
897
898         /* If the entry is not the table, we will have to extend the table. */
899         if (vbo >= bytes) {
900                 /*
901                  * Extend the size by computing the number of entries between
902                  * the existing size and the desired index and adding 1 to that.
903                  */
904                 u32 bytes2idx = vbo - bytes;
905
906                 /*
907                  * There should always be an integral number of entries
908                  * being added. Now extend the table.
909                  */
910                 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
911                 if (!rt)
912                         return NULL;
913         }
914
915         /* See if the entry is already allocated, and just return if it is. */
916         e = Add2Ptr(rt, vbo);
917
918         if (*e == RESTART_ENTRY_ALLOCATED_LE)
919                 return e;
920
921         /*
922          * Walk through the table, looking for the entry we're
923          * interested and the previous entry.
924          */
925         off = le32_to_cpu(rt->first_free);
926         e = Add2Ptr(rt, off);
927
928         if (off == vbo) {
929                 /* this is a match */
930                 rt->first_free = *e;
931                 goto skip_looking;
932         }
933
934         /*
935          * Need to walk through the list looking for the predecessor
936          * of our entry.
937          */
938         for (;;) {
939                 /* Remember the entry just found */
940                 u32 last_off = off;
941                 __le32 *last_e = e;
942
943                 /* Should never run of entries. */
944
945                 /* Lookup up the next entry the list. */
946                 off = le32_to_cpu(*last_e);
947                 e = Add2Ptr(rt, off);
948
949                 /* If this is our match we are done. */
950                 if (off == vbo) {
951                         *last_e = *e;
952
953                         /*
954                          * If this was the last entry, we update that
955                          * table as well.
956                          */
957                         if (le32_to_cpu(rt->last_free) == off)
958                                 rt->last_free = cpu_to_le32(last_off);
959                         break;
960                 }
961         }
962
963 skip_looking:
964         /* If the list is now empty, we fix the last_free as well. */
965         if (!rt->first_free)
966                 rt->last_free = 0;
967
968         /* Zero this entry. */
969         memset(e, 0, esize);
970         *e = RESTART_ENTRY_ALLOCATED_LE;
971
972         le16_add_cpu(&rt->total, 1);
973
974         return e;
975 }
976
977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
978
979 #define NTFSLOG_WRAPPED 0x00000001
980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
981 #define NTFSLOG_NO_LAST_LSN 0x00000004
982 #define NTFSLOG_REUSE_TAIL 0x00000010
983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
984
985 /* Helper struct to work with NTFS $LogFile. */
986 struct ntfs_log {
987         struct ntfs_inode *ni;
988
989         u32 l_size;
990         u32 sys_page_size;
991         u32 sys_page_mask;
992         u32 page_size;
993         u32 page_mask; // page_size - 1
994         u8 page_bits;
995         struct RECORD_PAGE_HDR *one_page_buf;
996
997         struct RESTART_TABLE *open_attr_tbl;
998         u32 transaction_id;
999         u32 clst_per_page;
1000
1001         u32 first_page;
1002         u32 next_page;
1003         u32 ra_off;
1004         u32 data_off;
1005         u32 restart_size;
1006         u32 data_size;
1007         u16 record_header_len;
1008         u64 seq_num;
1009         u32 seq_num_bits;
1010         u32 file_data_bits;
1011         u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1012
1013         struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014         u32 ra_size; /* The usable size of the restart area. */
1015
1016         /*
1017          * If true, then the in-memory restart area is to be written
1018          * to the first position on the disk.
1019          */
1020         bool init_ra;
1021         bool set_dirty; /* True if we need to set dirty flag. */
1022
1023         u64 oldest_lsn;
1024
1025         u32 oldest_lsn_off;
1026         u64 last_lsn;
1027
1028         u32 total_avail;
1029         u32 total_avail_pages;
1030         u32 total_undo_commit;
1031         u32 max_current_avail;
1032         u32 current_avail;
1033         u32 reserved;
1034
1035         short major_ver;
1036         short minor_ver;
1037
1038         u32 l_flags; /* See NTFSLOG_XXX */
1039         u32 current_openlog_count; /* On-disk value for open_log_count. */
1040
1041         struct CLIENT_ID client_id;
1042         u32 client_undo_commit;
1043 };
1044
1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1046 {
1047         u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1048
1049         return vbo;
1050 }
1051
1052 /* Compute the offset in the log file of the next log page. */
1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1054 {
1055         off = (off & ~log->sys_page_mask) + log->page_size;
1056         return off >= log->l_size ? log->first_page : off;
1057 }
1058
1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1060 {
1061         return (((u32)lsn) << 3) & log->page_mask;
1062 }
1063
1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1065 {
1066         return (off >> 3) + (Seq << log->file_data_bits);
1067 }
1068
1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1070 {
1071         return lsn >= log->oldest_lsn &&
1072                lsn <= le64_to_cpu(log->ra->current_lsn);
1073 }
1074
1075 static inline u32 hdr_file_off(struct ntfs_log *log,
1076                                struct RECORD_PAGE_HDR *hdr)
1077 {
1078         if (log->major_ver < 2)
1079                 return le64_to_cpu(hdr->rhdr.lsn);
1080
1081         return le32_to_cpu(hdr->file_off);
1082 }
1083
1084 static inline u64 base_lsn(struct ntfs_log *log,
1085                            const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1086 {
1087         u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088         u64 ret = (((h_lsn >> log->file_data_bits) +
1089                     (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090                    << log->file_data_bits) +
1091                   ((((is_log_record_end(hdr) &&
1092                       h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn)) ?
1093                              le16_to_cpu(hdr->record_hdr.next_record_off) :
1094                              log->page_size) +
1095                     lsn) >>
1096                    3);
1097
1098         return ret;
1099 }
1100
1101 static inline bool verify_client_lsn(struct ntfs_log *log,
1102                                      const struct CLIENT_REC *client, u64 lsn)
1103 {
1104         return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105                lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1106 }
1107
1108 struct restart_info {
1109         u64 last_lsn;
1110         struct RESTART_HDR *r_page;
1111         u32 vbo;
1112         bool chkdsk_was_run;
1113         bool valid_page;
1114         bool initialized;
1115         bool restart;
1116 };
1117
1118 static int read_log_page(struct ntfs_log *log, u32 vbo,
1119                          struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1120 {
1121         int err = 0;
1122         u32 page_idx = vbo >> log->page_bits;
1123         u32 page_off = vbo & log->page_mask;
1124         u32 bytes = log->page_size - page_off;
1125         void *to_free = NULL;
1126         u32 page_vbo = page_idx << log->page_bits;
1127         struct RECORD_PAGE_HDR *page_buf;
1128         struct ntfs_inode *ni = log->ni;
1129         bool bBAAD;
1130
1131         if (vbo >= log->l_size)
1132                 return -EINVAL;
1133
1134         if (!*buffer) {
1135                 to_free = kmalloc(log->page_size, GFP_NOFS);
1136                 if (!to_free)
1137                         return -ENOMEM;
1138                 *buffer = to_free;
1139         }
1140
1141         page_buf = page_off ? log->one_page_buf : *buffer;
1142
1143         err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144                                log->page_size, NULL);
1145         if (err)
1146                 goto out;
1147
1148         if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149                 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1150
1151         if (page_buf != *buffer)
1152                 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1153
1154         bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1155
1156         if (usa_error)
1157                 *usa_error = bBAAD;
1158         /* Check that the update sequence array for this page is valid */
1159         /* If we don't allow errors, raise an error status */
1160         else if (bBAAD)
1161                 err = -EINVAL;
1162
1163 out:
1164         if (err && to_free) {
1165                 kfree(to_free);
1166                 *buffer = NULL;
1167         }
1168
1169         return err;
1170 }
1171
1172 /*
1173  * log_read_rst
1174  *
1175  * It walks through 512 blocks of the file looking for a valid
1176  * restart page header. It will stop the first time we find a
1177  * valid page header.
1178  */
1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180                         struct restart_info *info)
1181 {
1182         u32 skip, vbo;
1183         struct RESTART_HDR *r_page = NULL;
1184
1185         /* Determine which restart area we are looking for. */
1186         if (first) {
1187                 vbo = 0;
1188                 skip = 512;
1189         } else {
1190                 vbo = 512;
1191                 skip = 0;
1192         }
1193
1194         /* Loop continuously until we succeed. */
1195         for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1196                 bool usa_error;
1197                 bool brst, bchk;
1198                 struct RESTART_AREA *ra;
1199
1200                 /* Read a page header at the current offset. */
1201                 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1202                                   &usa_error)) {
1203                         /* Ignore any errors. */
1204                         continue;
1205                 }
1206
1207                 /* Exit if the signature is a log record page. */
1208                 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1209                         info->initialized = true;
1210                         break;
1211                 }
1212
1213                 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1214                 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1215
1216                 if (!bchk && !brst) {
1217                         if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1218                                 /*
1219                                  * Remember if the signature does not
1220                                  * indicate uninitialized file.
1221                                  */
1222                                 info->initialized = true;
1223                         }
1224                         continue;
1225                 }
1226
1227                 ra = NULL;
1228                 info->valid_page = false;
1229                 info->initialized = true;
1230                 info->vbo = vbo;
1231
1232                 /* Let's check the restart area if this is a valid page. */
1233                 if (!is_rst_page_hdr_valid(vbo, r_page))
1234                         goto check_result;
1235                 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1236
1237                 if (!is_rst_area_valid(r_page))
1238                         goto check_result;
1239
1240                 /*
1241                  * We have a valid restart page header and restart area.
1242                  * If chkdsk was run or we have no clients then we have
1243                  * no more checking to do.
1244                  */
1245                 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1246                         info->valid_page = true;
1247                         goto check_result;
1248                 }
1249
1250                 if (is_client_area_valid(r_page, usa_error)) {
1251                         info->valid_page = true;
1252                         ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1253                 }
1254
1255 check_result:
1256                 /*
1257                  * If chkdsk was run then update the caller's
1258                  * values and return.
1259                  */
1260                 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1261                         info->chkdsk_was_run = true;
1262                         info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1263                         info->restart = true;
1264                         info->r_page = r_page;
1265                         return 0;
1266                 }
1267
1268                 /*
1269                  * If we have a valid page then copy the values
1270                  * we need from it.
1271                  */
1272                 if (info->valid_page) {
1273                         info->last_lsn = le64_to_cpu(ra->current_lsn);
1274                         info->restart = true;
1275                         info->r_page = r_page;
1276                         return 0;
1277                 }
1278         }
1279
1280         kfree(r_page);
1281
1282         return 0;
1283 }
1284
1285 /*
1286  * Ilog_init_pg_hdr - Init @log from restart page header.
1287  */
1288 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1289                             u32 page_size, u16 major_ver, u16 minor_ver)
1290 {
1291         log->sys_page_size = sys_page_size;
1292         log->sys_page_mask = sys_page_size - 1;
1293         log->page_size = page_size;
1294         log->page_mask = page_size - 1;
1295         log->page_bits = blksize_bits(page_size);
1296
1297         log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1298         if (!log->clst_per_page)
1299                 log->clst_per_page = 1;
1300
1301         log->first_page = major_ver >= 2 ?
1302                                   0x22 * page_size :
1303                                   ((sys_page_size << 1) + (page_size << 1));
1304         log->major_ver = major_ver;
1305         log->minor_ver = minor_ver;
1306 }
1307
1308 /*
1309  * log_create - Init @log in cases when we don't have a restart area to use.
1310  */
1311 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1312                        u32 open_log_count, bool wrapped, bool use_multi_page)
1313 {
1314         log->l_size = l_size;
1315         /* All file offsets must be quadword aligned. */
1316         log->file_data_bits = blksize_bits(l_size) - 3;
1317         log->seq_num_mask = (8 << log->file_data_bits) - 1;
1318         log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1319         log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1320         log->next_page = log->first_page;
1321         log->oldest_lsn = log->seq_num << log->file_data_bits;
1322         log->oldest_lsn_off = 0;
1323         log->last_lsn = log->oldest_lsn;
1324
1325         log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1326
1327         /* Set the correct flags for the I/O and indicate if we have wrapped. */
1328         if (wrapped)
1329                 log->l_flags |= NTFSLOG_WRAPPED;
1330
1331         if (use_multi_page)
1332                 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1333
1334         /* Compute the log page values. */
1335         log->data_off = ALIGN(
1336                 offsetof(struct RECORD_PAGE_HDR, fixups) +
1337                         sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1338                 8);
1339         log->data_size = log->page_size - log->data_off;
1340         log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1341
1342         /* Remember the different page sizes for reservation. */
1343         log->reserved = log->data_size - log->record_header_len;
1344
1345         /* Compute the restart page values. */
1346         log->ra_off = ALIGN(
1347                 offsetof(struct RESTART_HDR, fixups) +
1348                         sizeof(short) *
1349                                 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1350                 8);
1351         log->restart_size = log->sys_page_size - log->ra_off;
1352         log->ra_size = struct_size(log->ra, clients, 1);
1353         log->current_openlog_count = open_log_count;
1354
1355         /*
1356          * The total available log file space is the number of
1357          * log file pages times the space available on each page.
1358          */
1359         log->total_avail_pages = log->l_size - log->first_page;
1360         log->total_avail = log->total_avail_pages >> log->page_bits;
1361
1362         /*
1363          * We assume that we can't use the end of the page less than
1364          * the file record size.
1365          * Then we won't need to reserve more than the caller asks for.
1366          */
1367         log->max_current_avail = log->total_avail * log->reserved;
1368         log->total_avail = log->total_avail * log->data_size;
1369         log->current_avail = log->max_current_avail;
1370 }
1371
1372 /*
1373  * log_create_ra - Fill a restart area from the values stored in @log.
1374  */
1375 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1376 {
1377         struct CLIENT_REC *cr;
1378         struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1379
1380         if (!ra)
1381                 return NULL;
1382
1383         ra->current_lsn = cpu_to_le64(log->last_lsn);
1384         ra->log_clients = cpu_to_le16(1);
1385         ra->client_idx[1] = LFS_NO_CLIENT_LE;
1386         if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1387                 ra->flags = RESTART_SINGLE_PAGE_IO;
1388         ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1389         ra->ra_len = cpu_to_le16(log->ra_size);
1390         ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1391         ra->l_size = cpu_to_le64(log->l_size);
1392         ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1393         ra->data_off = cpu_to_le16(log->data_off);
1394         ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1395
1396         cr = ra->clients;
1397
1398         cr->prev_client = LFS_NO_CLIENT_LE;
1399         cr->next_client = LFS_NO_CLIENT_LE;
1400
1401         return ra;
1402 }
1403
1404 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1405 {
1406         u32 base_vbo = lsn << 3;
1407         u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1408         u32 page_off = base_vbo & log->page_mask;
1409         u32 tail = log->page_size - page_off;
1410
1411         page_off -= 1;
1412
1413         /* Add the length of the header. */
1414         data_len += log->record_header_len;
1415
1416         /*
1417          * If this lsn is contained this log page we are done.
1418          * Otherwise we need to walk through several log pages.
1419          */
1420         if (data_len > tail) {
1421                 data_len -= tail;
1422                 tail = log->data_size;
1423                 page_off = log->data_off - 1;
1424
1425                 for (;;) {
1426                         final_log_off = next_page_off(log, final_log_off);
1427
1428                         /*
1429                          * We are done if the remaining bytes
1430                          * fit on this page.
1431                          */
1432                         if (data_len <= tail)
1433                                 break;
1434                         data_len -= tail;
1435                 }
1436         }
1437
1438         /*
1439          * We add the remaining bytes to our starting position on this page
1440          * and then add that value to the file offset of this log page.
1441          */
1442         return final_log_off + data_len + page_off;
1443 }
1444
1445 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1446                         u64 *lsn)
1447 {
1448         int err;
1449         u64 this_lsn = le64_to_cpu(rh->this_lsn);
1450         u32 vbo = lsn_to_vbo(log, this_lsn);
1451         u32 end =
1452                 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1453         u32 hdr_off = end & ~log->sys_page_mask;
1454         u64 seq = this_lsn >> log->file_data_bits;
1455         struct RECORD_PAGE_HDR *page = NULL;
1456
1457         /* Remember if we wrapped. */
1458         if (end <= vbo)
1459                 seq += 1;
1460
1461         /* Log page header for this page. */
1462         err = read_log_page(log, hdr_off, &page, NULL);
1463         if (err)
1464                 return err;
1465
1466         /*
1467          * If the lsn we were given was not the last lsn on this page,
1468          * then the starting offset for the next lsn is on a quad word
1469          * boundary following the last file offset for the current lsn.
1470          * Otherwise the file offset is the start of the data on the next page.
1471          */
1472         if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1473                 /* If we wrapped, we need to increment the sequence number. */
1474                 hdr_off = next_page_off(log, hdr_off);
1475                 if (hdr_off == log->first_page)
1476                         seq += 1;
1477
1478                 vbo = hdr_off + log->data_off;
1479         } else {
1480                 vbo = ALIGN(end, 8);
1481         }
1482
1483         /* Compute the lsn based on the file offset and the sequence count. */
1484         *lsn = vbo_to_lsn(log, vbo, seq);
1485
1486         /*
1487          * If this lsn is within the legal range for the file, we return true.
1488          * Otherwise false indicates that there are no more lsn's.
1489          */
1490         if (!is_lsn_in_file(log, *lsn))
1491                 *lsn = 0;
1492
1493         kfree(page);
1494
1495         return 0;
1496 }
1497
1498 /*
1499  * current_log_avail - Calculate the number of bytes available for log records.
1500  */
1501 static u32 current_log_avail(struct ntfs_log *log)
1502 {
1503         u32 oldest_off, next_free_off, free_bytes;
1504
1505         if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1506                 /* The entire file is available. */
1507                 return log->max_current_avail;
1508         }
1509
1510         /*
1511          * If there is a last lsn the restart area then we know that we will
1512          * have to compute the free range.
1513          * If there is no oldest lsn then start at the first page of the file.
1514          */
1515         oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN) ?
1516                              log->first_page :
1517                              (log->oldest_lsn_off & ~log->sys_page_mask);
1518
1519         /*
1520          * We will use the next log page offset to compute the next free page.
1521          * If we are going to reuse this page go to the next page.
1522          * If we are at the first page then use the end of the file.
1523          */
1524         next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL) ?
1525                                 log->next_page + log->page_size :
1526                         log->next_page == log->first_page ? log->l_size :
1527                                                             log->next_page;
1528
1529         /* If the two offsets are the same then there is no available space. */
1530         if (oldest_off == next_free_off)
1531                 return 0;
1532         /*
1533          * If the free offset follows the oldest offset then subtract
1534          * this range from the total available pages.
1535          */
1536         free_bytes =
1537                 oldest_off < next_free_off ?
1538                         log->total_avail_pages - (next_free_off - oldest_off) :
1539                         oldest_off - next_free_off;
1540
1541         free_bytes >>= log->page_bits;
1542         return free_bytes * log->reserved;
1543 }
1544
1545 static bool check_subseq_log_page(struct ntfs_log *log,
1546                                   const struct RECORD_PAGE_HDR *rp, u32 vbo,
1547                                   u64 seq)
1548 {
1549         u64 lsn_seq;
1550         const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1551         u64 lsn = le64_to_cpu(rhdr->lsn);
1552
1553         if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1554                 return false;
1555
1556         /*
1557          * If the last lsn on the page occurs was written after the page
1558          * that caused the original error then we have a fatal error.
1559          */
1560         lsn_seq = lsn >> log->file_data_bits;
1561
1562         /*
1563          * If the sequence number for the lsn the page is equal or greater
1564          * than lsn we expect, then this is a subsequent write.
1565          */
1566         return lsn_seq >= seq ||
1567                (lsn_seq == seq - 1 && log->first_page == vbo &&
1568                 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1569 }
1570
1571 /*
1572  * last_log_lsn
1573  *
1574  * Walks through the log pages for a file, searching for the
1575  * last log page written to the file.
1576  */
1577 static int last_log_lsn(struct ntfs_log *log)
1578 {
1579         int err;
1580         bool usa_error = false;
1581         bool replace_page = false;
1582         bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1583         bool wrapped_file, wrapped;
1584
1585         u32 page_cnt = 1, page_pos = 1;
1586         u32 page_off = 0, page_off1 = 0, saved_off = 0;
1587         u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1588         u32 first_file_off = 0, second_file_off = 0;
1589         u32 part_io_count = 0;
1590         u32 tails = 0;
1591         u32 this_off, curpage_off, nextpage_off, remain_pages;
1592
1593         u64 expected_seq, seq_base = 0, lsn_base = 0;
1594         u64 best_lsn, best_lsn1, best_lsn2;
1595         u64 lsn_cur, lsn1, lsn2;
1596         u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1597
1598         u16 cur_pos, best_page_pos;
1599
1600         struct RECORD_PAGE_HDR *page = NULL;
1601         struct RECORD_PAGE_HDR *tst_page = NULL;
1602         struct RECORD_PAGE_HDR *first_tail = NULL;
1603         struct RECORD_PAGE_HDR *second_tail = NULL;
1604         struct RECORD_PAGE_HDR *tail_page = NULL;
1605         struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1606         struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1607         struct RECORD_PAGE_HDR *page_bufs = NULL;
1608         struct RECORD_PAGE_HDR *best_page;
1609
1610         if (log->major_ver >= 2) {
1611                 final_off = 0x02 * log->page_size;
1612                 second_off = 0x12 * log->page_size;
1613
1614                 // 0x10 == 0x12 - 0x2
1615                 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1616                 if (!page_bufs)
1617                         return -ENOMEM;
1618         } else {
1619                 second_off = log->first_page - log->page_size;
1620                 final_off = second_off - log->page_size;
1621         }
1622
1623 next_tail:
1624         /* Read second tail page (at pos 3/0x12000). */
1625         if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1626             usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1627                 kfree(second_tail);
1628                 second_tail = NULL;
1629                 second_file_off = 0;
1630                 lsn2 = 0;
1631         } else {
1632                 second_file_off = hdr_file_off(log, second_tail);
1633                 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1634         }
1635
1636         /* Read first tail page (at pos 2/0x2000). */
1637         if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1638             usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1639                 kfree(first_tail);
1640                 first_tail = NULL;
1641                 first_file_off = 0;
1642                 lsn1 = 0;
1643         } else {
1644                 first_file_off = hdr_file_off(log, first_tail);
1645                 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1646         }
1647
1648         if (log->major_ver < 2) {
1649                 int best_page;
1650
1651                 first_tail_prev = first_tail;
1652                 final_off_prev = first_file_off;
1653                 second_tail_prev = second_tail;
1654                 second_off_prev = second_file_off;
1655                 tails = 1;
1656
1657                 if (!first_tail && !second_tail)
1658                         goto tail_read;
1659
1660                 if (first_tail && second_tail)
1661                         best_page = lsn1 < lsn2 ? 1 : 0;
1662                 else if (first_tail)
1663                         best_page = 0;
1664                 else
1665                         best_page = 1;
1666
1667                 page_off = best_page ? second_file_off : first_file_off;
1668                 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1669                 goto tail_read;
1670         }
1671
1672         best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1673         best_lsn2 = second_tail ? base_lsn(log, second_tail, second_file_off) :
1674                                   0;
1675
1676         if (first_tail && second_tail) {
1677                 if (best_lsn1 > best_lsn2) {
1678                         best_lsn = best_lsn1;
1679                         best_page = first_tail;
1680                         this_off = first_file_off;
1681                 } else {
1682                         best_lsn = best_lsn2;
1683                         best_page = second_tail;
1684                         this_off = second_file_off;
1685                 }
1686         } else if (first_tail) {
1687                 best_lsn = best_lsn1;
1688                 best_page = first_tail;
1689                 this_off = first_file_off;
1690         } else if (second_tail) {
1691                 best_lsn = best_lsn2;
1692                 best_page = second_tail;
1693                 this_off = second_file_off;
1694         } else {
1695                 goto tail_read;
1696         }
1697
1698         best_page_pos = le16_to_cpu(best_page->page_pos);
1699
1700         if (!tails) {
1701                 if (best_page_pos == page_pos) {
1702                         seq_base = best_lsn >> log->file_data_bits;
1703                         saved_off = page_off = le32_to_cpu(best_page->file_off);
1704                         lsn_base = best_lsn;
1705
1706                         memmove(page_bufs, best_page, log->page_size);
1707
1708                         page_cnt = le16_to_cpu(best_page->page_count);
1709                         if (page_cnt > 1)
1710                                 page_pos += 1;
1711
1712                         tails = 1;
1713                 }
1714         } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1715                    saved_off + log->page_size == this_off &&
1716                    lsn_base < best_lsn &&
1717                    (page_pos != page_cnt || best_page_pos == page_pos ||
1718                     best_page_pos == 1) &&
1719                    (page_pos >= page_cnt || best_page_pos == page_pos)) {
1720                 u16 bppc = le16_to_cpu(best_page->page_count);
1721
1722                 saved_off += log->page_size;
1723                 lsn_base = best_lsn;
1724
1725                 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1726                         log->page_size);
1727
1728                 tails += 1;
1729
1730                 if (best_page_pos != bppc) {
1731                         page_cnt = bppc;
1732                         page_pos = best_page_pos;
1733
1734                         if (page_cnt > 1)
1735                                 page_pos += 1;
1736                 } else {
1737                         page_pos = page_cnt = 1;
1738                 }
1739         } else {
1740                 kfree(first_tail);
1741                 kfree(second_tail);
1742                 goto tail_read;
1743         }
1744
1745         kfree(first_tail_prev);
1746         first_tail_prev = first_tail;
1747         final_off_prev = first_file_off;
1748         first_tail = NULL;
1749
1750         kfree(second_tail_prev);
1751         second_tail_prev = second_tail;
1752         second_off_prev = second_file_off;
1753         second_tail = NULL;
1754
1755         final_off += log->page_size;
1756         second_off += log->page_size;
1757
1758         if (tails < 0x10)
1759                 goto next_tail;
1760 tail_read:
1761         first_tail = first_tail_prev;
1762         final_off = final_off_prev;
1763
1764         second_tail = second_tail_prev;
1765         second_off = second_off_prev;
1766
1767         page_cnt = page_pos = 1;
1768
1769         curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off) :
1770                                                  log->next_page;
1771
1772         wrapped_file =
1773                 curpage_off == log->first_page &&
1774                 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1775
1776         expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1777
1778         nextpage_off = curpage_off;
1779
1780 next_page:
1781         tail_page = NULL;
1782         /* Read the next log page. */
1783         err = read_log_page(log, curpage_off, &page, &usa_error);
1784
1785         /* Compute the next log page offset the file. */
1786         nextpage_off = next_page_off(log, curpage_off);
1787         wrapped = nextpage_off == log->first_page;
1788
1789         if (tails > 1) {
1790                 struct RECORD_PAGE_HDR *cur_page =
1791                         Add2Ptr(page_bufs, curpage_off - page_off);
1792
1793                 if (curpage_off == saved_off) {
1794                         tail_page = cur_page;
1795                         goto use_tail_page;
1796                 }
1797
1798                 if (page_off > curpage_off || curpage_off >= saved_off)
1799                         goto use_tail_page;
1800
1801                 if (page_off1)
1802                         goto use_cur_page;
1803
1804                 if (!err && !usa_error &&
1805                     page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1806                     cur_page->rhdr.lsn == page->rhdr.lsn &&
1807                     cur_page->record_hdr.next_record_off ==
1808                             page->record_hdr.next_record_off &&
1809                     ((page_pos == page_cnt &&
1810                       le16_to_cpu(page->page_pos) == 1) ||
1811                      (page_pos != page_cnt &&
1812                       le16_to_cpu(page->page_pos) == page_pos + 1 &&
1813                       le16_to_cpu(page->page_count) == page_cnt))) {
1814                         cur_page = NULL;
1815                         goto use_tail_page;
1816                 }
1817
1818                 page_off1 = page_off;
1819
1820 use_cur_page:
1821
1822                 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1823
1824                 if (last_ok_lsn !=
1825                             le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1826                     ((lsn_cur >> log->file_data_bits) +
1827                      ((curpage_off <
1828                        (lsn_to_vbo(log, lsn_cur) & ~log->page_mask)) ?
1829                               1 :
1830                               0)) != expected_seq) {
1831                         goto check_tail;
1832                 }
1833
1834                 if (!is_log_record_end(cur_page)) {
1835                         tail_page = NULL;
1836                         last_ok_lsn = lsn_cur;
1837                         goto next_page_1;
1838                 }
1839
1840                 log->seq_num = expected_seq;
1841                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1842                 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1843                 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1844
1845                 if (log->record_header_len <=
1846                     log->page_size -
1847                             le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1848                         log->l_flags |= NTFSLOG_REUSE_TAIL;
1849                         log->next_page = curpage_off;
1850                 } else {
1851                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1852                         log->next_page = nextpage_off;
1853                 }
1854
1855                 if (wrapped_file)
1856                         log->l_flags |= NTFSLOG_WRAPPED;
1857
1858                 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1859                 goto next_page_1;
1860         }
1861
1862         /*
1863          * If we are at the expected first page of a transfer check to see
1864          * if either tail copy is at this offset.
1865          * If this page is the last page of a transfer, check if we wrote
1866          * a subsequent tail copy.
1867          */
1868         if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1869                 /*
1870                  * Check if the offset matches either the first or second
1871                  * tail copy. It is possible it will match both.
1872                  */
1873                 if (curpage_off == final_off)
1874                         tail_page = first_tail;
1875
1876                 /*
1877                  * If we already matched on the first page then
1878                  * check the ending lsn's.
1879                  */
1880                 if (curpage_off == second_off) {
1881                         if (!tail_page ||
1882                             (second_tail &&
1883                              le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1884                                      le64_to_cpu(first_tail->record_hdr
1885                                                          .last_end_lsn))) {
1886                                 tail_page = second_tail;
1887                         }
1888                 }
1889         }
1890
1891 use_tail_page:
1892         if (tail_page) {
1893                 /* We have a candidate for a tail copy. */
1894                 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1895
1896                 if (last_ok_lsn < lsn_cur) {
1897                         /*
1898                          * If the sequence number is not expected,
1899                          * then don't use the tail copy.
1900                          */
1901                         if (expected_seq != (lsn_cur >> log->file_data_bits))
1902                                 tail_page = NULL;
1903                 } else if (last_ok_lsn > lsn_cur) {
1904                         /*
1905                          * If the last lsn is greater than the one on
1906                          * this page then forget this tail.
1907                          */
1908                         tail_page = NULL;
1909                 }
1910         }
1911
1912         /*
1913          *If we have an error on the current page,
1914          * we will break of this loop.
1915          */
1916         if (err || usa_error)
1917                 goto check_tail;
1918
1919         /*
1920          * Done if the last lsn on this page doesn't match the previous known
1921          * last lsn or the sequence number is not expected.
1922          */
1923         lsn_cur = le64_to_cpu(page->rhdr.lsn);
1924         if (last_ok_lsn != lsn_cur &&
1925             expected_seq != (lsn_cur >> log->file_data_bits)) {
1926                 goto check_tail;
1927         }
1928
1929         /*
1930          * Check that the page position and page count values are correct.
1931          * If this is the first page of a transfer the position must be 1
1932          * and the count will be unknown.
1933          */
1934         if (page_cnt == page_pos) {
1935                 if (page->page_pos != cpu_to_le16(1) &&
1936                     (!reuse_page || page->page_pos != page->page_count)) {
1937                         /*
1938                          * If the current page is the first page we are
1939                          * looking at and we are reusing this page then
1940                          * it can be either the first or last page of a
1941                          * transfer. Otherwise it can only be the first.
1942                          */
1943                         goto check_tail;
1944                 }
1945         } else if (le16_to_cpu(page->page_count) != page_cnt ||
1946                    le16_to_cpu(page->page_pos) != page_pos + 1) {
1947                 /*
1948                  * The page position better be 1 more than the last page
1949                  * position and the page count better match.
1950                  */
1951                 goto check_tail;
1952         }
1953
1954         /*
1955          * We have a valid page the file and may have a valid page
1956          * the tail copy area.
1957          * If the tail page was written after the page the file then
1958          * break of the loop.
1959          */
1960         if (tail_page &&
1961             le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1962                 /* Remember if we will replace the page. */
1963                 replace_page = true;
1964                 goto check_tail;
1965         }
1966
1967         tail_page = NULL;
1968
1969         if (is_log_record_end(page)) {
1970                 /*
1971                  * Since we have read this page we know the sequence number
1972                  * is the same as our expected value.
1973                  */
1974                 log->seq_num = expected_seq;
1975                 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
1976                 log->ra->current_lsn = page->record_hdr.last_end_lsn;
1977                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1978
1979                 /*
1980                  * If there is room on this page for another header then
1981                  * remember we want to reuse the page.
1982                  */
1983                 if (log->record_header_len <=
1984                     log->page_size -
1985                             le16_to_cpu(page->record_hdr.next_record_off)) {
1986                         log->l_flags |= NTFSLOG_REUSE_TAIL;
1987                         log->next_page = curpage_off;
1988                 } else {
1989                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1990                         log->next_page = nextpage_off;
1991                 }
1992
1993                 /* Remember if we wrapped the log file. */
1994                 if (wrapped_file)
1995                         log->l_flags |= NTFSLOG_WRAPPED;
1996         }
1997
1998         /*
1999          * Remember the last page count and position.
2000          * Also remember the last known lsn.
2001          */
2002         page_cnt = le16_to_cpu(page->page_count);
2003         page_pos = le16_to_cpu(page->page_pos);
2004         last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2005
2006 next_page_1:
2007
2008         if (wrapped) {
2009                 expected_seq += 1;
2010                 wrapped_file = 1;
2011         }
2012
2013         curpage_off = nextpage_off;
2014         kfree(page);
2015         page = NULL;
2016         reuse_page = 0;
2017         goto next_page;
2018
2019 check_tail:
2020         if (tail_page) {
2021                 log->seq_num = expected_seq;
2022                 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2023                 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2024                 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2025
2026                 if (log->page_size -
2027                             le16_to_cpu(
2028                                     tail_page->record_hdr.next_record_off) >=
2029                     log->record_header_len) {
2030                         log->l_flags |= NTFSLOG_REUSE_TAIL;
2031                         log->next_page = curpage_off;
2032                 } else {
2033                         log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2034                         log->next_page = nextpage_off;
2035                 }
2036
2037                 if (wrapped)
2038                         log->l_flags |= NTFSLOG_WRAPPED;
2039         }
2040
2041         /* Remember that the partial IO will start at the next page. */
2042         second_off = nextpage_off;
2043
2044         /*
2045          * If the next page is the first page of the file then update
2046          * the sequence number for log records which begon the next page.
2047          */
2048         if (wrapped)
2049                 expected_seq += 1;
2050
2051         /*
2052          * If we have a tail copy or are performing single page I/O we can
2053          * immediately look at the next page.
2054          */
2055         if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2056                 page_cnt = 2;
2057                 page_pos = 1;
2058                 goto check_valid;
2059         }
2060
2061         if (page_pos != page_cnt)
2062                 goto check_valid;
2063         /*
2064          * If the next page causes us to wrap to the beginning of the log
2065          * file then we know which page to check next.
2066          */
2067         if (wrapped) {
2068                 page_cnt = 2;
2069                 page_pos = 1;
2070                 goto check_valid;
2071         }
2072
2073         cur_pos = 2;
2074
2075 next_test_page:
2076         kfree(tst_page);
2077         tst_page = NULL;
2078
2079         /* Walk through the file, reading log pages. */
2080         err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2081
2082         /*
2083          * If we get a USA error then assume that we correctly found
2084          * the end of the original transfer.
2085          */
2086         if (usa_error)
2087                 goto file_is_valid;
2088
2089         /*
2090          * If we were able to read the page, we examine it to see if it
2091          * is the same or different Io block.
2092          */
2093         if (err)
2094                 goto next_test_page_1;
2095
2096         if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2097             check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2098                 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2099                 page_pos = le16_to_cpu(tst_page->page_pos);
2100                 goto check_valid;
2101         } else {
2102                 goto file_is_valid;
2103         }
2104
2105 next_test_page_1:
2106
2107         nextpage_off = next_page_off(log, curpage_off);
2108         wrapped = nextpage_off == log->first_page;
2109
2110         if (wrapped) {
2111                 expected_seq += 1;
2112                 page_cnt = 2;
2113                 page_pos = 1;
2114         }
2115
2116         cur_pos += 1;
2117         part_io_count += 1;
2118         if (!wrapped)
2119                 goto next_test_page;
2120
2121 check_valid:
2122         /* Skip over the remaining pages this transfer. */
2123         remain_pages = page_cnt - page_pos - 1;
2124         part_io_count += remain_pages;
2125
2126         while (remain_pages--) {
2127                 nextpage_off = next_page_off(log, curpage_off);
2128                 wrapped = nextpage_off == log->first_page;
2129
2130                 if (wrapped)
2131                         expected_seq += 1;
2132         }
2133
2134         /* Call our routine to check this log page. */
2135         kfree(tst_page);
2136         tst_page = NULL;
2137
2138         err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2139         if (!err && !usa_error &&
2140             check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2141                 err = -EINVAL;
2142                 goto out;
2143         }
2144
2145 file_is_valid:
2146
2147         /* We have a valid file. */
2148         if (page_off1 || tail_page) {
2149                 struct RECORD_PAGE_HDR *tmp_page;
2150
2151                 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2152                         err = -EROFS;
2153                         goto out;
2154                 }
2155
2156                 if (page_off1) {
2157                         tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2158                         tails -= (page_off1 - page_off) / log->page_size;
2159                         if (!tail_page)
2160                                 tails -= 1;
2161                 } else {
2162                         tmp_page = tail_page;
2163                         tails = 1;
2164                 }
2165
2166                 while (tails--) {
2167                         u64 off = hdr_file_off(log, tmp_page);
2168
2169                         if (!page) {
2170                                 page = kmalloc(log->page_size, GFP_NOFS);
2171                                 if (!page) {
2172                                         err = -ENOMEM;
2173                                         goto out;
2174                                 }
2175                         }
2176
2177                         /*
2178                          * Correct page and copy the data from this page
2179                          * into it and flush it to disk.
2180                          */
2181                         memcpy(page, tmp_page, log->page_size);
2182
2183                         /* Fill last flushed lsn value flush the page. */
2184                         if (log->major_ver < 2)
2185                                 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2186                         else
2187                                 page->file_off = 0;
2188
2189                         page->page_pos = page->page_count = cpu_to_le16(1);
2190
2191                         ntfs_fix_pre_write(&page->rhdr, log->page_size);
2192
2193                         err = ntfs_sb_write_run(log->ni->mi.sbi,
2194                                                 &log->ni->file.run, off, page,
2195                                                 log->page_size, 0);
2196
2197                         if (err)
2198                                 goto out;
2199
2200                         if (part_io_count && second_off == off) {
2201                                 second_off += log->page_size;
2202                                 part_io_count -= 1;
2203                         }
2204
2205                         tmp_page = Add2Ptr(tmp_page, log->page_size);
2206                 }
2207         }
2208
2209         if (part_io_count) {
2210                 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2211                         err = -EROFS;
2212                         goto out;
2213                 }
2214         }
2215
2216 out:
2217         kfree(second_tail);
2218         kfree(first_tail);
2219         kfree(page);
2220         kfree(tst_page);
2221         kfree(page_bufs);
2222
2223         return err;
2224 }
2225
2226 /*
2227  * read_log_rec_buf - Copy a log record from the file to a buffer.
2228  *
2229  * The log record may span several log pages and may even wrap the file.
2230  */
2231 static int read_log_rec_buf(struct ntfs_log *log,
2232                             const struct LFS_RECORD_HDR *rh, void *buffer)
2233 {
2234         int err;
2235         struct RECORD_PAGE_HDR *ph = NULL;
2236         u64 lsn = le64_to_cpu(rh->this_lsn);
2237         u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2238         u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2239         u32 data_len = le32_to_cpu(rh->client_data_len);
2240
2241         /*
2242          * While there are more bytes to transfer,
2243          * we continue to attempt to perform the read.
2244          */
2245         for (;;) {
2246                 bool usa_error;
2247                 u32 tail = log->page_size - off;
2248
2249                 if (tail >= data_len)
2250                         tail = data_len;
2251
2252                 data_len -= tail;
2253
2254                 err = read_log_page(log, vbo, &ph, &usa_error);
2255                 if (err)
2256                         goto out;
2257
2258                 /*
2259                  * The last lsn on this page better be greater or equal
2260                  * to the lsn we are copying.
2261                  */
2262                 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2263                         err = -EINVAL;
2264                         goto out;
2265                 }
2266
2267                 memcpy(buffer, Add2Ptr(ph, off), tail);
2268
2269                 /* If there are no more bytes to transfer, we exit the loop. */
2270                 if (!data_len) {
2271                         if (!is_log_record_end(ph) ||
2272                             lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2273                                 err = -EINVAL;
2274                                 goto out;
2275                         }
2276                         break;
2277                 }
2278
2279                 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2280                     lsn > le64_to_cpu(ph->rhdr.lsn)) {
2281                         err = -EINVAL;
2282                         goto out;
2283                 }
2284
2285                 vbo = next_page_off(log, vbo);
2286                 off = log->data_off;
2287
2288                 /*
2289                  * Adjust our pointer the user's buffer to transfer
2290                  * the next block to.
2291                  */
2292                 buffer = Add2Ptr(buffer, tail);
2293         }
2294
2295 out:
2296         kfree(ph);
2297         return err;
2298 }
2299
2300 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2301                          u64 *lsn)
2302 {
2303         int err;
2304         struct LFS_RECORD_HDR *rh = NULL;
2305         const struct CLIENT_REC *cr =
2306                 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2307         u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2308         u32 len;
2309         struct NTFS_RESTART *rst;
2310
2311         *lsn = 0;
2312         *rst_ = NULL;
2313
2314         /* If the client doesn't have a restart area, go ahead and exit now. */
2315         if (!lsnc)
2316                 return 0;
2317
2318         err = read_log_page(log, lsn_to_vbo(log, lsnc),
2319                             (struct RECORD_PAGE_HDR **)&rh, NULL);
2320         if (err)
2321                 return err;
2322
2323         rst = NULL;
2324         lsnr = le64_to_cpu(rh->this_lsn);
2325
2326         if (lsnc != lsnr) {
2327                 /* If the lsn values don't match, then the disk is corrupt. */
2328                 err = -EINVAL;
2329                 goto out;
2330         }
2331
2332         *lsn = lsnr;
2333         len = le32_to_cpu(rh->client_data_len);
2334
2335         if (!len) {
2336                 err = 0;
2337                 goto out;
2338         }
2339
2340         if (len < sizeof(struct NTFS_RESTART)) {
2341                 err = -EINVAL;
2342                 goto out;
2343         }
2344
2345         rst = kmalloc(len, GFP_NOFS);
2346         if (!rst) {
2347                 err = -ENOMEM;
2348                 goto out;
2349         }
2350
2351         /* Copy the data into the 'rst' buffer. */
2352         err = read_log_rec_buf(log, rh, rst);
2353         if (err)
2354                 goto out;
2355
2356         *rst_ = rst;
2357         rst = NULL;
2358
2359 out:
2360         kfree(rh);
2361         kfree(rst);
2362
2363         return err;
2364 }
2365
2366 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2367 {
2368         int err;
2369         struct LFS_RECORD_HDR *rh = lcb->lrh;
2370         u32 rec_len, len;
2371
2372         /* Read the record header for this lsn. */
2373         if (!rh) {
2374                 err = read_log_page(log, lsn_to_vbo(log, lsn),
2375                                     (struct RECORD_PAGE_HDR **)&rh, NULL);
2376
2377                 lcb->lrh = rh;
2378                 if (err)
2379                         return err;
2380         }
2381
2382         /*
2383          * If the lsn the log record doesn't match the desired
2384          * lsn then the disk is corrupt.
2385          */
2386         if (lsn != le64_to_cpu(rh->this_lsn))
2387                 return -EINVAL;
2388
2389         len = le32_to_cpu(rh->client_data_len);
2390
2391         /*
2392          * Check that the length field isn't greater than the total
2393          * available space the log file.
2394          */
2395         rec_len = len + log->record_header_len;
2396         if (rec_len >= log->total_avail)
2397                 return -EINVAL;
2398
2399         /*
2400          * If the entire log record is on this log page,
2401          * put a pointer to the log record the context block.
2402          */
2403         if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2404                 void *lr = kmalloc(len, GFP_NOFS);
2405
2406                 if (!lr)
2407                         return -ENOMEM;
2408
2409                 lcb->log_rec = lr;
2410                 lcb->alloc = true;
2411
2412                 /* Copy the data into the buffer returned. */
2413                 err = read_log_rec_buf(log, rh, lr);
2414                 if (err)
2415                         return err;
2416         } else {
2417                 /* If beyond the end of the current page -> an error. */
2418                 u32 page_off = lsn_to_page_off(log, lsn);
2419
2420                 if (page_off + len + log->record_header_len > log->page_size)
2421                         return -EINVAL;
2422
2423                 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2424                 lcb->alloc = false;
2425         }
2426
2427         return 0;
2428 }
2429
2430 /*
2431  * read_log_rec_lcb - Init the query operation.
2432  */
2433 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2434                             struct lcb **lcb_)
2435 {
2436         int err;
2437         const struct CLIENT_REC *cr;
2438         struct lcb *lcb;
2439
2440         switch (ctx_mode) {
2441         case lcb_ctx_undo_next:
2442         case lcb_ctx_prev:
2443         case lcb_ctx_next:
2444                 break;
2445         default:
2446                 return -EINVAL;
2447         }
2448
2449         /* Check that the given lsn is the legal range for this client. */
2450         cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2451
2452         if (!verify_client_lsn(log, cr, lsn))
2453                 return -EINVAL;
2454
2455         lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2456         if (!lcb)
2457                 return -ENOMEM;
2458         lcb->client = log->client_id;
2459         lcb->ctx_mode = ctx_mode;
2460
2461         /* Find the log record indicated by the given lsn. */
2462         err = find_log_rec(log, lsn, lcb);
2463         if (err)
2464                 goto out;
2465
2466         *lcb_ = lcb;
2467         return 0;
2468
2469 out:
2470         lcb_put(lcb);
2471         *lcb_ = NULL;
2472         return err;
2473 }
2474
2475 /*
2476  * find_client_next_lsn
2477  *
2478  * Attempt to find the next lsn to return to a client based on the context mode.
2479  */
2480 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2481 {
2482         int err;
2483         u64 next_lsn;
2484         struct LFS_RECORD_HDR *hdr;
2485
2486         hdr = lcb->lrh;
2487         *lsn = 0;
2488
2489         if (lcb_ctx_next != lcb->ctx_mode)
2490                 goto check_undo_next;
2491
2492         /* Loop as long as another lsn can be found. */
2493         for (;;) {
2494                 u64 current_lsn;
2495
2496                 err = next_log_lsn(log, hdr, &current_lsn);
2497                 if (err)
2498                         goto out;
2499
2500                 if (!current_lsn)
2501                         break;
2502
2503                 if (hdr != lcb->lrh)
2504                         kfree(hdr);
2505
2506                 hdr = NULL;
2507                 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2508                                     (struct RECORD_PAGE_HDR **)&hdr, NULL);
2509                 if (err)
2510                         goto out;
2511
2512                 if (memcmp(&hdr->client, &lcb->client,
2513                            sizeof(struct CLIENT_ID))) {
2514                         /*err = -EINVAL; */
2515                 } else if (LfsClientRecord == hdr->record_type) {
2516                         kfree(lcb->lrh);
2517                         lcb->lrh = hdr;
2518                         *lsn = current_lsn;
2519                         return 0;
2520                 }
2521         }
2522
2523 out:
2524         if (hdr != lcb->lrh)
2525                 kfree(hdr);
2526         return err;
2527
2528 check_undo_next:
2529         if (lcb_ctx_undo_next == lcb->ctx_mode)
2530                 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2531         else if (lcb_ctx_prev == lcb->ctx_mode)
2532                 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2533         else
2534                 return 0;
2535
2536         if (!next_lsn)
2537                 return 0;
2538
2539         if (!verify_client_lsn(
2540                     log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2541                     next_lsn))
2542                 return 0;
2543
2544         hdr = NULL;
2545         err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2546                             (struct RECORD_PAGE_HDR **)&hdr, NULL);
2547         if (err)
2548                 return err;
2549         kfree(lcb->lrh);
2550         lcb->lrh = hdr;
2551
2552         *lsn = next_lsn;
2553
2554         return 0;
2555 }
2556
2557 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2558 {
2559         int err;
2560
2561         err = find_client_next_lsn(log, lcb, lsn);
2562         if (err)
2563                 return err;
2564
2565         if (!*lsn)
2566                 return 0;
2567
2568         if (lcb->alloc)
2569                 kfree(lcb->log_rec);
2570
2571         lcb->log_rec = NULL;
2572         lcb->alloc = false;
2573         kfree(lcb->lrh);
2574         lcb->lrh = NULL;
2575
2576         return find_log_rec(log, *lsn, lcb);
2577 }
2578
2579 bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2580 {
2581         __le16 mask;
2582         u32 min_de, de_off, used, total;
2583         const struct NTFS_DE *e;
2584
2585         if (hdr_has_subnode(hdr)) {
2586                 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2587                 mask = NTFS_IE_HAS_SUBNODES;
2588         } else {
2589                 min_de = sizeof(struct NTFS_DE);
2590                 mask = 0;
2591         }
2592
2593         de_off = le32_to_cpu(hdr->de_off);
2594         used = le32_to_cpu(hdr->used);
2595         total = le32_to_cpu(hdr->total);
2596
2597         if (de_off > bytes - min_de || used > bytes || total > bytes ||
2598             de_off + min_de > used || used > total) {
2599                 return false;
2600         }
2601
2602         e = Add2Ptr(hdr, de_off);
2603         for (;;) {
2604                 u16 esize = le16_to_cpu(e->size);
2605                 struct NTFS_DE *next = Add2Ptr(e, esize);
2606
2607                 if (esize < min_de || PtrOffset(hdr, next) > used ||
2608                     (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2609                         return false;
2610                 }
2611
2612                 if (de_is_last(e))
2613                         break;
2614
2615                 e = next;
2616         }
2617
2618         return true;
2619 }
2620
2621 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2622 {
2623         u16 fo;
2624         const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2625
2626         if (r->sign != NTFS_INDX_SIGNATURE)
2627                 return false;
2628
2629         fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2630
2631         if (le16_to_cpu(r->fix_off) > fo)
2632                 return false;
2633
2634         if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2635                 return false;
2636
2637         return check_index_header(&ib->ihdr,
2638                                   bytes - offsetof(struct INDEX_BUFFER, ihdr));
2639 }
2640
2641 static inline bool check_index_root(const struct ATTRIB *attr,
2642                                     struct ntfs_sb_info *sbi)
2643 {
2644         bool ret;
2645         const struct INDEX_ROOT *root = resident_data(attr);
2646         u8 index_bits = le32_to_cpu(root->index_block_size) >=
2647                                         sbi->cluster_size ?
2648                                 sbi->cluster_bits :
2649                                 SECTOR_SHIFT;
2650         u8 block_clst = root->index_block_clst;
2651
2652         if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2653             (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2654             (root->type == ATTR_NAME &&
2655              root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2656             (le32_to_cpu(root->index_block_size) !=
2657              (block_clst << index_bits)) ||
2658             (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2659              block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2660              block_clst != 0x40 && block_clst != 0x80)) {
2661                 return false;
2662         }
2663
2664         ret = check_index_header(&root->ihdr,
2665                                  le32_to_cpu(attr->res.data_size) -
2666                                          offsetof(struct INDEX_ROOT, ihdr));
2667         return ret;
2668 }
2669
2670 static inline bool check_attr(const struct MFT_REC *rec,
2671                               const struct ATTRIB *attr,
2672                               struct ntfs_sb_info *sbi)
2673 {
2674         u32 asize = le32_to_cpu(attr->size);
2675         u32 rsize = 0;
2676         u64 dsize, svcn, evcn;
2677         u16 run_off;
2678
2679         /* Check the fixed part of the attribute record header. */
2680         if (asize >= sbi->record_size ||
2681             asize + PtrOffset(rec, attr) >= sbi->record_size ||
2682             (attr->name_len &&
2683              le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2684                      asize)) {
2685                 return false;
2686         }
2687
2688         /* Check the attribute fields. */
2689         switch (attr->non_res) {
2690         case 0:
2691                 rsize = le32_to_cpu(attr->res.data_size);
2692                 if (rsize >= asize ||
2693                     le16_to_cpu(attr->res.data_off) + rsize > asize) {
2694                         return false;
2695                 }
2696                 break;
2697
2698         case 1:
2699                 dsize = le64_to_cpu(attr->nres.data_size);
2700                 svcn = le64_to_cpu(attr->nres.svcn);
2701                 evcn = le64_to_cpu(attr->nres.evcn);
2702                 run_off = le16_to_cpu(attr->nres.run_off);
2703
2704                 if (svcn > evcn + 1 || run_off >= asize ||
2705                     le64_to_cpu(attr->nres.valid_size) > dsize ||
2706                     dsize > le64_to_cpu(attr->nres.alloc_size)) {
2707                         return false;
2708                 }
2709
2710                 if (run_off > asize)
2711                         return false;
2712
2713                 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2714                                Add2Ptr(attr, run_off), asize - run_off) < 0) {
2715                         return false;
2716                 }
2717
2718                 return true;
2719
2720         default:
2721                 return false;
2722         }
2723
2724         switch (attr->type) {
2725         case ATTR_NAME:
2726                 if (fname_full_size(Add2Ptr(
2727                             attr, le16_to_cpu(attr->res.data_off))) > asize) {
2728                         return false;
2729                 }
2730                 break;
2731
2732         case ATTR_ROOT:
2733                 return check_index_root(attr, sbi);
2734
2735         case ATTR_STD:
2736                 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2737                     rsize != sizeof(struct ATTR_STD_INFO)) {
2738                         return false;
2739                 }
2740                 break;
2741
2742         case ATTR_LIST:
2743         case ATTR_ID:
2744         case ATTR_SECURE:
2745         case ATTR_LABEL:
2746         case ATTR_VOL_INFO:
2747         case ATTR_DATA:
2748         case ATTR_ALLOC:
2749         case ATTR_BITMAP:
2750         case ATTR_REPARSE:
2751         case ATTR_EA_INFO:
2752         case ATTR_EA:
2753         case ATTR_PROPERTYSET:
2754         case ATTR_LOGGED_UTILITY_STREAM:
2755                 break;
2756
2757         default:
2758                 return false;
2759         }
2760
2761         return true;
2762 }
2763
2764 static inline bool check_file_record(const struct MFT_REC *rec,
2765                                      const struct MFT_REC *rec2,
2766                                      struct ntfs_sb_info *sbi)
2767 {
2768         const struct ATTRIB *attr;
2769         u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2770         u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2771         u16 ao = le16_to_cpu(rec->attr_off);
2772         u32 rs = sbi->record_size;
2773
2774         /* Check the file record header for consistency. */
2775         if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2776             fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2777             (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2778             ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2779             le32_to_cpu(rec->total) != rs) {
2780                 return false;
2781         }
2782
2783         /* Loop to check all of the attributes. */
2784         for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2785              attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2786                 if (check_attr(rec, attr, sbi))
2787                         continue;
2788                 return false;
2789         }
2790
2791         return true;
2792 }
2793
2794 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2795                             const u64 *rlsn)
2796 {
2797         u64 lsn;
2798
2799         if (!rlsn)
2800                 return true;
2801
2802         lsn = le64_to_cpu(hdr->lsn);
2803
2804         if (hdr->sign == NTFS_HOLE_SIGNATURE)
2805                 return false;
2806
2807         if (*rlsn > lsn)
2808                 return true;
2809
2810         return false;
2811 }
2812
2813 static inline bool check_if_attr(const struct MFT_REC *rec,
2814                                  const struct LOG_REC_HDR *lrh)
2815 {
2816         u16 ro = le16_to_cpu(lrh->record_off);
2817         u16 o = le16_to_cpu(rec->attr_off);
2818         const struct ATTRIB *attr = Add2Ptr(rec, o);
2819
2820         while (o < ro) {
2821                 u32 asize;
2822
2823                 if (attr->type == ATTR_END)
2824                         break;
2825
2826                 asize = le32_to_cpu(attr->size);
2827                 if (!asize)
2828                         break;
2829
2830                 o += asize;
2831                 attr = Add2Ptr(attr, asize);
2832         }
2833
2834         return o == ro;
2835 }
2836
2837 static inline bool check_if_index_root(const struct MFT_REC *rec,
2838                                        const struct LOG_REC_HDR *lrh)
2839 {
2840         u16 ro = le16_to_cpu(lrh->record_off);
2841         u16 o = le16_to_cpu(rec->attr_off);
2842         const struct ATTRIB *attr = Add2Ptr(rec, o);
2843
2844         while (o < ro) {
2845                 u32 asize;
2846
2847                 if (attr->type == ATTR_END)
2848                         break;
2849
2850                 asize = le32_to_cpu(attr->size);
2851                 if (!asize)
2852                         break;
2853
2854                 o += asize;
2855                 attr = Add2Ptr(attr, asize);
2856         }
2857
2858         return o == ro && attr->type == ATTR_ROOT;
2859 }
2860
2861 static inline bool check_if_root_index(const struct ATTRIB *attr,
2862                                        const struct INDEX_HDR *hdr,
2863                                        const struct LOG_REC_HDR *lrh)
2864 {
2865         u16 ao = le16_to_cpu(lrh->attr_off);
2866         u32 de_off = le32_to_cpu(hdr->de_off);
2867         u32 o = PtrOffset(attr, hdr) + de_off;
2868         const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2869         u32 asize = le32_to_cpu(attr->size);
2870
2871         while (o < ao) {
2872                 u16 esize;
2873
2874                 if (o >= asize)
2875                         break;
2876
2877                 esize = le16_to_cpu(e->size);
2878                 if (!esize)
2879                         break;
2880
2881                 o += esize;
2882                 e = Add2Ptr(e, esize);
2883         }
2884
2885         return o == ao;
2886 }
2887
2888 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2889                                         u32 attr_off)
2890 {
2891         u32 de_off = le32_to_cpu(hdr->de_off);
2892         u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2893         const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2894         u32 used = le32_to_cpu(hdr->used);
2895
2896         while (o < attr_off) {
2897                 u16 esize;
2898
2899                 if (de_off >= used)
2900                         break;
2901
2902                 esize = le16_to_cpu(e->size);
2903                 if (!esize)
2904                         break;
2905
2906                 o += esize;
2907                 de_off += esize;
2908                 e = Add2Ptr(e, esize);
2909         }
2910
2911         return o == attr_off;
2912 }
2913
2914 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2915                                     u32 nsize)
2916 {
2917         u32 asize = le32_to_cpu(attr->size);
2918         int dsize = nsize - asize;
2919         u8 *next = Add2Ptr(attr, asize);
2920         u32 used = le32_to_cpu(rec->used);
2921
2922         memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2923
2924         rec->used = cpu_to_le32(used + dsize);
2925         attr->size = cpu_to_le32(nsize);
2926 }
2927
2928 struct OpenAttr {
2929         struct ATTRIB *attr;
2930         struct runs_tree *run1;
2931         struct runs_tree run0;
2932         struct ntfs_inode *ni;
2933         // CLST rno;
2934 };
2935
2936 /*
2937  * cmp_type_and_name
2938  *
2939  * Return: 0 if 'attr' has the same type and name.
2940  */
2941 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2942                                     const struct ATTRIB *a2)
2943 {
2944         return a1->type != a2->type || a1->name_len != a2->name_len ||
2945                (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2946                                        a1->name_len * sizeof(short)));
2947 }
2948
2949 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2950                                          const struct ATTRIB *attr, CLST rno)
2951 {
2952         struct OPEN_ATTR_ENRTY *oe = NULL;
2953
2954         while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2955                 struct OpenAttr *op_attr;
2956
2957                 if (ino_get(&oe->ref) != rno)
2958                         continue;
2959
2960                 op_attr = (struct OpenAttr *)oe->ptr;
2961                 if (!cmp_type_and_name(op_attr->attr, attr))
2962                         return op_attr;
2963         }
2964         return NULL;
2965 }
2966
2967 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2968                                              enum ATTR_TYPE type, u64 size,
2969                                              const u16 *name, size_t name_len,
2970                                              __le16 flags)
2971 {
2972         struct ATTRIB *attr;
2973         u32 name_size = ALIGN(name_len * sizeof(short), 8);
2974         bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2975         u32 asize = name_size +
2976                     (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2977
2978         attr = kzalloc(asize, GFP_NOFS);
2979         if (!attr)
2980                 return NULL;
2981
2982         attr->type = type;
2983         attr->size = cpu_to_le32(asize);
2984         attr->flags = flags;
2985         attr->non_res = 1;
2986         attr->name_len = name_len;
2987
2988         attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
2989         attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
2990         attr->nres.data_size = cpu_to_le64(size);
2991         attr->nres.valid_size = attr->nres.data_size;
2992         if (is_ext) {
2993                 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
2994                 if (is_attr_compressed(attr))
2995                         attr->nres.c_unit = COMPRESSION_UNIT;
2996
2997                 attr->nres.run_off =
2998                         cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
2999                 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3000                        name_len * sizeof(short));
3001         } else {
3002                 attr->name_off = SIZEOF_NONRESIDENT_LE;
3003                 attr->nres.run_off =
3004                         cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3005                 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3006                        name_len * sizeof(short));
3007         }
3008
3009         return attr;
3010 }
3011
3012 /*
3013  * do_action - Common routine for the Redo and Undo Passes.
3014  * @rlsn: If it is NULL then undo.
3015  */
3016 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3017                      const struct LOG_REC_HDR *lrh, u32 op, void *data,
3018                      u32 dlen, u32 rec_len, const u64 *rlsn)
3019 {
3020         int err = 0;
3021         struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3022         struct inode *inode = NULL, *inode_parent;
3023         struct mft_inode *mi = NULL, *mi2_child = NULL;
3024         CLST rno = 0, rno_base = 0;
3025         struct INDEX_BUFFER *ib = NULL;
3026         struct MFT_REC *rec = NULL;
3027         struct ATTRIB *attr = NULL, *attr2;
3028         struct INDEX_HDR *hdr;
3029         struct INDEX_ROOT *root;
3030         struct NTFS_DE *e, *e1, *e2;
3031         struct NEW_ATTRIBUTE_SIZES *new_sz;
3032         struct ATTR_FILE_NAME *fname;
3033         struct OpenAttr *oa, *oa2;
3034         u32 nsize, t32, asize, used, esize, off, bits;
3035         u16 id, id2;
3036         u32 record_size = sbi->record_size;
3037         u64 t64;
3038         u16 roff = le16_to_cpu(lrh->record_off);
3039         u16 aoff = le16_to_cpu(lrh->attr_off);
3040         u64 lco = 0;
3041         u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3042         u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3043         u64 vbo = cbo + tvo;
3044         void *buffer_le = NULL;
3045         u32 bytes = 0;
3046         bool a_dirty = false;
3047         u16 data_off;
3048
3049         oa = oe->ptr;
3050
3051         /* Big switch to prepare. */
3052         switch (op) {
3053         /* ============================================================
3054          * Process MFT records, as described by the current log record.
3055          * ============================================================
3056          */
3057         case InitializeFileRecordSegment:
3058         case DeallocateFileRecordSegment:
3059         case WriteEndOfFileRecordSegment:
3060         case CreateAttribute:
3061         case DeleteAttribute:
3062         case UpdateResidentValue:
3063         case UpdateMappingPairs:
3064         case SetNewAttributeSizes:
3065         case AddIndexEntryRoot:
3066         case DeleteIndexEntryRoot:
3067         case SetIndexEntryVcnRoot:
3068         case UpdateFileNameRoot:
3069         case UpdateRecordDataRoot:
3070         case ZeroEndOfFileRecord:
3071                 rno = vbo >> sbi->record_bits;
3072                 inode = ilookup(sbi->sb, rno);
3073                 if (inode) {
3074                         mi = &ntfs_i(inode)->mi;
3075                 } else if (op == InitializeFileRecordSegment) {
3076                         mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3077                         if (!mi)
3078                                 return -ENOMEM;
3079                         err = mi_format_new(mi, sbi, rno, 0, false);
3080                         if (err)
3081                                 goto out;
3082                 } else {
3083                         /* Read from disk. */
3084                         err = mi_get(sbi, rno, &mi);
3085                         if (err)
3086                                 return err;
3087                 }
3088                 rec = mi->mrec;
3089
3090                 if (op == DeallocateFileRecordSegment)
3091                         goto skip_load_parent;
3092
3093                 if (InitializeFileRecordSegment != op) {
3094                         if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3095                                 goto dirty_vol;
3096                         if (!check_lsn(&rec->rhdr, rlsn))
3097                                 goto out;
3098                         if (!check_file_record(rec, NULL, sbi))
3099                                 goto dirty_vol;
3100                         attr = Add2Ptr(rec, roff);
3101                 }
3102
3103                 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3104                         rno_base = rno;
3105                         goto skip_load_parent;
3106                 }
3107
3108                 rno_base = ino_get(&rec->parent_ref);
3109                 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3110                 if (IS_ERR(inode_parent))
3111                         goto skip_load_parent;
3112
3113                 if (is_bad_inode(inode_parent)) {
3114                         iput(inode_parent);
3115                         goto skip_load_parent;
3116                 }
3117
3118                 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3119                         iput(inode_parent);
3120                 } else {
3121                         if (mi2_child->mrec != mi->mrec)
3122                                 memcpy(mi2_child->mrec, mi->mrec,
3123                                        sbi->record_size);
3124
3125                         if (inode)
3126                                 iput(inode);
3127                         else if (mi)
3128                                 mi_put(mi);
3129
3130                         inode = inode_parent;
3131                         mi = mi2_child;
3132                         rec = mi2_child->mrec;
3133                         attr = Add2Ptr(rec, roff);
3134                 }
3135
3136 skip_load_parent:
3137                 inode_parent = NULL;
3138                 break;
3139
3140         /*
3141          * Process attributes, as described by the current log record.
3142          */
3143         case UpdateNonresidentValue:
3144         case AddIndexEntryAllocation:
3145         case DeleteIndexEntryAllocation:
3146         case WriteEndOfIndexBuffer:
3147         case SetIndexEntryVcnAllocation:
3148         case UpdateFileNameAllocation:
3149         case SetBitsInNonresidentBitMap:
3150         case ClearBitsInNonresidentBitMap:
3151         case UpdateRecordDataAllocation:
3152                 attr = oa->attr;
3153                 bytes = UpdateNonresidentValue == op ? dlen : 0;
3154                 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3155
3156                 if (attr->type == ATTR_ALLOC) {
3157                         t32 = le32_to_cpu(oe->bytes_per_index);
3158                         if (bytes < t32)
3159                                 bytes = t32;
3160                 }
3161
3162                 if (!bytes)
3163                         bytes = lco - cbo;
3164
3165                 bytes += roff;
3166                 if (attr->type == ATTR_ALLOC)
3167                         bytes = (bytes + 511) & ~511; // align
3168
3169                 buffer_le = kmalloc(bytes, GFP_NOFS);
3170                 if (!buffer_le)
3171                         return -ENOMEM;
3172
3173                 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3174                                        NULL);
3175                 if (err)
3176                         goto out;
3177
3178                 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3179                         ntfs_fix_post_read(buffer_le, bytes, false);
3180                 break;
3181
3182         default:
3183                 WARN_ON(1);
3184         }
3185
3186         /* Big switch to do operation. */
3187         switch (op) {
3188         case InitializeFileRecordSegment:
3189                 if (roff + dlen > record_size)
3190                         goto dirty_vol;
3191
3192                 memcpy(Add2Ptr(rec, roff), data, dlen);
3193                 mi->dirty = true;
3194                 break;
3195
3196         case DeallocateFileRecordSegment:
3197                 clear_rec_inuse(rec);
3198                 le16_add_cpu(&rec->seq, 1);
3199                 mi->dirty = true;
3200                 break;
3201
3202         case WriteEndOfFileRecordSegment:
3203                 attr2 = (struct ATTRIB *)data;
3204                 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3205                         goto dirty_vol;
3206
3207                 memmove(attr, attr2, dlen);
3208                 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3209
3210                 mi->dirty = true;
3211                 break;
3212
3213         case CreateAttribute:
3214                 attr2 = (struct ATTRIB *)data;
3215                 asize = le32_to_cpu(attr2->size);
3216                 used = le32_to_cpu(rec->used);
3217
3218                 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3219                     !IS_ALIGNED(asize, 8) ||
3220                     Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3221                     dlen > record_size - used) {
3222                         goto dirty_vol;
3223                 }
3224
3225                 memmove(Add2Ptr(attr, asize), attr, used - roff);
3226                 memcpy(attr, attr2, asize);
3227
3228                 rec->used = cpu_to_le32(used + asize);
3229                 id = le16_to_cpu(rec->next_attr_id);
3230                 id2 = le16_to_cpu(attr2->id);
3231                 if (id <= id2)
3232                         rec->next_attr_id = cpu_to_le16(id2 + 1);
3233                 if (is_attr_indexed(attr))
3234                         le16_add_cpu(&rec->hard_links, 1);
3235
3236                 oa2 = find_loaded_attr(log, attr, rno_base);
3237                 if (oa2) {
3238                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3239                                            GFP_NOFS);
3240                         if (p2) {
3241                                 // run_close(oa2->run1);
3242                                 kfree(oa2->attr);
3243                                 oa2->attr = p2;
3244                         }
3245                 }
3246
3247                 mi->dirty = true;
3248                 break;
3249
3250         case DeleteAttribute:
3251                 asize = le32_to_cpu(attr->size);
3252                 used = le32_to_cpu(rec->used);
3253
3254                 if (!check_if_attr(rec, lrh))
3255                         goto dirty_vol;
3256
3257                 rec->used = cpu_to_le32(used - asize);
3258                 if (is_attr_indexed(attr))
3259                         le16_add_cpu(&rec->hard_links, -1);
3260
3261                 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3262
3263                 mi->dirty = true;
3264                 break;
3265
3266         case UpdateResidentValue:
3267                 nsize = aoff + dlen;
3268
3269                 if (!check_if_attr(rec, lrh))
3270                         goto dirty_vol;
3271
3272                 asize = le32_to_cpu(attr->size);
3273                 used = le32_to_cpu(rec->used);
3274
3275                 if (lrh->redo_len == lrh->undo_len) {
3276                         if (nsize > asize)
3277                                 goto dirty_vol;
3278                         goto move_data;
3279                 }
3280
3281                 if (nsize > asize && nsize - asize > record_size - used)
3282                         goto dirty_vol;
3283
3284                 nsize = ALIGN(nsize, 8);
3285                 data_off = le16_to_cpu(attr->res.data_off);
3286
3287                 if (nsize < asize) {
3288                         memmove(Add2Ptr(attr, aoff), data, dlen);
3289                         data = NULL; // To skip below memmove().
3290                 }
3291
3292                 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3293                         used - le16_to_cpu(lrh->record_off) - asize);
3294
3295                 rec->used = cpu_to_le32(used + nsize - asize);
3296                 attr->size = cpu_to_le32(nsize);
3297                 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3298
3299 move_data:
3300                 if (data)
3301                         memmove(Add2Ptr(attr, aoff), data, dlen);
3302
3303                 oa2 = find_loaded_attr(log, attr, rno_base);
3304                 if (oa2) {
3305                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3306                                            GFP_NOFS);
3307                         if (p2) {
3308                                 // run_close(&oa2->run0);
3309                                 oa2->run1 = &oa2->run0;
3310                                 kfree(oa2->attr);
3311                                 oa2->attr = p2;
3312                         }
3313                 }
3314
3315                 mi->dirty = true;
3316                 break;
3317
3318         case UpdateMappingPairs:
3319                 nsize = aoff + dlen;
3320                 asize = le32_to_cpu(attr->size);
3321                 used = le32_to_cpu(rec->used);
3322
3323                 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3324                     aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3325                     (nsize > asize && nsize - asize > record_size - used)) {
3326                         goto dirty_vol;
3327                 }
3328
3329                 nsize = ALIGN(nsize, 8);
3330
3331                 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3332                         used - le16_to_cpu(lrh->record_off) - asize);
3333                 rec->used = cpu_to_le32(used + nsize - asize);
3334                 attr->size = cpu_to_le32(nsize);
3335                 memmove(Add2Ptr(attr, aoff), data, dlen);
3336
3337                 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3338                                         attr_run(attr), &t64)) {
3339                         goto dirty_vol;
3340                 }
3341
3342                 attr->nres.evcn = cpu_to_le64(t64);
3343                 oa2 = find_loaded_attr(log, attr, rno_base);
3344                 if (oa2 && oa2->attr->non_res)
3345                         oa2->attr->nres.evcn = attr->nres.evcn;
3346
3347                 mi->dirty = true;
3348                 break;
3349
3350         case SetNewAttributeSizes:
3351                 new_sz = data;
3352                 if (!check_if_attr(rec, lrh) || !attr->non_res)
3353                         goto dirty_vol;
3354
3355                 attr->nres.alloc_size = new_sz->alloc_size;
3356                 attr->nres.data_size = new_sz->data_size;
3357                 attr->nres.valid_size = new_sz->valid_size;
3358
3359                 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3360                         attr->nres.total_size = new_sz->total_size;
3361
3362                 oa2 = find_loaded_attr(log, attr, rno_base);
3363                 if (oa2) {
3364                         void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3365                                            GFP_NOFS);
3366                         if (p2) {
3367                                 kfree(oa2->attr);
3368                                 oa2->attr = p2;
3369                         }
3370                 }
3371                 mi->dirty = true;
3372                 break;
3373
3374         case AddIndexEntryRoot:
3375                 e = (struct NTFS_DE *)data;
3376                 esize = le16_to_cpu(e->size);
3377                 root = resident_data(attr);
3378                 hdr = &root->ihdr;
3379                 used = le32_to_cpu(hdr->used);
3380
3381                 if (!check_if_index_root(rec, lrh) ||
3382                     !check_if_root_index(attr, hdr, lrh) ||
3383                     Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3384                     esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3385                         goto dirty_vol;
3386                 }
3387
3388                 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3389
3390                 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3391
3392                 memmove(Add2Ptr(e1, esize), e1,
3393                         PtrOffset(e1, Add2Ptr(hdr, used)));
3394                 memmove(e1, e, esize);
3395
3396                 le32_add_cpu(&attr->res.data_size, esize);
3397                 hdr->used = cpu_to_le32(used + esize);
3398                 le32_add_cpu(&hdr->total, esize);
3399
3400                 mi->dirty = true;
3401                 break;
3402
3403         case DeleteIndexEntryRoot:
3404                 root = resident_data(attr);
3405                 hdr = &root->ihdr;
3406                 used = le32_to_cpu(hdr->used);
3407
3408                 if (!check_if_index_root(rec, lrh) ||
3409                     !check_if_root_index(attr, hdr, lrh)) {
3410                         goto dirty_vol;
3411                 }
3412
3413                 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3414                 esize = le16_to_cpu(e1->size);
3415                 e2 = Add2Ptr(e1, esize);
3416
3417                 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3418
3419                 le32_sub_cpu(&attr->res.data_size, esize);
3420                 hdr->used = cpu_to_le32(used - esize);
3421                 le32_sub_cpu(&hdr->total, esize);
3422
3423                 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3424
3425                 mi->dirty = true;
3426                 break;
3427
3428         case SetIndexEntryVcnRoot:
3429                 root = resident_data(attr);
3430                 hdr = &root->ihdr;
3431
3432                 if (!check_if_index_root(rec, lrh) ||
3433                     !check_if_root_index(attr, hdr, lrh)) {
3434                         goto dirty_vol;
3435                 }
3436
3437                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3438
3439                 de_set_vbn_le(e, *(__le64 *)data);
3440                 mi->dirty = true;
3441                 break;
3442
3443         case UpdateFileNameRoot:
3444                 root = resident_data(attr);
3445                 hdr = &root->ihdr;
3446
3447                 if (!check_if_index_root(rec, lrh) ||
3448                     !check_if_root_index(attr, hdr, lrh)) {
3449                         goto dirty_vol;
3450                 }
3451
3452                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3453                 fname = (struct ATTR_FILE_NAME *)(e + 1);
3454                 memmove(&fname->dup, data, sizeof(fname->dup)); //
3455                 mi->dirty = true;
3456                 break;
3457
3458         case UpdateRecordDataRoot:
3459                 root = resident_data(attr);
3460                 hdr = &root->ihdr;
3461
3462                 if (!check_if_index_root(rec, lrh) ||
3463                     !check_if_root_index(attr, hdr, lrh)) {
3464                         goto dirty_vol;
3465                 }
3466
3467                 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3468
3469                 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3470
3471                 mi->dirty = true;
3472                 break;
3473
3474         case ZeroEndOfFileRecord:
3475                 if (roff + dlen > record_size)
3476                         goto dirty_vol;
3477
3478                 memset(attr, 0, dlen);
3479                 mi->dirty = true;
3480                 break;
3481
3482         case UpdateNonresidentValue:
3483                 if (lco < cbo + roff + dlen)
3484                         goto dirty_vol;
3485
3486                 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3487
3488                 a_dirty = true;
3489                 if (attr->type == ATTR_ALLOC)
3490                         ntfs_fix_pre_write(buffer_le, bytes);
3491                 break;
3492
3493         case AddIndexEntryAllocation:
3494                 ib = Add2Ptr(buffer_le, roff);
3495                 hdr = &ib->ihdr;
3496                 e = data;
3497                 esize = le16_to_cpu(e->size);
3498                 e1 = Add2Ptr(ib, aoff);
3499
3500                 if (is_baad(&ib->rhdr))
3501                         goto dirty_vol;
3502                 if (!check_lsn(&ib->rhdr, rlsn))
3503                         goto out;
3504
3505                 used = le32_to_cpu(hdr->used);
3506
3507                 if (!check_index_buffer(ib, bytes) ||
3508                     !check_if_alloc_index(hdr, aoff) ||
3509                     Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3510                     used + esize > le32_to_cpu(hdr->total)) {
3511                         goto dirty_vol;
3512                 }
3513
3514                 memmove(Add2Ptr(e1, esize), e1,
3515                         PtrOffset(e1, Add2Ptr(hdr, used)));
3516                 memcpy(e1, e, esize);
3517
3518                 hdr->used = cpu_to_le32(used + esize);
3519
3520                 a_dirty = true;
3521
3522                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3523                 break;
3524
3525         case DeleteIndexEntryAllocation:
3526                 ib = Add2Ptr(buffer_le, roff);
3527                 hdr = &ib->ihdr;
3528                 e = Add2Ptr(ib, aoff);
3529                 esize = le16_to_cpu(e->size);
3530
3531                 if (is_baad(&ib->rhdr))
3532                         goto dirty_vol;
3533                 if (!check_lsn(&ib->rhdr, rlsn))
3534                         goto out;
3535
3536                 if (!check_index_buffer(ib, bytes) ||
3537                     !check_if_alloc_index(hdr, aoff)) {
3538                         goto dirty_vol;
3539                 }
3540
3541                 e1 = Add2Ptr(e, esize);
3542                 nsize = esize;
3543                 used = le32_to_cpu(hdr->used);
3544
3545                 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3546
3547                 hdr->used = cpu_to_le32(used - nsize);
3548
3549                 a_dirty = true;
3550
3551                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3552                 break;
3553
3554         case WriteEndOfIndexBuffer:
3555                 ib = Add2Ptr(buffer_le, roff);
3556                 hdr = &ib->ihdr;
3557                 e = Add2Ptr(ib, aoff);
3558
3559                 if (is_baad(&ib->rhdr))
3560                         goto dirty_vol;
3561                 if (!check_lsn(&ib->rhdr, rlsn))
3562                         goto out;
3563                 if (!check_index_buffer(ib, bytes) ||
3564                     !check_if_alloc_index(hdr, aoff) ||
3565                     aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3566                                           le32_to_cpu(hdr->total)) {
3567                         goto dirty_vol;
3568                 }
3569
3570                 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3571                 memmove(e, data, dlen);
3572
3573                 a_dirty = true;
3574                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3575                 break;
3576
3577         case SetIndexEntryVcnAllocation:
3578                 ib = Add2Ptr(buffer_le, roff);
3579                 hdr = &ib->ihdr;
3580                 e = Add2Ptr(ib, aoff);
3581
3582                 if (is_baad(&ib->rhdr))
3583                         goto dirty_vol;
3584
3585                 if (!check_lsn(&ib->rhdr, rlsn))
3586                         goto out;
3587                 if (!check_index_buffer(ib, bytes) ||
3588                     !check_if_alloc_index(hdr, aoff)) {
3589                         goto dirty_vol;
3590                 }
3591
3592                 de_set_vbn_le(e, *(__le64 *)data);
3593
3594                 a_dirty = true;
3595                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3596                 break;
3597
3598         case UpdateFileNameAllocation:
3599                 ib = Add2Ptr(buffer_le, roff);
3600                 hdr = &ib->ihdr;
3601                 e = Add2Ptr(ib, aoff);
3602
3603                 if (is_baad(&ib->rhdr))
3604                         goto dirty_vol;
3605
3606                 if (!check_lsn(&ib->rhdr, rlsn))
3607                         goto out;
3608                 if (!check_index_buffer(ib, bytes) ||
3609                     !check_if_alloc_index(hdr, aoff)) {
3610                         goto dirty_vol;
3611                 }
3612
3613                 fname = (struct ATTR_FILE_NAME *)(e + 1);
3614                 memmove(&fname->dup, data, sizeof(fname->dup));
3615
3616                 a_dirty = true;
3617                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3618                 break;
3619
3620         case SetBitsInNonresidentBitMap:
3621                 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3622                 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3623
3624                 if (cbo + (off + 7) / 8 > lco ||
3625                     cbo + ((off + bits + 7) / 8) > lco) {
3626                         goto dirty_vol;
3627                 }
3628
3629                 ntfs_bitmap_set_le(Add2Ptr(buffer_le, roff), off, bits);
3630                 a_dirty = true;
3631                 break;
3632
3633         case ClearBitsInNonresidentBitMap:
3634                 off = le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3635                 bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3636
3637                 if (cbo + (off + 7) / 8 > lco ||
3638                     cbo + ((off + bits + 7) / 8) > lco) {
3639                         goto dirty_vol;
3640                 }
3641
3642                 ntfs_bitmap_clear_le(Add2Ptr(buffer_le, roff), off, bits);
3643                 a_dirty = true;
3644                 break;
3645
3646         case UpdateRecordDataAllocation:
3647                 ib = Add2Ptr(buffer_le, roff);
3648                 hdr = &ib->ihdr;
3649                 e = Add2Ptr(ib, aoff);
3650
3651                 if (is_baad(&ib->rhdr))
3652                         goto dirty_vol;
3653
3654                 if (!check_lsn(&ib->rhdr, rlsn))
3655                         goto out;
3656                 if (!check_index_buffer(ib, bytes) ||
3657                     !check_if_alloc_index(hdr, aoff)) {
3658                         goto dirty_vol;
3659                 }
3660
3661                 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3662
3663                 a_dirty = true;
3664                 ntfs_fix_pre_write(&ib->rhdr, bytes);
3665                 break;
3666
3667         default:
3668                 WARN_ON(1);
3669         }
3670
3671         if (rlsn) {
3672                 __le64 t64 = cpu_to_le64(*rlsn);
3673
3674                 if (rec)
3675                         rec->rhdr.lsn = t64;
3676                 if (ib)
3677                         ib->rhdr.lsn = t64;
3678         }
3679
3680         if (mi && mi->dirty) {
3681                 err = mi_write(mi, 0);
3682                 if (err)
3683                         goto out;
3684         }
3685
3686         if (a_dirty) {
3687                 attr = oa->attr;
3688                 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes,
3689                                         0);
3690                 if (err)
3691                         goto out;
3692         }
3693
3694 out:
3695
3696         if (inode)
3697                 iput(inode);
3698         else if (mi != mi2_child)
3699                 mi_put(mi);
3700
3701         kfree(buffer_le);
3702
3703         return err;
3704
3705 dirty_vol:
3706         log->set_dirty = true;
3707         goto out;
3708 }
3709
3710 /*
3711  * log_replay - Replays log and empties it.
3712  *
3713  * This function is called during mount operation.
3714  * It replays log and empties it.
3715  * Initialized is set false if logfile contains '-1'.
3716  */
3717 int log_replay(struct ntfs_inode *ni, bool *initialized)
3718 {
3719         int err;
3720         struct ntfs_sb_info *sbi = ni->mi.sbi;
3721         struct ntfs_log *log;
3722
3723         struct restart_info rst_info, rst_info2;
3724         u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3725         struct ATTR_NAME_ENTRY *attr_names = NULL;
3726         struct ATTR_NAME_ENTRY *ane;
3727         struct RESTART_TABLE *dptbl = NULL;
3728         struct RESTART_TABLE *trtbl = NULL;
3729         const struct RESTART_TABLE *rt;
3730         struct RESTART_TABLE *oatbl = NULL;
3731         struct inode *inode;
3732         struct OpenAttr *oa;
3733         struct ntfs_inode *ni_oe;
3734         struct ATTRIB *attr = NULL;
3735         u64 size, vcn, undo_next_lsn;
3736         CLST rno, lcn, lcn0, len0, clen;
3737         void *data;
3738         struct NTFS_RESTART *rst = NULL;
3739         struct lcb *lcb = NULL;
3740         struct OPEN_ATTR_ENRTY *oe;
3741         struct TRANSACTION_ENTRY *tr;
3742         struct DIR_PAGE_ENTRY *dp;
3743         u32 i, bytes_per_attr_entry;
3744         u32 l_size = ni->vfs_inode.i_size;
3745         u32 orig_file_size = l_size;
3746         u32 page_size, vbo, tail, off, dlen;
3747         u32 saved_len, rec_len, transact_id;
3748         bool use_second_page;
3749         struct RESTART_AREA *ra2, *ra = NULL;
3750         struct CLIENT_REC *ca, *cr;
3751         __le16 client;
3752         struct RESTART_HDR *rh;
3753         const struct LFS_RECORD_HDR *frh;
3754         const struct LOG_REC_HDR *lrh;
3755         bool is_mapped;
3756         bool is_ro = sb_rdonly(sbi->sb);
3757         u64 t64;
3758         u16 t16;
3759         u32 t32;
3760
3761         /* Get the size of page. NOTE: To replay we can use default page. */
3762 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3763         page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3764 #else
3765         page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3766 #endif
3767         if (!page_size)
3768                 return -EINVAL;
3769
3770         log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3771         if (!log)
3772                 return -ENOMEM;
3773
3774         log->ni = ni;
3775         log->l_size = l_size;
3776         log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3777
3778         if (!log->one_page_buf) {
3779                 err = -ENOMEM;
3780                 goto out;
3781         }
3782
3783         log->page_size = page_size;
3784         log->page_mask = page_size - 1;
3785         log->page_bits = blksize_bits(page_size);
3786
3787         /* Look for a restart area on the disk. */
3788         memset(&rst_info, 0, sizeof(struct restart_info));
3789         err = log_read_rst(log, l_size, true, &rst_info);
3790         if (err)
3791                 goto out;
3792
3793         /* remember 'initialized' */
3794         *initialized = rst_info.initialized;
3795
3796         if (!rst_info.restart) {
3797                 if (rst_info.initialized) {
3798                         /* No restart area but the file is not initialized. */
3799                         err = -EINVAL;
3800                         goto out;
3801                 }
3802
3803                 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3804                 log_create(log, l_size, 0, get_random_u32(), false, false);
3805
3806                 log->ra = ra;
3807
3808                 ra = log_create_ra(log);
3809                 if (!ra) {
3810                         err = -ENOMEM;
3811                         goto out;
3812                 }
3813                 log->ra = ra;
3814                 log->init_ra = true;
3815
3816                 goto process_log;
3817         }
3818
3819         /*
3820          * If the restart offset above wasn't zero then we won't
3821          * look for a second restart.
3822          */
3823         if (rst_info.vbo)
3824                 goto check_restart_area;
3825
3826         memset(&rst_info2, 0, sizeof(struct restart_info));
3827         err = log_read_rst(log, l_size, false, &rst_info2);
3828         if (err)
3829                 goto out;
3830
3831         /* Determine which restart area to use. */
3832         if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3833                 goto use_first_page;
3834
3835         use_second_page = true;
3836
3837         if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3838                 struct RECORD_PAGE_HDR *sp = NULL;
3839                 bool usa_error;
3840
3841                 if (!read_log_page(log, page_size, &sp, &usa_error) &&
3842                     sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3843                         use_second_page = false;
3844                 }
3845                 kfree(sp);
3846         }
3847
3848         if (use_second_page) {
3849                 kfree(rst_info.r_page);
3850                 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3851                 rst_info2.r_page = NULL;
3852         }
3853
3854 use_first_page:
3855         kfree(rst_info2.r_page);
3856
3857 check_restart_area:
3858         /*
3859          * If the restart area is at offset 0, we want
3860          * to write the second restart area first.
3861          */
3862         log->init_ra = !!rst_info.vbo;
3863
3864         /* If we have a valid page then grab a pointer to the restart area. */
3865         ra2 = rst_info.valid_page ?
3866                       Add2Ptr(rst_info.r_page,
3867                               le16_to_cpu(rst_info.r_page->ra_off)) :
3868                       NULL;
3869
3870         if (rst_info.chkdsk_was_run ||
3871             (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3872                 bool wrapped = false;
3873                 bool use_multi_page = false;
3874                 u32 open_log_count;
3875
3876                 /* Do some checks based on whether we have a valid log page. */
3877                 if (!rst_info.valid_page) {
3878                         open_log_count = get_random_u32();
3879                         goto init_log_instance;
3880                 }
3881                 open_log_count = le32_to_cpu(ra2->open_log_count);
3882
3883                 /*
3884                  * If the restart page size isn't changing then we want to
3885                  * check how much work we need to do.
3886                  */
3887                 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3888                         goto init_log_instance;
3889
3890 init_log_instance:
3891                 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3892
3893                 log_create(log, l_size, rst_info.last_lsn, open_log_count,
3894                            wrapped, use_multi_page);
3895
3896                 ra = log_create_ra(log);
3897                 if (!ra) {
3898                         err = -ENOMEM;
3899                         goto out;
3900                 }
3901                 log->ra = ra;
3902
3903                 /* Put the restart areas and initialize
3904                  * the log file as required.
3905                  */
3906                 goto process_log;
3907         }
3908
3909         if (!ra2) {
3910                 err = -EINVAL;
3911                 goto out;
3912         }
3913
3914         /*
3915          * If the log page or the system page sizes have changed, we can't
3916          * use the log file. We must use the system page size instead of the
3917          * default size if there is not a clean shutdown.
3918          */
3919         t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3920         if (page_size != t32) {
3921                 l_size = orig_file_size;
3922                 page_size =
3923                         norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3924         }
3925
3926         if (page_size != t32 ||
3927             page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3928                 err = -EINVAL;
3929                 goto out;
3930         }
3931
3932         /* If the file size has shrunk then we won't mount it. */
3933         if (l_size < le64_to_cpu(ra2->l_size)) {
3934                 err = -EINVAL;
3935                 goto out;
3936         }
3937
3938         log_init_pg_hdr(log, page_size, page_size,
3939                         le16_to_cpu(rst_info.r_page->major_ver),
3940                         le16_to_cpu(rst_info.r_page->minor_ver));
3941
3942         log->l_size = le64_to_cpu(ra2->l_size);
3943         log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3944         log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3945         log->seq_num_mask = (8 << log->file_data_bits) - 1;
3946         log->last_lsn = le64_to_cpu(ra2->current_lsn);
3947         log->seq_num = log->last_lsn >> log->file_data_bits;
3948         log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3949         log->restart_size = log->sys_page_size - log->ra_off;
3950         log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3951         log->ra_size = le16_to_cpu(ra2->ra_len);
3952         log->data_off = le16_to_cpu(ra2->data_off);
3953         log->data_size = log->page_size - log->data_off;
3954         log->reserved = log->data_size - log->record_header_len;
3955
3956         vbo = lsn_to_vbo(log, log->last_lsn);
3957
3958         if (vbo < log->first_page) {
3959                 /* This is a pseudo lsn. */
3960                 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3961                 log->next_page = log->first_page;
3962                 goto find_oldest;
3963         }
3964
3965         /* Find the end of this log record. */
3966         off = final_log_off(log, log->last_lsn,
3967                             le32_to_cpu(ra2->last_lsn_data_len));
3968
3969         /* If we wrapped the file then increment the sequence number. */
3970         if (off <= vbo) {
3971                 log->seq_num += 1;
3972                 log->l_flags |= NTFSLOG_WRAPPED;
3973         }
3974
3975         /* Now compute the next log page to use. */
3976         vbo &= ~log->sys_page_mask;
3977         tail = log->page_size - (off & log->page_mask) - 1;
3978
3979         /*
3980          *If we can fit another log record on the page,
3981          * move back a page the log file.
3982          */
3983         if (tail >= log->record_header_len) {
3984                 log->l_flags |= NTFSLOG_REUSE_TAIL;
3985                 log->next_page = vbo;
3986         } else {
3987                 log->next_page = next_page_off(log, vbo);
3988         }
3989
3990 find_oldest:
3991         /*
3992          * Find the oldest client lsn. Use the last
3993          * flushed lsn as a starting point.
3994          */
3995         log->oldest_lsn = log->last_lsn;
3996         oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
3997                           ra2->client_idx[1], &log->oldest_lsn);
3998         log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
3999
4000         if (log->oldest_lsn_off < log->first_page)
4001                 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4002
4003         if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4004                 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4005
4006         log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4007         log->total_avail_pages = log->l_size - log->first_page;
4008         log->total_avail = log->total_avail_pages >> log->page_bits;
4009         log->max_current_avail = log->total_avail * log->reserved;
4010         log->total_avail = log->total_avail * log->data_size;
4011
4012         log->current_avail = current_log_avail(log);
4013
4014         ra = kzalloc(log->restart_size, GFP_NOFS);
4015         if (!ra) {
4016                 err = -ENOMEM;
4017                 goto out;
4018         }
4019         log->ra = ra;
4020
4021         t16 = le16_to_cpu(ra2->client_off);
4022         if (t16 == offsetof(struct RESTART_AREA, clients)) {
4023                 memcpy(ra, ra2, log->ra_size);
4024         } else {
4025                 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4026                 memcpy(ra->clients, Add2Ptr(ra2, t16),
4027                        le16_to_cpu(ra2->ra_len) - t16);
4028
4029                 log->current_openlog_count = get_random_u32();
4030                 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4031                 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4032                                sizeof(struct CLIENT_REC);
4033                 ra->client_off =
4034                         cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4035                 ra->ra_len = cpu_to_le16(log->ra_size);
4036         }
4037
4038         le32_add_cpu(&ra->open_log_count, 1);
4039
4040         /* Now we need to walk through looking for the last lsn. */
4041         err = last_log_lsn(log);
4042         if (err)
4043                 goto out;
4044
4045         log->current_avail = current_log_avail(log);
4046
4047         /* Remember which restart area to write first. */
4048         log->init_ra = rst_info.vbo;
4049
4050 process_log:
4051         /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4052         switch ((log->major_ver << 16) + log->minor_ver) {
4053         case 0x10000:
4054         case 0x10001:
4055         case 0x20000:
4056                 break;
4057         default:
4058                 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4059                           log->major_ver, log->minor_ver);
4060                 err = -EOPNOTSUPP;
4061                 log->set_dirty = true;
4062                 goto out;
4063         }
4064
4065         /* One client "NTFS" per logfile. */
4066         ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4067
4068         for (client = ra->client_idx[1];; client = cr->next_client) {
4069                 if (client == LFS_NO_CLIENT_LE) {
4070                         /* Insert "NTFS" client LogFile. */
4071                         client = ra->client_idx[0];
4072                         if (client == LFS_NO_CLIENT_LE) {
4073                                 err = -EINVAL;
4074                                 goto out;
4075                         }
4076
4077                         t16 = le16_to_cpu(client);
4078                         cr = ca + t16;
4079
4080                         remove_client(ca, cr, &ra->client_idx[0]);
4081
4082                         cr->restart_lsn = 0;
4083                         cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4084                         cr->name_bytes = cpu_to_le32(8);
4085                         cr->name[0] = cpu_to_le16('N');
4086                         cr->name[1] = cpu_to_le16('T');
4087                         cr->name[2] = cpu_to_le16('F');
4088                         cr->name[3] = cpu_to_le16('S');
4089
4090                         add_client(ca, t16, &ra->client_idx[1]);
4091                         break;
4092                 }
4093
4094                 cr = ca + le16_to_cpu(client);
4095
4096                 if (cpu_to_le32(8) == cr->name_bytes &&
4097                     cpu_to_le16('N') == cr->name[0] &&
4098                     cpu_to_le16('T') == cr->name[1] &&
4099                     cpu_to_le16('F') == cr->name[2] &&
4100                     cpu_to_le16('S') == cr->name[3])
4101                         break;
4102         }
4103
4104         /* Update the client handle with the client block information. */
4105         log->client_id.seq_num = cr->seq_num;
4106         log->client_id.client_idx = client;
4107
4108         err = read_rst_area(log, &rst, &ra_lsn);
4109         if (err)
4110                 goto out;
4111
4112         if (!rst)
4113                 goto out;
4114
4115         bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4116
4117         checkpt_lsn = le64_to_cpu(rst->check_point_start);
4118         if (!checkpt_lsn)
4119                 checkpt_lsn = ra_lsn;
4120
4121         /* Allocate and Read the Transaction Table. */
4122         if (!rst->transact_table_len)
4123                 goto check_dirty_page_table;
4124
4125         t64 = le64_to_cpu(rst->transact_table_lsn);
4126         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4127         if (err)
4128                 goto out;
4129
4130         lrh = lcb->log_rec;
4131         frh = lcb->lrh;
4132         rec_len = le32_to_cpu(frh->client_data_len);
4133
4134         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4135                            bytes_per_attr_entry)) {
4136                 err = -EINVAL;
4137                 goto out;
4138         }
4139
4140         t16 = le16_to_cpu(lrh->redo_off);
4141
4142         rt = Add2Ptr(lrh, t16);
4143         t32 = rec_len - t16;
4144
4145         /* Now check that this is a valid restart table. */
4146         if (!check_rstbl(rt, t32)) {
4147                 err = -EINVAL;
4148                 goto out;
4149         }
4150
4151         trtbl = kmemdup(rt, t32, GFP_NOFS);
4152         if (!trtbl) {
4153                 err = -ENOMEM;
4154                 goto out;
4155         }
4156
4157         lcb_put(lcb);
4158         lcb = NULL;
4159
4160 check_dirty_page_table:
4161         /* The next record back should be the Dirty Pages Table. */
4162         if (!rst->dirty_pages_len)
4163                 goto check_attribute_names;
4164
4165         t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4166         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4167         if (err)
4168                 goto out;
4169
4170         lrh = lcb->log_rec;
4171         frh = lcb->lrh;
4172         rec_len = le32_to_cpu(frh->client_data_len);
4173
4174         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4175                            bytes_per_attr_entry)) {
4176                 err = -EINVAL;
4177                 goto out;
4178         }
4179
4180         t16 = le16_to_cpu(lrh->redo_off);
4181
4182         rt = Add2Ptr(lrh, t16);
4183         t32 = rec_len - t16;
4184
4185         /* Now check that this is a valid restart table. */
4186         if (!check_rstbl(rt, t32)) {
4187                 err = -EINVAL;
4188                 goto out;
4189         }
4190
4191         dptbl = kmemdup(rt, t32, GFP_NOFS);
4192         if (!dptbl) {
4193                 err = -ENOMEM;
4194                 goto out;
4195         }
4196
4197         /* Convert Ra version '0' into version '1'. */
4198         if (rst->major_ver)
4199                 goto end_conv_1;
4200
4201         dp = NULL;
4202         while ((dp = enum_rstbl(dptbl, dp))) {
4203                 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4204                 // NOTE: Danger. Check for of boundary.
4205                 memmove(&dp->vcn, &dp0->vcn_low,
4206                         2 * sizeof(u64) +
4207                                 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4208         }
4209
4210 end_conv_1:
4211         lcb_put(lcb);
4212         lcb = NULL;
4213
4214         /*
4215          * Go through the table and remove the duplicates,
4216          * remembering the oldest lsn values.
4217          */
4218         if (sbi->cluster_size <= log->page_size)
4219                 goto trace_dp_table;
4220
4221         dp = NULL;
4222         while ((dp = enum_rstbl(dptbl, dp))) {
4223                 struct DIR_PAGE_ENTRY *next = dp;
4224
4225                 while ((next = enum_rstbl(dptbl, next))) {
4226                         if (next->target_attr == dp->target_attr &&
4227                             next->vcn == dp->vcn) {
4228                                 if (le64_to_cpu(next->oldest_lsn) <
4229                                     le64_to_cpu(dp->oldest_lsn)) {
4230                                         dp->oldest_lsn = next->oldest_lsn;
4231                                 }
4232
4233                                 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4234                         }
4235                 }
4236         }
4237 trace_dp_table:
4238 check_attribute_names:
4239         /* The next record should be the Attribute Names. */
4240         if (!rst->attr_names_len)
4241                 goto check_attr_table;
4242
4243         t64 = le64_to_cpu(rst->attr_names_lsn);
4244         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4245         if (err)
4246                 goto out;
4247
4248         lrh = lcb->log_rec;
4249         frh = lcb->lrh;
4250         rec_len = le32_to_cpu(frh->client_data_len);
4251
4252         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4253                            bytes_per_attr_entry)) {
4254                 err = -EINVAL;
4255                 goto out;
4256         }
4257
4258         t32 = lrh_length(lrh);
4259         rec_len -= t32;
4260
4261         attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4262         if (!attr_names) {
4263                 err = -ENOMEM;
4264                 goto out;
4265         }
4266
4267         lcb_put(lcb);
4268         lcb = NULL;
4269
4270 check_attr_table:
4271         /* The next record should be the attribute Table. */
4272         if (!rst->open_attr_len)
4273                 goto check_attribute_names2;
4274
4275         t64 = le64_to_cpu(rst->open_attr_table_lsn);
4276         err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4277         if (err)
4278                 goto out;
4279
4280         lrh = lcb->log_rec;
4281         frh = lcb->lrh;
4282         rec_len = le32_to_cpu(frh->client_data_len);
4283
4284         if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4285                            bytes_per_attr_entry)) {
4286                 err = -EINVAL;
4287                 goto out;
4288         }
4289
4290         t16 = le16_to_cpu(lrh->redo_off);
4291
4292         rt = Add2Ptr(lrh, t16);
4293         t32 = rec_len - t16;
4294
4295         if (!check_rstbl(rt, t32)) {
4296                 err = -EINVAL;
4297                 goto out;
4298         }
4299
4300         oatbl = kmemdup(rt, t32, GFP_NOFS);
4301         if (!oatbl) {
4302                 err = -ENOMEM;
4303                 goto out;
4304         }
4305
4306         log->open_attr_tbl = oatbl;
4307
4308         /* Clear all of the Attr pointers. */
4309         oe = NULL;
4310         while ((oe = enum_rstbl(oatbl, oe))) {
4311                 if (!rst->major_ver) {
4312                         struct OPEN_ATTR_ENRTY_32 oe0;
4313
4314                         /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4315                         memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4316
4317                         oe->bytes_per_index = oe0.bytes_per_index;
4318                         oe->type = oe0.type;
4319                         oe->is_dirty_pages = oe0.is_dirty_pages;
4320                         oe->name_len = 0;
4321                         oe->ref = oe0.ref;
4322                         oe->open_record_lsn = oe0.open_record_lsn;
4323                 }
4324
4325                 oe->is_attr_name = 0;
4326                 oe->ptr = NULL;
4327         }
4328
4329         lcb_put(lcb);
4330         lcb = NULL;
4331
4332 check_attribute_names2:
4333         if (!rst->attr_names_len)
4334                 goto trace_attribute_table;
4335
4336         ane = attr_names;
4337         if (!oatbl)
4338                 goto trace_attribute_table;
4339         while (ane->off) {
4340                 /* TODO: Clear table on exit! */
4341                 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4342                 t16 = le16_to_cpu(ane->name_bytes);
4343                 oe->name_len = t16 / sizeof(short);
4344                 oe->ptr = ane->name;
4345                 oe->is_attr_name = 2;
4346                 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4347         }
4348
4349 trace_attribute_table:
4350         /*
4351          * If the checkpt_lsn is zero, then this is a freshly
4352          * formatted disk and we have no work to do.
4353          */
4354         if (!checkpt_lsn) {
4355                 err = 0;
4356                 goto out;
4357         }
4358
4359         if (!oatbl) {
4360                 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4361                 if (!oatbl) {
4362                         err = -ENOMEM;
4363                         goto out;
4364                 }
4365         }
4366
4367         log->open_attr_tbl = oatbl;
4368
4369         /* Start the analysis pass from the Checkpoint lsn. */
4370         rec_lsn = checkpt_lsn;
4371
4372         /* Read the first lsn. */
4373         err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4374         if (err)
4375                 goto out;
4376
4377         /* Loop to read all subsequent records to the end of the log file. */
4378 next_log_record_analyze:
4379         err = read_next_log_rec(log, lcb, &rec_lsn);
4380         if (err)
4381                 goto out;
4382
4383         if (!rec_lsn)
4384                 goto end_log_records_enumerate;
4385
4386         frh = lcb->lrh;
4387         transact_id = le32_to_cpu(frh->transact_id);
4388         rec_len = le32_to_cpu(frh->client_data_len);
4389         lrh = lcb->log_rec;
4390
4391         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4392                 err = -EINVAL;
4393                 goto out;
4394         }
4395
4396         /*
4397          * The first lsn after the previous lsn remembered
4398          * the checkpoint is the first candidate for the rlsn.
4399          */
4400         if (!rlsn)
4401                 rlsn = rec_lsn;
4402
4403         if (LfsClientRecord != frh->record_type)
4404                 goto next_log_record_analyze;
4405
4406         /*
4407          * Now update the Transaction Table for this transaction. If there
4408          * is no entry present or it is unallocated we allocate the entry.
4409          */
4410         if (!trtbl) {
4411                 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4412                                     INITIAL_NUMBER_TRANSACTIONS);
4413                 if (!trtbl) {
4414                         err = -ENOMEM;
4415                         goto out;
4416                 }
4417         }
4418
4419         tr = Add2Ptr(trtbl, transact_id);
4420
4421         if (transact_id >= bytes_per_rt(trtbl) ||
4422             tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4423                 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4424                 if (!tr) {
4425                         err = -ENOMEM;
4426                         goto out;
4427                 }
4428                 tr->transact_state = TransactionActive;
4429                 tr->first_lsn = cpu_to_le64(rec_lsn);
4430         }
4431
4432         tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4433
4434         /*
4435          * If this is a compensation log record, then change
4436          * the undo_next_lsn to be the undo_next_lsn of this record.
4437          */
4438         if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4439                 tr->undo_next_lsn = frh->client_undo_next_lsn;
4440
4441         /* Dispatch to handle log record depending on type. */
4442         switch (le16_to_cpu(lrh->redo_op)) {
4443         case InitializeFileRecordSegment:
4444         case DeallocateFileRecordSegment:
4445         case WriteEndOfFileRecordSegment:
4446         case CreateAttribute:
4447         case DeleteAttribute:
4448         case UpdateResidentValue:
4449         case UpdateNonresidentValue:
4450         case UpdateMappingPairs:
4451         case SetNewAttributeSizes:
4452         case AddIndexEntryRoot:
4453         case DeleteIndexEntryRoot:
4454         case AddIndexEntryAllocation:
4455         case DeleteIndexEntryAllocation:
4456         case WriteEndOfIndexBuffer:
4457         case SetIndexEntryVcnRoot:
4458         case SetIndexEntryVcnAllocation:
4459         case UpdateFileNameRoot:
4460         case UpdateFileNameAllocation:
4461         case SetBitsInNonresidentBitMap:
4462         case ClearBitsInNonresidentBitMap:
4463         case UpdateRecordDataRoot:
4464         case UpdateRecordDataAllocation:
4465         case ZeroEndOfFileRecord:
4466                 t16 = le16_to_cpu(lrh->target_attr);
4467                 t64 = le64_to_cpu(lrh->target_vcn);
4468                 dp = find_dp(dptbl, t16, t64);
4469
4470                 if (dp)
4471                         goto copy_lcns;
4472
4473                 /*
4474                  * Calculate the number of clusters per page the system
4475                  * which wrote the checkpoint, possibly creating the table.
4476                  */
4477                 if (dptbl) {
4478                         t32 = (le16_to_cpu(dptbl->size) -
4479                                sizeof(struct DIR_PAGE_ENTRY)) /
4480                               sizeof(u64);
4481                 } else {
4482                         t32 = log->clst_per_page;
4483                         kfree(dptbl);
4484                         dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4485                                             32);
4486                         if (!dptbl) {
4487                                 err = -ENOMEM;
4488                                 goto out;
4489                         }
4490                 }
4491
4492                 dp = alloc_rsttbl_idx(&dptbl);
4493                 if (!dp) {
4494                         err = -ENOMEM;
4495                         goto out;
4496                 }
4497                 dp->target_attr = cpu_to_le32(t16);
4498                 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4499                 dp->lcns_follow = cpu_to_le32(t32);
4500                 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4501                 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4502
4503 copy_lcns:
4504                 /*
4505                  * Copy the Lcns from the log record into the Dirty Page Entry.
4506                  * TODO: For different page size support, must somehow make
4507                  * whole routine a loop, case Lcns do not fit below.
4508                  */
4509                 t16 = le16_to_cpu(lrh->lcns_follow);
4510                 for (i = 0; i < t16; i++) {
4511                         size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4512                                             le64_to_cpu(dp->vcn));
4513                         dp->page_lcns[j + i] = lrh->page_lcns[i];
4514                 }
4515
4516                 goto next_log_record_analyze;
4517
4518         case DeleteDirtyClusters: {
4519                 u32 range_count =
4520                         le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4521                 const struct LCN_RANGE *r =
4522                         Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4523
4524                 /* Loop through all of the Lcn ranges this log record. */
4525                 for (i = 0; i < range_count; i++, r++) {
4526                         u64 lcn0 = le64_to_cpu(r->lcn);
4527                         u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4528
4529                         dp = NULL;
4530                         while ((dp = enum_rstbl(dptbl, dp))) {
4531                                 u32 j;
4532
4533                                 t32 = le32_to_cpu(dp->lcns_follow);
4534                                 for (j = 0; j < t32; j++) {
4535                                         t64 = le64_to_cpu(dp->page_lcns[j]);
4536                                         if (t64 >= lcn0 && t64 <= lcn_e)
4537                                                 dp->page_lcns[j] = 0;
4538                                 }
4539                         }
4540                 }
4541                 goto next_log_record_analyze;
4542                 ;
4543         }
4544
4545         case OpenNonresidentAttribute:
4546                 t16 = le16_to_cpu(lrh->target_attr);
4547                 if (t16 >= bytes_per_rt(oatbl)) {
4548                         /*
4549                          * Compute how big the table needs to be.
4550                          * Add 10 extra entries for some cushion.
4551                          */
4552                         u32 new_e = t16 / le16_to_cpu(oatbl->size);
4553
4554                         new_e += 10 - le16_to_cpu(oatbl->used);
4555
4556                         oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4557                         log->open_attr_tbl = oatbl;
4558                         if (!oatbl) {
4559                                 err = -ENOMEM;
4560                                 goto out;
4561                         }
4562                 }
4563
4564                 /* Point to the entry being opened. */
4565                 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4566                 log->open_attr_tbl = oatbl;
4567                 if (!oe) {
4568                         err = -ENOMEM;
4569                         goto out;
4570                 }
4571
4572                 /* Initialize this entry from the log record. */
4573                 t16 = le16_to_cpu(lrh->redo_off);
4574                 if (!rst->major_ver) {
4575                         /* Convert version '0' into version '1'. */
4576                         struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4577
4578                         oe->bytes_per_index = oe0->bytes_per_index;
4579                         oe->type = oe0->type;
4580                         oe->is_dirty_pages = oe0->is_dirty_pages;
4581                         oe->name_len = 0; //oe0.name_len;
4582                         oe->ref = oe0->ref;
4583                         oe->open_record_lsn = oe0->open_record_lsn;
4584                 } else {
4585                         memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4586                 }
4587
4588                 t16 = le16_to_cpu(lrh->undo_len);
4589                 if (t16) {
4590                         oe->ptr = kmalloc(t16, GFP_NOFS);
4591                         if (!oe->ptr) {
4592                                 err = -ENOMEM;
4593                                 goto out;
4594                         }
4595                         oe->name_len = t16 / sizeof(short);
4596                         memcpy(oe->ptr,
4597                                Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4598                         oe->is_attr_name = 1;
4599                 } else {
4600                         oe->ptr = NULL;
4601                         oe->is_attr_name = 0;
4602                 }
4603
4604                 goto next_log_record_analyze;
4605
4606         case HotFix:
4607                 t16 = le16_to_cpu(lrh->target_attr);
4608                 t64 = le64_to_cpu(lrh->target_vcn);
4609                 dp = find_dp(dptbl, t16, t64);
4610                 if (dp) {
4611                         size_t j = le64_to_cpu(lrh->target_vcn) -
4612                                    le64_to_cpu(dp->vcn);
4613                         if (dp->page_lcns[j])
4614                                 dp->page_lcns[j] = lrh->page_lcns[0];
4615                 }
4616                 goto next_log_record_analyze;
4617
4618         case EndTopLevelAction:
4619                 tr = Add2Ptr(trtbl, transact_id);
4620                 tr->prev_lsn = cpu_to_le64(rec_lsn);
4621                 tr->undo_next_lsn = frh->client_undo_next_lsn;
4622                 goto next_log_record_analyze;
4623
4624         case PrepareTransaction:
4625                 tr = Add2Ptr(trtbl, transact_id);
4626                 tr->transact_state = TransactionPrepared;
4627                 goto next_log_record_analyze;
4628
4629         case CommitTransaction:
4630                 tr = Add2Ptr(trtbl, transact_id);
4631                 tr->transact_state = TransactionCommitted;
4632                 goto next_log_record_analyze;
4633
4634         case ForgetTransaction:
4635                 free_rsttbl_idx(trtbl, transact_id);
4636                 goto next_log_record_analyze;
4637
4638         case Noop:
4639         case OpenAttributeTableDump:
4640         case AttributeNamesDump:
4641         case DirtyPageTableDump:
4642         case TransactionTableDump:
4643                 /* The following cases require no action the Analysis Pass. */
4644                 goto next_log_record_analyze;
4645
4646         default:
4647                 /*
4648                  * All codes will be explicitly handled.
4649                  * If we see a code we do not expect, then we are trouble.
4650                  */
4651                 goto next_log_record_analyze;
4652         }
4653
4654 end_log_records_enumerate:
4655         lcb_put(lcb);
4656         lcb = NULL;
4657
4658         /*
4659          * Scan the Dirty Page Table and Transaction Table for
4660          * the lowest lsn, and return it as the Redo lsn.
4661          */
4662         dp = NULL;
4663         while ((dp = enum_rstbl(dptbl, dp))) {
4664                 t64 = le64_to_cpu(dp->oldest_lsn);
4665                 if (t64 && t64 < rlsn)
4666                         rlsn = t64;
4667         }
4668
4669         tr = NULL;
4670         while ((tr = enum_rstbl(trtbl, tr))) {
4671                 t64 = le64_to_cpu(tr->first_lsn);
4672                 if (t64 && t64 < rlsn)
4673                         rlsn = t64;
4674         }
4675
4676         /*
4677          * Only proceed if the Dirty Page Table or Transaction
4678          * table are not empty.
4679          */
4680         if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4681                 goto end_reply;
4682
4683         sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4684         if (is_ro)
4685                 goto out;
4686
4687         /* Reopen all of the attributes with dirty pages. */
4688         oe = NULL;
4689 next_open_attribute:
4690
4691         oe = enum_rstbl(oatbl, oe);
4692         if (!oe) {
4693                 err = 0;
4694                 dp = NULL;
4695                 goto next_dirty_page;
4696         }
4697
4698         oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4699         if (!oa) {
4700                 err = -ENOMEM;
4701                 goto out;
4702         }
4703
4704         inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4705         if (IS_ERR(inode))
4706                 goto fake_attr;
4707
4708         if (is_bad_inode(inode)) {
4709                 iput(inode);
4710 fake_attr:
4711                 if (oa->ni) {
4712                         iput(&oa->ni->vfs_inode);
4713                         oa->ni = NULL;
4714                 }
4715
4716                 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4717                                               oe->name_len, 0);
4718                 if (!attr) {
4719                         kfree(oa);
4720                         err = -ENOMEM;
4721                         goto out;
4722                 }
4723                 oa->attr = attr;
4724                 oa->run1 = &oa->run0;
4725                 goto final_oe;
4726         }
4727
4728         ni_oe = ntfs_i(inode);
4729         oa->ni = ni_oe;
4730
4731         attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4732                             NULL, NULL);
4733
4734         if (!attr)
4735                 goto fake_attr;
4736
4737         t32 = le32_to_cpu(attr->size);
4738         oa->attr = kmemdup(attr, t32, GFP_NOFS);
4739         if (!oa->attr)
4740                 goto fake_attr;
4741
4742         if (!S_ISDIR(inode->i_mode)) {
4743                 if (attr->type == ATTR_DATA && !attr->name_len) {
4744                         oa->run1 = &ni_oe->file.run;
4745                         goto final_oe;
4746                 }
4747         } else {
4748                 if (attr->type == ATTR_ALLOC &&
4749                     attr->name_len == ARRAY_SIZE(I30_NAME) &&
4750                     !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4751                         oa->run1 = &ni_oe->dir.alloc_run;
4752                         goto final_oe;
4753                 }
4754         }
4755
4756         if (attr->non_res) {
4757                 u16 roff = le16_to_cpu(attr->nres.run_off);
4758                 CLST svcn = le64_to_cpu(attr->nres.svcn);
4759
4760                 if (roff > t32) {
4761                         kfree(oa->attr);
4762                         oa->attr = NULL;
4763                         goto fake_attr;
4764                 }
4765
4766                 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4767                                  le64_to_cpu(attr->nres.evcn), svcn,
4768                                  Add2Ptr(attr, roff), t32 - roff);
4769                 if (err < 0) {
4770                         kfree(oa->attr);
4771                         oa->attr = NULL;
4772                         goto fake_attr;
4773                 }
4774                 err = 0;
4775         }
4776         oa->run1 = &oa->run0;
4777         attr = oa->attr;
4778
4779 final_oe:
4780         if (oe->is_attr_name == 1)
4781                 kfree(oe->ptr);
4782         oe->is_attr_name = 0;
4783         oe->ptr = oa;
4784         oe->name_len = attr->name_len;
4785
4786         goto next_open_attribute;
4787
4788         /*
4789          * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4790          * Mapping that we have, and insert it into the appropriate run.
4791          */
4792 next_dirty_page:
4793         dp = enum_rstbl(dptbl, dp);
4794         if (!dp)
4795                 goto do_redo_1;
4796
4797         oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4798
4799         if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4800                 goto next_dirty_page;
4801
4802         oa = oe->ptr;
4803         if (!oa)
4804                 goto next_dirty_page;
4805
4806         i = -1;
4807 next_dirty_page_vcn:
4808         i += 1;
4809         if (i >= le32_to_cpu(dp->lcns_follow))
4810                 goto next_dirty_page;
4811
4812         vcn = le64_to_cpu(dp->vcn) + i;
4813         size = (vcn + 1) << sbi->cluster_bits;
4814
4815         if (!dp->page_lcns[i])
4816                 goto next_dirty_page_vcn;
4817
4818         rno = ino_get(&oe->ref);
4819         if (rno <= MFT_REC_MIRR &&
4820             size < (MFT_REC_VOL + 1) * sbi->record_size &&
4821             oe->type == ATTR_DATA) {
4822                 goto next_dirty_page_vcn;
4823         }
4824
4825         lcn = le64_to_cpu(dp->page_lcns[i]);
4826
4827         if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4828              lcn0 != lcn) &&
4829             !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4830                 err = -ENOMEM;
4831                 goto out;
4832         }
4833         attr = oa->attr;
4834         if (size > le64_to_cpu(attr->nres.alloc_size)) {
4835                 attr->nres.valid_size = attr->nres.data_size =
4836                         attr->nres.alloc_size = cpu_to_le64(size);
4837         }
4838         goto next_dirty_page_vcn;
4839
4840 do_redo_1:
4841         /*
4842          * Perform the Redo Pass, to restore all of the dirty pages to the same
4843          * contents that they had immediately before the crash. If the dirty
4844          * page table is empty, then we can skip the entire Redo Pass.
4845          */
4846         if (!dptbl || !dptbl->total)
4847                 goto do_undo_action;
4848
4849         rec_lsn = rlsn;
4850
4851         /*
4852          * Read the record at the Redo lsn, before falling
4853          * into common code to handle each record.
4854          */
4855         err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4856         if (err)
4857                 goto out;
4858
4859         /*
4860          * Now loop to read all of our log records forwards, until
4861          * we hit the end of the file, cleaning up at the end.
4862          */
4863 do_action_next:
4864         frh = lcb->lrh;
4865
4866         if (LfsClientRecord != frh->record_type)
4867                 goto read_next_log_do_action;
4868
4869         transact_id = le32_to_cpu(frh->transact_id);
4870         rec_len = le32_to_cpu(frh->client_data_len);
4871         lrh = lcb->log_rec;
4872
4873         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4874                 err = -EINVAL;
4875                 goto out;
4876         }
4877
4878         /* Ignore log records that do not update pages. */
4879         if (lrh->lcns_follow)
4880                 goto find_dirty_page;
4881
4882         goto read_next_log_do_action;
4883
4884 find_dirty_page:
4885         t16 = le16_to_cpu(lrh->target_attr);
4886         t64 = le64_to_cpu(lrh->target_vcn);
4887         dp = find_dp(dptbl, t16, t64);
4888
4889         if (!dp)
4890                 goto read_next_log_do_action;
4891
4892         if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4893                 goto read_next_log_do_action;
4894
4895         t16 = le16_to_cpu(lrh->target_attr);
4896         if (t16 >= bytes_per_rt(oatbl)) {
4897                 err = -EINVAL;
4898                 goto out;
4899         }
4900
4901         oe = Add2Ptr(oatbl, t16);
4902
4903         if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4904                 err = -EINVAL;
4905                 goto out;
4906         }
4907
4908         oa = oe->ptr;
4909
4910         if (!oa) {
4911                 err = -EINVAL;
4912                 goto out;
4913         }
4914         attr = oa->attr;
4915
4916         vcn = le64_to_cpu(lrh->target_vcn);
4917
4918         if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4919             lcn == SPARSE_LCN) {
4920                 goto read_next_log_do_action;
4921         }
4922
4923         /* Point to the Redo data and get its length. */
4924         data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4925         dlen = le16_to_cpu(lrh->redo_len);
4926
4927         /* Shorten length by any Lcns which were deleted. */
4928         saved_len = dlen;
4929
4930         for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4931                 size_t j;
4932                 u32 alen, voff;
4933
4934                 voff = le16_to_cpu(lrh->record_off) +
4935                        le16_to_cpu(lrh->attr_off);
4936                 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4937
4938                 /* If the Vcn question is allocated, we can just get out. */
4939                 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4940                 if (dp->page_lcns[j + i - 1])
4941                         break;
4942
4943                 if (!saved_len)
4944                         saved_len = 1;
4945
4946                 /*
4947                  * Calculate the allocated space left relative to the
4948                  * log record Vcn, after removing this unallocated Vcn.
4949                  */
4950                 alen = (i - 1) << sbi->cluster_bits;
4951
4952                 /*
4953                  * If the update described this log record goes beyond
4954                  * the allocated space, then we will have to reduce the length.
4955                  */
4956                 if (voff >= alen)
4957                         dlen = 0;
4958                 else if (voff + dlen > alen)
4959                         dlen = alen - voff;
4960         }
4961
4962         /*
4963          * If the resulting dlen from above is now zero,
4964          * we can skip this log record.
4965          */
4966         if (!dlen && saved_len)
4967                 goto read_next_log_do_action;
4968
4969         t16 = le16_to_cpu(lrh->redo_op);
4970         if (can_skip_action(t16))
4971                 goto read_next_log_do_action;
4972
4973         /* Apply the Redo operation a common routine. */
4974         err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4975         if (err)
4976                 goto out;
4977
4978         /* Keep reading and looping back until end of file. */
4979 read_next_log_do_action:
4980         err = read_next_log_rec(log, lcb, &rec_lsn);
4981         if (!err && rec_lsn)
4982                 goto do_action_next;
4983
4984         lcb_put(lcb);
4985         lcb = NULL;
4986
4987 do_undo_action:
4988         /* Scan Transaction Table. */
4989         tr = NULL;
4990 transaction_table_next:
4991         tr = enum_rstbl(trtbl, tr);
4992         if (!tr)
4993                 goto undo_action_done;
4994
4995         if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
4996                 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
4997                 goto transaction_table_next;
4998         }
4999
5000         log->transaction_id = PtrOffset(trtbl, tr);
5001         undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5002
5003         /*
5004          * We only have to do anything if the transaction has
5005          * something its undo_next_lsn field.
5006          */
5007         if (!undo_next_lsn)
5008                 goto commit_undo;
5009
5010         /* Read the first record to be undone by this transaction. */
5011         err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5012         if (err)
5013                 goto out;
5014
5015         /*
5016          * Now loop to read all of our log records forwards,
5017          * until we hit the end of the file, cleaning up at the end.
5018          */
5019 undo_action_next:
5020
5021         lrh = lcb->log_rec;
5022         frh = lcb->lrh;
5023         transact_id = le32_to_cpu(frh->transact_id);
5024         rec_len = le32_to_cpu(frh->client_data_len);
5025
5026         if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5027                 err = -EINVAL;
5028                 goto out;
5029         }
5030
5031         if (lrh->undo_op == cpu_to_le16(Noop))
5032                 goto read_next_log_undo_action;
5033
5034         oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5035         oa = oe->ptr;
5036
5037         t16 = le16_to_cpu(lrh->lcns_follow);
5038         if (!t16)
5039                 goto add_allocated_vcns;
5040
5041         is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5042                                      &lcn, &clen, NULL);
5043
5044         /*
5045          * If the mapping isn't already the table or the  mapping
5046          * corresponds to a hole the mapping, we need to make sure
5047          * there is no partial page already memory.
5048          */
5049         if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5050                 goto add_allocated_vcns;
5051
5052         vcn = le64_to_cpu(lrh->target_vcn);
5053         vcn &= ~(u64)(log->clst_per_page - 1);
5054
5055 add_allocated_vcns:
5056         for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5057             size = (vcn + 1) << sbi->cluster_bits;
5058              i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5059                 attr = oa->attr;
5060                 if (!attr->non_res) {
5061                         if (size > le32_to_cpu(attr->res.data_size))
5062                                 attr->res.data_size = cpu_to_le32(size);
5063                 } else {
5064                         if (size > le64_to_cpu(attr->nres.data_size))
5065                                 attr->nres.valid_size = attr->nres.data_size =
5066                                         attr->nres.alloc_size =
5067                                                 cpu_to_le64(size);
5068                 }
5069         }
5070
5071         t16 = le16_to_cpu(lrh->undo_op);
5072         if (can_skip_action(t16))
5073                 goto read_next_log_undo_action;
5074
5075         /* Point to the Redo data and get its length. */
5076         data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5077         dlen = le16_to_cpu(lrh->undo_len);
5078
5079         /* It is time to apply the undo action. */
5080         err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5081
5082 read_next_log_undo_action:
5083         /*
5084          * Keep reading and looping back until we have read the
5085          * last record for this transaction.
5086          */
5087         err = read_next_log_rec(log, lcb, &rec_lsn);
5088         if (err)
5089                 goto out;
5090
5091         if (rec_lsn)
5092                 goto undo_action_next;
5093
5094         lcb_put(lcb);
5095         lcb = NULL;
5096
5097 commit_undo:
5098         free_rsttbl_idx(trtbl, log->transaction_id);
5099
5100         log->transaction_id = 0;
5101
5102         goto transaction_table_next;
5103
5104 undo_action_done:
5105
5106         ntfs_update_mftmirr(sbi, 0);
5107
5108         sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5109
5110 end_reply:
5111
5112         err = 0;
5113         if (is_ro)
5114                 goto out;
5115
5116         rh = kzalloc(log->page_size, GFP_NOFS);
5117         if (!rh) {
5118                 err = -ENOMEM;
5119                 goto out;
5120         }
5121
5122         rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5123         rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5124         t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5125         rh->rhdr.fix_num = cpu_to_le16(t16);
5126         rh->sys_page_size = cpu_to_le32(log->page_size);
5127         rh->page_size = cpu_to_le32(log->page_size);
5128
5129         t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5130                     8);
5131         rh->ra_off = cpu_to_le16(t16);
5132         rh->minor_ver = cpu_to_le16(1); // 0x1A:
5133         rh->major_ver = cpu_to_le16(1); // 0x1C:
5134
5135         ra2 = Add2Ptr(rh, t16);
5136         memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5137
5138         ra2->client_idx[0] = 0;
5139         ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5140         ra2->flags = cpu_to_le16(2);
5141
5142         le32_add_cpu(&ra2->open_log_count, 1);
5143
5144         ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5145
5146         err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5147         if (!err)
5148                 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5149                                         rh, log->page_size, 0);
5150
5151         kfree(rh);
5152         if (err)
5153                 goto out;
5154
5155 out:
5156         kfree(rst);
5157         if (lcb)
5158                 lcb_put(lcb);
5159
5160         /*
5161          * Scan the Open Attribute Table to close all of
5162          * the open attributes.
5163          */
5164         oe = NULL;
5165         while ((oe = enum_rstbl(oatbl, oe))) {
5166                 rno = ino_get(&oe->ref);
5167
5168                 if (oe->is_attr_name == 1) {
5169                         kfree(oe->ptr);
5170                         oe->ptr = NULL;
5171                         continue;
5172                 }
5173
5174                 if (oe->is_attr_name)
5175                         continue;
5176
5177                 oa = oe->ptr;
5178                 if (!oa)
5179                         continue;
5180
5181                 run_close(&oa->run0);
5182                 kfree(oa->attr);
5183                 if (oa->ni)
5184                         iput(&oa->ni->vfs_inode);
5185                 kfree(oa);
5186         }
5187
5188         kfree(trtbl);
5189         kfree(oatbl);
5190         kfree(dptbl);
5191         kfree(attr_names);
5192         kfree(rst_info.r_page);
5193
5194         kfree(ra);
5195         kfree(log->one_page_buf);
5196
5197         if (err)
5198                 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5199
5200         if (err == -EROFS)
5201                 err = 0;
5202         else if (log->set_dirty)
5203                 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
5204
5205         kfree(log);
5206
5207         return err;
5208 }