1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
8 #include <linux/blkdev.h>
10 #include <linux/random.h>
11 #include <linux/slab.h>
23 #define MaxLogFileSize 0x100000000ull
24 #define DefaultLogPageSize 4096
25 #define MinLogRecordPages 0x30
28 struct NTFS_RECORD_HEADER rhdr; // 'RSTR'
29 __le32 sys_page_size; // 0x10: Page size of the system which initialized the log.
30 __le32 page_size; // 0x14: Log page size used for this log file.
31 __le16 ra_off; // 0x18:
32 __le16 minor_ver; // 0x1A:
33 __le16 major_ver; // 0x1C:
37 #define LFS_NO_CLIENT 0xffff
38 #define LFS_NO_CLIENT_LE cpu_to_le16(0xffff)
42 __le64 restart_lsn; // 0x08:
43 __le16 prev_client; // 0x10:
44 __le16 next_client; // 0x12:
45 __le16 seq_num; // 0x14:
47 __le32 name_bytes; // 0x1C: In bytes.
48 __le16 name[32]; // 0x20: Name of client.
51 static_assert(sizeof(struct CLIENT_REC) == 0x60);
53 /* Two copies of these will exist at the beginning of the log file */
55 __le64 current_lsn; // 0x00: Current logical end of log file.
56 __le16 log_clients; // 0x08: Maximum number of clients.
57 __le16 client_idx[2]; // 0x0A: Free/use index into the client record arrays.
58 __le16 flags; // 0x0E: See RESTART_SINGLE_PAGE_IO.
59 __le32 seq_num_bits; // 0x10: The number of bits in sequence number.
60 __le16 ra_len; // 0x14:
61 __le16 client_off; // 0x16:
62 __le64 l_size; // 0x18: Usable log file size.
63 __le32 last_lsn_data_len; // 0x20:
64 __le16 rec_hdr_len; // 0x24: Log page data offset.
65 __le16 data_off; // 0x26: Log page data length.
66 __le32 open_log_count; // 0x28:
67 __le32 align[5]; // 0x2C:
68 struct CLIENT_REC clients[]; // 0x40:
72 __le16 redo_op; // 0x00: NTFS_LOG_OPERATION
73 __le16 undo_op; // 0x02: NTFS_LOG_OPERATION
74 __le16 redo_off; // 0x04: Offset to Redo record.
75 __le16 redo_len; // 0x06: Redo length.
76 __le16 undo_off; // 0x08: Offset to Undo record.
77 __le16 undo_len; // 0x0A: Undo length.
78 __le16 target_attr; // 0x0C:
79 __le16 lcns_follow; // 0x0E:
80 __le16 record_off; // 0x10:
81 __le16 attr_off; // 0x12:
82 __le16 cluster_off; // 0x14:
83 __le16 reserved; // 0x16:
84 __le64 target_vcn; // 0x18:
85 __le64 page_lcns[]; // 0x20:
88 static_assert(sizeof(struct LOG_REC_HDR) == 0x20);
90 #define RESTART_ENTRY_ALLOCATED 0xFFFFFFFF
91 #define RESTART_ENTRY_ALLOCATED_LE cpu_to_le32(0xFFFFFFFF)
93 struct RESTART_TABLE {
94 __le16 size; // 0x00: In bytes
95 __le16 used; // 0x02: Entries
96 __le16 total; // 0x04: Entries
97 __le16 res[3]; // 0x06:
98 __le32 free_goal; // 0x0C:
99 __le32 first_free; // 0x10:
100 __le32 last_free; // 0x14:
104 static_assert(sizeof(struct RESTART_TABLE) == 0x18);
106 struct ATTR_NAME_ENTRY {
107 __le16 off; // Offset in the Open attribute Table.
112 struct OPEN_ATTR_ENRTY {
113 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
114 __le32 bytes_per_index; // 0x04:
115 enum ATTR_TYPE type; // 0x08:
116 u8 is_dirty_pages; // 0x0C:
117 u8 is_attr_name; // 0x0B: Faked field to manage 'ptr'
118 u8 name_len; // 0x0C: Faked field to manage 'ptr'
120 struct MFT_REF ref; // 0x10: File Reference of file containing attribute
121 __le64 open_record_lsn; // 0x18:
125 /* 32 bit version of 'struct OPEN_ATTR_ENRTY' */
126 struct OPEN_ATTR_ENRTY_32 {
127 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
129 struct MFT_REF ref; // 0x08:
130 __le64 open_record_lsn; // 0x10:
131 u8 is_dirty_pages; // 0x18:
132 u8 is_attr_name; // 0x19:
134 enum ATTR_TYPE type; // 0x1C:
135 u8 name_len; // 0x20: In wchar
137 __le32 AttributeName; // 0x24:
138 __le32 bytes_per_index; // 0x28:
141 #define SIZEOF_OPENATTRIBUTEENTRY0 0x2c
142 // static_assert( 0x2C == sizeof(struct OPEN_ATTR_ENRTY_32) );
143 static_assert(sizeof(struct OPEN_ATTR_ENRTY) < SIZEOF_OPENATTRIBUTEENTRY0);
146 * One entry exists in the Dirty Pages Table for each page which is dirty at
147 * the time the Restart Area is written.
149 struct DIR_PAGE_ENTRY {
150 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
151 __le32 target_attr; // 0x04: Index into the Open attribute Table
152 __le32 transfer_len; // 0x08:
153 __le32 lcns_follow; // 0x0C:
154 __le64 vcn; // 0x10: Vcn of dirty page
155 __le64 oldest_lsn; // 0x18:
156 __le64 page_lcns[]; // 0x20:
159 static_assert(sizeof(struct DIR_PAGE_ENTRY) == 0x20);
161 /* 32 bit version of 'struct DIR_PAGE_ENTRY' */
162 struct DIR_PAGE_ENTRY_32 {
163 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
164 __le32 target_attr; // 0x04: Index into the Open attribute Table
165 __le32 transfer_len; // 0x08:
166 __le32 lcns_follow; // 0x0C:
167 __le32 reserved; // 0x10:
168 __le32 vcn_low; // 0x14: Vcn of dirty page
169 __le32 vcn_hi; // 0x18: Vcn of dirty page
170 __le32 oldest_lsn_low; // 0x1C:
171 __le32 oldest_lsn_hi; // 0x1C:
172 __le32 page_lcns_low; // 0x24:
173 __le32 page_lcns_hi; // 0x24:
176 static_assert(offsetof(struct DIR_PAGE_ENTRY_32, vcn_low) == 0x14);
177 static_assert(sizeof(struct DIR_PAGE_ENTRY_32) == 0x2c);
179 enum transact_state {
180 TransactionUninitialized = 0,
186 struct TRANSACTION_ENTRY {
187 __le32 next; // 0x00: RESTART_ENTRY_ALLOCATED if allocated
188 u8 transact_state; // 0x04:
189 u8 reserved[3]; // 0x05:
190 __le64 first_lsn; // 0x08:
191 __le64 prev_lsn; // 0x10:
192 __le64 undo_next_lsn; // 0x18:
193 __le32 undo_records; // 0x20: Number of undo log records pending abort
194 __le32 undo_len; // 0x24: Total undo size
197 static_assert(sizeof(struct TRANSACTION_ENTRY) == 0x28);
199 struct NTFS_RESTART {
200 __le32 major_ver; // 0x00:
201 __le32 minor_ver; // 0x04:
202 __le64 check_point_start; // 0x08:
203 __le64 open_attr_table_lsn; // 0x10:
204 __le64 attr_names_lsn; // 0x18:
205 __le64 dirty_pages_table_lsn; // 0x20:
206 __le64 transact_table_lsn; // 0x28:
207 __le32 open_attr_len; // 0x30: In bytes
208 __le32 attr_names_len; // 0x34: In bytes
209 __le32 dirty_pages_len; // 0x38: In bytes
210 __le32 transact_table_len; // 0x3C: In bytes
213 static_assert(sizeof(struct NTFS_RESTART) == 0x40);
215 struct NEW_ATTRIBUTE_SIZES {
222 struct BITMAP_RANGE {
232 /* The following type defines the different log record types. */
233 #define LfsClientRecord cpu_to_le32(1)
234 #define LfsClientRestart cpu_to_le32(2)
236 /* This is used to uniquely identify a client for a particular log file. */
242 /* This is the header that begins every Log Record in the log file. */
243 struct LFS_RECORD_HDR {
244 __le64 this_lsn; // 0x00:
245 __le64 client_prev_lsn; // 0x08:
246 __le64 client_undo_next_lsn; // 0x10:
247 __le32 client_data_len; // 0x18:
248 struct CLIENT_ID client; // 0x1C: Owner of this log record.
249 __le32 record_type; // 0x20: LfsClientRecord or LfsClientRestart.
250 __le32 transact_id; // 0x24:
251 __le16 flags; // 0x28: LOG_RECORD_MULTI_PAGE
252 u8 align[6]; // 0x2A:
255 #define LOG_RECORD_MULTI_PAGE cpu_to_le16(1)
257 static_assert(sizeof(struct LFS_RECORD_HDR) == 0x30);
260 __le16 next_record_off; // 0x00: Offset of the free space in the page,
261 u8 align[6]; // 0x02:
262 __le64 last_end_lsn; // 0x08: lsn for the last log record which ends on the page,
265 static_assert(sizeof(struct LFS_RECORD) == 0x10);
267 struct RECORD_PAGE_HDR {
268 struct NTFS_RECORD_HEADER rhdr; // 'RCRD'
269 __le32 rflags; // 0x10: See LOG_PAGE_LOG_RECORD_END
270 __le16 page_count; // 0x14:
271 __le16 page_pos; // 0x16:
272 struct LFS_RECORD record_hdr; // 0x18:
273 __le16 fixups[10]; // 0x28:
274 __le32 file_off; // 0x3c: Used when major version >= 2
279 // Page contains the end of a log record.
280 #define LOG_PAGE_LOG_RECORD_END cpu_to_le32(0x00000001)
282 static inline bool is_log_record_end(const struct RECORD_PAGE_HDR *hdr)
284 return hdr->rflags & LOG_PAGE_LOG_RECORD_END;
287 static_assert(offsetof(struct RECORD_PAGE_HDR, file_off) == 0x3c);
290 * END of NTFS LOG structures
293 /* Define some tuning parameters to keep the restart tables a reasonable size. */
294 #define INITIAL_NUMBER_TRANSACTIONS 5
296 enum NTFS_LOG_OPERATION {
299 CompensationLogRecord = 0x01,
300 InitializeFileRecordSegment = 0x02,
301 DeallocateFileRecordSegment = 0x03,
302 WriteEndOfFileRecordSegment = 0x04,
303 CreateAttribute = 0x05,
304 DeleteAttribute = 0x06,
305 UpdateResidentValue = 0x07,
306 UpdateNonresidentValue = 0x08,
307 UpdateMappingPairs = 0x09,
308 DeleteDirtyClusters = 0x0A,
309 SetNewAttributeSizes = 0x0B,
310 AddIndexEntryRoot = 0x0C,
311 DeleteIndexEntryRoot = 0x0D,
312 AddIndexEntryAllocation = 0x0E,
313 DeleteIndexEntryAllocation = 0x0F,
314 WriteEndOfIndexBuffer = 0x10,
315 SetIndexEntryVcnRoot = 0x11,
316 SetIndexEntryVcnAllocation = 0x12,
317 UpdateFileNameRoot = 0x13,
318 UpdateFileNameAllocation = 0x14,
319 SetBitsInNonresidentBitMap = 0x15,
320 ClearBitsInNonresidentBitMap = 0x16,
322 EndTopLevelAction = 0x18,
323 PrepareTransaction = 0x19,
324 CommitTransaction = 0x1A,
325 ForgetTransaction = 0x1B,
326 OpenNonresidentAttribute = 0x1C,
327 OpenAttributeTableDump = 0x1D,
328 AttributeNamesDump = 0x1E,
329 DirtyPageTableDump = 0x1F,
330 TransactionTableDump = 0x20,
331 UpdateRecordDataRoot = 0x21,
332 UpdateRecordDataAllocation = 0x22,
334 UpdateRelativeDataInIndex =
335 0x23, // NtOfsRestartUpdateRelativeDataInIndex
336 UpdateRelativeDataInIndex2 = 0x24,
337 ZeroEndOfFileRecord = 0x25,
341 * Array for log records which require a target attribute.
342 * A true indicates that the corresponding restart operation
343 * requires a target attribute.
345 static const u8 AttributeRequired[] = {
346 0xFC, 0xFB, 0xFF, 0x10, 0x06,
349 static inline bool is_target_required(u16 op)
351 bool ret = op <= UpdateRecordDataAllocation &&
352 (AttributeRequired[op >> 3] >> (op & 7) & 1);
356 static inline bool can_skip_action(enum NTFS_LOG_OPERATION op)
360 case DeleteDirtyClusters:
362 case EndTopLevelAction:
363 case PrepareTransaction:
364 case CommitTransaction:
365 case ForgetTransaction:
366 case CompensationLogRecord:
367 case OpenNonresidentAttribute:
368 case OpenAttributeTableDump:
369 case AttributeNamesDump:
370 case DirtyPageTableDump:
371 case TransactionTableDump:
378 enum { lcb_ctx_undo_next, lcb_ctx_prev, lcb_ctx_next };
380 /* Bytes per restart table. */
381 static inline u32 bytes_per_rt(const struct RESTART_TABLE *rt)
383 return le16_to_cpu(rt->used) * le16_to_cpu(rt->size) +
384 sizeof(struct RESTART_TABLE);
387 /* Log record length. */
388 static inline u32 lrh_length(const struct LOG_REC_HDR *lr)
390 u16 t16 = le16_to_cpu(lr->lcns_follow);
392 return struct_size(lr, page_lcns, max_t(u16, 1, t16));
396 struct LFS_RECORD_HDR *lrh; // Log record header of the current lsn.
397 struct LOG_REC_HDR *log_rec;
398 u32 ctx_mode; // lcb_ctx_undo_next/lcb_ctx_prev/lcb_ctx_next
399 struct CLIENT_ID client;
400 bool alloc; // If true the we should deallocate 'log_rec'.
403 static void lcb_put(struct lcb *lcb)
411 /* Find the oldest lsn from active clients. */
412 static inline void oldest_client_lsn(const struct CLIENT_REC *ca,
413 __le16 next_client, u64 *oldest_lsn)
415 while (next_client != LFS_NO_CLIENT_LE) {
416 const struct CLIENT_REC *cr = ca + le16_to_cpu(next_client);
417 u64 lsn = le64_to_cpu(cr->oldest_lsn);
419 /* Ignore this block if it's oldest lsn is 0. */
420 if (lsn && lsn < *oldest_lsn)
423 next_client = cr->next_client;
427 static inline bool is_rst_page_hdr_valid(u32 file_off,
428 const struct RESTART_HDR *rhdr)
430 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
431 u32 page_size = le32_to_cpu(rhdr->page_size);
435 if (sys_page < SECTOR_SIZE || page_size < SECTOR_SIZE ||
436 sys_page & (sys_page - 1) || page_size & (page_size - 1)) {
440 /* Check that if the file offset isn't 0, it is the system page size. */
441 if (file_off && file_off != sys_page)
444 /* Check support version 1.1+. */
445 if (le16_to_cpu(rhdr->major_ver) <= 1 && !rhdr->minor_ver)
448 if (le16_to_cpu(rhdr->major_ver) > 2)
451 ro = le16_to_cpu(rhdr->ra_off);
452 if (!IS_ALIGNED(ro, 8) || ro > sys_page)
455 end_usa = ((sys_page >> SECTOR_SHIFT) + 1) * sizeof(short);
456 end_usa += le16_to_cpu(rhdr->rhdr.fix_off);
464 static inline bool is_rst_area_valid(const struct RESTART_HDR *rhdr)
466 const struct RESTART_AREA *ra;
468 u32 off, l_size, file_dat_bits, file_size_round;
469 u16 ro = le16_to_cpu(rhdr->ra_off);
470 u32 sys_page = le32_to_cpu(rhdr->sys_page_size);
472 if (ro + offsetof(struct RESTART_AREA, l_size) >
473 SECTOR_SIZE - sizeof(short))
476 ra = Add2Ptr(rhdr, ro);
477 cl = le16_to_cpu(ra->log_clients);
482 off = le16_to_cpu(ra->client_off);
484 if (!IS_ALIGNED(off, 8) || ro + off > SECTOR_SIZE - sizeof(short))
487 off += cl * sizeof(struct CLIENT_REC);
493 * Check the restart length field and whether the entire
494 * restart area is contained that length.
496 if (le16_to_cpu(rhdr->ra_off) + le16_to_cpu(ra->ra_len) > sys_page ||
497 off > le16_to_cpu(ra->ra_len)) {
502 * As a final check make sure that the use list and the free list
503 * are either empty or point to a valid client.
505 fl = le16_to_cpu(ra->client_idx[0]);
506 ul = le16_to_cpu(ra->client_idx[1]);
507 if ((fl != LFS_NO_CLIENT && fl >= cl) ||
508 (ul != LFS_NO_CLIENT && ul >= cl))
511 /* Make sure the sequence number bits match the log file size. */
512 l_size = le64_to_cpu(ra->l_size);
514 file_dat_bits = sizeof(u64) * 8 - le32_to_cpu(ra->seq_num_bits);
515 file_size_round = 1u << (file_dat_bits + 3);
516 if (file_size_round != l_size &&
517 (file_size_round < l_size || (file_size_round / 2) > l_size)) {
521 /* The log page data offset and record header length must be quad-aligned. */
522 if (!IS_ALIGNED(le16_to_cpu(ra->data_off), 8) ||
523 !IS_ALIGNED(le16_to_cpu(ra->rec_hdr_len), 8))
529 static inline bool is_client_area_valid(const struct RESTART_HDR *rhdr,
532 u16 ro = le16_to_cpu(rhdr->ra_off);
533 const struct RESTART_AREA *ra = Add2Ptr(rhdr, ro);
534 u16 ra_len = le16_to_cpu(ra->ra_len);
535 const struct CLIENT_REC *ca;
538 if (usa_error && ra_len + ro > SECTOR_SIZE - sizeof(short))
541 /* Find the start of the client array. */
542 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
545 * Start with the free list.
546 * Check that all the clients are valid and that there isn't a cycle.
547 * Do the in-use list on the second pass.
549 for (i = 0; i < 2; i++) {
550 u16 client_idx = le16_to_cpu(ra->client_idx[i]);
551 bool first_client = true;
552 u16 clients = le16_to_cpu(ra->log_clients);
554 while (client_idx != LFS_NO_CLIENT) {
555 const struct CLIENT_REC *cr;
558 client_idx >= le16_to_cpu(ra->log_clients))
562 cr = ca + client_idx;
564 client_idx = le16_to_cpu(cr->next_client);
567 first_client = false;
568 if (cr->prev_client != LFS_NO_CLIENT_LE)
580 * Remove a client record from a client record list an restart area.
582 static inline void remove_client(struct CLIENT_REC *ca,
583 const struct CLIENT_REC *cr, __le16 *head)
585 if (cr->prev_client == LFS_NO_CLIENT_LE)
586 *head = cr->next_client;
588 ca[le16_to_cpu(cr->prev_client)].next_client = cr->next_client;
590 if (cr->next_client != LFS_NO_CLIENT_LE)
591 ca[le16_to_cpu(cr->next_client)].prev_client = cr->prev_client;
595 * add_client - Add a client record to the start of a list.
597 static inline void add_client(struct CLIENT_REC *ca, u16 index, __le16 *head)
599 struct CLIENT_REC *cr = ca + index;
601 cr->prev_client = LFS_NO_CLIENT_LE;
602 cr->next_client = *head;
604 if (*head != LFS_NO_CLIENT_LE)
605 ca[le16_to_cpu(*head)].prev_client = cpu_to_le16(index);
607 *head = cpu_to_le16(index);
610 static inline void *enum_rstbl(struct RESTART_TABLE *t, void *c)
614 u16 rsize = t ? le16_to_cpu(t->size) : 0;
619 e = Add2Ptr(t, sizeof(struct RESTART_TABLE));
621 e = Add2Ptr(c, rsize);
624 /* Loop until we hit the first one allocated, or the end of the list. */
625 for (bprt = bytes_per_rt(t); PtrOffset(t, e) < bprt;
626 e = Add2Ptr(e, rsize)) {
627 if (*e == RESTART_ENTRY_ALLOCATED_LE)
634 * find_dp - Search for a @vcn in Dirty Page Table.
636 static inline struct DIR_PAGE_ENTRY *find_dp(struct RESTART_TABLE *dptbl,
637 u32 target_attr, u64 vcn)
639 __le32 ta = cpu_to_le32(target_attr);
640 struct DIR_PAGE_ENTRY *dp = NULL;
642 while ((dp = enum_rstbl(dptbl, dp))) {
643 u64 dp_vcn = le64_to_cpu(dp->vcn);
645 if (dp->target_attr == ta && vcn >= dp_vcn &&
646 vcn < dp_vcn + le32_to_cpu(dp->lcns_follow)) {
653 static inline u32 norm_file_page(u32 page_size, u32 *l_size, bool use_default)
656 page_size = DefaultLogPageSize;
658 /* Round the file size down to a system page boundary. */
659 *l_size &= ~(page_size - 1);
661 /* File should contain at least 2 restart pages and MinLogRecordPages pages. */
662 if (*l_size < (MinLogRecordPages + 2) * page_size)
668 static bool check_log_rec(const struct LOG_REC_HDR *lr, u32 bytes, u32 tr,
669 u32 bytes_per_attr_entry)
673 if (bytes < sizeof(struct LOG_REC_HDR))
678 if ((tr - sizeof(struct RESTART_TABLE)) %
679 sizeof(struct TRANSACTION_ENTRY))
682 if (le16_to_cpu(lr->redo_off) & 7)
685 if (le16_to_cpu(lr->undo_off) & 7)
691 if (is_target_required(le16_to_cpu(lr->redo_op)))
694 if (is_target_required(le16_to_cpu(lr->undo_op)))
698 if (!lr->lcns_follow)
701 t16 = le16_to_cpu(lr->target_attr);
702 if ((t16 - sizeof(struct RESTART_TABLE)) % bytes_per_attr_entry)
706 if (bytes < lrh_length(lr))
712 static bool check_rstbl(const struct RESTART_TABLE *rt, size_t bytes)
716 u16 rsize = le16_to_cpu(rt->size);
717 u16 ne = le16_to_cpu(rt->used);
718 u32 ff = le32_to_cpu(rt->first_free);
719 u32 lf = le32_to_cpu(rt->last_free);
721 ts = rsize * ne + sizeof(struct RESTART_TABLE);
723 if (!rsize || rsize > bytes ||
724 rsize + sizeof(struct RESTART_TABLE) > bytes || bytes < ts ||
725 le16_to_cpu(rt->total) > ne || ff > ts || lf > ts ||
726 (ff && ff < sizeof(struct RESTART_TABLE)) ||
727 (lf && lf < sizeof(struct RESTART_TABLE))) {
732 * Verify each entry is either allocated or points
733 * to a valid offset the table.
735 for (i = 0; i < ne; i++) {
736 off = le32_to_cpu(*(__le32 *)Add2Ptr(
737 rt, i * rsize + sizeof(struct RESTART_TABLE)));
739 if (off != RESTART_ENTRY_ALLOCATED && off &&
740 (off < sizeof(struct RESTART_TABLE) ||
741 ((off - sizeof(struct RESTART_TABLE)) % rsize))) {
747 * Walk through the list headed by the first entry to make
748 * sure none of the entries are currently being used.
750 for (off = ff; off;) {
751 if (off == RESTART_ENTRY_ALLOCATED)
754 off = le32_to_cpu(*(__le32 *)Add2Ptr(rt, off));
761 * free_rsttbl_idx - Free a previously allocated index a Restart Table.
763 static inline void free_rsttbl_idx(struct RESTART_TABLE *rt, u32 off)
766 u32 lf = le32_to_cpu(rt->last_free);
767 __le32 off_le = cpu_to_le32(off);
769 e = Add2Ptr(rt, off);
771 if (off < le32_to_cpu(rt->free_goal)) {
773 rt->first_free = off_le;
775 rt->last_free = off_le;
778 *(__le32 *)Add2Ptr(rt, lf) = off_le;
780 rt->first_free = off_le;
782 rt->last_free = off_le;
786 le16_sub_cpu(&rt->total, 1);
789 static inline struct RESTART_TABLE *init_rsttbl(u16 esize, u16 used)
791 __le32 *e, *last_free;
793 u32 bytes = esize * used + sizeof(struct RESTART_TABLE);
794 u32 lf = sizeof(struct RESTART_TABLE) + (used - 1) * esize;
795 struct RESTART_TABLE *t = kzalloc(bytes, GFP_NOFS);
800 t->size = cpu_to_le16(esize);
801 t->used = cpu_to_le16(used);
802 t->free_goal = cpu_to_le32(~0u);
803 t->first_free = cpu_to_le32(sizeof(struct RESTART_TABLE));
804 t->last_free = cpu_to_le32(lf);
806 e = (__le32 *)(t + 1);
807 last_free = Add2Ptr(t, lf);
809 for (off = sizeof(struct RESTART_TABLE) + esize; e < last_free;
810 e = Add2Ptr(e, esize), off += esize) {
811 *e = cpu_to_le32(off);
816 static inline struct RESTART_TABLE *extend_rsttbl(struct RESTART_TABLE *tbl,
817 u32 add, u32 free_goal)
819 u16 esize = le16_to_cpu(tbl->size);
820 __le32 osize = cpu_to_le32(bytes_per_rt(tbl));
821 u32 used = le16_to_cpu(tbl->used);
822 struct RESTART_TABLE *rt;
824 rt = init_rsttbl(esize, used + add);
828 memcpy(rt + 1, tbl + 1, esize * used);
830 rt->free_goal = free_goal == ~0u
832 : cpu_to_le32(sizeof(struct RESTART_TABLE) +
835 if (tbl->first_free) {
836 rt->first_free = tbl->first_free;
837 *(__le32 *)Add2Ptr(rt, le32_to_cpu(tbl->last_free)) = osize;
839 rt->first_free = osize;
842 rt->total = tbl->total;
851 * Allocate an index from within a previously initialized Restart Table.
853 static inline void *alloc_rsttbl_idx(struct RESTART_TABLE **tbl)
857 struct RESTART_TABLE *t = *tbl;
859 if (!t->first_free) {
860 *tbl = t = extend_rsttbl(t, 16, ~0u);
865 off = le32_to_cpu(t->first_free);
867 /* Dequeue this entry and zero it. */
872 memset(e, 0, le16_to_cpu(t->size));
874 *e = RESTART_ENTRY_ALLOCATED_LE;
876 /* If list is going empty, then we fix the last_free as well. */
880 le16_add_cpu(&t->total, 1);
882 return Add2Ptr(t, off);
886 * alloc_rsttbl_from_idx
888 * Allocate a specific index from within a previously initialized Restart Table.
890 static inline void *alloc_rsttbl_from_idx(struct RESTART_TABLE **tbl, u32 vbo)
894 struct RESTART_TABLE *rt = *tbl;
895 u32 bytes = bytes_per_rt(rt);
896 u16 esize = le16_to_cpu(rt->size);
898 /* If the entry is not the table, we will have to extend the table. */
901 * Extend the size by computing the number of entries between
902 * the existing size and the desired index and adding 1 to that.
904 u32 bytes2idx = vbo - bytes;
907 * There should always be an integral number of entries
908 * being added. Now extend the table.
910 *tbl = rt = extend_rsttbl(rt, bytes2idx / esize + 1, bytes);
915 /* See if the entry is already allocated, and just return if it is. */
916 e = Add2Ptr(rt, vbo);
918 if (*e == RESTART_ENTRY_ALLOCATED_LE)
922 * Walk through the table, looking for the entry we're
923 * interested and the previous entry.
925 off = le32_to_cpu(rt->first_free);
926 e = Add2Ptr(rt, off);
929 /* this is a match */
935 * Need to walk through the list looking for the predecessor
939 /* Remember the entry just found */
943 /* Should never run of entries. */
945 /* Lookup up the next entry the list. */
946 off = le32_to_cpu(*last_e);
947 e = Add2Ptr(rt, off);
949 /* If this is our match we are done. */
954 * If this was the last entry, we update that
957 if (le32_to_cpu(rt->last_free) == off)
958 rt->last_free = cpu_to_le32(last_off);
964 /* If the list is now empty, we fix the last_free as well. */
968 /* Zero this entry. */
970 *e = RESTART_ENTRY_ALLOCATED_LE;
972 le16_add_cpu(&rt->total, 1);
977 #define RESTART_SINGLE_PAGE_IO cpu_to_le16(0x0001)
979 #define NTFSLOG_WRAPPED 0x00000001
980 #define NTFSLOG_MULTIPLE_PAGE_IO 0x00000002
981 #define NTFSLOG_NO_LAST_LSN 0x00000004
982 #define NTFSLOG_REUSE_TAIL 0x00000010
983 #define NTFSLOG_NO_OLDEST_LSN 0x00000020
985 /* Helper struct to work with NTFS $LogFile. */
987 struct ntfs_inode *ni;
993 u32 page_mask; // page_size - 1
995 struct RECORD_PAGE_HDR *one_page_buf;
997 struct RESTART_TABLE *open_attr_tbl;
1007 u16 record_header_len;
1011 u32 seq_num_mask; /* (1 << file_data_bits) - 1 */
1013 struct RESTART_AREA *ra; /* In-memory image of the next restart area. */
1014 u32 ra_size; /* The usable size of the restart area. */
1017 * If true, then the in-memory restart area is to be written
1018 * to the first position on the disk.
1021 bool set_dirty; /* True if we need to set dirty flag. */
1029 u32 total_avail_pages;
1030 u32 total_undo_commit;
1031 u32 max_current_avail;
1038 u32 l_flags; /* See NTFSLOG_XXX */
1039 u32 current_openlog_count; /* On-disk value for open_log_count. */
1041 struct CLIENT_ID client_id;
1042 u32 client_undo_commit;
1045 static inline u32 lsn_to_vbo(struct ntfs_log *log, const u64 lsn)
1047 u32 vbo = (lsn << log->seq_num_bits) >> (log->seq_num_bits - 3);
1052 /* Compute the offset in the log file of the next log page. */
1053 static inline u32 next_page_off(struct ntfs_log *log, u32 off)
1055 off = (off & ~log->sys_page_mask) + log->page_size;
1056 return off >= log->l_size ? log->first_page : off;
1059 static inline u32 lsn_to_page_off(struct ntfs_log *log, u64 lsn)
1061 return (((u32)lsn) << 3) & log->page_mask;
1064 static inline u64 vbo_to_lsn(struct ntfs_log *log, u32 off, u64 Seq)
1066 return (off >> 3) + (Seq << log->file_data_bits);
1069 static inline bool is_lsn_in_file(struct ntfs_log *log, u64 lsn)
1071 return lsn >= log->oldest_lsn &&
1072 lsn <= le64_to_cpu(log->ra->current_lsn);
1075 static inline u32 hdr_file_off(struct ntfs_log *log,
1076 struct RECORD_PAGE_HDR *hdr)
1078 if (log->major_ver < 2)
1079 return le64_to_cpu(hdr->rhdr.lsn);
1081 return le32_to_cpu(hdr->file_off);
1084 static inline u64 base_lsn(struct ntfs_log *log,
1085 const struct RECORD_PAGE_HDR *hdr, u64 lsn)
1087 u64 h_lsn = le64_to_cpu(hdr->rhdr.lsn);
1088 u64 ret = (((h_lsn >> log->file_data_bits) +
1089 (lsn < (lsn_to_vbo(log, h_lsn) & ~log->page_mask) ? 1 : 0))
1090 << log->file_data_bits) +
1091 ((((is_log_record_end(hdr) &&
1092 h_lsn <= le64_to_cpu(hdr->record_hdr.last_end_lsn))
1093 ? le16_to_cpu(hdr->record_hdr.next_record_off)
1101 static inline bool verify_client_lsn(struct ntfs_log *log,
1102 const struct CLIENT_REC *client, u64 lsn)
1104 return lsn >= le64_to_cpu(client->oldest_lsn) &&
1105 lsn <= le64_to_cpu(log->ra->current_lsn) && lsn;
1108 struct restart_info {
1110 struct RESTART_HDR *r_page;
1112 bool chkdsk_was_run;
1118 static int read_log_page(struct ntfs_log *log, u32 vbo,
1119 struct RECORD_PAGE_HDR **buffer, bool *usa_error)
1122 u32 page_idx = vbo >> log->page_bits;
1123 u32 page_off = vbo & log->page_mask;
1124 u32 bytes = log->page_size - page_off;
1125 void *to_free = NULL;
1126 u32 page_vbo = page_idx << log->page_bits;
1127 struct RECORD_PAGE_HDR *page_buf;
1128 struct ntfs_inode *ni = log->ni;
1131 if (vbo >= log->l_size)
1135 to_free = kmalloc(bytes, GFP_NOFS);
1141 page_buf = page_off ? log->one_page_buf : *buffer;
1143 err = ntfs_read_run_nb(ni->mi.sbi, &ni->file.run, page_vbo, page_buf,
1144 log->page_size, NULL);
1148 if (page_buf->rhdr.sign != NTFS_FFFF_SIGNATURE)
1149 ntfs_fix_post_read(&page_buf->rhdr, PAGE_SIZE, false);
1151 if (page_buf != *buffer)
1152 memcpy(*buffer, Add2Ptr(page_buf, page_off), bytes);
1154 bBAAD = page_buf->rhdr.sign == NTFS_BAAD_SIGNATURE;
1158 /* Check that the update sequence array for this page is valid */
1159 /* If we don't allow errors, raise an error status */
1164 if (err && to_free) {
1175 * It walks through 512 blocks of the file looking for a valid
1176 * restart page header. It will stop the first time we find a
1177 * valid page header.
1179 static int log_read_rst(struct ntfs_log *log, u32 l_size, bool first,
1180 struct restart_info *info)
1183 struct RESTART_HDR *r_page = kmalloc(DefaultLogPageSize, GFP_NOFS);
1188 memset(info, 0, sizeof(struct restart_info));
1190 /* Determine which restart area we are looking for. */
1199 /* Loop continuously until we succeed. */
1200 for (; vbo < l_size; vbo = 2 * vbo + skip, skip = 0) {
1204 struct RESTART_AREA *ra;
1206 /* Read a page header at the current offset. */
1207 if (read_log_page(log, vbo, (struct RECORD_PAGE_HDR **)&r_page,
1209 /* Ignore any errors. */
1213 /* Exit if the signature is a log record page. */
1214 if (r_page->rhdr.sign == NTFS_RCRD_SIGNATURE) {
1215 info->initialized = true;
1219 brst = r_page->rhdr.sign == NTFS_RSTR_SIGNATURE;
1220 bchk = r_page->rhdr.sign == NTFS_CHKD_SIGNATURE;
1222 if (!bchk && !brst) {
1223 if (r_page->rhdr.sign != NTFS_FFFF_SIGNATURE) {
1225 * Remember if the signature does not
1226 * indicate uninitialized file.
1228 info->initialized = true;
1234 info->valid_page = false;
1235 info->initialized = true;
1238 /* Let's check the restart area if this is a valid page. */
1239 if (!is_rst_page_hdr_valid(vbo, r_page))
1241 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1243 if (!is_rst_area_valid(r_page))
1247 * We have a valid restart page header and restart area.
1248 * If chkdsk was run or we have no clients then we have
1249 * no more checking to do.
1251 if (bchk || ra->client_idx[1] == LFS_NO_CLIENT_LE) {
1252 info->valid_page = true;
1256 /* Read the entire restart area. */
1257 sys_page_size = le32_to_cpu(r_page->sys_page_size);
1258 if (DefaultLogPageSize != sys_page_size) {
1260 r_page = kzalloc(sys_page_size, GFP_NOFS);
1264 if (read_log_page(log, vbo,
1265 (struct RECORD_PAGE_HDR **)&r_page,
1267 /* Ignore any errors. */
1274 if (is_client_area_valid(r_page, usa_error)) {
1275 info->valid_page = true;
1276 ra = Add2Ptr(r_page, le16_to_cpu(r_page->ra_off));
1281 * If chkdsk was run then update the caller's
1282 * values and return.
1284 if (r_page->rhdr.sign == NTFS_CHKD_SIGNATURE) {
1285 info->chkdsk_was_run = true;
1286 info->last_lsn = le64_to_cpu(r_page->rhdr.lsn);
1287 info->restart = true;
1288 info->r_page = r_page;
1293 * If we have a valid page then copy the values
1296 if (info->valid_page) {
1297 info->last_lsn = le64_to_cpu(ra->current_lsn);
1298 info->restart = true;
1299 info->r_page = r_page;
1310 * Ilog_init_pg_hdr - Init @log from restart page header.
1312 static void log_init_pg_hdr(struct ntfs_log *log, u32 sys_page_size,
1313 u32 page_size, u16 major_ver, u16 minor_ver)
1315 log->sys_page_size = sys_page_size;
1316 log->sys_page_mask = sys_page_size - 1;
1317 log->page_size = page_size;
1318 log->page_mask = page_size - 1;
1319 log->page_bits = blksize_bits(page_size);
1321 log->clst_per_page = log->page_size >> log->ni->mi.sbi->cluster_bits;
1322 if (!log->clst_per_page)
1323 log->clst_per_page = 1;
1325 log->first_page = major_ver >= 2
1327 : ((sys_page_size << 1) + (page_size << 1));
1328 log->major_ver = major_ver;
1329 log->minor_ver = minor_ver;
1333 * log_create - Init @log in cases when we don't have a restart area to use.
1335 static void log_create(struct ntfs_log *log, u32 l_size, const u64 last_lsn,
1336 u32 open_log_count, bool wrapped, bool use_multi_page)
1338 log->l_size = l_size;
1339 /* All file offsets must be quadword aligned. */
1340 log->file_data_bits = blksize_bits(l_size) - 3;
1341 log->seq_num_mask = (8 << log->file_data_bits) - 1;
1342 log->seq_num_bits = sizeof(u64) * 8 - log->file_data_bits;
1343 log->seq_num = (last_lsn >> log->file_data_bits) + 2;
1344 log->next_page = log->first_page;
1345 log->oldest_lsn = log->seq_num << log->file_data_bits;
1346 log->oldest_lsn_off = 0;
1347 log->last_lsn = log->oldest_lsn;
1349 log->l_flags |= NTFSLOG_NO_LAST_LSN | NTFSLOG_NO_OLDEST_LSN;
1351 /* Set the correct flags for the I/O and indicate if we have wrapped. */
1353 log->l_flags |= NTFSLOG_WRAPPED;
1356 log->l_flags |= NTFSLOG_MULTIPLE_PAGE_IO;
1358 /* Compute the log page values. */
1359 log->data_off = ALIGN(
1360 offsetof(struct RECORD_PAGE_HDR, fixups) +
1361 sizeof(short) * ((log->page_size >> SECTOR_SHIFT) + 1),
1363 log->data_size = log->page_size - log->data_off;
1364 log->record_header_len = sizeof(struct LFS_RECORD_HDR);
1366 /* Remember the different page sizes for reservation. */
1367 log->reserved = log->data_size - log->record_header_len;
1369 /* Compute the restart page values. */
1370 log->ra_off = ALIGN(
1371 offsetof(struct RESTART_HDR, fixups) +
1373 ((log->sys_page_size >> SECTOR_SHIFT) + 1),
1375 log->restart_size = log->sys_page_size - log->ra_off;
1376 log->ra_size = struct_size(log->ra, clients, 1);
1377 log->current_openlog_count = open_log_count;
1380 * The total available log file space is the number of
1381 * log file pages times the space available on each page.
1383 log->total_avail_pages = log->l_size - log->first_page;
1384 log->total_avail = log->total_avail_pages >> log->page_bits;
1387 * We assume that we can't use the end of the page less than
1388 * the file record size.
1389 * Then we won't need to reserve more than the caller asks for.
1391 log->max_current_avail = log->total_avail * log->reserved;
1392 log->total_avail = log->total_avail * log->data_size;
1393 log->current_avail = log->max_current_avail;
1397 * log_create_ra - Fill a restart area from the values stored in @log.
1399 static struct RESTART_AREA *log_create_ra(struct ntfs_log *log)
1401 struct CLIENT_REC *cr;
1402 struct RESTART_AREA *ra = kzalloc(log->restart_size, GFP_NOFS);
1407 ra->current_lsn = cpu_to_le64(log->last_lsn);
1408 ra->log_clients = cpu_to_le16(1);
1409 ra->client_idx[1] = LFS_NO_CLIENT_LE;
1410 if (log->l_flags & NTFSLOG_MULTIPLE_PAGE_IO)
1411 ra->flags = RESTART_SINGLE_PAGE_IO;
1412 ra->seq_num_bits = cpu_to_le32(log->seq_num_bits);
1413 ra->ra_len = cpu_to_le16(log->ra_size);
1414 ra->client_off = cpu_to_le16(offsetof(struct RESTART_AREA, clients));
1415 ra->l_size = cpu_to_le64(log->l_size);
1416 ra->rec_hdr_len = cpu_to_le16(log->record_header_len);
1417 ra->data_off = cpu_to_le16(log->data_off);
1418 ra->open_log_count = cpu_to_le32(log->current_openlog_count + 1);
1422 cr->prev_client = LFS_NO_CLIENT_LE;
1423 cr->next_client = LFS_NO_CLIENT_LE;
1428 static u32 final_log_off(struct ntfs_log *log, u64 lsn, u32 data_len)
1430 u32 base_vbo = lsn << 3;
1431 u32 final_log_off = (base_vbo & log->seq_num_mask) & ~log->page_mask;
1432 u32 page_off = base_vbo & log->page_mask;
1433 u32 tail = log->page_size - page_off;
1437 /* Add the length of the header. */
1438 data_len += log->record_header_len;
1441 * If this lsn is contained this log page we are done.
1442 * Otherwise we need to walk through several log pages.
1444 if (data_len > tail) {
1446 tail = log->data_size;
1447 page_off = log->data_off - 1;
1450 final_log_off = next_page_off(log, final_log_off);
1453 * We are done if the remaining bytes
1456 if (data_len <= tail)
1463 * We add the remaining bytes to our starting position on this page
1464 * and then add that value to the file offset of this log page.
1466 return final_log_off + data_len + page_off;
1469 static int next_log_lsn(struct ntfs_log *log, const struct LFS_RECORD_HDR *rh,
1473 u64 this_lsn = le64_to_cpu(rh->this_lsn);
1474 u32 vbo = lsn_to_vbo(log, this_lsn);
1476 final_log_off(log, this_lsn, le32_to_cpu(rh->client_data_len));
1477 u32 hdr_off = end & ~log->sys_page_mask;
1478 u64 seq = this_lsn >> log->file_data_bits;
1479 struct RECORD_PAGE_HDR *page = NULL;
1481 /* Remember if we wrapped. */
1485 /* Log page header for this page. */
1486 err = read_log_page(log, hdr_off, &page, NULL);
1491 * If the lsn we were given was not the last lsn on this page,
1492 * then the starting offset for the next lsn is on a quad word
1493 * boundary following the last file offset for the current lsn.
1494 * Otherwise the file offset is the start of the data on the next page.
1496 if (this_lsn == le64_to_cpu(page->rhdr.lsn)) {
1497 /* If we wrapped, we need to increment the sequence number. */
1498 hdr_off = next_page_off(log, hdr_off);
1499 if (hdr_off == log->first_page)
1502 vbo = hdr_off + log->data_off;
1504 vbo = ALIGN(end, 8);
1507 /* Compute the lsn based on the file offset and the sequence count. */
1508 *lsn = vbo_to_lsn(log, vbo, seq);
1511 * If this lsn is within the legal range for the file, we return true.
1512 * Otherwise false indicates that there are no more lsn's.
1514 if (!is_lsn_in_file(log, *lsn))
1523 * current_log_avail - Calculate the number of bytes available for log records.
1525 static u32 current_log_avail(struct ntfs_log *log)
1527 u32 oldest_off, next_free_off, free_bytes;
1529 if (log->l_flags & NTFSLOG_NO_LAST_LSN) {
1530 /* The entire file is available. */
1531 return log->max_current_avail;
1535 * If there is a last lsn the restart area then we know that we will
1536 * have to compute the free range.
1537 * If there is no oldest lsn then start at the first page of the file.
1539 oldest_off = (log->l_flags & NTFSLOG_NO_OLDEST_LSN)
1541 : (log->oldest_lsn_off & ~log->sys_page_mask);
1544 * We will use the next log page offset to compute the next free page.
1545 * If we are going to reuse this page go to the next page.
1546 * If we are at the first page then use the end of the file.
1548 next_free_off = (log->l_flags & NTFSLOG_REUSE_TAIL)
1549 ? log->next_page + log->page_size
1550 : log->next_page == log->first_page
1554 /* If the two offsets are the same then there is no available space. */
1555 if (oldest_off == next_free_off)
1558 * If the free offset follows the oldest offset then subtract
1559 * this range from the total available pages.
1562 oldest_off < next_free_off
1563 ? log->total_avail_pages - (next_free_off - oldest_off)
1564 : oldest_off - next_free_off;
1566 free_bytes >>= log->page_bits;
1567 return free_bytes * log->reserved;
1570 static bool check_subseq_log_page(struct ntfs_log *log,
1571 const struct RECORD_PAGE_HDR *rp, u32 vbo,
1575 const struct NTFS_RECORD_HEADER *rhdr = &rp->rhdr;
1576 u64 lsn = le64_to_cpu(rhdr->lsn);
1578 if (rhdr->sign == NTFS_FFFF_SIGNATURE || !rhdr->sign)
1582 * If the last lsn on the page occurs was written after the page
1583 * that caused the original error then we have a fatal error.
1585 lsn_seq = lsn >> log->file_data_bits;
1588 * If the sequence number for the lsn the page is equal or greater
1589 * than lsn we expect, then this is a subsequent write.
1591 return lsn_seq >= seq ||
1592 (lsn_seq == seq - 1 && log->first_page == vbo &&
1593 vbo != (lsn_to_vbo(log, lsn) & ~log->page_mask));
1599 * Walks through the log pages for a file, searching for the
1600 * last log page written to the file.
1602 static int last_log_lsn(struct ntfs_log *log)
1605 bool usa_error = false;
1606 bool replace_page = false;
1607 bool reuse_page = log->l_flags & NTFSLOG_REUSE_TAIL;
1608 bool wrapped_file, wrapped;
1610 u32 page_cnt = 1, page_pos = 1;
1611 u32 page_off = 0, page_off1 = 0, saved_off = 0;
1612 u32 final_off, second_off, final_off_prev = 0, second_off_prev = 0;
1613 u32 first_file_off = 0, second_file_off = 0;
1614 u32 part_io_count = 0;
1616 u32 this_off, curpage_off, nextpage_off, remain_pages;
1618 u64 expected_seq, seq_base = 0, lsn_base = 0;
1619 u64 best_lsn, best_lsn1, best_lsn2;
1620 u64 lsn_cur, lsn1, lsn2;
1621 u64 last_ok_lsn = reuse_page ? log->last_lsn : 0;
1623 u16 cur_pos, best_page_pos;
1625 struct RECORD_PAGE_HDR *page = NULL;
1626 struct RECORD_PAGE_HDR *tst_page = NULL;
1627 struct RECORD_PAGE_HDR *first_tail = NULL;
1628 struct RECORD_PAGE_HDR *second_tail = NULL;
1629 struct RECORD_PAGE_HDR *tail_page = NULL;
1630 struct RECORD_PAGE_HDR *second_tail_prev = NULL;
1631 struct RECORD_PAGE_HDR *first_tail_prev = NULL;
1632 struct RECORD_PAGE_HDR *page_bufs = NULL;
1633 struct RECORD_PAGE_HDR *best_page;
1635 if (log->major_ver >= 2) {
1636 final_off = 0x02 * log->page_size;
1637 second_off = 0x12 * log->page_size;
1639 // 0x10 == 0x12 - 0x2
1640 page_bufs = kmalloc(log->page_size * 0x10, GFP_NOFS);
1644 second_off = log->first_page - log->page_size;
1645 final_off = second_off - log->page_size;
1649 /* Read second tail page (at pos 3/0x12000). */
1650 if (read_log_page(log, second_off, &second_tail, &usa_error) ||
1651 usa_error || second_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1654 second_file_off = 0;
1657 second_file_off = hdr_file_off(log, second_tail);
1658 lsn2 = le64_to_cpu(second_tail->record_hdr.last_end_lsn);
1661 /* Read first tail page (at pos 2/0x2000). */
1662 if (read_log_page(log, final_off, &first_tail, &usa_error) ||
1663 usa_error || first_tail->rhdr.sign != NTFS_RCRD_SIGNATURE) {
1669 first_file_off = hdr_file_off(log, first_tail);
1670 lsn1 = le64_to_cpu(first_tail->record_hdr.last_end_lsn);
1673 if (log->major_ver < 2) {
1676 first_tail_prev = first_tail;
1677 final_off_prev = first_file_off;
1678 second_tail_prev = second_tail;
1679 second_off_prev = second_file_off;
1682 if (!first_tail && !second_tail)
1685 if (first_tail && second_tail)
1686 best_page = lsn1 < lsn2 ? 1 : 0;
1687 else if (first_tail)
1692 page_off = best_page ? second_file_off : first_file_off;
1693 seq_base = (best_page ? lsn2 : lsn1) >> log->file_data_bits;
1697 best_lsn1 = first_tail ? base_lsn(log, first_tail, first_file_off) : 0;
1699 second_tail ? base_lsn(log, second_tail, second_file_off) : 0;
1701 if (first_tail && second_tail) {
1702 if (best_lsn1 > best_lsn2) {
1703 best_lsn = best_lsn1;
1704 best_page = first_tail;
1705 this_off = first_file_off;
1707 best_lsn = best_lsn2;
1708 best_page = second_tail;
1709 this_off = second_file_off;
1711 } else if (first_tail) {
1712 best_lsn = best_lsn1;
1713 best_page = first_tail;
1714 this_off = first_file_off;
1715 } else if (second_tail) {
1716 best_lsn = best_lsn2;
1717 best_page = second_tail;
1718 this_off = second_file_off;
1723 best_page_pos = le16_to_cpu(best_page->page_pos);
1726 if (best_page_pos == page_pos) {
1727 seq_base = best_lsn >> log->file_data_bits;
1728 saved_off = page_off = le32_to_cpu(best_page->file_off);
1729 lsn_base = best_lsn;
1731 memmove(page_bufs, best_page, log->page_size);
1733 page_cnt = le16_to_cpu(best_page->page_count);
1739 } else if (seq_base == (best_lsn >> log->file_data_bits) &&
1740 saved_off + log->page_size == this_off &&
1741 lsn_base < best_lsn &&
1742 (page_pos != page_cnt || best_page_pos == page_pos ||
1743 best_page_pos == 1) &&
1744 (page_pos >= page_cnt || best_page_pos == page_pos)) {
1745 u16 bppc = le16_to_cpu(best_page->page_count);
1747 saved_off += log->page_size;
1748 lsn_base = best_lsn;
1750 memmove(Add2Ptr(page_bufs, tails * log->page_size), best_page,
1755 if (best_page_pos != bppc) {
1757 page_pos = best_page_pos;
1762 page_pos = page_cnt = 1;
1770 kfree(first_tail_prev);
1771 first_tail_prev = first_tail;
1772 final_off_prev = first_file_off;
1775 kfree(second_tail_prev);
1776 second_tail_prev = second_tail;
1777 second_off_prev = second_file_off;
1780 final_off += log->page_size;
1781 second_off += log->page_size;
1786 first_tail = first_tail_prev;
1787 final_off = final_off_prev;
1789 second_tail = second_tail_prev;
1790 second_off = second_off_prev;
1792 page_cnt = page_pos = 1;
1794 curpage_off = seq_base == log->seq_num ? min(log->next_page, page_off)
1798 curpage_off == log->first_page &&
1799 !(log->l_flags & (NTFSLOG_NO_LAST_LSN | NTFSLOG_REUSE_TAIL));
1801 expected_seq = wrapped_file ? (log->seq_num + 1) : log->seq_num;
1803 nextpage_off = curpage_off;
1807 /* Read the next log page. */
1808 err = read_log_page(log, curpage_off, &page, &usa_error);
1810 /* Compute the next log page offset the file. */
1811 nextpage_off = next_page_off(log, curpage_off);
1812 wrapped = nextpage_off == log->first_page;
1815 struct RECORD_PAGE_HDR *cur_page =
1816 Add2Ptr(page_bufs, curpage_off - page_off);
1818 if (curpage_off == saved_off) {
1819 tail_page = cur_page;
1823 if (page_off > curpage_off || curpage_off >= saved_off)
1829 if (!err && !usa_error &&
1830 page->rhdr.sign == NTFS_RCRD_SIGNATURE &&
1831 cur_page->rhdr.lsn == page->rhdr.lsn &&
1832 cur_page->record_hdr.next_record_off ==
1833 page->record_hdr.next_record_off &&
1834 ((page_pos == page_cnt &&
1835 le16_to_cpu(page->page_pos) == 1) ||
1836 (page_pos != page_cnt &&
1837 le16_to_cpu(page->page_pos) == page_pos + 1 &&
1838 le16_to_cpu(page->page_count) == page_cnt))) {
1843 page_off1 = page_off;
1847 lsn_cur = le64_to_cpu(cur_page->rhdr.lsn);
1850 le64_to_cpu(cur_page->record_hdr.last_end_lsn) &&
1851 ((lsn_cur >> log->file_data_bits) +
1853 (lsn_to_vbo(log, lsn_cur) & ~log->page_mask))
1855 : 0)) != expected_seq) {
1859 if (!is_log_record_end(cur_page)) {
1861 last_ok_lsn = lsn_cur;
1865 log->seq_num = expected_seq;
1866 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
1867 log->last_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1868 log->ra->current_lsn = cur_page->record_hdr.last_end_lsn;
1870 if (log->record_header_len <=
1872 le16_to_cpu(cur_page->record_hdr.next_record_off)) {
1873 log->l_flags |= NTFSLOG_REUSE_TAIL;
1874 log->next_page = curpage_off;
1876 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
1877 log->next_page = nextpage_off;
1881 log->l_flags |= NTFSLOG_WRAPPED;
1883 last_ok_lsn = le64_to_cpu(cur_page->record_hdr.last_end_lsn);
1888 * If we are at the expected first page of a transfer check to see
1889 * if either tail copy is at this offset.
1890 * If this page is the last page of a transfer, check if we wrote
1891 * a subsequent tail copy.
1893 if (page_cnt == page_pos || page_cnt == page_pos + 1) {
1895 * Check if the offset matches either the first or second
1896 * tail copy. It is possible it will match both.
1898 if (curpage_off == final_off)
1899 tail_page = first_tail;
1902 * If we already matched on the first page then
1903 * check the ending lsn's.
1905 if (curpage_off == second_off) {
1908 le64_to_cpu(second_tail->record_hdr.last_end_lsn) >
1909 le64_to_cpu(first_tail->record_hdr
1911 tail_page = second_tail;
1918 /* We have a candidate for a tail copy. */
1919 lsn_cur = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
1921 if (last_ok_lsn < lsn_cur) {
1923 * If the sequence number is not expected,
1924 * then don't use the tail copy.
1926 if (expected_seq != (lsn_cur >> log->file_data_bits))
1928 } else if (last_ok_lsn > lsn_cur) {
1930 * If the last lsn is greater than the one on
1931 * this page then forget this tail.
1938 *If we have an error on the current page,
1939 * we will break of this loop.
1941 if (err || usa_error)
1945 * Done if the last lsn on this page doesn't match the previous known
1946 * last lsn or the sequence number is not expected.
1948 lsn_cur = le64_to_cpu(page->rhdr.lsn);
1949 if (last_ok_lsn != lsn_cur &&
1950 expected_seq != (lsn_cur >> log->file_data_bits)) {
1955 * Check that the page position and page count values are correct.
1956 * If this is the first page of a transfer the position must be 1
1957 * and the count will be unknown.
1959 if (page_cnt == page_pos) {
1960 if (page->page_pos != cpu_to_le16(1) &&
1961 (!reuse_page || page->page_pos != page->page_count)) {
1963 * If the current page is the first page we are
1964 * looking at and we are reusing this page then
1965 * it can be either the first or last page of a
1966 * transfer. Otherwise it can only be the first.
1970 } else if (le16_to_cpu(page->page_count) != page_cnt ||
1971 le16_to_cpu(page->page_pos) != page_pos + 1) {
1973 * The page position better be 1 more than the last page
1974 * position and the page count better match.
1980 * We have a valid page the file and may have a valid page
1981 * the tail copy area.
1982 * If the tail page was written after the page the file then
1983 * break of the loop.
1986 le64_to_cpu(tail_page->record_hdr.last_end_lsn) > lsn_cur) {
1987 /* Remember if we will replace the page. */
1988 replace_page = true;
1994 if (is_log_record_end(page)) {
1996 * Since we have read this page we know the sequence number
1997 * is the same as our expected value.
1999 log->seq_num = expected_seq;
2000 log->last_lsn = le64_to_cpu(page->record_hdr.last_end_lsn);
2001 log->ra->current_lsn = page->record_hdr.last_end_lsn;
2002 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2005 * If there is room on this page for another header then
2006 * remember we want to reuse the page.
2008 if (log->record_header_len <=
2010 le16_to_cpu(page->record_hdr.next_record_off)) {
2011 log->l_flags |= NTFSLOG_REUSE_TAIL;
2012 log->next_page = curpage_off;
2014 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2015 log->next_page = nextpage_off;
2018 /* Remember if we wrapped the log file. */
2020 log->l_flags |= NTFSLOG_WRAPPED;
2024 * Remember the last page count and position.
2025 * Also remember the last known lsn.
2027 page_cnt = le16_to_cpu(page->page_count);
2028 page_pos = le16_to_cpu(page->page_pos);
2029 last_ok_lsn = le64_to_cpu(page->rhdr.lsn);
2038 curpage_off = nextpage_off;
2046 log->seq_num = expected_seq;
2047 log->last_lsn = le64_to_cpu(tail_page->record_hdr.last_end_lsn);
2048 log->ra->current_lsn = tail_page->record_hdr.last_end_lsn;
2049 log->l_flags &= ~NTFSLOG_NO_LAST_LSN;
2051 if (log->page_size -
2053 tail_page->record_hdr.next_record_off) >=
2054 log->record_header_len) {
2055 log->l_flags |= NTFSLOG_REUSE_TAIL;
2056 log->next_page = curpage_off;
2058 log->l_flags &= ~NTFSLOG_REUSE_TAIL;
2059 log->next_page = nextpage_off;
2063 log->l_flags |= NTFSLOG_WRAPPED;
2066 /* Remember that the partial IO will start at the next page. */
2067 second_off = nextpage_off;
2070 * If the next page is the first page of the file then update
2071 * the sequence number for log records which begon the next page.
2077 * If we have a tail copy or are performing single page I/O we can
2078 * immediately look at the next page.
2080 if (replace_page || (log->ra->flags & RESTART_SINGLE_PAGE_IO)) {
2086 if (page_pos != page_cnt)
2089 * If the next page causes us to wrap to the beginning of the log
2090 * file then we know which page to check next.
2104 /* Walk through the file, reading log pages. */
2105 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2108 * If we get a USA error then assume that we correctly found
2109 * the end of the original transfer.
2115 * If we were able to read the page, we examine it to see if it
2116 * is the same or different Io block.
2119 goto next_test_page_1;
2121 if (le16_to_cpu(tst_page->page_pos) == cur_pos &&
2122 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2123 page_cnt = le16_to_cpu(tst_page->page_count) + 1;
2124 page_pos = le16_to_cpu(tst_page->page_pos);
2132 nextpage_off = next_page_off(log, curpage_off);
2133 wrapped = nextpage_off == log->first_page;
2144 goto next_test_page;
2147 /* Skip over the remaining pages this transfer. */
2148 remain_pages = page_cnt - page_pos - 1;
2149 part_io_count += remain_pages;
2151 while (remain_pages--) {
2152 nextpage_off = next_page_off(log, curpage_off);
2153 wrapped = nextpage_off == log->first_page;
2159 /* Call our routine to check this log page. */
2163 err = read_log_page(log, nextpage_off, &tst_page, &usa_error);
2164 if (!err && !usa_error &&
2165 check_subseq_log_page(log, tst_page, nextpage_off, expected_seq)) {
2172 /* We have a valid file. */
2173 if (page_off1 || tail_page) {
2174 struct RECORD_PAGE_HDR *tmp_page;
2176 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2182 tmp_page = Add2Ptr(page_bufs, page_off1 - page_off);
2183 tails -= (page_off1 - page_off) / log->page_size;
2187 tmp_page = tail_page;
2192 u64 off = hdr_file_off(log, tmp_page);
2195 page = kmalloc(log->page_size, GFP_NOFS);
2201 * Correct page and copy the data from this page
2202 * into it and flush it to disk.
2204 memcpy(page, tmp_page, log->page_size);
2206 /* Fill last flushed lsn value flush the page. */
2207 if (log->major_ver < 2)
2208 page->rhdr.lsn = page->record_hdr.last_end_lsn;
2212 page->page_pos = page->page_count = cpu_to_le16(1);
2214 ntfs_fix_pre_write(&page->rhdr, log->page_size);
2216 err = ntfs_sb_write_run(log->ni->mi.sbi,
2217 &log->ni->file.run, off, page,
2223 if (part_io_count && second_off == off) {
2224 second_off += log->page_size;
2228 tmp_page = Add2Ptr(tmp_page, log->page_size);
2232 if (part_io_count) {
2233 if (sb_rdonly(log->ni->mi.sbi->sb)) {
2250 * read_log_rec_buf - Copy a log record from the file to a buffer.
2252 * The log record may span several log pages and may even wrap the file.
2254 static int read_log_rec_buf(struct ntfs_log *log,
2255 const struct LFS_RECORD_HDR *rh, void *buffer)
2258 struct RECORD_PAGE_HDR *ph = NULL;
2259 u64 lsn = le64_to_cpu(rh->this_lsn);
2260 u32 vbo = lsn_to_vbo(log, lsn) & ~log->page_mask;
2261 u32 off = lsn_to_page_off(log, lsn) + log->record_header_len;
2262 u32 data_len = le32_to_cpu(rh->client_data_len);
2265 * While there are more bytes to transfer,
2266 * we continue to attempt to perform the read.
2270 u32 tail = log->page_size - off;
2272 if (tail >= data_len)
2277 err = read_log_page(log, vbo, &ph, &usa_error);
2282 * The last lsn on this page better be greater or equal
2283 * to the lsn we are copying.
2285 if (lsn > le64_to_cpu(ph->rhdr.lsn)) {
2290 memcpy(buffer, Add2Ptr(ph, off), tail);
2292 /* If there are no more bytes to transfer, we exit the loop. */
2294 if (!is_log_record_end(ph) ||
2295 lsn > le64_to_cpu(ph->record_hdr.last_end_lsn)) {
2302 if (ph->rhdr.lsn == ph->record_hdr.last_end_lsn ||
2303 lsn > le64_to_cpu(ph->rhdr.lsn)) {
2308 vbo = next_page_off(log, vbo);
2309 off = log->data_off;
2312 * Adjust our pointer the user's buffer to transfer
2313 * the next block to.
2315 buffer = Add2Ptr(buffer, tail);
2323 static int read_rst_area(struct ntfs_log *log, struct NTFS_RESTART **rst_,
2327 struct LFS_RECORD_HDR *rh = NULL;
2328 const struct CLIENT_REC *cr =
2329 Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2330 u64 lsnr, lsnc = le64_to_cpu(cr->restart_lsn);
2332 struct NTFS_RESTART *rst;
2337 /* If the client doesn't have a restart area, go ahead and exit now. */
2341 err = read_log_page(log, lsn_to_vbo(log, lsnc),
2342 (struct RECORD_PAGE_HDR **)&rh, NULL);
2347 lsnr = le64_to_cpu(rh->this_lsn);
2350 /* If the lsn values don't match, then the disk is corrupt. */
2356 len = le32_to_cpu(rh->client_data_len);
2363 if (len < sizeof(struct NTFS_RESTART)) {
2368 rst = kmalloc(len, GFP_NOFS);
2374 /* Copy the data into the 'rst' buffer. */
2375 err = read_log_rec_buf(log, rh, rst);
2389 static int find_log_rec(struct ntfs_log *log, u64 lsn, struct lcb *lcb)
2392 struct LFS_RECORD_HDR *rh = lcb->lrh;
2395 /* Read the record header for this lsn. */
2397 err = read_log_page(log, lsn_to_vbo(log, lsn),
2398 (struct RECORD_PAGE_HDR **)&rh, NULL);
2406 * If the lsn the log record doesn't match the desired
2407 * lsn then the disk is corrupt.
2409 if (lsn != le64_to_cpu(rh->this_lsn))
2412 len = le32_to_cpu(rh->client_data_len);
2415 * Check that the length field isn't greater than the total
2416 * available space the log file.
2418 rec_len = len + log->record_header_len;
2419 if (rec_len >= log->total_avail)
2423 * If the entire log record is on this log page,
2424 * put a pointer to the log record the context block.
2426 if (rh->flags & LOG_RECORD_MULTI_PAGE) {
2427 void *lr = kmalloc(len, GFP_NOFS);
2435 /* Copy the data into the buffer returned. */
2436 err = read_log_rec_buf(log, rh, lr);
2440 /* If beyond the end of the current page -> an error. */
2441 u32 page_off = lsn_to_page_off(log, lsn);
2443 if (page_off + len + log->record_header_len > log->page_size)
2446 lcb->log_rec = Add2Ptr(rh, sizeof(struct LFS_RECORD_HDR));
2454 * read_log_rec_lcb - Init the query operation.
2456 static int read_log_rec_lcb(struct ntfs_log *log, u64 lsn, u32 ctx_mode,
2460 const struct CLIENT_REC *cr;
2464 case lcb_ctx_undo_next:
2472 /* Check that the given lsn is the legal range for this client. */
2473 cr = Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off));
2475 if (!verify_client_lsn(log, cr, lsn))
2478 lcb = kzalloc(sizeof(struct lcb), GFP_NOFS);
2481 lcb->client = log->client_id;
2482 lcb->ctx_mode = ctx_mode;
2484 /* Find the log record indicated by the given lsn. */
2485 err = find_log_rec(log, lsn, lcb);
2499 * find_client_next_lsn
2501 * Attempt to find the next lsn to return to a client based on the context mode.
2503 static int find_client_next_lsn(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2507 struct LFS_RECORD_HDR *hdr;
2512 if (lcb_ctx_next != lcb->ctx_mode)
2513 goto check_undo_next;
2515 /* Loop as long as another lsn can be found. */
2519 err = next_log_lsn(log, hdr, ¤t_lsn);
2526 if (hdr != lcb->lrh)
2530 err = read_log_page(log, lsn_to_vbo(log, current_lsn),
2531 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2535 if (memcmp(&hdr->client, &lcb->client,
2536 sizeof(struct CLIENT_ID))) {
2538 } else if (LfsClientRecord == hdr->record_type) {
2547 if (hdr != lcb->lrh)
2552 if (lcb_ctx_undo_next == lcb->ctx_mode)
2553 next_lsn = le64_to_cpu(hdr->client_undo_next_lsn);
2554 else if (lcb_ctx_prev == lcb->ctx_mode)
2555 next_lsn = le64_to_cpu(hdr->client_prev_lsn);
2562 if (!verify_client_lsn(
2563 log, Add2Ptr(log->ra, le16_to_cpu(log->ra->client_off)),
2568 err = read_log_page(log, lsn_to_vbo(log, next_lsn),
2569 (struct RECORD_PAGE_HDR **)&hdr, NULL);
2580 static int read_next_log_rec(struct ntfs_log *log, struct lcb *lcb, u64 *lsn)
2584 err = find_client_next_lsn(log, lcb, lsn);
2592 kfree(lcb->log_rec);
2594 lcb->log_rec = NULL;
2599 return find_log_rec(log, *lsn, lcb);
2602 static inline bool check_index_header(const struct INDEX_HDR *hdr, size_t bytes)
2605 u32 min_de, de_off, used, total;
2606 const struct NTFS_DE *e;
2608 if (hdr_has_subnode(hdr)) {
2609 min_de = sizeof(struct NTFS_DE) + sizeof(u64);
2610 mask = NTFS_IE_HAS_SUBNODES;
2612 min_de = sizeof(struct NTFS_DE);
2616 de_off = le32_to_cpu(hdr->de_off);
2617 used = le32_to_cpu(hdr->used);
2618 total = le32_to_cpu(hdr->total);
2620 if (de_off > bytes - min_de || used > bytes || total > bytes ||
2621 de_off + min_de > used || used > total) {
2625 e = Add2Ptr(hdr, de_off);
2627 u16 esize = le16_to_cpu(e->size);
2628 struct NTFS_DE *next = Add2Ptr(e, esize);
2630 if (esize < min_de || PtrOffset(hdr, next) > used ||
2631 (e->flags & NTFS_IE_HAS_SUBNODES) != mask) {
2644 static inline bool check_index_buffer(const struct INDEX_BUFFER *ib, u32 bytes)
2647 const struct NTFS_RECORD_HEADER *r = &ib->rhdr;
2649 if (r->sign != NTFS_INDX_SIGNATURE)
2652 fo = (SECTOR_SIZE - ((bytes >> SECTOR_SHIFT) + 1) * sizeof(short));
2654 if (le16_to_cpu(r->fix_off) > fo)
2657 if ((le16_to_cpu(r->fix_num) - 1) * SECTOR_SIZE != bytes)
2660 return check_index_header(&ib->ihdr,
2661 bytes - offsetof(struct INDEX_BUFFER, ihdr));
2664 static inline bool check_index_root(const struct ATTRIB *attr,
2665 struct ntfs_sb_info *sbi)
2668 const struct INDEX_ROOT *root = resident_data(attr);
2669 u8 index_bits = le32_to_cpu(root->index_block_size) >= sbi->cluster_size
2672 u8 block_clst = root->index_block_clst;
2674 if (le32_to_cpu(attr->res.data_size) < sizeof(struct INDEX_ROOT) ||
2675 (root->type != ATTR_NAME && root->type != ATTR_ZERO) ||
2676 (root->type == ATTR_NAME &&
2677 root->rule != NTFS_COLLATION_TYPE_FILENAME) ||
2678 (le32_to_cpu(root->index_block_size) !=
2679 (block_clst << index_bits)) ||
2680 (block_clst != 1 && block_clst != 2 && block_clst != 4 &&
2681 block_clst != 8 && block_clst != 0x10 && block_clst != 0x20 &&
2682 block_clst != 0x40 && block_clst != 0x80)) {
2686 ret = check_index_header(&root->ihdr,
2687 le32_to_cpu(attr->res.data_size) -
2688 offsetof(struct INDEX_ROOT, ihdr));
2692 static inline bool check_attr(const struct MFT_REC *rec,
2693 const struct ATTRIB *attr,
2694 struct ntfs_sb_info *sbi)
2696 u32 asize = le32_to_cpu(attr->size);
2698 u64 dsize, svcn, evcn;
2701 /* Check the fixed part of the attribute record header. */
2702 if (asize >= sbi->record_size ||
2703 asize + PtrOffset(rec, attr) >= sbi->record_size ||
2705 le16_to_cpu(attr->name_off) + attr->name_len * sizeof(short) >
2710 /* Check the attribute fields. */
2711 switch (attr->non_res) {
2713 rsize = le32_to_cpu(attr->res.data_size);
2714 if (rsize >= asize ||
2715 le16_to_cpu(attr->res.data_off) + rsize > asize) {
2721 dsize = le64_to_cpu(attr->nres.data_size);
2722 svcn = le64_to_cpu(attr->nres.svcn);
2723 evcn = le64_to_cpu(attr->nres.evcn);
2724 run_off = le16_to_cpu(attr->nres.run_off);
2726 if (svcn > evcn + 1 || run_off >= asize ||
2727 le64_to_cpu(attr->nres.valid_size) > dsize ||
2728 dsize > le64_to_cpu(attr->nres.alloc_size)) {
2732 if (run_unpack(NULL, sbi, 0, svcn, evcn, svcn,
2733 Add2Ptr(attr, run_off), asize - run_off) < 0) {
2743 switch (attr->type) {
2745 if (fname_full_size(Add2Ptr(
2746 attr, le16_to_cpu(attr->res.data_off))) > asize) {
2752 return check_index_root(attr, sbi);
2755 if (rsize < sizeof(struct ATTR_STD_INFO5) &&
2756 rsize != sizeof(struct ATTR_STD_INFO)) {
2772 case ATTR_PROPERTYSET:
2773 case ATTR_LOGGED_UTILITY_STREAM:
2783 static inline bool check_file_record(const struct MFT_REC *rec,
2784 const struct MFT_REC *rec2,
2785 struct ntfs_sb_info *sbi)
2787 const struct ATTRIB *attr;
2788 u16 fo = le16_to_cpu(rec->rhdr.fix_off);
2789 u16 fn = le16_to_cpu(rec->rhdr.fix_num);
2790 u16 ao = le16_to_cpu(rec->attr_off);
2791 u32 rs = sbi->record_size;
2793 /* Check the file record header for consistency. */
2794 if (rec->rhdr.sign != NTFS_FILE_SIGNATURE ||
2795 fo > (SECTOR_SIZE - ((rs >> SECTOR_SHIFT) + 1) * sizeof(short)) ||
2796 (fn - 1) * SECTOR_SIZE != rs || ao < MFTRECORD_FIXUP_OFFSET_1 ||
2797 ao > sbi->record_size - SIZEOF_RESIDENT || !is_rec_inuse(rec) ||
2798 le32_to_cpu(rec->total) != rs) {
2802 /* Loop to check all of the attributes. */
2803 for (attr = Add2Ptr(rec, ao); attr->type != ATTR_END;
2804 attr = Add2Ptr(attr, le32_to_cpu(attr->size))) {
2805 if (check_attr(rec, attr, sbi))
2813 static inline int check_lsn(const struct NTFS_RECORD_HEADER *hdr,
2821 lsn = le64_to_cpu(hdr->lsn);
2823 if (hdr->sign == NTFS_HOLE_SIGNATURE)
2832 static inline bool check_if_attr(const struct MFT_REC *rec,
2833 const struct LOG_REC_HDR *lrh)
2835 u16 ro = le16_to_cpu(lrh->record_off);
2836 u16 o = le16_to_cpu(rec->attr_off);
2837 const struct ATTRIB *attr = Add2Ptr(rec, o);
2842 if (attr->type == ATTR_END)
2845 asize = le32_to_cpu(attr->size);
2850 attr = Add2Ptr(attr, asize);
2856 static inline bool check_if_index_root(const struct MFT_REC *rec,
2857 const struct LOG_REC_HDR *lrh)
2859 u16 ro = le16_to_cpu(lrh->record_off);
2860 u16 o = le16_to_cpu(rec->attr_off);
2861 const struct ATTRIB *attr = Add2Ptr(rec, o);
2866 if (attr->type == ATTR_END)
2869 asize = le32_to_cpu(attr->size);
2874 attr = Add2Ptr(attr, asize);
2877 return o == ro && attr->type == ATTR_ROOT;
2880 static inline bool check_if_root_index(const struct ATTRIB *attr,
2881 const struct INDEX_HDR *hdr,
2882 const struct LOG_REC_HDR *lrh)
2884 u16 ao = le16_to_cpu(lrh->attr_off);
2885 u32 de_off = le32_to_cpu(hdr->de_off);
2886 u32 o = PtrOffset(attr, hdr) + de_off;
2887 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2888 u32 asize = le32_to_cpu(attr->size);
2896 esize = le16_to_cpu(e->size);
2901 e = Add2Ptr(e, esize);
2907 static inline bool check_if_alloc_index(const struct INDEX_HDR *hdr,
2910 u32 de_off = le32_to_cpu(hdr->de_off);
2911 u32 o = offsetof(struct INDEX_BUFFER, ihdr) + de_off;
2912 const struct NTFS_DE *e = Add2Ptr(hdr, de_off);
2913 u32 used = le32_to_cpu(hdr->used);
2915 while (o < attr_off) {
2921 esize = le16_to_cpu(e->size);
2927 e = Add2Ptr(e, esize);
2930 return o == attr_off;
2933 static inline void change_attr_size(struct MFT_REC *rec, struct ATTRIB *attr,
2936 u32 asize = le32_to_cpu(attr->size);
2937 int dsize = nsize - asize;
2938 u8 *next = Add2Ptr(attr, asize);
2939 u32 used = le32_to_cpu(rec->used);
2941 memmove(Add2Ptr(attr, nsize), next, used - PtrOffset(rec, next));
2943 rec->used = cpu_to_le32(used + dsize);
2944 attr->size = cpu_to_le32(nsize);
2948 struct ATTRIB *attr;
2949 struct runs_tree *run1;
2950 struct runs_tree run0;
2951 struct ntfs_inode *ni;
2958 * Return: 0 if 'attr' has the same type and name.
2960 static inline int cmp_type_and_name(const struct ATTRIB *a1,
2961 const struct ATTRIB *a2)
2963 return a1->type != a2->type || a1->name_len != a2->name_len ||
2964 (a1->name_len && memcmp(attr_name(a1), attr_name(a2),
2965 a1->name_len * sizeof(short)));
2968 static struct OpenAttr *find_loaded_attr(struct ntfs_log *log,
2969 const struct ATTRIB *attr, CLST rno)
2971 struct OPEN_ATTR_ENRTY *oe = NULL;
2973 while ((oe = enum_rstbl(log->open_attr_tbl, oe))) {
2974 struct OpenAttr *op_attr;
2976 if (ino_get(&oe->ref) != rno)
2979 op_attr = (struct OpenAttr *)oe->ptr;
2980 if (!cmp_type_and_name(op_attr->attr, attr))
2986 static struct ATTRIB *attr_create_nonres_log(struct ntfs_sb_info *sbi,
2987 enum ATTR_TYPE type, u64 size,
2988 const u16 *name, size_t name_len,
2991 struct ATTRIB *attr;
2992 u32 name_size = ALIGN(name_len * sizeof(short), 8);
2993 bool is_ext = flags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED);
2994 u32 asize = name_size +
2995 (is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT);
2997 attr = kzalloc(asize, GFP_NOFS);
3002 attr->size = cpu_to_le32(asize);
3003 attr->flags = flags;
3005 attr->name_len = name_len;
3007 attr->nres.evcn = cpu_to_le64((u64)bytes_to_cluster(sbi, size) - 1);
3008 attr->nres.alloc_size = cpu_to_le64(ntfs_up_cluster(sbi, size));
3009 attr->nres.data_size = cpu_to_le64(size);
3010 attr->nres.valid_size = attr->nres.data_size;
3012 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
3013 if (is_attr_compressed(attr))
3014 attr->nres.c_unit = COMPRESSION_UNIT;
3016 attr->nres.run_off =
3017 cpu_to_le16(SIZEOF_NONRESIDENT_EX + name_size);
3018 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT_EX), name,
3019 name_len * sizeof(short));
3021 attr->name_off = SIZEOF_NONRESIDENT_LE;
3022 attr->nres.run_off =
3023 cpu_to_le16(SIZEOF_NONRESIDENT + name_size);
3024 memcpy(Add2Ptr(attr, SIZEOF_NONRESIDENT), name,
3025 name_len * sizeof(short));
3032 * do_action - Common routine for the Redo and Undo Passes.
3033 * @rlsn: If it is NULL then undo.
3035 static int do_action(struct ntfs_log *log, struct OPEN_ATTR_ENRTY *oe,
3036 const struct LOG_REC_HDR *lrh, u32 op, void *data,
3037 u32 dlen, u32 rec_len, const u64 *rlsn)
3040 struct ntfs_sb_info *sbi = log->ni->mi.sbi;
3041 struct inode *inode = NULL, *inode_parent;
3042 struct mft_inode *mi = NULL, *mi2_child = NULL;
3043 CLST rno = 0, rno_base = 0;
3044 struct INDEX_BUFFER *ib = NULL;
3045 struct MFT_REC *rec = NULL;
3046 struct ATTRIB *attr = NULL, *attr2;
3047 struct INDEX_HDR *hdr;
3048 struct INDEX_ROOT *root;
3049 struct NTFS_DE *e, *e1, *e2;
3050 struct NEW_ATTRIBUTE_SIZES *new_sz;
3051 struct ATTR_FILE_NAME *fname;
3052 struct OpenAttr *oa, *oa2;
3053 u32 nsize, t32, asize, used, esize, bmp_off, bmp_bits;
3055 u32 record_size = sbi->record_size;
3057 u16 roff = le16_to_cpu(lrh->record_off);
3058 u16 aoff = le16_to_cpu(lrh->attr_off);
3060 u64 cbo = (u64)le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
3061 u64 tvo = le64_to_cpu(lrh->target_vcn) << sbi->cluster_bits;
3062 u64 vbo = cbo + tvo;
3063 void *buffer_le = NULL;
3065 bool a_dirty = false;
3070 /* Big switch to prepare. */
3072 /* ============================================================
3073 * Process MFT records, as described by the current log record.
3074 * ============================================================
3076 case InitializeFileRecordSegment:
3077 case DeallocateFileRecordSegment:
3078 case WriteEndOfFileRecordSegment:
3079 case CreateAttribute:
3080 case DeleteAttribute:
3081 case UpdateResidentValue:
3082 case UpdateMappingPairs:
3083 case SetNewAttributeSizes:
3084 case AddIndexEntryRoot:
3085 case DeleteIndexEntryRoot:
3086 case SetIndexEntryVcnRoot:
3087 case UpdateFileNameRoot:
3088 case UpdateRecordDataRoot:
3089 case ZeroEndOfFileRecord:
3090 rno = vbo >> sbi->record_bits;
3091 inode = ilookup(sbi->sb, rno);
3093 mi = &ntfs_i(inode)->mi;
3094 } else if (op == InitializeFileRecordSegment) {
3095 mi = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
3098 err = mi_format_new(mi, sbi, rno, 0, false);
3102 /* Read from disk. */
3103 err = mi_get(sbi, rno, &mi);
3109 if (op == DeallocateFileRecordSegment)
3110 goto skip_load_parent;
3112 if (InitializeFileRecordSegment != op) {
3113 if (rec->rhdr.sign == NTFS_BAAD_SIGNATURE)
3115 if (!check_lsn(&rec->rhdr, rlsn))
3117 if (!check_file_record(rec, NULL, sbi))
3119 attr = Add2Ptr(rec, roff);
3122 if (is_rec_base(rec) || InitializeFileRecordSegment == op) {
3124 goto skip_load_parent;
3127 rno_base = ino_get(&rec->parent_ref);
3128 inode_parent = ntfs_iget5(sbi->sb, &rec->parent_ref, NULL);
3129 if (IS_ERR(inode_parent))
3130 goto skip_load_parent;
3132 if (is_bad_inode(inode_parent)) {
3134 goto skip_load_parent;
3137 if (ni_load_mi_ex(ntfs_i(inode_parent), rno, &mi2_child)) {
3140 if (mi2_child->mrec != mi->mrec)
3141 memcpy(mi2_child->mrec, mi->mrec,
3149 inode = inode_parent;
3151 rec = mi2_child->mrec;
3152 attr = Add2Ptr(rec, roff);
3156 inode_parent = NULL;
3160 * Process attributes, as described by the current log record.
3162 case UpdateNonresidentValue:
3163 case AddIndexEntryAllocation:
3164 case DeleteIndexEntryAllocation:
3165 case WriteEndOfIndexBuffer:
3166 case SetIndexEntryVcnAllocation:
3167 case UpdateFileNameAllocation:
3168 case SetBitsInNonresidentBitMap:
3169 case ClearBitsInNonresidentBitMap:
3170 case UpdateRecordDataAllocation:
3172 bytes = UpdateNonresidentValue == op ? dlen : 0;
3173 lco = (u64)le16_to_cpu(lrh->lcns_follow) << sbi->cluster_bits;
3175 if (attr->type == ATTR_ALLOC) {
3176 t32 = le32_to_cpu(oe->bytes_per_index);
3185 if (attr->type == ATTR_ALLOC)
3186 bytes = (bytes + 511) & ~511; // align
3188 buffer_le = kmalloc(bytes, GFP_NOFS);
3192 err = ntfs_read_run_nb(sbi, oa->run1, vbo, buffer_le, bytes,
3197 if (attr->type == ATTR_ALLOC && *(int *)buffer_le)
3198 ntfs_fix_post_read(buffer_le, bytes, false);
3205 /* Big switch to do operation. */
3207 case InitializeFileRecordSegment:
3208 if (roff + dlen > record_size)
3211 memcpy(Add2Ptr(rec, roff), data, dlen);
3215 case DeallocateFileRecordSegment:
3216 clear_rec_inuse(rec);
3217 le16_add_cpu(&rec->seq, 1);
3221 case WriteEndOfFileRecordSegment:
3222 attr2 = (struct ATTRIB *)data;
3223 if (!check_if_attr(rec, lrh) || roff + dlen > record_size)
3226 memmove(attr, attr2, dlen);
3227 rec->used = cpu_to_le32(ALIGN(roff + dlen, 8));
3232 case CreateAttribute:
3233 attr2 = (struct ATTRIB *)data;
3234 asize = le32_to_cpu(attr2->size);
3235 used = le32_to_cpu(rec->used);
3237 if (!check_if_attr(rec, lrh) || dlen < SIZEOF_RESIDENT ||
3238 !IS_ALIGNED(asize, 8) ||
3239 Add2Ptr(attr2, asize) > Add2Ptr(lrh, rec_len) ||
3240 dlen > record_size - used) {
3244 memmove(Add2Ptr(attr, asize), attr, used - roff);
3245 memcpy(attr, attr2, asize);
3247 rec->used = cpu_to_le32(used + asize);
3248 id = le16_to_cpu(rec->next_attr_id);
3249 id2 = le16_to_cpu(attr2->id);
3251 rec->next_attr_id = cpu_to_le16(id2 + 1);
3252 if (is_attr_indexed(attr))
3253 le16_add_cpu(&rec->hard_links, 1);
3255 oa2 = find_loaded_attr(log, attr, rno_base);
3257 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3260 // run_close(oa2->run1);
3269 case DeleteAttribute:
3270 asize = le32_to_cpu(attr->size);
3271 used = le32_to_cpu(rec->used);
3273 if (!check_if_attr(rec, lrh))
3276 rec->used = cpu_to_le32(used - asize);
3277 if (is_attr_indexed(attr))
3278 le16_add_cpu(&rec->hard_links, -1);
3280 memmove(attr, Add2Ptr(attr, asize), used - asize - roff);
3285 case UpdateResidentValue:
3286 nsize = aoff + dlen;
3288 if (!check_if_attr(rec, lrh))
3291 asize = le32_to_cpu(attr->size);
3292 used = le32_to_cpu(rec->used);
3294 if (lrh->redo_len == lrh->undo_len) {
3300 if (nsize > asize && nsize - asize > record_size - used)
3303 nsize = ALIGN(nsize, 8);
3304 data_off = le16_to_cpu(attr->res.data_off);
3306 if (nsize < asize) {
3307 memmove(Add2Ptr(attr, aoff), data, dlen);
3308 data = NULL; // To skip below memmove().
3311 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3312 used - le16_to_cpu(lrh->record_off) - asize);
3314 rec->used = cpu_to_le32(used + nsize - asize);
3315 attr->size = cpu_to_le32(nsize);
3316 attr->res.data_size = cpu_to_le32(aoff + dlen - data_off);
3320 memmove(Add2Ptr(attr, aoff), data, dlen);
3322 oa2 = find_loaded_attr(log, attr, rno_base);
3324 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3327 // run_close(&oa2->run0);
3328 oa2->run1 = &oa2->run0;
3337 case UpdateMappingPairs:
3338 nsize = aoff + dlen;
3339 asize = le32_to_cpu(attr->size);
3340 used = le32_to_cpu(rec->used);
3342 if (!check_if_attr(rec, lrh) || !attr->non_res ||
3343 aoff < le16_to_cpu(attr->nres.run_off) || aoff > asize ||
3344 (nsize > asize && nsize - asize > record_size - used)) {
3348 nsize = ALIGN(nsize, 8);
3350 memmove(Add2Ptr(attr, nsize), Add2Ptr(attr, asize),
3351 used - le16_to_cpu(lrh->record_off) - asize);
3352 rec->used = cpu_to_le32(used + nsize - asize);
3353 attr->size = cpu_to_le32(nsize);
3354 memmove(Add2Ptr(attr, aoff), data, dlen);
3356 if (run_get_highest_vcn(le64_to_cpu(attr->nres.svcn),
3357 attr_run(attr), &t64)) {
3361 attr->nres.evcn = cpu_to_le64(t64);
3362 oa2 = find_loaded_attr(log, attr, rno_base);
3363 if (oa2 && oa2->attr->non_res)
3364 oa2->attr->nres.evcn = attr->nres.evcn;
3369 case SetNewAttributeSizes:
3371 if (!check_if_attr(rec, lrh) || !attr->non_res)
3374 attr->nres.alloc_size = new_sz->alloc_size;
3375 attr->nres.data_size = new_sz->data_size;
3376 attr->nres.valid_size = new_sz->valid_size;
3378 if (dlen >= sizeof(struct NEW_ATTRIBUTE_SIZES))
3379 attr->nres.total_size = new_sz->total_size;
3381 oa2 = find_loaded_attr(log, attr, rno_base);
3383 void *p2 = kmemdup(attr, le32_to_cpu(attr->size),
3393 case AddIndexEntryRoot:
3394 e = (struct NTFS_DE *)data;
3395 esize = le16_to_cpu(e->size);
3396 root = resident_data(attr);
3398 used = le32_to_cpu(hdr->used);
3400 if (!check_if_index_root(rec, lrh) ||
3401 !check_if_root_index(attr, hdr, lrh) ||
3402 Add2Ptr(data, esize) > Add2Ptr(lrh, rec_len) ||
3403 esize > le32_to_cpu(rec->total) - le32_to_cpu(rec->used)) {
3407 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3409 change_attr_size(rec, attr, le32_to_cpu(attr->size) + esize);
3411 memmove(Add2Ptr(e1, esize), e1,
3412 PtrOffset(e1, Add2Ptr(hdr, used)));
3413 memmove(e1, e, esize);
3415 le32_add_cpu(&attr->res.data_size, esize);
3416 hdr->used = cpu_to_le32(used + esize);
3417 le32_add_cpu(&hdr->total, esize);
3422 case DeleteIndexEntryRoot:
3423 root = resident_data(attr);
3425 used = le32_to_cpu(hdr->used);
3427 if (!check_if_index_root(rec, lrh) ||
3428 !check_if_root_index(attr, hdr, lrh)) {
3432 e1 = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3433 esize = le16_to_cpu(e1->size);
3434 e2 = Add2Ptr(e1, esize);
3436 memmove(e1, e2, PtrOffset(e2, Add2Ptr(hdr, used)));
3438 le32_sub_cpu(&attr->res.data_size, esize);
3439 hdr->used = cpu_to_le32(used - esize);
3440 le32_sub_cpu(&hdr->total, esize);
3442 change_attr_size(rec, attr, le32_to_cpu(attr->size) - esize);
3447 case SetIndexEntryVcnRoot:
3448 root = resident_data(attr);
3451 if (!check_if_index_root(rec, lrh) ||
3452 !check_if_root_index(attr, hdr, lrh)) {
3456 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3458 de_set_vbn_le(e, *(__le64 *)data);
3462 case UpdateFileNameRoot:
3463 root = resident_data(attr);
3466 if (!check_if_index_root(rec, lrh) ||
3467 !check_if_root_index(attr, hdr, lrh)) {
3471 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3472 fname = (struct ATTR_FILE_NAME *)(e + 1);
3473 memmove(&fname->dup, data, sizeof(fname->dup)); //
3477 case UpdateRecordDataRoot:
3478 root = resident_data(attr);
3481 if (!check_if_index_root(rec, lrh) ||
3482 !check_if_root_index(attr, hdr, lrh)) {
3486 e = Add2Ptr(attr, le16_to_cpu(lrh->attr_off));
3488 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3493 case ZeroEndOfFileRecord:
3494 if (roff + dlen > record_size)
3497 memset(attr, 0, dlen);
3501 case UpdateNonresidentValue:
3502 if (lco < cbo + roff + dlen)
3505 memcpy(Add2Ptr(buffer_le, roff), data, dlen);
3508 if (attr->type == ATTR_ALLOC)
3509 ntfs_fix_pre_write(buffer_le, bytes);
3512 case AddIndexEntryAllocation:
3513 ib = Add2Ptr(buffer_le, roff);
3516 esize = le16_to_cpu(e->size);
3517 e1 = Add2Ptr(ib, aoff);
3519 if (is_baad(&ib->rhdr))
3521 if (!check_lsn(&ib->rhdr, rlsn))
3524 used = le32_to_cpu(hdr->used);
3526 if (!check_index_buffer(ib, bytes) ||
3527 !check_if_alloc_index(hdr, aoff) ||
3528 Add2Ptr(e, esize) > Add2Ptr(lrh, rec_len) ||
3529 used + esize > le32_to_cpu(hdr->total)) {
3533 memmove(Add2Ptr(e1, esize), e1,
3534 PtrOffset(e1, Add2Ptr(hdr, used)));
3535 memcpy(e1, e, esize);
3537 hdr->used = cpu_to_le32(used + esize);
3541 ntfs_fix_pre_write(&ib->rhdr, bytes);
3544 case DeleteIndexEntryAllocation:
3545 ib = Add2Ptr(buffer_le, roff);
3547 e = Add2Ptr(ib, aoff);
3548 esize = le16_to_cpu(e->size);
3550 if (is_baad(&ib->rhdr))
3552 if (!check_lsn(&ib->rhdr, rlsn))
3555 if (!check_index_buffer(ib, bytes) ||
3556 !check_if_alloc_index(hdr, aoff)) {
3560 e1 = Add2Ptr(e, esize);
3562 used = le32_to_cpu(hdr->used);
3564 memmove(e, e1, PtrOffset(e1, Add2Ptr(hdr, used)));
3566 hdr->used = cpu_to_le32(used - nsize);
3570 ntfs_fix_pre_write(&ib->rhdr, bytes);
3573 case WriteEndOfIndexBuffer:
3574 ib = Add2Ptr(buffer_le, roff);
3576 e = Add2Ptr(ib, aoff);
3578 if (is_baad(&ib->rhdr))
3580 if (!check_lsn(&ib->rhdr, rlsn))
3582 if (!check_index_buffer(ib, bytes) ||
3583 !check_if_alloc_index(hdr, aoff) ||
3584 aoff + dlen > offsetof(struct INDEX_BUFFER, ihdr) +
3585 le32_to_cpu(hdr->total)) {
3589 hdr->used = cpu_to_le32(dlen + PtrOffset(hdr, e));
3590 memmove(e, data, dlen);
3593 ntfs_fix_pre_write(&ib->rhdr, bytes);
3596 case SetIndexEntryVcnAllocation:
3597 ib = Add2Ptr(buffer_le, roff);
3599 e = Add2Ptr(ib, aoff);
3601 if (is_baad(&ib->rhdr))
3604 if (!check_lsn(&ib->rhdr, rlsn))
3606 if (!check_index_buffer(ib, bytes) ||
3607 !check_if_alloc_index(hdr, aoff)) {
3611 de_set_vbn_le(e, *(__le64 *)data);
3614 ntfs_fix_pre_write(&ib->rhdr, bytes);
3617 case UpdateFileNameAllocation:
3618 ib = Add2Ptr(buffer_le, roff);
3620 e = Add2Ptr(ib, aoff);
3622 if (is_baad(&ib->rhdr))
3625 if (!check_lsn(&ib->rhdr, rlsn))
3627 if (!check_index_buffer(ib, bytes) ||
3628 !check_if_alloc_index(hdr, aoff)) {
3632 fname = (struct ATTR_FILE_NAME *)(e + 1);
3633 memmove(&fname->dup, data, sizeof(fname->dup));
3636 ntfs_fix_pre_write(&ib->rhdr, bytes);
3639 case SetBitsInNonresidentBitMap:
3641 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3642 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3644 if (cbo + (bmp_off + 7) / 8 > lco ||
3645 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3649 __bitmap_set(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3653 case ClearBitsInNonresidentBitMap:
3655 le32_to_cpu(((struct BITMAP_RANGE *)data)->bitmap_off);
3656 bmp_bits = le32_to_cpu(((struct BITMAP_RANGE *)data)->bits);
3658 if (cbo + (bmp_off + 7) / 8 > lco ||
3659 cbo + ((bmp_off + bmp_bits + 7) / 8) > lco) {
3663 __bitmap_clear(Add2Ptr(buffer_le, roff), bmp_off, bmp_bits);
3667 case UpdateRecordDataAllocation:
3668 ib = Add2Ptr(buffer_le, roff);
3670 e = Add2Ptr(ib, aoff);
3672 if (is_baad(&ib->rhdr))
3675 if (!check_lsn(&ib->rhdr, rlsn))
3677 if (!check_index_buffer(ib, bytes) ||
3678 !check_if_alloc_index(hdr, aoff)) {
3682 memmove(Add2Ptr(e, le16_to_cpu(e->view.data_off)), data, dlen);
3685 ntfs_fix_pre_write(&ib->rhdr, bytes);
3693 __le64 t64 = cpu_to_le64(*rlsn);
3696 rec->rhdr.lsn = t64;
3701 if (mi && mi->dirty) {
3702 err = mi_write(mi, 0);
3709 err = ntfs_sb_write_run(sbi, oa->run1, vbo, buffer_le, bytes, 0);
3718 else if (mi != mi2_child)
3726 log->set_dirty = true;
3731 * log_replay - Replays log and empties it.
3733 * This function is called during mount operation.
3734 * It replays log and empties it.
3735 * Initialized is set false if logfile contains '-1'.
3737 int log_replay(struct ntfs_inode *ni, bool *initialized)
3740 struct ntfs_sb_info *sbi = ni->mi.sbi;
3741 struct ntfs_log *log;
3743 struct restart_info rst_info, rst_info2;
3744 u64 rec_lsn, ra_lsn, checkpt_lsn = 0, rlsn = 0;
3745 struct ATTR_NAME_ENTRY *attr_names = NULL;
3746 struct ATTR_NAME_ENTRY *ane;
3747 struct RESTART_TABLE *dptbl = NULL;
3748 struct RESTART_TABLE *trtbl = NULL;
3749 const struct RESTART_TABLE *rt;
3750 struct RESTART_TABLE *oatbl = NULL;
3751 struct inode *inode;
3752 struct OpenAttr *oa;
3753 struct ntfs_inode *ni_oe;
3754 struct ATTRIB *attr = NULL;
3755 u64 size, vcn, undo_next_lsn;
3756 CLST rno, lcn, lcn0, len0, clen;
3758 struct NTFS_RESTART *rst = NULL;
3759 struct lcb *lcb = NULL;
3760 struct OPEN_ATTR_ENRTY *oe;
3761 struct TRANSACTION_ENTRY *tr;
3762 struct DIR_PAGE_ENTRY *dp;
3763 u32 i, bytes_per_attr_entry;
3764 u32 l_size = ni->vfs_inode.i_size;
3765 u32 orig_file_size = l_size;
3766 u32 page_size, vbo, tail, off, dlen;
3767 u32 saved_len, rec_len, transact_id;
3768 bool use_second_page;
3769 struct RESTART_AREA *ra2, *ra = NULL;
3770 struct CLIENT_REC *ca, *cr;
3772 struct RESTART_HDR *rh;
3773 const struct LFS_RECORD_HDR *frh;
3774 const struct LOG_REC_HDR *lrh;
3776 bool is_ro = sb_rdonly(sbi->sb);
3781 /* Get the size of page. NOTE: To replay we can use default page. */
3782 #if PAGE_SIZE >= DefaultLogPageSize && PAGE_SIZE <= DefaultLogPageSize * 2
3783 page_size = norm_file_page(PAGE_SIZE, &l_size, true);
3785 page_size = norm_file_page(PAGE_SIZE, &l_size, false);
3790 log = kzalloc(sizeof(struct ntfs_log), GFP_NOFS);
3795 log->l_size = l_size;
3796 log->one_page_buf = kmalloc(page_size, GFP_NOFS);
3798 if (!log->one_page_buf) {
3803 log->page_size = page_size;
3804 log->page_mask = page_size - 1;
3805 log->page_bits = blksize_bits(page_size);
3807 /* Look for a restart area on the disk. */
3808 err = log_read_rst(log, l_size, true, &rst_info);
3812 /* remember 'initialized' */
3813 *initialized = rst_info.initialized;
3815 if (!rst_info.restart) {
3816 if (rst_info.initialized) {
3817 /* No restart area but the file is not initialized. */
3822 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3823 log_create(log, l_size, 0, get_random_int(), false, false);
3827 ra = log_create_ra(log);
3833 log->init_ra = true;
3839 * If the restart offset above wasn't zero then we won't
3840 * look for a second restart.
3843 goto check_restart_area;
3845 err = log_read_rst(log, l_size, false, &rst_info2);
3847 /* Determine which restart area to use. */
3848 if (!rst_info2.restart || rst_info2.last_lsn <= rst_info.last_lsn)
3849 goto use_first_page;
3851 use_second_page = true;
3853 if (rst_info.chkdsk_was_run && page_size != rst_info.vbo) {
3854 struct RECORD_PAGE_HDR *sp = NULL;
3857 if (!read_log_page(log, page_size, &sp, &usa_error) &&
3858 sp->rhdr.sign == NTFS_CHKD_SIGNATURE) {
3859 use_second_page = false;
3864 if (use_second_page) {
3865 kfree(rst_info.r_page);
3866 memcpy(&rst_info, &rst_info2, sizeof(struct restart_info));
3867 rst_info2.r_page = NULL;
3871 kfree(rst_info2.r_page);
3875 * If the restart area is at offset 0, we want
3876 * to write the second restart area first.
3878 log->init_ra = !!rst_info.vbo;
3880 /* If we have a valid page then grab a pointer to the restart area. */
3881 ra2 = rst_info.valid_page
3882 ? Add2Ptr(rst_info.r_page,
3883 le16_to_cpu(rst_info.r_page->ra_off))
3886 if (rst_info.chkdsk_was_run ||
3887 (ra2 && ra2->client_idx[1] == LFS_NO_CLIENT_LE)) {
3888 bool wrapped = false;
3889 bool use_multi_page = false;
3892 /* Do some checks based on whether we have a valid log page. */
3893 if (!rst_info.valid_page) {
3894 open_log_count = get_random_int();
3895 goto init_log_instance;
3897 open_log_count = le32_to_cpu(ra2->open_log_count);
3900 * If the restart page size isn't changing then we want to
3901 * check how much work we need to do.
3903 if (page_size != le32_to_cpu(rst_info.r_page->sys_page_size))
3904 goto init_log_instance;
3907 log_init_pg_hdr(log, page_size, page_size, 1, 1);
3909 log_create(log, l_size, rst_info.last_lsn, open_log_count,
3910 wrapped, use_multi_page);
3912 ra = log_create_ra(log);
3919 /* Put the restart areas and initialize
3920 * the log file as required.
3931 * If the log page or the system page sizes have changed, we can't
3932 * use the log file. We must use the system page size instead of the
3933 * default size if there is not a clean shutdown.
3935 t32 = le32_to_cpu(rst_info.r_page->sys_page_size);
3936 if (page_size != t32) {
3937 l_size = orig_file_size;
3939 norm_file_page(t32, &l_size, t32 == DefaultLogPageSize);
3942 if (page_size != t32 ||
3943 page_size != le32_to_cpu(rst_info.r_page->page_size)) {
3948 /* If the file size has shrunk then we won't mount it. */
3949 if (l_size < le64_to_cpu(ra2->l_size)) {
3954 log_init_pg_hdr(log, page_size, page_size,
3955 le16_to_cpu(rst_info.r_page->major_ver),
3956 le16_to_cpu(rst_info.r_page->minor_ver));
3958 log->l_size = le64_to_cpu(ra2->l_size);
3959 log->seq_num_bits = le32_to_cpu(ra2->seq_num_bits);
3960 log->file_data_bits = sizeof(u64) * 8 - log->seq_num_bits;
3961 log->seq_num_mask = (8 << log->file_data_bits) - 1;
3962 log->last_lsn = le64_to_cpu(ra2->current_lsn);
3963 log->seq_num = log->last_lsn >> log->file_data_bits;
3964 log->ra_off = le16_to_cpu(rst_info.r_page->ra_off);
3965 log->restart_size = log->sys_page_size - log->ra_off;
3966 log->record_header_len = le16_to_cpu(ra2->rec_hdr_len);
3967 log->ra_size = le16_to_cpu(ra2->ra_len);
3968 log->data_off = le16_to_cpu(ra2->data_off);
3969 log->data_size = log->page_size - log->data_off;
3970 log->reserved = log->data_size - log->record_header_len;
3972 vbo = lsn_to_vbo(log, log->last_lsn);
3974 if (vbo < log->first_page) {
3975 /* This is a pseudo lsn. */
3976 log->l_flags |= NTFSLOG_NO_LAST_LSN;
3977 log->next_page = log->first_page;
3981 /* Find the end of this log record. */
3982 off = final_log_off(log, log->last_lsn,
3983 le32_to_cpu(ra2->last_lsn_data_len));
3985 /* If we wrapped the file then increment the sequence number. */
3988 log->l_flags |= NTFSLOG_WRAPPED;
3991 /* Now compute the next log page to use. */
3992 vbo &= ~log->sys_page_mask;
3993 tail = log->page_size - (off & log->page_mask) - 1;
3996 *If we can fit another log record on the page,
3997 * move back a page the log file.
3999 if (tail >= log->record_header_len) {
4000 log->l_flags |= NTFSLOG_REUSE_TAIL;
4001 log->next_page = vbo;
4003 log->next_page = next_page_off(log, vbo);
4008 * Find the oldest client lsn. Use the last
4009 * flushed lsn as a starting point.
4011 log->oldest_lsn = log->last_lsn;
4012 oldest_client_lsn(Add2Ptr(ra2, le16_to_cpu(ra2->client_off)),
4013 ra2->client_idx[1], &log->oldest_lsn);
4014 log->oldest_lsn_off = lsn_to_vbo(log, log->oldest_lsn);
4016 if (log->oldest_lsn_off < log->first_page)
4017 log->l_flags |= NTFSLOG_NO_OLDEST_LSN;
4019 if (!(ra2->flags & RESTART_SINGLE_PAGE_IO))
4020 log->l_flags |= NTFSLOG_WRAPPED | NTFSLOG_MULTIPLE_PAGE_IO;
4022 log->current_openlog_count = le32_to_cpu(ra2->open_log_count);
4023 log->total_avail_pages = log->l_size - log->first_page;
4024 log->total_avail = log->total_avail_pages >> log->page_bits;
4025 log->max_current_avail = log->total_avail * log->reserved;
4026 log->total_avail = log->total_avail * log->data_size;
4028 log->current_avail = current_log_avail(log);
4030 ra = kzalloc(log->restart_size, GFP_NOFS);
4037 t16 = le16_to_cpu(ra2->client_off);
4038 if (t16 == offsetof(struct RESTART_AREA, clients)) {
4039 memcpy(ra, ra2, log->ra_size);
4041 memcpy(ra, ra2, offsetof(struct RESTART_AREA, clients));
4042 memcpy(ra->clients, Add2Ptr(ra2, t16),
4043 le16_to_cpu(ra2->ra_len) - t16);
4045 log->current_openlog_count = get_random_int();
4046 ra->open_log_count = cpu_to_le32(log->current_openlog_count);
4047 log->ra_size = offsetof(struct RESTART_AREA, clients) +
4048 sizeof(struct CLIENT_REC);
4050 cpu_to_le16(offsetof(struct RESTART_AREA, clients));
4051 ra->ra_len = cpu_to_le16(log->ra_size);
4054 le32_add_cpu(&ra->open_log_count, 1);
4056 /* Now we need to walk through looking for the last lsn. */
4057 err = last_log_lsn(log);
4061 log->current_avail = current_log_avail(log);
4063 /* Remember which restart area to write first. */
4064 log->init_ra = rst_info.vbo;
4067 /* 1.0, 1.1, 2.0 log->major_ver/minor_ver - short values. */
4068 switch ((log->major_ver << 16) + log->minor_ver) {
4074 ntfs_warn(sbi->sb, "\x24LogFile version %d.%d is not supported",
4075 log->major_ver, log->minor_ver);
4077 log->set_dirty = true;
4081 /* One client "NTFS" per logfile. */
4082 ca = Add2Ptr(ra, le16_to_cpu(ra->client_off));
4084 for (client = ra->client_idx[1];; client = cr->next_client) {
4085 if (client == LFS_NO_CLIENT_LE) {
4086 /* Insert "NTFS" client LogFile. */
4087 client = ra->client_idx[0];
4088 if (client == LFS_NO_CLIENT_LE)
4091 t16 = le16_to_cpu(client);
4094 remove_client(ca, cr, &ra->client_idx[0]);
4096 cr->restart_lsn = 0;
4097 cr->oldest_lsn = cpu_to_le64(log->oldest_lsn);
4098 cr->name_bytes = cpu_to_le32(8);
4099 cr->name[0] = cpu_to_le16('N');
4100 cr->name[1] = cpu_to_le16('T');
4101 cr->name[2] = cpu_to_le16('F');
4102 cr->name[3] = cpu_to_le16('S');
4104 add_client(ca, t16, &ra->client_idx[1]);
4108 cr = ca + le16_to_cpu(client);
4110 if (cpu_to_le32(8) == cr->name_bytes &&
4111 cpu_to_le16('N') == cr->name[0] &&
4112 cpu_to_le16('T') == cr->name[1] &&
4113 cpu_to_le16('F') == cr->name[2] &&
4114 cpu_to_le16('S') == cr->name[3])
4118 /* Update the client handle with the client block information. */
4119 log->client_id.seq_num = cr->seq_num;
4120 log->client_id.client_idx = client;
4122 err = read_rst_area(log, &rst, &ra_lsn);
4129 bytes_per_attr_entry = !rst->major_ver ? 0x2C : 0x28;
4131 checkpt_lsn = le64_to_cpu(rst->check_point_start);
4133 checkpt_lsn = ra_lsn;
4135 /* Allocate and Read the Transaction Table. */
4136 if (!rst->transact_table_len)
4137 goto check_dirty_page_table;
4139 t64 = le64_to_cpu(rst->transact_table_lsn);
4140 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4146 rec_len = le32_to_cpu(frh->client_data_len);
4148 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4149 bytes_per_attr_entry)) {
4154 t16 = le16_to_cpu(lrh->redo_off);
4156 rt = Add2Ptr(lrh, t16);
4157 t32 = rec_len - t16;
4159 /* Now check that this is a valid restart table. */
4160 if (!check_rstbl(rt, t32)) {
4165 trtbl = kmemdup(rt, t32, GFP_NOFS);
4174 check_dirty_page_table:
4175 /* The next record back should be the Dirty Pages Table. */
4176 if (!rst->dirty_pages_len)
4177 goto check_attribute_names;
4179 t64 = le64_to_cpu(rst->dirty_pages_table_lsn);
4180 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4186 rec_len = le32_to_cpu(frh->client_data_len);
4188 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4189 bytes_per_attr_entry)) {
4194 t16 = le16_to_cpu(lrh->redo_off);
4196 rt = Add2Ptr(lrh, t16);
4197 t32 = rec_len - t16;
4199 /* Now check that this is a valid restart table. */
4200 if (!check_rstbl(rt, t32)) {
4205 dptbl = kmemdup(rt, t32, GFP_NOFS);
4211 /* Convert Ra version '0' into version '1'. */
4216 while ((dp = enum_rstbl(dptbl, dp))) {
4217 struct DIR_PAGE_ENTRY_32 *dp0 = (struct DIR_PAGE_ENTRY_32 *)dp;
4218 // NOTE: Danger. Check for of boundary.
4219 memmove(&dp->vcn, &dp0->vcn_low,
4221 le32_to_cpu(dp->lcns_follow) * sizeof(u64));
4229 * Go through the table and remove the duplicates,
4230 * remembering the oldest lsn values.
4232 if (sbi->cluster_size <= log->page_size)
4233 goto trace_dp_table;
4236 while ((dp = enum_rstbl(dptbl, dp))) {
4237 struct DIR_PAGE_ENTRY *next = dp;
4239 while ((next = enum_rstbl(dptbl, next))) {
4240 if (next->target_attr == dp->target_attr &&
4241 next->vcn == dp->vcn) {
4242 if (le64_to_cpu(next->oldest_lsn) <
4243 le64_to_cpu(dp->oldest_lsn)) {
4244 dp->oldest_lsn = next->oldest_lsn;
4247 free_rsttbl_idx(dptbl, PtrOffset(dptbl, next));
4252 check_attribute_names:
4253 /* The next record should be the Attribute Names. */
4254 if (!rst->attr_names_len)
4255 goto check_attr_table;
4257 t64 = le64_to_cpu(rst->attr_names_lsn);
4258 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4264 rec_len = le32_to_cpu(frh->client_data_len);
4266 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4267 bytes_per_attr_entry)) {
4272 t32 = lrh_length(lrh);
4275 attr_names = kmemdup(Add2Ptr(lrh, t32), rec_len, GFP_NOFS);
4281 /* The next record should be the attribute Table. */
4282 if (!rst->open_attr_len)
4283 goto check_attribute_names2;
4285 t64 = le64_to_cpu(rst->open_attr_table_lsn);
4286 err = read_log_rec_lcb(log, t64, lcb_ctx_prev, &lcb);
4292 rec_len = le32_to_cpu(frh->client_data_len);
4294 if (!check_log_rec(lrh, rec_len, le32_to_cpu(frh->transact_id),
4295 bytes_per_attr_entry)) {
4300 t16 = le16_to_cpu(lrh->redo_off);
4302 rt = Add2Ptr(lrh, t16);
4303 t32 = rec_len - t16;
4305 if (!check_rstbl(rt, t32)) {
4310 oatbl = kmemdup(rt, t32, GFP_NOFS);
4316 log->open_attr_tbl = oatbl;
4318 /* Clear all of the Attr pointers. */
4320 while ((oe = enum_rstbl(oatbl, oe))) {
4321 if (!rst->major_ver) {
4322 struct OPEN_ATTR_ENRTY_32 oe0;
4324 /* Really 'oe' points to OPEN_ATTR_ENRTY_32. */
4325 memcpy(&oe0, oe, SIZEOF_OPENATTRIBUTEENTRY0);
4327 oe->bytes_per_index = oe0.bytes_per_index;
4328 oe->type = oe0.type;
4329 oe->is_dirty_pages = oe0.is_dirty_pages;
4332 oe->open_record_lsn = oe0.open_record_lsn;
4335 oe->is_attr_name = 0;
4342 check_attribute_names2:
4343 if (!rst->attr_names_len)
4344 goto trace_attribute_table;
4348 goto trace_attribute_table;
4350 /* TODO: Clear table on exit! */
4351 oe = Add2Ptr(oatbl, le16_to_cpu(ane->off));
4352 t16 = le16_to_cpu(ane->name_bytes);
4353 oe->name_len = t16 / sizeof(short);
4354 oe->ptr = ane->name;
4355 oe->is_attr_name = 2;
4356 ane = Add2Ptr(ane, sizeof(struct ATTR_NAME_ENTRY) + t16);
4359 trace_attribute_table:
4361 * If the checkpt_lsn is zero, then this is a freshly
4362 * formatted disk and we have no work to do.
4370 oatbl = init_rsttbl(bytes_per_attr_entry, 8);
4377 log->open_attr_tbl = oatbl;
4379 /* Start the analysis pass from the Checkpoint lsn. */
4380 rec_lsn = checkpt_lsn;
4382 /* Read the first lsn. */
4383 err = read_log_rec_lcb(log, checkpt_lsn, lcb_ctx_next, &lcb);
4387 /* Loop to read all subsequent records to the end of the log file. */
4388 next_log_record_analyze:
4389 err = read_next_log_rec(log, lcb, &rec_lsn);
4394 goto end_log_records_enumerate;
4397 transact_id = le32_to_cpu(frh->transact_id);
4398 rec_len = le32_to_cpu(frh->client_data_len);
4401 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4407 * The first lsn after the previous lsn remembered
4408 * the checkpoint is the first candidate for the rlsn.
4413 if (LfsClientRecord != frh->record_type)
4414 goto next_log_record_analyze;
4417 * Now update the Transaction Table for this transaction. If there
4418 * is no entry present or it is unallocated we allocate the entry.
4421 trtbl = init_rsttbl(sizeof(struct TRANSACTION_ENTRY),
4422 INITIAL_NUMBER_TRANSACTIONS);
4429 tr = Add2Ptr(trtbl, transact_id);
4431 if (transact_id >= bytes_per_rt(trtbl) ||
4432 tr->next != RESTART_ENTRY_ALLOCATED_LE) {
4433 tr = alloc_rsttbl_from_idx(&trtbl, transact_id);
4438 tr->transact_state = TransactionActive;
4439 tr->first_lsn = cpu_to_le64(rec_lsn);
4442 tr->prev_lsn = tr->undo_next_lsn = cpu_to_le64(rec_lsn);
4445 * If this is a compensation log record, then change
4446 * the undo_next_lsn to be the undo_next_lsn of this record.
4448 if (lrh->undo_op == cpu_to_le16(CompensationLogRecord))
4449 tr->undo_next_lsn = frh->client_undo_next_lsn;
4451 /* Dispatch to handle log record depending on type. */
4452 switch (le16_to_cpu(lrh->redo_op)) {
4453 case InitializeFileRecordSegment:
4454 case DeallocateFileRecordSegment:
4455 case WriteEndOfFileRecordSegment:
4456 case CreateAttribute:
4457 case DeleteAttribute:
4458 case UpdateResidentValue:
4459 case UpdateNonresidentValue:
4460 case UpdateMappingPairs:
4461 case SetNewAttributeSizes:
4462 case AddIndexEntryRoot:
4463 case DeleteIndexEntryRoot:
4464 case AddIndexEntryAllocation:
4465 case DeleteIndexEntryAllocation:
4466 case WriteEndOfIndexBuffer:
4467 case SetIndexEntryVcnRoot:
4468 case SetIndexEntryVcnAllocation:
4469 case UpdateFileNameRoot:
4470 case UpdateFileNameAllocation:
4471 case SetBitsInNonresidentBitMap:
4472 case ClearBitsInNonresidentBitMap:
4473 case UpdateRecordDataRoot:
4474 case UpdateRecordDataAllocation:
4475 case ZeroEndOfFileRecord:
4476 t16 = le16_to_cpu(lrh->target_attr);
4477 t64 = le64_to_cpu(lrh->target_vcn);
4478 dp = find_dp(dptbl, t16, t64);
4484 * Calculate the number of clusters per page the system
4485 * which wrote the checkpoint, possibly creating the table.
4488 t32 = (le16_to_cpu(dptbl->size) -
4489 sizeof(struct DIR_PAGE_ENTRY)) /
4492 t32 = log->clst_per_page;
4494 dptbl = init_rsttbl(struct_size(dp, page_lcns, t32),
4502 dp = alloc_rsttbl_idx(&dptbl);
4507 dp->target_attr = cpu_to_le32(t16);
4508 dp->transfer_len = cpu_to_le32(t32 << sbi->cluster_bits);
4509 dp->lcns_follow = cpu_to_le32(t32);
4510 dp->vcn = cpu_to_le64(t64 & ~((u64)t32 - 1));
4511 dp->oldest_lsn = cpu_to_le64(rec_lsn);
4515 * Copy the Lcns from the log record into the Dirty Page Entry.
4516 * TODO: For different page size support, must somehow make
4517 * whole routine a loop, case Lcns do not fit below.
4519 t16 = le16_to_cpu(lrh->lcns_follow);
4520 for (i = 0; i < t16; i++) {
4521 size_t j = (size_t)(le64_to_cpu(lrh->target_vcn) -
4522 le64_to_cpu(dp->vcn));
4523 dp->page_lcns[j + i] = lrh->page_lcns[i];
4526 goto next_log_record_analyze;
4528 case DeleteDirtyClusters: {
4530 le16_to_cpu(lrh->redo_len) / sizeof(struct LCN_RANGE);
4531 const struct LCN_RANGE *r =
4532 Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4534 /* Loop through all of the Lcn ranges this log record. */
4535 for (i = 0; i < range_count; i++, r++) {
4536 u64 lcn0 = le64_to_cpu(r->lcn);
4537 u64 lcn_e = lcn0 + le64_to_cpu(r->len) - 1;
4540 while ((dp = enum_rstbl(dptbl, dp))) {
4543 t32 = le32_to_cpu(dp->lcns_follow);
4544 for (j = 0; j < t32; j++) {
4545 t64 = le64_to_cpu(dp->page_lcns[j]);
4546 if (t64 >= lcn0 && t64 <= lcn_e)
4547 dp->page_lcns[j] = 0;
4551 goto next_log_record_analyze;
4555 case OpenNonresidentAttribute:
4556 t16 = le16_to_cpu(lrh->target_attr);
4557 if (t16 >= bytes_per_rt(oatbl)) {
4559 * Compute how big the table needs to be.
4560 * Add 10 extra entries for some cushion.
4562 u32 new_e = t16 / le16_to_cpu(oatbl->size);
4564 new_e += 10 - le16_to_cpu(oatbl->used);
4566 oatbl = extend_rsttbl(oatbl, new_e, ~0u);
4567 log->open_attr_tbl = oatbl;
4574 /* Point to the entry being opened. */
4575 oe = alloc_rsttbl_from_idx(&oatbl, t16);
4576 log->open_attr_tbl = oatbl;
4582 /* Initialize this entry from the log record. */
4583 t16 = le16_to_cpu(lrh->redo_off);
4584 if (!rst->major_ver) {
4585 /* Convert version '0' into version '1'. */
4586 struct OPEN_ATTR_ENRTY_32 *oe0 = Add2Ptr(lrh, t16);
4588 oe->bytes_per_index = oe0->bytes_per_index;
4589 oe->type = oe0->type;
4590 oe->is_dirty_pages = oe0->is_dirty_pages;
4591 oe->name_len = 0; //oe0.name_len;
4593 oe->open_record_lsn = oe0->open_record_lsn;
4595 memcpy(oe, Add2Ptr(lrh, t16), bytes_per_attr_entry);
4598 t16 = le16_to_cpu(lrh->undo_len);
4600 oe->ptr = kmalloc(t16, GFP_NOFS);
4605 oe->name_len = t16 / sizeof(short);
4607 Add2Ptr(lrh, le16_to_cpu(lrh->undo_off)), t16);
4608 oe->is_attr_name = 1;
4611 oe->is_attr_name = 0;
4614 goto next_log_record_analyze;
4617 t16 = le16_to_cpu(lrh->target_attr);
4618 t64 = le64_to_cpu(lrh->target_vcn);
4619 dp = find_dp(dptbl, t16, t64);
4621 size_t j = le64_to_cpu(lrh->target_vcn) -
4622 le64_to_cpu(dp->vcn);
4623 if (dp->page_lcns[j])
4624 dp->page_lcns[j] = lrh->page_lcns[0];
4626 goto next_log_record_analyze;
4628 case EndTopLevelAction:
4629 tr = Add2Ptr(trtbl, transact_id);
4630 tr->prev_lsn = cpu_to_le64(rec_lsn);
4631 tr->undo_next_lsn = frh->client_undo_next_lsn;
4632 goto next_log_record_analyze;
4634 case PrepareTransaction:
4635 tr = Add2Ptr(trtbl, transact_id);
4636 tr->transact_state = TransactionPrepared;
4637 goto next_log_record_analyze;
4639 case CommitTransaction:
4640 tr = Add2Ptr(trtbl, transact_id);
4641 tr->transact_state = TransactionCommitted;
4642 goto next_log_record_analyze;
4644 case ForgetTransaction:
4645 free_rsttbl_idx(trtbl, transact_id);
4646 goto next_log_record_analyze;
4649 case OpenAttributeTableDump:
4650 case AttributeNamesDump:
4651 case DirtyPageTableDump:
4652 case TransactionTableDump:
4653 /* The following cases require no action the Analysis Pass. */
4654 goto next_log_record_analyze;
4658 * All codes will be explicitly handled.
4659 * If we see a code we do not expect, then we are trouble.
4661 goto next_log_record_analyze;
4664 end_log_records_enumerate:
4669 * Scan the Dirty Page Table and Transaction Table for
4670 * the lowest lsn, and return it as the Redo lsn.
4673 while ((dp = enum_rstbl(dptbl, dp))) {
4674 t64 = le64_to_cpu(dp->oldest_lsn);
4675 if (t64 && t64 < rlsn)
4680 while ((tr = enum_rstbl(trtbl, tr))) {
4681 t64 = le64_to_cpu(tr->first_lsn);
4682 if (t64 && t64 < rlsn)
4687 * Only proceed if the Dirty Page Table or Transaction
4688 * table are not empty.
4690 if ((!dptbl || !dptbl->total) && (!trtbl || !trtbl->total))
4693 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
4697 /* Reopen all of the attributes with dirty pages. */
4699 next_open_attribute:
4701 oe = enum_rstbl(oatbl, oe);
4705 goto next_dirty_page;
4708 oa = kzalloc(sizeof(struct OpenAttr), GFP_NOFS);
4714 inode = ntfs_iget5(sbi->sb, &oe->ref, NULL);
4718 if (is_bad_inode(inode)) {
4722 iput(&oa->ni->vfs_inode);
4726 attr = attr_create_nonres_log(sbi, oe->type, 0, oe->ptr,
4734 oa->run1 = &oa->run0;
4738 ni_oe = ntfs_i(inode);
4741 attr = ni_find_attr(ni_oe, NULL, NULL, oe->type, oe->ptr, oe->name_len,
4747 t32 = le32_to_cpu(attr->size);
4748 oa->attr = kmemdup(attr, t32, GFP_NOFS);
4752 if (!S_ISDIR(inode->i_mode)) {
4753 if (attr->type == ATTR_DATA && !attr->name_len) {
4754 oa->run1 = &ni_oe->file.run;
4758 if (attr->type == ATTR_ALLOC &&
4759 attr->name_len == ARRAY_SIZE(I30_NAME) &&
4760 !memcmp(attr_name(attr), I30_NAME, sizeof(I30_NAME))) {
4761 oa->run1 = &ni_oe->dir.alloc_run;
4766 if (attr->non_res) {
4767 u16 roff = le16_to_cpu(attr->nres.run_off);
4768 CLST svcn = le64_to_cpu(attr->nres.svcn);
4770 err = run_unpack(&oa->run0, sbi, inode->i_ino, svcn,
4771 le64_to_cpu(attr->nres.evcn), svcn,
4772 Add2Ptr(attr, roff), t32 - roff);
4780 oa->run1 = &oa->run0;
4784 if (oe->is_attr_name == 1)
4786 oe->is_attr_name = 0;
4788 oe->name_len = attr->name_len;
4790 goto next_open_attribute;
4793 * Now loop through the dirty page table to extract all of the Vcn/Lcn.
4794 * Mapping that we have, and insert it into the appropriate run.
4797 dp = enum_rstbl(dptbl, dp);
4801 oe = Add2Ptr(oatbl, le32_to_cpu(dp->target_attr));
4803 if (oe->next != RESTART_ENTRY_ALLOCATED_LE)
4804 goto next_dirty_page;
4808 goto next_dirty_page;
4811 next_dirty_page_vcn:
4813 if (i >= le32_to_cpu(dp->lcns_follow))
4814 goto next_dirty_page;
4816 vcn = le64_to_cpu(dp->vcn) + i;
4817 size = (vcn + 1) << sbi->cluster_bits;
4819 if (!dp->page_lcns[i])
4820 goto next_dirty_page_vcn;
4822 rno = ino_get(&oe->ref);
4823 if (rno <= MFT_REC_MIRR &&
4824 size < (MFT_REC_VOL + 1) * sbi->record_size &&
4825 oe->type == ATTR_DATA) {
4826 goto next_dirty_page_vcn;
4829 lcn = le64_to_cpu(dp->page_lcns[i]);
4831 if ((!run_lookup_entry(oa->run1, vcn, &lcn0, &len0, NULL) ||
4833 !run_add_entry(oa->run1, vcn, lcn, 1, false)) {
4838 t64 = le64_to_cpu(attr->nres.alloc_size);
4840 attr->nres.valid_size = attr->nres.data_size =
4841 attr->nres.alloc_size = cpu_to_le64(size);
4843 goto next_dirty_page_vcn;
4847 * Perform the Redo Pass, to restore all of the dirty pages to the same
4848 * contents that they had immediately before the crash. If the dirty
4849 * page table is empty, then we can skip the entire Redo Pass.
4851 if (!dptbl || !dptbl->total)
4852 goto do_undo_action;
4857 * Read the record at the Redo lsn, before falling
4858 * into common code to handle each record.
4860 err = read_log_rec_lcb(log, rlsn, lcb_ctx_next, &lcb);
4865 * Now loop to read all of our log records forwards, until
4866 * we hit the end of the file, cleaning up at the end.
4871 if (LfsClientRecord != frh->record_type)
4872 goto read_next_log_do_action;
4874 transact_id = le32_to_cpu(frh->transact_id);
4875 rec_len = le32_to_cpu(frh->client_data_len);
4878 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
4883 /* Ignore log records that do not update pages. */
4884 if (lrh->lcns_follow)
4885 goto find_dirty_page;
4887 goto read_next_log_do_action;
4890 t16 = le16_to_cpu(lrh->target_attr);
4891 t64 = le64_to_cpu(lrh->target_vcn);
4892 dp = find_dp(dptbl, t16, t64);
4895 goto read_next_log_do_action;
4897 if (rec_lsn < le64_to_cpu(dp->oldest_lsn))
4898 goto read_next_log_do_action;
4900 t16 = le16_to_cpu(lrh->target_attr);
4901 if (t16 >= bytes_per_rt(oatbl)) {
4906 oe = Add2Ptr(oatbl, t16);
4908 if (oe->next != RESTART_ENTRY_ALLOCATED_LE) {
4921 vcn = le64_to_cpu(lrh->target_vcn);
4923 if (!run_lookup_entry(oa->run1, vcn, &lcn, NULL, NULL) ||
4924 lcn == SPARSE_LCN) {
4925 goto read_next_log_do_action;
4928 /* Point to the Redo data and get its length. */
4929 data = Add2Ptr(lrh, le16_to_cpu(lrh->redo_off));
4930 dlen = le16_to_cpu(lrh->redo_len);
4932 /* Shorten length by any Lcns which were deleted. */
4935 for (i = le16_to_cpu(lrh->lcns_follow); i; i--) {
4939 voff = le16_to_cpu(lrh->record_off) +
4940 le16_to_cpu(lrh->attr_off);
4941 voff += le16_to_cpu(lrh->cluster_off) << SECTOR_SHIFT;
4943 /* If the Vcn question is allocated, we can just get out. */
4944 j = le64_to_cpu(lrh->target_vcn) - le64_to_cpu(dp->vcn);
4945 if (dp->page_lcns[j + i - 1])
4952 * Calculate the allocated space left relative to the
4953 * log record Vcn, after removing this unallocated Vcn.
4955 alen = (i - 1) << sbi->cluster_bits;
4958 * If the update described this log record goes beyond
4959 * the allocated space, then we will have to reduce the length.
4963 else if (voff + dlen > alen)
4968 * If the resulting dlen from above is now zero,
4969 * we can skip this log record.
4971 if (!dlen && saved_len)
4972 goto read_next_log_do_action;
4974 t16 = le16_to_cpu(lrh->redo_op);
4975 if (can_skip_action(t16))
4976 goto read_next_log_do_action;
4978 /* Apply the Redo operation a common routine. */
4979 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, &rec_lsn);
4983 /* Keep reading and looping back until end of file. */
4984 read_next_log_do_action:
4985 err = read_next_log_rec(log, lcb, &rec_lsn);
4986 if (!err && rec_lsn)
4987 goto do_action_next;
4993 /* Scan Transaction Table. */
4995 transaction_table_next:
4996 tr = enum_rstbl(trtbl, tr);
4998 goto undo_action_done;
5000 if (TransactionActive != tr->transact_state || !tr->undo_next_lsn) {
5001 free_rsttbl_idx(trtbl, PtrOffset(trtbl, tr));
5002 goto transaction_table_next;
5005 log->transaction_id = PtrOffset(trtbl, tr);
5006 undo_next_lsn = le64_to_cpu(tr->undo_next_lsn);
5009 * We only have to do anything if the transaction has
5010 * something its undo_next_lsn field.
5015 /* Read the first record to be undone by this transaction. */
5016 err = read_log_rec_lcb(log, undo_next_lsn, lcb_ctx_undo_next, &lcb);
5021 * Now loop to read all of our log records forwards,
5022 * until we hit the end of the file, cleaning up at the end.
5028 transact_id = le32_to_cpu(frh->transact_id);
5029 rec_len = le32_to_cpu(frh->client_data_len);
5031 if (!check_log_rec(lrh, rec_len, transact_id, bytes_per_attr_entry)) {
5036 if (lrh->undo_op == cpu_to_le16(Noop))
5037 goto read_next_log_undo_action;
5039 oe = Add2Ptr(oatbl, le16_to_cpu(lrh->target_attr));
5042 t16 = le16_to_cpu(lrh->lcns_follow);
5044 goto add_allocated_vcns;
5046 is_mapped = run_lookup_entry(oa->run1, le64_to_cpu(lrh->target_vcn),
5050 * If the mapping isn't already the table or the mapping
5051 * corresponds to a hole the mapping, we need to make sure
5052 * there is no partial page already memory.
5054 if (is_mapped && lcn != SPARSE_LCN && clen >= t16)
5055 goto add_allocated_vcns;
5057 vcn = le64_to_cpu(lrh->target_vcn);
5058 vcn &= ~(log->clst_per_page - 1);
5061 for (i = 0, vcn = le64_to_cpu(lrh->target_vcn),
5062 size = (vcn + 1) << sbi->cluster_bits;
5063 i < t16; i++, vcn += 1, size += sbi->cluster_size) {
5065 if (!attr->non_res) {
5066 if (size > le32_to_cpu(attr->res.data_size))
5067 attr->res.data_size = cpu_to_le32(size);
5069 if (size > le64_to_cpu(attr->nres.data_size))
5070 attr->nres.valid_size = attr->nres.data_size =
5071 attr->nres.alloc_size =
5076 t16 = le16_to_cpu(lrh->undo_op);
5077 if (can_skip_action(t16))
5078 goto read_next_log_undo_action;
5080 /* Point to the Redo data and get its length. */
5081 data = Add2Ptr(lrh, le16_to_cpu(lrh->undo_off));
5082 dlen = le16_to_cpu(lrh->undo_len);
5084 /* It is time to apply the undo action. */
5085 err = do_action(log, oe, lrh, t16, data, dlen, rec_len, NULL);
5087 read_next_log_undo_action:
5089 * Keep reading and looping back until we have read the
5090 * last record for this transaction.
5092 err = read_next_log_rec(log, lcb, &rec_lsn);
5097 goto undo_action_next;
5103 free_rsttbl_idx(trtbl, log->transaction_id);
5105 log->transaction_id = 0;
5107 goto transaction_table_next;
5111 ntfs_update_mftmirr(sbi, 0);
5113 sbi->flags &= ~NTFS_FLAGS_NEED_REPLAY;
5121 rh = kzalloc(log->page_size, GFP_NOFS);
5127 rh->rhdr.sign = NTFS_RSTR_SIGNATURE;
5128 rh->rhdr.fix_off = cpu_to_le16(offsetof(struct RESTART_HDR, fixups));
5129 t16 = (log->page_size >> SECTOR_SHIFT) + 1;
5130 rh->rhdr.fix_num = cpu_to_le16(t16);
5131 rh->sys_page_size = cpu_to_le32(log->page_size);
5132 rh->page_size = cpu_to_le32(log->page_size);
5134 t16 = ALIGN(offsetof(struct RESTART_HDR, fixups) + sizeof(short) * t16,
5136 rh->ra_off = cpu_to_le16(t16);
5137 rh->minor_ver = cpu_to_le16(1); // 0x1A:
5138 rh->major_ver = cpu_to_le16(1); // 0x1C:
5140 ra2 = Add2Ptr(rh, t16);
5141 memcpy(ra2, ra, sizeof(struct RESTART_AREA));
5143 ra2->client_idx[0] = 0;
5144 ra2->client_idx[1] = LFS_NO_CLIENT_LE;
5145 ra2->flags = cpu_to_le16(2);
5147 le32_add_cpu(&ra2->open_log_count, 1);
5149 ntfs_fix_pre_write(&rh->rhdr, log->page_size);
5151 err = ntfs_sb_write_run(sbi, &ni->file.run, 0, rh, log->page_size, 0);
5153 err = ntfs_sb_write_run(sbi, &log->ni->file.run, log->page_size,
5154 rh, log->page_size, 0);
5166 * Scan the Open Attribute Table to close all of
5167 * the open attributes.
5170 while ((oe = enum_rstbl(oatbl, oe))) {
5171 rno = ino_get(&oe->ref);
5173 if (oe->is_attr_name == 1) {
5179 if (oe->is_attr_name)
5186 run_close(&oa->run0);
5189 iput(&oa->ni->vfs_inode);
5197 kfree(rst_info.r_page);
5200 kfree(log->one_page_buf);
5203 sbi->flags |= NTFS_FLAGS_NEED_REPLAY;
5207 else if (log->set_dirty)
5208 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);