1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
8 #include <linux/fiemap.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
30 mi = rb_entry(pr, struct mft_inode, node);
33 else if (mi->rno < ino)
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
48 * ni_find_mi - Find mft_inode by record number.
50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
68 rb_erase(&mi->node, &ni->mi_tree);
72 * ni_std - Return: Pointer into std_info from primary record.
74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
76 const struct ATTRIB *attr;
78 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
86 * Return: Pointer into std_info from primary record.
88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
90 const struct ATTRIB *attr;
92 attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
99 * ni_clear - Clear resources allocated by ntfs_inode.
101 void ni_clear(struct ntfs_inode *ni)
103 struct rb_node *node;
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec && is_rec_inuse(ni->mi.mrec))
110 for (node = rb_first(&ni->mi_tree); node;) {
111 struct rb_node *next = rb_next(node);
112 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
114 rb_erase(node, &ni->mi_tree);
119 /* Bad inode always has mode == S_IFREG. */
120 if (ni->ni_flags & NI_FLAG_DIR)
121 indx_clear(&ni->dir);
123 run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 if (ni->file.offs_page) {
126 /* On-demand allocated page for offsets. */
127 put_page(ni->file.offs_page);
128 ni->file.offs_page = NULL;
137 * ni_load_mi_ex - Find mft_inode by record number.
139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
144 r = ni_find_mi(ni, rno);
148 err = mi_get(ni->mi.sbi, rno, &r);
161 * ni_load_mi - Load mft_inode corresponded list_entry.
163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 struct mft_inode **mi)
173 rno = ino_get(&le->ref);
174 if (rno == ni->mi.rno) {
178 return ni_load_mi_ex(ni, rno, mi);
184 * Return: Attribute and record this attribute belongs to.
186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 const __le16 *name, u8 name_len, const CLST *vcn,
189 struct mft_inode **mi)
191 struct ATTR_LIST_ENTRY *le;
194 if (!ni->attr_list.size ||
195 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
201 /* Look for required attribute in primary record. */
202 return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
205 /* First look for list entry of required type. */
206 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
213 /* Load record that contains this attribute. */
214 if (ni_load_mi(ni, le, &m))
217 /* Look for required attribute. */
218 attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
223 if (!attr->non_res) {
229 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 *vcn > le64_to_cpu(attr->nres.evcn)) {
239 ntfs_inode_err(&ni->vfs_inode, "failed to parse mft record");
240 ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
245 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
247 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
248 struct ATTR_LIST_ENTRY **le,
249 struct mft_inode **mi)
251 struct mft_inode *mi2;
252 struct ATTR_LIST_ENTRY *le2;
254 /* Do we have an attribute list? */
255 if (!ni->attr_list.size) {
259 /* Enum attributes in primary record. */
260 return mi_enum_attr(&ni->mi, attr);
263 /* Get next list entry. */
264 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
268 /* Load record that contains the required attribute. */
269 if (ni_load_mi(ni, le2, &mi2))
275 /* Find attribute in loaded record. */
276 return rec_find_attr_le(mi2, le2);
280 * ni_load_attr - Load attribute that contains given VCN.
282 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
283 const __le16 *name, u8 name_len, CLST vcn,
284 struct mft_inode **pmi)
286 struct ATTR_LIST_ENTRY *le;
288 struct mft_inode *mi;
289 struct ATTR_LIST_ENTRY *next;
291 if (!ni->attr_list.size) {
294 return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
297 le = al_find_ex(ni, NULL, type, name, name_len, NULL);
302 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
303 * So to find the ATTRIB segment that contains 'vcn' we should
304 * enumerate some entries.
308 next = al_find_ex(ni, le, type, name, name_len, NULL);
309 if (!next || le64_to_cpu(next->vcn) > vcn)
314 if (ni_load_mi(ni, le, &mi))
320 attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
327 if (le64_to_cpu(attr->nres.svcn) <= vcn &&
328 vcn <= le64_to_cpu(attr->nres.evcn))
335 * ni_load_all_mi - Load all subrecords.
337 int ni_load_all_mi(struct ntfs_inode *ni)
340 struct ATTR_LIST_ENTRY *le;
342 if (!ni->attr_list.size)
347 while ((le = al_enumerate(ni, le))) {
348 CLST rno = ino_get(&le->ref);
350 if (rno == ni->mi.rno)
353 err = ni_load_mi_ex(ni, rno, NULL);
362 * ni_add_subrecord - Allocate + format + attach a new subrecord.
364 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
368 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
372 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
377 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
385 * ni_remove_attr - Remove all attributes for the given type/name/id.
387 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
388 const __le16 *name, u8 name_len, bool base_only,
393 struct ATTR_LIST_ENTRY *le;
394 struct mft_inode *mi;
398 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
399 attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
403 mi_remove_attr(ni, &ni->mi, attr);
407 type_in = le32_to_cpu(type);
411 le = al_enumerate(ni, le);
416 diff = le32_to_cpu(le->type) - type_in;
423 if (le->name_len != name_len)
427 memcmp(le_name(le), name, name_len * sizeof(short)))
430 if (id && le->id != *id)
432 err = ni_load_mi(ni, le, &mi);
436 al_remove_le(ni, le);
438 attr = mi_find_attr(mi, NULL, type, name, name_len, id);
442 mi_remove_attr(ni, mi, attr);
444 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
451 * ni_ins_new_attr - Insert the attribute into record.
453 * Return: Not full constructed attribute or NULL if not possible to create.
455 static struct ATTRIB *
456 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
457 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
458 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
459 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
463 bool le_added = false;
466 mi_get_ref(mi, &ref);
468 if (type != ATTR_LIST && !le && ni->attr_list.size) {
469 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
472 /* No memory or no space. */
478 * al_add_le -> attr_set_size (list) -> ni_expand_list
479 * which moves some attributes out of primary record
480 * this means that name may point into moved memory
481 * reinit 'name' from le.
486 attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
489 al_remove_le(ni, le);
493 if (type == ATTR_LIST) {
494 /* Attr list is not in list entry array. */
501 /* Update ATTRIB Id and record reference. */
503 ni->attr_list.dirty = true;
515 * Random write access to sparsed or compressed file may result to
516 * not optimized packed runs.
517 * Here is the place to optimize it.
519 static int ni_repack(struct ntfs_inode *ni)
525 struct ntfs_sb_info *sbi = ni->mi.sbi;
526 struct mft_inode *mi, *mi_p = NULL;
527 struct ATTRIB *attr = NULL, *attr_p;
528 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
530 u8 cluster_bits = sbi->cluster_bits;
531 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
532 u32 roff, rs = sbi->record_size;
533 struct runs_tree run;
537 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
541 svcn = le64_to_cpu(attr->nres.svcn);
542 if (svcn != le64_to_cpu(le->vcn)) {
548 alloc = le64_to_cpu(attr->nres.alloc_size) >>
551 } else if (svcn != evcn + 1) {
556 evcn = le64_to_cpu(attr->nres.evcn);
558 if (svcn > evcn + 1) {
564 /* Do not try if not enough free space. */
565 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
568 /* Do not try if last attribute segment. */
569 if (evcn + 1 == alloc)
574 roff = le16_to_cpu(attr->nres.run_off);
576 if (roff > le32_to_cpu(attr->size)) {
581 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
583 le32_to_cpu(attr->size) - roff);
598 * Run contains data from two records: mi_p and mi
599 * Try to pack in one.
601 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
605 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
607 if (next_svcn >= evcn + 1) {
608 /* We can remove this attribute segment. */
609 al_remove_le(ni, le);
610 mi_remove_attr(NULL, mi, attr);
615 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
617 ni->attr_list.dirty = true;
619 if (evcn + 1 == alloc) {
620 err = mi_pack_runs(mi, attr, &run,
621 evcn + 1 - next_svcn);
631 run_truncate_head(&run, next_svcn);
636 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
637 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
639 /* Pack loaded but not packed runs. */
641 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
650 * ni_try_remove_attr_list
652 * Can we remove attribute list?
653 * Check the case when primary record contains enough space for all attributes.
655 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
658 struct ntfs_sb_info *sbi = ni->mi.sbi;
659 struct ATTRIB *attr, *attr_list, *attr_ins;
660 struct ATTR_LIST_ENTRY *le;
661 struct mft_inode *mi;
664 struct MFT_REC *mrec;
667 if (!ni->attr_list.dirty)
674 attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
678 asize = le32_to_cpu(attr_list->size);
680 /* Free space in primary record without attribute list. */
681 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
682 mi_get_ref(&ni->mi, &ref);
685 while ((le = al_enumerate(ni, le))) {
686 if (!memcmp(&le->ref, &ref, sizeof(ref)))
692 mi = ni_find_mi(ni, ino_get(&le->ref));
696 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
697 le->name_len, &le->id);
701 asize = le32_to_cpu(attr->size);
708 /* Make a copy of primary record to restore if error. */
709 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
711 return 0; /* Not critical. */
713 /* It seems that attribute list can be removed from primary record. */
714 mi_remove_attr(NULL, &ni->mi, attr_list);
717 * Repeat the cycle above and copy all attributes to primary record.
718 * Do not remove original attributes from subrecords!
719 * It should be success!
722 while ((le = al_enumerate(ni, le))) {
723 if (!memcmp(&le->ref, &ref, sizeof(ref)))
726 mi = ni_find_mi(ni, ino_get(&le->ref));
728 /* Should never happened, 'cause already checked. */
732 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
733 le->name_len, &le->id);
735 /* Should never happened, 'cause already checked. */
738 asize = le32_to_cpu(attr->size);
740 /* Insert into primary record. */
741 attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
743 le16_to_cpu(attr->name_off));
746 * No space in primary record (already checked).
751 /* Copy all except id. */
753 memcpy(attr_ins, attr, asize);
758 * Repeat the cycle above and remove all attributes from subrecords.
761 while ((le = al_enumerate(ni, le))) {
762 if (!memcmp(&le->ref, &ref, sizeof(ref)))
765 mi = ni_find_mi(ni, ino_get(&le->ref));
769 attr = mi_find_attr(mi, NULL, le->type, le_name(le),
770 le->name_len, &le->id);
774 /* Remove from original record. */
775 mi_remove_attr(NULL, mi, attr);
778 run_deallocate(sbi, &ni->attr_list.run, true);
779 run_close(&ni->attr_list.run);
780 ni->attr_list.size = 0;
781 kfree(ni->attr_list.le);
782 ni->attr_list.le = NULL;
783 ni->attr_list.dirty = false;
788 /* Restore primary record. */
789 swap(mrec, ni->mi.mrec);
795 * ni_create_attr_list - Generates an attribute list for this primary record.
797 int ni_create_attr_list(struct ntfs_inode *ni)
799 struct ntfs_sb_info *sbi = ni->mi.sbi;
803 struct ATTRIB *arr_move[7];
804 struct ATTR_LIST_ENTRY *le, *le_b[7];
808 struct mft_inode *mi;
809 u32 free_b, nb, to_free, rs;
812 is_mft = ni->mi.rno == MFT_REC_MFT;
814 rs = sbi->record_size;
817 * Skip estimating exact memory requirement.
818 * Looks like one record_size is always enough.
820 le = kmalloc(al_aligned(rs), GFP_NOFS);
824 mi_get_ref(&ni->mi, &le->ref);
825 ni->attr_list.le = le;
832 for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
833 sz = le_size(attr->name_len);
834 le->type = attr->type;
835 le->size = cpu_to_le16(sz);
836 le->name_len = attr->name_len;
837 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
839 if (le != ni->attr_list.le)
840 le->ref = ni->attr_list.le->ref;
844 memcpy(le->name, attr_name(attr),
845 sizeof(short) * attr->name_len);
846 else if (attr->type == ATTR_STD)
848 else if (attr->type == ATTR_LIST)
850 else if (is_mft && attr->type == ATTR_DATA)
853 if (!nb || nb < ARRAY_SIZE(arr_move)) {
855 arr_move[nb++] = attr;
856 free_b += le32_to_cpu(attr->size);
860 lsize = PtrOffset(ni->attr_list.le, le);
861 ni->attr_list.size = lsize;
863 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
869 if (to_free > free_b) {
875 /* Allocate child MFT. */
876 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
881 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
882 while (to_free > 0) {
883 struct ATTRIB *b = arr_move[--nb];
884 u32 asize = le32_to_cpu(b->size);
885 u16 name_off = le16_to_cpu(b->name_off);
887 attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
888 b->name_len, asize, name_off);
892 mi_get_ref(mi, &le_b[nb]->ref);
893 le_b[nb]->id = attr->id;
895 /* Copy all except id. */
896 memcpy(attr, b, asize);
897 attr->id = le_b[nb]->id;
899 /* Remove from primary record. */
900 if (!mi_remove_attr(NULL, &ni->mi, b))
903 if (to_free <= asize)
910 attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
911 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
917 attr->res.data_size = cpu_to_le32(lsize);
918 attr->res.data_off = SIZEOF_RESIDENT_LE;
922 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
924 ni->attr_list.dirty = false;
926 mark_inode_dirty(&ni->vfs_inode);
930 kfree(ni->attr_list.le);
931 ni->attr_list.le = NULL;
932 ni->attr_list.size = 0;
937 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
939 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
940 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
941 u32 asize, CLST svcn, u16 name_off, bool force_ext,
942 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
943 struct ATTR_LIST_ENTRY **ins_le)
946 struct mft_inode *mi;
949 struct rb_node *node;
951 bool is_mft, is_mft_data;
952 struct ntfs_sb_info *sbi = ni->mi.sbi;
954 is_mft = ni->mi.rno == MFT_REC_MFT;
955 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
957 if (asize > sbi->max_bytes_per_attr) {
963 * Standard information and attr_list cannot be made external.
964 * The Log File cannot have any external attributes.
966 if (type == ATTR_STD || type == ATTR_LIST ||
967 ni->mi.rno == MFT_REC_LOG) {
972 /* Create attribute list if it is not already existed. */
973 if (!ni->attr_list.size) {
974 err = ni_create_attr_list(ni);
979 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
984 /* Load all subrecords into memory. */
985 err = ni_load_all_mi(ni);
989 /* Check each of loaded subrecord. */
990 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
991 mi = rb_entry(node, struct mft_inode, node);
994 (mi_enum_attr(mi, NULL) ||
995 vbo <= ((u64)mi->rno << sbi->record_bits))) {
996 /* We can't accept this record 'cause MFT's bootstrapping. */
1000 mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
1002 * This child record already has a ATTR_DATA.
1003 * So it can't accept any other records.
1008 if ((type != ATTR_NAME || name_len) &&
1009 mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1010 /* Only indexed attributes can share same record. */
1015 * Do not try to insert this attribute
1016 * if there is no room in record.
1018 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1021 /* Try to insert attribute into this subrecord. */
1022 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1023 name_off, svcn, ins_le);
1027 return PTR_ERR(attr);
1037 /* We have to allocate a new child subrecord. */
1038 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1042 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1047 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1048 name_off, svcn, ins_le);
1055 err = PTR_ERR(attr);
1067 ni_remove_mi(ni, mi);
1071 ntfs_mark_rec_free(sbi, rno, is_mft);
1078 * ni_insert_attr - Insert an attribute into the file.
1080 * If the primary record has room, it will just insert the attribute.
1081 * If not, it may make the attribute external.
1082 * For $MFT::Data it may make room for the attribute by
1083 * making other attributes external.
1086 * The ATTR_LIST and ATTR_STD cannot be made external.
1087 * This function does not fill new attribute full.
1088 * It only fills 'size'/'type'/'id'/'name_len' fields.
1090 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1091 const __le16 *name, u8 name_len, u32 asize,
1092 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1093 struct mft_inode **ins_mi,
1094 struct ATTR_LIST_ENTRY **ins_le)
1096 struct ntfs_sb_info *sbi = ni->mi.sbi;
1098 struct ATTRIB *attr, *eattr;
1099 struct MFT_REC *rec;
1101 struct ATTR_LIST_ENTRY *le;
1102 u32 list_reserve, max_free, free, used, t32;
1106 is_mft = ni->mi.rno == MFT_REC_MFT;
1109 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1110 used = le32_to_cpu(rec->used);
1111 free = sbi->record_size - used;
1113 if (is_mft && type != ATTR_LIST) {
1114 /* Reserve space for the ATTRIB list. */
1115 if (free < list_reserve)
1118 free -= list_reserve;
1121 if (asize <= free) {
1122 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1123 asize, name_off, svcn, ins_le);
1125 err = PTR_ERR(attr);
1139 if (!is_mft || type != ATTR_DATA || svcn) {
1140 /* This ATTRIB will be external. */
1141 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1142 svcn, name_off, false, ins_attr, ins_mi,
1148 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1150 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1151 * Evict as many other attributes as possible.
1155 /* Estimate the result of moving all possible attributes away. */
1158 while ((attr = mi_enum_attr(&ni->mi, attr))) {
1159 if (attr->type == ATTR_STD)
1161 if (attr->type == ATTR_LIST)
1163 max_free += le32_to_cpu(attr->size);
1166 if (max_free < asize + list_reserve) {
1167 /* Impossible to insert this attribute into primary record. */
1172 /* Start real attribute moving. */
1176 attr = mi_enum_attr(&ni->mi, attr);
1178 /* We should never be here 'cause we have already check this case. */
1183 /* Skip attributes that MUST be primary record. */
1184 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1188 if (ni->attr_list.size) {
1189 le = al_find_le(ni, NULL, attr);
1191 /* Really this is a serious bug. */
1197 t32 = le32_to_cpu(attr->size);
1198 t16 = le16_to_cpu(attr->name_off);
1199 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1200 attr->name_len, t32, attr_svcn(attr), t16,
1201 false, &eattr, NULL, NULL);
1206 memcpy(eattr, attr, t32);
1209 /* Remove from primary record. */
1210 mi_remove_attr(NULL, &ni->mi, attr);
1212 /* attr now points to next attribute. */
1213 if (attr->type == ATTR_END)
1216 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1219 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1220 name_off, svcn, ins_le);
1227 err = PTR_ERR(attr);
1240 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
1241 static int ni_expand_mft_list(struct ntfs_inode *ni)
1244 struct runs_tree *run = &ni->file.run;
1245 u32 asize, run_size, done = 0;
1246 struct ATTRIB *attr;
1247 struct rb_node *node;
1248 CLST mft_min, mft_new, svcn, evcn, plen;
1249 struct mft_inode *mi, *mi_min, *mi_new;
1250 struct ntfs_sb_info *sbi = ni->mi.sbi;
1252 /* Find the nearest MFT. */
1257 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1258 mi = rb_entry(node, struct mft_inode, node);
1260 attr = mi_enum_attr(mi, NULL);
1269 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1271 /* Really this is not critical. */
1272 } else if (mft_min > mft_new) {
1276 ntfs_mark_rec_free(sbi, mft_new, true);
1278 ni_remove_mi(ni, mi_new);
1281 attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1287 asize = le32_to_cpu(attr->size);
1289 evcn = le64_to_cpu(attr->nres.evcn);
1290 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1291 if (evcn + 1 >= svcn) {
1297 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1299 * Update first part of ATTR_DATA in 'primary MFT.
1301 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1302 asize - SIZEOF_NONRESIDENT, &plen);
1306 run_size = ALIGN(err, 8);
1314 attr->nres.evcn = cpu_to_le64(svcn - 1);
1315 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1316 /* 'done' - How many bytes of primary MFT becomes free. */
1317 done = asize - run_size - SIZEOF_NONRESIDENT;
1318 le32_sub_cpu(&ni->mi.mrec->used, done);
1320 /* Estimate packed size (run_buf=NULL). */
1321 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1326 run_size = ALIGN(err, 8);
1329 if (plen < evcn + 1 - svcn) {
1335 * This function may implicitly call expand attr_list.
1336 * Insert second part of ATTR_DATA in 'mi_min'.
1338 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1339 SIZEOF_NONRESIDENT + run_size,
1340 SIZEOF_NONRESIDENT, svcn, NULL);
1347 err = PTR_ERR(attr);
1352 attr->name_off = SIZEOF_NONRESIDENT_LE;
1355 /* This function can't fail - cause already checked above. */
1356 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1359 attr->nres.svcn = cpu_to_le64(svcn);
1360 attr->nres.evcn = cpu_to_le64(evcn);
1361 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1365 ntfs_mark_rec_free(sbi, mft_new, true);
1366 ni_remove_mi(ni, mi_new);
1369 return !err && !done ? -EOPNOTSUPP : err;
1373 * ni_expand_list - Move all possible attributes out of primary record.
1375 int ni_expand_list(struct ntfs_inode *ni)
1378 u32 asize, done = 0;
1379 struct ATTRIB *attr, *ins_attr;
1380 struct ATTR_LIST_ENTRY *le;
1381 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1384 mi_get_ref(&ni->mi, &ref);
1387 while ((le = al_enumerate(ni, le))) {
1388 if (le->type == ATTR_STD)
1391 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1394 if (is_mft && le->type == ATTR_DATA)
1397 /* Find attribute in primary record. */
1398 attr = rec_find_attr_le(&ni->mi, le);
1404 asize = le32_to_cpu(attr->size);
1406 /* Always insert into new record to avoid collisions (deep recursive). */
1407 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1408 attr->name_len, asize, attr_svcn(attr),
1409 le16_to_cpu(attr->name_off), true,
1410 &ins_attr, NULL, NULL);
1415 memcpy(ins_attr, attr, asize);
1416 ins_attr->id = le->id;
1417 /* Remove from primary record. */
1418 mi_remove_attr(NULL, &ni->mi, attr);
1425 err = -EFBIG; /* Attr list is too big(?) */
1429 /* Split MFT data as much as possible. */
1430 err = ni_expand_mft_list(ni);
1433 return !err && !done ? -EOPNOTSUPP : err;
1437 * ni_insert_nonresident - Insert new nonresident attribute.
1439 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1440 const __le16 *name, u8 name_len,
1441 const struct runs_tree *run, CLST svcn, CLST len,
1442 __le16 flags, struct ATTRIB **new_attr,
1443 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1447 struct ATTRIB *attr;
1448 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1450 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1451 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1452 u32 run_off = name_off + name_size;
1453 u32 run_size, asize;
1454 struct ntfs_sb_info *sbi = ni->mi.sbi;
1456 /* Estimate packed size (run_buf=NULL). */
1457 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1462 run_size = ALIGN(err, 8);
1469 asize = run_off + run_size;
1471 if (asize > sbi->max_bytes_per_attr) {
1476 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1483 attr->name_off = cpu_to_le16(name_off);
1484 attr->flags = flags;
1486 /* This function can't fail - cause already checked above. */
1487 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1489 attr->nres.svcn = cpu_to_le64(svcn);
1490 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1495 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1497 attr->nres.alloc_size =
1498 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1499 attr->nres.data_size = attr->nres.alloc_size;
1500 attr->nres.valid_size = attr->nres.alloc_size;
1503 if (flags & ATTR_FLAG_COMPRESSED)
1504 attr->nres.c_unit = COMPRESSION_UNIT;
1505 attr->nres.total_size = attr->nres.alloc_size;
1513 * ni_insert_resident - Inserts new resident attribute.
1515 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1516 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1517 struct ATTRIB **new_attr, struct mft_inode **mi,
1518 struct ATTR_LIST_ENTRY **le)
1521 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1522 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1523 struct ATTRIB *attr;
1525 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1533 attr->res.data_size = cpu_to_le32(data_size);
1534 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1535 if (type == ATTR_NAME) {
1536 attr->res.flags = RESIDENT_FLAG_INDEXED;
1538 /* is_attr_indexed(attr)) == true */
1539 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1540 ni->mi.dirty = true;
1551 * ni_remove_attr_le - Remove attribute from record.
1553 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1554 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1556 mi_remove_attr(ni, mi, attr);
1559 al_remove_le(ni, le);
1563 * ni_delete_all - Remove all attributes and frees allocates space.
1565 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1567 int ni_delete_all(struct ntfs_inode *ni)
1570 struct ATTR_LIST_ENTRY *le = NULL;
1571 struct ATTRIB *attr = NULL;
1572 struct rb_node *node;
1576 struct ntfs_sb_info *sbi = ni->mi.sbi;
1577 bool nt3 = is_ntfs3(sbi);
1580 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1581 if (!nt3 || attr->name_len) {
1583 } else if (attr->type == ATTR_REPARSE) {
1584 mi_get_ref(&ni->mi, &ref);
1585 ntfs_remove_reparse(sbi, 0, &ref);
1586 } else if (attr->type == ATTR_ID && !attr->non_res &&
1587 le32_to_cpu(attr->res.data_size) >=
1588 sizeof(struct GUID)) {
1589 ntfs_objid_remove(sbi, resident_data(attr));
1595 svcn = le64_to_cpu(attr->nres.svcn);
1596 evcn = le64_to_cpu(attr->nres.evcn);
1598 if (evcn + 1 <= svcn)
1601 asize = le32_to_cpu(attr->size);
1602 roff = le16_to_cpu(attr->nres.run_off);
1607 /* run==1 means unpack and deallocate. */
1608 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1609 Add2Ptr(attr, roff), asize - roff);
1612 if (ni->attr_list.size) {
1613 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1617 /* Free all subrecords. */
1618 for (node = rb_first(&ni->mi_tree); node;) {
1619 struct rb_node *next = rb_next(node);
1620 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1622 clear_rec_inuse(mi->mrec);
1626 ntfs_mark_rec_free(sbi, mi->rno, false);
1627 ni_remove_mi(ni, mi);
1632 /* Free base record. */
1633 clear_rec_inuse(ni->mi.mrec);
1634 ni->mi.dirty = true;
1635 err = mi_write(&ni->mi, 0);
1637 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1644 * Return: File name attribute by its value.
1646 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1647 const struct le_str *uni,
1648 const struct MFT_REF *home_dir,
1649 struct mft_inode **mi,
1650 struct ATTR_LIST_ENTRY **le)
1652 struct ATTRIB *attr = NULL;
1653 struct ATTR_FILE_NAME *fname;
1658 /* Enumerate all names. */
1660 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1664 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1668 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1674 if (uni->len != fname->name_len)
1677 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1686 * Return: File name attribute with given type.
1688 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1689 struct mft_inode **mi,
1690 struct ATTR_LIST_ENTRY **le)
1692 struct ATTRIB *attr = NULL;
1693 struct ATTR_FILE_NAME *fname;
1697 if (name_type == FILE_NAME_POSIX)
1700 /* Enumerate all names. */
1702 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1706 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1707 if (fname && name_type == fname->type)
1715 * Process compressed/sparsed in special way.
1716 * NOTE: You need to set ni->std_fa = new_fa
1717 * after this function to keep internal structures in consistency.
1719 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1721 struct ATTRIB *attr;
1722 struct mft_inode *mi;
1726 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1730 new_aflags = attr->flags;
1732 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1733 new_aflags |= ATTR_FLAG_SPARSED;
1735 new_aflags &= ~ATTR_FLAG_SPARSED;
1737 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1738 new_aflags |= ATTR_FLAG_COMPRESSED;
1740 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1742 if (new_aflags == attr->flags)
1745 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1746 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1747 ntfs_inode_warn(&ni->vfs_inode,
1748 "file can't be sparsed and compressed");
1755 if (attr->nres.data_size) {
1758 "one can change sparsed/compressed only for empty files");
1762 /* Resize nonresident empty attribute in-place only. */
1763 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1764 (SIZEOF_NONRESIDENT_EX + 8) :
1765 (SIZEOF_NONRESIDENT + 8);
1767 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1770 if (new_aflags & ATTR_FLAG_SPARSED) {
1771 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1772 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1773 attr->nres.c_unit = 0;
1774 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1775 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1776 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1777 /* The only allowed: 16 clusters per frame. */
1778 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1779 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1781 attr->name_off = SIZEOF_NONRESIDENT_LE;
1783 attr->nres.c_unit = 0;
1784 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1786 attr->nres.run_off = attr->name_off;
1788 attr->flags = new_aflags;
1797 * buffer - memory for reparse buffer header
1799 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1800 struct REPARSE_DATA_BUFFER *buffer)
1802 const struct REPARSE_DATA_BUFFER *rp = NULL;
1805 typeof(rp->CompressReparseBuffer) *cmpr;
1807 /* Try to estimate reparse point. */
1808 if (!attr->non_res) {
1809 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1810 } else if (le64_to_cpu(attr->nres.data_size) >=
1811 sizeof(struct REPARSE_DATA_BUFFER)) {
1812 struct runs_tree run;
1816 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1817 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1818 sizeof(struct REPARSE_DATA_BUFFER),
1827 return REPARSE_NONE;
1829 len = le16_to_cpu(rp->ReparseDataLength);
1830 switch (rp->ReparseTag) {
1831 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1832 break; /* Symbolic link. */
1833 case IO_REPARSE_TAG_MOUNT_POINT:
1834 break; /* Mount points and junctions. */
1835 case IO_REPARSE_TAG_SYMLINK:
1837 case IO_REPARSE_TAG_COMPRESS:
1839 * WOF - Windows Overlay Filter - Used to compress files with
1842 * Unlike native NTFS file compression, the Windows
1843 * Overlay Filter supports only read operations. This means
1844 * that it doesn't need to sector-align each compressed chunk,
1845 * so the compressed data can be packed more tightly together.
1846 * If you open the file for writing, the WOF just decompresses
1847 * the entire file, turning it back into a plain file.
1849 * Ntfs3 driver decompresses the entire file only on write or
1850 * change size requests.
1853 cmpr = &rp->CompressReparseBuffer;
1854 if (len < sizeof(*cmpr) ||
1855 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1856 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1857 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1858 return REPARSE_NONE;
1861 switch (cmpr->CompressionFormat) {
1862 case WOF_COMPRESSION_XPRESS4K:
1865 case WOF_COMPRESSION_XPRESS8K:
1868 case WOF_COMPRESSION_XPRESS16K:
1871 case WOF_COMPRESSION_LZX32K:
1878 ni_set_ext_compress_bits(ni, bits);
1879 return REPARSE_COMPRESSED;
1881 case IO_REPARSE_TAG_DEDUP:
1882 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1883 return REPARSE_DEDUPLICATED;
1886 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1889 return REPARSE_NONE;
1893 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1895 /* Looks like normal symlink. */
1896 return REPARSE_LINK;
1900 * ni_fiemap - Helper for file_fiemap().
1903 * TODO: Less aggressive locks.
1905 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1906 __u64 vbo, __u64 len)
1909 struct ntfs_sb_info *sbi = ni->mi.sbi;
1910 u8 cluster_bits = sbi->cluster_bits;
1911 struct runs_tree *run;
1912 struct rw_semaphore *run_lock;
1913 struct ATTRIB *attr;
1914 CLST vcn = vbo >> cluster_bits;
1916 u64 valid = ni->i_valid;
1918 u64 end, alloc_size;
1923 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1924 run = &ni->dir.alloc_run;
1925 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1926 ARRAY_SIZE(I30_NAME), NULL, NULL);
1927 run_lock = &ni->dir.run_lock;
1929 run = &ni->file.run;
1930 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1936 if (is_attr_compressed(attr)) {
1937 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1941 "fiemap is not supported for compressed file (cp -r)");
1944 run_lock = &ni->file.run_lock;
1947 if (!attr || !attr->non_res) {
1948 err = fiemap_fill_next_extent(
1950 attr ? le32_to_cpu(attr->res.data_size) : 0,
1951 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1952 FIEMAP_EXTENT_MERGED);
1957 alloc_size = le64_to_cpu(attr->nres.alloc_size);
1958 if (end > alloc_size)
1961 down_read(run_lock);
1965 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1967 CLST vcn_next = vcn;
1969 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1977 down_write(run_lock);
1979 err = attr_load_runs_vcn(ni, attr->type,
1981 attr->name_len, run, vcn);
1984 down_read(run_lock);
1989 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
2002 if (lcn == SPARSE_LCN) {
2004 vbo = (u64)vcn << cluster_bits;
2008 flags = FIEMAP_EXTENT_MERGED;
2009 if (S_ISDIR(ni->vfs_inode.i_mode)) {
2011 } else if (is_attr_compressed(attr)) {
2014 err = attr_is_frame_compressed(
2015 ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2018 if (clst_data < NTFS_LZNT_CLUSTERS)
2019 flags |= FIEMAP_EXTENT_ENCODED;
2020 } else if (is_attr_encrypted(attr)) {
2021 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2024 vbo = (u64)vcn << cluster_bits;
2025 bytes = (u64)clen << cluster_bits;
2026 lbo = (u64)lcn << cluster_bits;
2030 if (vbo + bytes >= end)
2033 if (vbo + bytes <= valid) {
2035 } else if (vbo >= valid) {
2036 flags |= FIEMAP_EXTENT_UNWRITTEN;
2038 /* vbo < valid && valid < vbo + bytes */
2039 u64 dlen = valid - vbo;
2041 if (vbo + dlen >= end)
2042 flags |= FIEMAP_EXTENT_LAST;
2044 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2059 flags |= FIEMAP_EXTENT_UNWRITTEN;
2062 if (vbo + bytes >= end)
2063 flags |= FIEMAP_EXTENT_LAST;
2065 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2085 * When decompressing, we typically obtain more than one page per reference.
2086 * We inject the additional pages into the page cache.
2088 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2091 struct ntfs_sb_info *sbi = ni->mi.sbi;
2092 struct address_space *mapping = page->mapping;
2093 pgoff_t index = page->index;
2094 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2095 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2098 u32 i, idx, frame_size, pages_per_frame;
2102 if (vbo >= ni->vfs_inode.i_size) {
2103 SetPageUptodate(page);
2108 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2109 /* Xpress or LZX. */
2110 frame_bits = ni_ext_compress_bits(ni);
2112 /* LZNT compression. */
2113 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2115 frame_size = 1u << frame_bits;
2116 frame = vbo >> frame_bits;
2117 frame_vbo = (u64)frame << frame_bits;
2118 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2120 pages_per_frame = frame_size >> PAGE_SHIFT;
2121 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2128 index = frame_vbo >> PAGE_SHIFT;
2129 gfp_mask = mapping_gfp_mask(mapping);
2131 for (i = 0; i < pages_per_frame; i++, index++) {
2135 pg = find_or_create_page(mapping, index, gfp_mask);
2143 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2149 for (i = 0; i < pages_per_frame; i++) {
2158 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2165 #ifdef CONFIG_NTFS3_LZX_XPRESS
2167 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2169 * Remove ATTR_DATA::WofCompressedData.
2170 * Remove ATTR_REPARSE.
2172 int ni_decompress_file(struct ntfs_inode *ni)
2174 struct ntfs_sb_info *sbi = ni->mi.sbi;
2175 struct inode *inode = &ni->vfs_inode;
2176 loff_t i_size = inode->i_size;
2177 struct address_space *mapping = inode->i_mapping;
2178 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2179 struct page **pages = NULL;
2180 struct ATTR_LIST_ENTRY *le;
2181 struct ATTRIB *attr;
2182 CLST vcn, cend, lcn, clen, end;
2186 u32 i, frame_size, pages_per_frame, bytes;
2187 struct mft_inode *mi;
2190 /* Clusters for decompressed data. */
2191 cend = bytes_to_cluster(sbi, i_size);
2196 /* Check in advance. */
2197 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2202 frame_bits = ni_ext_compress_bits(ni);
2203 frame_size = 1u << frame_bits;
2204 pages_per_frame = frame_size >> PAGE_SHIFT;
2205 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2212 * Step 1: Decompress data and copy to new allocated clusters.
2215 for (vbo = 0; vbo < i_size; vbo += bytes) {
2219 if (vbo + frame_size > i_size) {
2220 bytes = i_size - vbo;
2221 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2223 nr_pages = pages_per_frame;
2227 end = bytes_to_cluster(sbi, vbo + bytes);
2229 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2230 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2231 &clen, &new, false);
2236 for (i = 0; i < pages_per_frame; i++, index++) {
2239 pg = find_or_create_page(mapping, index, gfp_mask);
2242 unlock_page(pages[i]);
2251 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2254 down_read(&ni->file.run_lock);
2255 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2256 nr_pages, vbo, bytes,
2258 up_read(&ni->file.run_lock);
2261 for (i = 0; i < pages_per_frame; i++) {
2262 unlock_page(pages[i]);
2274 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2279 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2283 if (attr->type == ATTR_REPARSE) {
2286 mi_get_ref(&ni->mi, &ref);
2287 ntfs_remove_reparse(sbi, 0, &ref);
2293 if (attr->type != ATTR_REPARSE &&
2294 (attr->type != ATTR_DATA ||
2295 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2296 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2299 svcn = le64_to_cpu(attr->nres.svcn);
2300 evcn = le64_to_cpu(attr->nres.evcn);
2302 if (evcn + 1 <= svcn)
2305 asize = le32_to_cpu(attr->size);
2306 roff = le16_to_cpu(attr->nres.run_off);
2313 /*run==1 Means unpack and deallocate. */
2314 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2315 Add2Ptr(attr, roff), asize - roff);
2319 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2321 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2327 * Step 4: Remove ATTR_REPARSE.
2329 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2334 * Step 5: Remove sparse flag from data attribute.
2336 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2342 if (attr->non_res && is_attr_sparsed(attr)) {
2343 /* Sparsed attribute header is 8 bytes bigger than normal. */
2344 struct MFT_REC *rec = mi->mrec;
2345 u32 used = le32_to_cpu(rec->used);
2346 u32 asize = le32_to_cpu(attr->size);
2347 u16 roff = le16_to_cpu(attr->nres.run_off);
2348 char *rbuf = Add2Ptr(attr, roff);
2350 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2351 attr->size = cpu_to_le32(asize - 8);
2352 attr->flags &= ~ATTR_FLAG_SPARSED;
2353 attr->nres.run_off = cpu_to_le16(roff - 8);
2354 attr->nres.c_unit = 0;
2355 rec->used = cpu_to_le32(used - 8);
2357 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2358 FILE_ATTRIBUTE_REPARSE_POINT);
2360 mark_inode_dirty(inode);
2363 /* Clear cached flag. */
2364 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2365 if (ni->file.offs_page) {
2366 put_page(ni->file.offs_page);
2367 ni->file.offs_page = NULL;
2369 mapping->a_ops = &ntfs_aops;
2374 _ntfs_bad_inode(inode);
2380 * decompress_lzx_xpress - External compression LZX/Xpress.
2382 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2383 size_t cmpr_size, void *unc, size_t unc_size,
2389 if (cmpr_size == unc_size) {
2390 /* Frame not compressed. */
2391 memcpy(unc, cmpr, unc_size);
2396 if (frame_size == 0x8000) {
2397 mutex_lock(&sbi->compress.mtx_lzx);
2398 /* LZX: Frame compressed. */
2399 ctx = sbi->compress.lzx;
2401 /* Lazy initialize LZX decompress context. */
2402 ctx = lzx_allocate_decompressor();
2408 sbi->compress.lzx = ctx;
2411 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2412 /* Treat all errors as "invalid argument". */
2416 mutex_unlock(&sbi->compress.mtx_lzx);
2418 /* XPRESS: Frame compressed. */
2419 mutex_lock(&sbi->compress.mtx_xpress);
2420 ctx = sbi->compress.xpress;
2422 /* Lazy initialize Xpress decompress context. */
2423 ctx = xpress_allocate_decompressor();
2429 sbi->compress.xpress = ctx;
2432 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2433 /* Treat all errors as "invalid argument". */
2437 mutex_unlock(&sbi->compress.mtx_xpress);
2446 * Pages - Array of locked pages.
2448 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2449 u32 pages_per_frame)
2452 struct ntfs_sb_info *sbi = ni->mi.sbi;
2453 u8 cluster_bits = sbi->cluster_bits;
2454 char *frame_ondisk = NULL;
2455 char *frame_mem = NULL;
2456 struct page **pages_disk = NULL;
2457 struct ATTR_LIST_ENTRY *le = NULL;
2458 struct runs_tree *run = &ni->file.run;
2459 u64 valid_size = ni->i_valid;
2462 u32 frame_size, i, npages_disk, ondisk_size;
2464 struct ATTRIB *attr;
2465 CLST frame, clst_data;
2468 * To simplify decompress algorithm do vmap for source
2471 for (i = 0; i < pages_per_frame; i++)
2474 frame_size = pages_per_frame << PAGE_SHIFT;
2475 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2481 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2487 if (!attr->non_res) {
2488 u32 data_size = le32_to_cpu(attr->res.data_size);
2490 memset(frame_mem, 0, frame_size);
2491 if (frame_vbo < data_size) {
2492 ondisk_size = data_size - frame_vbo;
2493 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2494 min(ondisk_size, frame_size));
2500 if (frame_vbo >= valid_size) {
2501 memset(frame_mem, 0, frame_size);
2506 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2507 #ifndef CONFIG_NTFS3_LZX_XPRESS
2511 u32 frame_bits = ni_ext_compress_bits(ni);
2512 u64 frame64 = frame_vbo >> frame_bits;
2513 u64 frames, vbo_data;
2515 if (frame_size != (1u << frame_bits)) {
2519 switch (frame_size) {
2526 /* Unknown compression. */
2531 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2532 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2536 "external compressed file should contains data attribute \"WofCompressedData\"");
2541 if (!attr->non_res) {
2551 frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2553 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2554 frame_bits, &ondisk_size, &vbo_data);
2558 if (frame64 == frames) {
2559 unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2561 ondisk_size = attr_size(attr) - vbo_data;
2563 unc_size = frame_size;
2566 if (ondisk_size > frame_size) {
2571 if (!attr->non_res) {
2572 if (vbo_data + ondisk_size >
2573 le32_to_cpu(attr->res.data_size)) {
2578 err = decompress_lzx_xpress(
2579 sbi, Add2Ptr(resident_data(attr), vbo_data),
2580 ondisk_size, frame_mem, unc_size, frame_size);
2583 vbo_disk = vbo_data;
2584 /* Load all runs to read [vbo_disk-vbo_to). */
2585 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2586 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2587 vbo_data + ondisk_size);
2590 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2594 } else if (is_attr_compressed(attr)) {
2595 /* LZNT compression. */
2596 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2601 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2606 down_write(&ni->file.run_lock);
2607 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2608 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2609 err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2610 up_write(&ni->file.run_lock);
2615 memset(frame_mem, 0, frame_size);
2619 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2620 ondisk_size = clst_data << cluster_bits;
2622 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2623 /* Frame is not compressed. */
2624 down_read(&ni->file.run_lock);
2625 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2626 frame_vbo, ondisk_size,
2628 up_read(&ni->file.run_lock);
2631 vbo_disk = frame_vbo;
2632 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2634 __builtin_unreachable();
2639 pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2645 for (i = 0; i < npages_disk; i++) {
2646 pg = alloc_page(GFP_KERNEL);
2656 /* Read 'ondisk_size' bytes from disk. */
2657 down_read(&ni->file.run_lock);
2658 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2659 ondisk_size, REQ_OP_READ);
2660 up_read(&ni->file.run_lock);
2665 * To simplify decompress algorithm do vmap for source and target pages.
2667 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2668 if (!frame_ondisk) {
2673 /* Decompress: Frame_ondisk -> frame_mem. */
2674 #ifdef CONFIG_NTFS3_LZX_XPRESS
2675 if (run != &ni->file.run) {
2677 err = decompress_lzx_xpress(
2678 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2679 ondisk_size, frame_mem, unc_size, frame_size);
2683 /* LZNT - Native NTFS compression. */
2684 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2686 if ((ssize_t)unc_size < 0)
2688 else if (!unc_size || unc_size > frame_size)
2691 if (!err && valid_size < frame_vbo + frame_size) {
2692 size_t ok = valid_size - frame_vbo;
2694 memset(frame_mem + ok, 0, frame_size - ok);
2697 vunmap(frame_ondisk);
2700 for (i = 0; i < npages_disk; i++) {
2711 #ifdef CONFIG_NTFS3_LZX_XPRESS
2712 if (run != &ni->file.run)
2718 for (i = 0; i < pages_per_frame; i++) {
2722 SetPageUptodate(pg);
2731 * Pages - Array of locked pages.
2733 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2734 u32 pages_per_frame)
2737 struct ntfs_sb_info *sbi = ni->mi.sbi;
2738 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2739 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2740 u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2741 CLST frame = frame_vbo >> frame_bits;
2742 char *frame_ondisk = NULL;
2743 struct page **pages_disk = NULL;
2744 struct ATTR_LIST_ENTRY *le = NULL;
2746 struct ATTRIB *attr;
2747 struct mft_inode *mi;
2750 size_t compr_size, ondisk_size;
2753 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2759 if (WARN_ON(!is_attr_compressed(attr))) {
2764 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2769 if (!attr->non_res) {
2770 down_write(&ni->file.run_lock);
2771 err = attr_make_nonresident(ni, attr, le, mi,
2772 le32_to_cpu(attr->res.data_size),
2773 &ni->file.run, &attr, pages[0]);
2774 up_write(&ni->file.run_lock);
2779 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2784 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2790 for (i = 0; i < pages_per_frame; i++) {
2791 pg = alloc_page(GFP_KERNEL);
2801 /* To simplify compress algorithm do vmap for source and target pages. */
2802 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2803 if (!frame_ondisk) {
2808 for (i = 0; i < pages_per_frame; i++)
2811 /* Map in-memory frame for read-only. */
2812 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2818 mutex_lock(&sbi->compress.mtx_lznt);
2820 if (!sbi->compress.lznt) {
2822 * LZNT implements two levels of compression:
2823 * 0 - Standard compression
2824 * 1 - Best compression, requires a lot of cpu
2827 lznt = get_lznt_ctx(0);
2829 mutex_unlock(&sbi->compress.mtx_lznt);
2834 sbi->compress.lznt = lznt;
2838 /* Compress: frame_mem -> frame_ondisk */
2839 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2840 frame_size, sbi->compress.lznt);
2841 mutex_unlock(&sbi->compress.mtx_lznt);
2844 if (compr_size + sbi->cluster_size > frame_size) {
2845 /* Frame is not compressed. */
2846 compr_size = frame_size;
2847 ondisk_size = frame_size;
2848 } else if (compr_size) {
2849 /* Frame is compressed. */
2850 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2851 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2853 /* Frame is sparsed. */
2857 down_write(&ni->file.run_lock);
2858 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2859 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2860 up_write(&ni->file.run_lock);
2867 down_read(&ni->file.run_lock);
2868 err = ntfs_bio_pages(sbi, &ni->file.run,
2869 ondisk_size < frame_size ? pages_disk : pages,
2870 pages_per_frame, frame_vbo, ondisk_size,
2872 up_read(&ni->file.run_lock);
2878 for (i = 0; i < pages_per_frame; i++)
2881 vunmap(frame_ondisk);
2883 for (i = 0; i < pages_per_frame; i++) {
2897 * ni_remove_name - Removes name 'de' from MFT and from directory.
2898 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2900 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2901 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2904 struct ntfs_sb_info *sbi = ni->mi.sbi;
2905 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2906 struct ATTR_FILE_NAME *fname;
2907 struct ATTR_LIST_ENTRY *le;
2908 struct mft_inode *mi;
2909 u16 de_key_size = le16_to_cpu(de->key_size);
2914 /* Find name in record. */
2915 mi_get_ref(&dir_ni->mi, &de_name->home);
2917 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2918 &de_name->home, &mi, &le);
2922 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2923 name_type = paired_name(fname->type);
2925 /* Mark ntfs as dirty. It will be cleared at umount. */
2926 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2928 /* Step 1: Remove name from directory. */
2929 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2933 /* Step 2: Remove name from MFT. */
2934 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2938 /* Get paired name. */
2939 fname = ni_fname_type(ni, name_type, &mi, &le);
2941 u16 de2_key_size = fname_full_size(fname);
2943 *de2 = Add2Ptr(de, 1024);
2944 (*de2)->key_size = cpu_to_le16(de2_key_size);
2946 memcpy(*de2 + 1, fname, de2_key_size);
2948 /* Step 3: Remove paired name from directory. */
2949 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2954 /* Step 4: Remove paired name from MFT. */
2955 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2963 * ni_remove_name_undo - Paired function for ni_remove_name.
2965 * Return: True if ok
2967 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2968 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2970 struct ntfs_sb_info *sbi = ni->mi.sbi;
2971 struct ATTRIB *attr;
2974 switch (undo_step) {
2976 de_key_size = le16_to_cpu(de2->key_size);
2977 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2980 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2982 mi_get_ref(&ni->mi, &de2->ref);
2983 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2984 sizeof(struct NTFS_DE));
2988 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2993 de_key_size = le16_to_cpu(de->key_size);
2995 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2999 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
3000 mi_get_ref(&ni->mi, &de->ref);
3002 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3010 * ni_add_name - Add new name into MFT and into directory.
3012 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3016 struct ntfs_sb_info *sbi = ni->mi.sbi;
3017 struct ATTRIB *attr;
3018 struct ATTR_LIST_ENTRY *le;
3019 struct mft_inode *mi;
3020 struct ATTR_FILE_NAME *fname;
3021 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3022 u16 de_key_size = le16_to_cpu(de->key_size);
3024 if (sbi->options->windows_names &&
3025 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
3028 /* If option "hide_dot_files" then set hidden attribute for dot files. */
3029 if (ni->mi.sbi->options->hide_dot_files) {
3030 if (de_name->name_len > 0 &&
3031 le16_to_cpu(de_name->name[0]) == '.')
3032 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
3034 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
3037 mi_get_ref(&ni->mi, &de->ref);
3038 mi_get_ref(&dir_ni->mi, &de_name->home);
3040 /* Fill duplicate from any ATTR_NAME. */
3041 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3043 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3044 de_name->dup.fa = ni->std_fa;
3046 /* Insert new name into MFT. */
3047 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3052 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3054 /* Insert new name into directory. */
3055 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
3057 ni_remove_attr_le(ni, attr, mi, le);
3063 * ni_rename - Remove one name and insert new name.
3065 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3066 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3070 struct NTFS_DE *de2 = NULL;
3074 * There are two possible ways to rename:
3075 * 1) Add new name and remove old name.
3076 * 2) Remove old name and add new name.
3078 * In most cases (not all!) adding new name into MFT and into directory can
3079 * allocate additional cluster(s).
3080 * Second way may result to bad inode if we can't add new name
3081 * and then can't restore (add) old name.
3085 * Way 1 - Add new + remove old.
3087 err = ni_add_name(new_dir_ni, ni, new_de);
3089 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3090 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3095 * Way 2 - Remove old + add new.
3098 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3100 * err = ni_add_name(new_dir_ni, ni, new_de);
3101 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3110 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3112 bool ni_is_dirty(struct inode *inode)
3114 struct ntfs_inode *ni = ntfs_i(inode);
3115 struct rb_node *node;
3117 if (ni->mi.dirty || ni->attr_list.dirty ||
3118 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3121 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3122 if (rb_entry(node, struct mft_inode, node)->dirty)
3132 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3134 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3137 struct ATTRIB *attr;
3138 struct mft_inode *mi;
3139 struct ATTR_LIST_ENTRY *le = NULL;
3140 struct ntfs_sb_info *sbi = ni->mi.sbi;
3141 struct super_block *sb = sbi->sb;
3142 bool re_dirty = false;
3144 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3145 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3147 dup->alloc_size = 0;
3150 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3152 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3155 dup->alloc_size = dup->data_size = 0;
3156 } else if (!attr->non_res) {
3157 u32 data_size = le32_to_cpu(attr->res.data_size);
3159 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3160 dup->data_size = cpu_to_le64(data_size);
3162 u64 new_valid = ni->i_valid;
3163 u64 data_size = le64_to_cpu(attr->nres.data_size);
3166 dup->alloc_size = is_attr_ext(attr) ?
3167 attr->nres.total_size :
3168 attr->nres.alloc_size;
3169 dup->data_size = attr->nres.data_size;
3171 if (new_valid > data_size)
3172 new_valid = data_size;
3174 valid_le = cpu_to_le64(new_valid);
3175 if (valid_le != attr->nres.valid_size) {
3176 attr->nres.valid_size = valid_le;
3182 /* TODO: Fill reparse info. */
3186 if (ni->ni_flags & NI_FLAG_EA) {
3187 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3190 const struct EA_INFO *info;
3192 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3193 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3195 dup->ea_size = info->size_pack;
3202 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3205 struct ATTR_FILE_NAME *fname;
3207 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3208 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3211 /* ntfs_iget5 may sleep. */
3212 dir = ntfs_iget5(sb, &fname->home, NULL);
3216 "failed to open parent directory r=%lx to update",
3217 (long)ino_get(&fname->home));
3221 if (!is_bad_inode(dir)) {
3222 struct ntfs_inode *dir_ni = ntfs_i(dir);
3224 if (!ni_trylock(dir_ni)) {
3227 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3229 memcpy(&fname->dup, dup, sizeof(fname->dup));
3240 * ni_write_inode - Write MFT base record and all subrecords to disk.
3242 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3245 struct ntfs_inode *ni = ntfs_i(inode);
3246 struct super_block *sb = inode->i_sb;
3247 struct ntfs_sb_info *sbi = sb->s_fs_info;
3248 bool re_dirty = false;
3249 struct ATTR_STD_INFO *std;
3250 struct rb_node *node, *next;
3251 struct NTFS_DUP_INFO dup;
3253 if (is_bad_inode(inode) || sb_rdonly(sb))
3256 if (!ni_trylock(ni)) {
3257 /* 'ni' is under modification, skip for now. */
3258 mark_inode_dirty_sync(inode);
3265 if (is_rec_inuse(ni->mi.mrec) &&
3266 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3267 bool modified = false;
3268 struct timespec64 ctime = inode_get_ctime(inode);
3270 /* Update times in standard attribute. */
3277 /* Update the access times if they have changed. */
3278 dup.m_time = kernel2nt(&inode->i_mtime);
3279 if (std->m_time != dup.m_time) {
3280 std->m_time = dup.m_time;
3284 dup.c_time = kernel2nt(&ctime);
3285 if (std->c_time != dup.c_time) {
3286 std->c_time = dup.c_time;
3290 dup.a_time = kernel2nt(&inode->i_atime);
3291 if (std->a_time != dup.a_time) {
3292 std->a_time = dup.a_time;
3296 dup.fa = ni->std_fa;
3297 if (std->fa != dup.fa) {
3302 /* std attribute is always in primary MFT record. */
3304 ni->mi.dirty = true;
3306 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3307 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3308 /* Avoid __wait_on_freeing_inode(inode). */
3309 && (sb->s_flags & SB_ACTIVE)) {
3310 dup.cr_time = std->cr_time;
3311 /* Not critical if this function fail. */
3312 re_dirty = ni_update_parent(ni, &dup, sync);
3315 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3317 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3320 /* Update attribute list. */
3321 if (ni->attr_list.size && ni->attr_list.dirty) {
3322 if (inode->i_ino != MFT_REC_MFT || sync) {
3323 err = ni_try_remove_attr_list(ni);
3328 err = al_update(ni, sync);
3334 for (node = rb_first(&ni->mi_tree); node; node = next) {
3335 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3338 next = rb_next(node);
3343 is_empty = !mi_enum_attr(mi, NULL);
3346 clear_rec_inuse(mi->mrec);
3348 err2 = mi_write(mi, sync);
3353 ntfs_mark_rec_free(sbi, mi->rno, false);
3354 rb_erase(node, &ni->mi_tree);
3360 err2 = mi_write(&ni->mi, sync);
3368 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3369 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3374 mark_inode_dirty_sync(inode);