1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * inode.c - NTFS kernel inode handling.
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
8 #include <linux/buffer_head.h>
11 #include <linux/mount.h>
12 #include <linux/mutex.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/slab.h>
16 #include <linux/log2.h>
31 * ntfs_test_inode - compare two (possibly fake) inodes for equality
32 * @vi: vfs inode which to test
33 * @data: data which is being tested with
35 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
36 * inode @vi for equality with the ntfs attribute @data.
38 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
39 * @na->name and @na->name_len are then ignored.
41 * Return 1 if the attributes match and 0 if not.
43 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
46 int ntfs_test_inode(struct inode *vi, void *data)
48 ntfs_attr *na = (ntfs_attr *)data;
51 if (vi->i_ino != na->mft_no)
54 /* If !NInoAttr(ni), @vi is a normal file or directory inode. */
55 if (likely(!NInoAttr(ni))) {
56 /* If not looking for a normal inode this is a mismatch. */
57 if (unlikely(na->type != AT_UNUSED))
60 /* A fake inode describing an attribute. */
61 if (ni->type != na->type)
63 if (ni->name_len != na->name_len)
65 if (na->name_len && memcmp(ni->name, na->name,
66 na->name_len * sizeof(ntfschar)))
74 * ntfs_init_locked_inode - initialize an inode
75 * @vi: vfs inode to initialize
76 * @data: data which to initialize @vi to
78 * Initialize the vfs inode @vi with the values from the ntfs attribute @data in
79 * order to enable ntfs_test_inode() to do its work.
81 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
82 * In that case, @na->name and @na->name_len should be set to NULL and 0,
83 * respectively. Although that is not strictly necessary as
84 * ntfs_read_locked_inode() will fill them in later.
86 * Return 0 on success and -errno on error.
88 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
89 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
91 static int ntfs_init_locked_inode(struct inode *vi, void *data)
93 ntfs_attr *na = (ntfs_attr *)data;
94 ntfs_inode *ni = NTFS_I(vi);
96 vi->i_ino = na->mft_no;
99 if (na->type == AT_INDEX_ALLOCATION)
100 NInoSetMstProtected(ni);
103 ni->name_len = na->name_len;
105 /* If initializing a normal inode, we are done. */
106 if (likely(na->type == AT_UNUSED)) {
108 BUG_ON(na->name_len);
112 /* It is a fake inode. */
116 * We have I30 global constant as an optimization as it is the name
117 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
118 * allocation but that is ok. And most attributes are unnamed anyway,
119 * thus the fraction of named attributes with name != I30 is actually
122 if (na->name_len && na->name != I30) {
126 i = na->name_len * sizeof(ntfschar);
127 ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
130 memcpy(ni->name, na->name, i);
131 ni->name[na->name_len] = 0;
136 static int ntfs_read_locked_inode(struct inode *vi);
137 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
138 static int ntfs_read_locked_index_inode(struct inode *base_vi,
142 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
143 * @sb: super block of mounted volume
144 * @mft_no: mft record number / inode number to obtain
146 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
147 * file or directory).
149 * If the inode is in the cache, it is just returned with an increased
150 * reference count. Otherwise, a new struct inode is allocated and initialized,
151 * and finally ntfs_read_locked_inode() is called to read in the inode and
152 * fill in the remainder of the inode structure.
154 * Return the struct inode on success. Check the return value with IS_ERR() and
155 * if true, the function failed and the error code is obtained from PTR_ERR().
157 struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
168 vi = iget5_locked(sb, mft_no, ntfs_test_inode,
169 ntfs_init_locked_inode, &na);
171 return ERR_PTR(-ENOMEM);
175 /* If this is a freshly allocated inode, need to read it now. */
176 if (vi->i_state & I_NEW) {
177 err = ntfs_read_locked_inode(vi);
178 unlock_new_inode(vi);
181 * There is no point in keeping bad inodes around if the failure was
182 * due to ENOMEM. We want to be able to retry again later.
184 if (unlikely(err == -ENOMEM)) {
192 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
193 * @base_vi: vfs base inode containing the attribute
194 * @type: attribute type
195 * @name: Unicode name of the attribute (NULL if unnamed)
196 * @name_len: length of @name in Unicode characters (0 if unnamed)
198 * Obtain the (fake) struct inode corresponding to the attribute specified by
199 * @type, @name, and @name_len, which is present in the base mft record
200 * specified by the vfs inode @base_vi.
202 * If the attribute inode is in the cache, it is just returned with an
203 * increased reference count. Otherwise, a new struct inode is allocated and
204 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
205 * attribute and fill in the inode structure.
207 * Note, for index allocation attributes, you need to use ntfs_index_iget()
208 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
210 * Return the struct inode of the attribute inode on success. Check the return
211 * value with IS_ERR() and if true, the function failed and the error code is
212 * obtained from PTR_ERR().
214 struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
215 ntfschar *name, u32 name_len)
221 /* Make sure no one calls ntfs_attr_iget() for indices. */
222 BUG_ON(type == AT_INDEX_ALLOCATION);
224 na.mft_no = base_vi->i_ino;
227 na.name_len = name_len;
229 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
230 ntfs_init_locked_inode, &na);
232 return ERR_PTR(-ENOMEM);
236 /* If this is a freshly allocated inode, need to read it now. */
237 if (vi->i_state & I_NEW) {
238 err = ntfs_read_locked_attr_inode(base_vi, vi);
239 unlock_new_inode(vi);
242 * There is no point in keeping bad attribute inodes around. This also
243 * simplifies things in that we never need to check for bad attribute
254 * ntfs_index_iget - obtain a struct inode corresponding to an index
255 * @base_vi: vfs base inode containing the index related attributes
256 * @name: Unicode name of the index
257 * @name_len: length of @name in Unicode characters
259 * Obtain the (fake) struct inode corresponding to the index specified by @name
260 * and @name_len, which is present in the base mft record specified by the vfs
263 * If the index inode is in the cache, it is just returned with an increased
264 * reference count. Otherwise, a new struct inode is allocated and
265 * initialized, and finally ntfs_read_locked_index_inode() is called to read
266 * the index related attributes and fill in the inode structure.
268 * Return the struct inode of the index inode on success. Check the return
269 * value with IS_ERR() and if true, the function failed and the error code is
270 * obtained from PTR_ERR().
272 struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
279 na.mft_no = base_vi->i_ino;
280 na.type = AT_INDEX_ALLOCATION;
282 na.name_len = name_len;
284 vi = iget5_locked(base_vi->i_sb, na.mft_no, ntfs_test_inode,
285 ntfs_init_locked_inode, &na);
287 return ERR_PTR(-ENOMEM);
291 /* If this is a freshly allocated inode, need to read it now. */
292 if (vi->i_state & I_NEW) {
293 err = ntfs_read_locked_index_inode(base_vi, vi);
294 unlock_new_inode(vi);
297 * There is no point in keeping bad index inodes around. This also
298 * simplifies things in that we never need to check for bad index
308 struct inode *ntfs_alloc_big_inode(struct super_block *sb)
312 ntfs_debug("Entering.");
313 ni = alloc_inode_sb(sb, ntfs_big_inode_cache, GFP_NOFS);
314 if (likely(ni != NULL)) {
318 ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
322 void ntfs_free_big_inode(struct inode *inode)
324 kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
327 static inline ntfs_inode *ntfs_alloc_extent_inode(void)
331 ntfs_debug("Entering.");
332 ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
333 if (likely(ni != NULL)) {
337 ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
341 static void ntfs_destroy_extent_inode(ntfs_inode *ni)
343 ntfs_debug("Entering.");
345 if (!atomic_dec_and_test(&ni->count))
347 kmem_cache_free(ntfs_inode_cache, ni);
351 * The attribute runlist lock has separate locking rules from the
352 * normal runlist lock, so split the two lock-classes:
354 static struct lock_class_key attr_list_rl_lock_class;
357 * __ntfs_init_inode - initialize ntfs specific part of an inode
358 * @sb: super block of mounted volume
359 * @ni: freshly allocated ntfs inode which to initialize
361 * Initialize an ntfs inode to defaults.
363 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
364 * untouched. Make sure to initialize them elsewhere.
366 * Return zero on success and -ENOMEM on error.
368 void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
370 ntfs_debug("Entering.");
371 rwlock_init(&ni->size_lock);
372 ni->initialized_size = ni->allocated_size = 0;
374 atomic_set(&ni->count, 1);
375 ni->vol = NTFS_SB(sb);
376 ntfs_init_runlist(&ni->runlist);
377 mutex_init(&ni->mrec_lock);
380 ni->attr_list_size = 0;
381 ni->attr_list = NULL;
382 ntfs_init_runlist(&ni->attr_list_rl);
383 lockdep_set_class(&ni->attr_list_rl.lock,
384 &attr_list_rl_lock_class);
385 ni->itype.index.block_size = 0;
386 ni->itype.index.vcn_size = 0;
387 ni->itype.index.collation_rule = 0;
388 ni->itype.index.block_size_bits = 0;
389 ni->itype.index.vcn_size_bits = 0;
390 mutex_init(&ni->extent_lock);
392 ni->ext.base_ntfs_ino = NULL;
396 * Extent inodes get MFT-mapped in a nested way, while the base inode
397 * is still mapped. Teach this nesting to the lock validator by creating
398 * a separate class for nested inode's mrec_lock's:
400 static struct lock_class_key extent_inode_mrec_lock_key;
402 inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
403 unsigned long mft_no)
405 ntfs_inode *ni = ntfs_alloc_extent_inode();
407 ntfs_debug("Entering.");
408 if (likely(ni != NULL)) {
409 __ntfs_init_inode(sb, ni);
410 lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
412 ni->type = AT_UNUSED;
420 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
421 * @ctx: initialized attribute search context
423 * Search all file name attributes in the inode described by the attribute
424 * search context @ctx and check if any of the names are in the $Extend system
428 * 1: file is in $Extend directory
429 * 0: file is not in $Extend directory
430 * -errno: failed to determine if the file is in the $Extend directory
432 static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
436 /* Restart search. */
437 ntfs_attr_reinit_search_ctx(ctx);
439 /* Get number of hard links. */
440 nr_links = le16_to_cpu(ctx->mrec->link_count);
442 /* Loop through all hard links. */
443 while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
445 FILE_NAME_ATTR *file_name_attr;
446 ATTR_RECORD *attr = ctx->attr;
451 * Maximum sanity checking as we are called on an inode that
452 * we suspect might be corrupt.
454 p = (u8*)attr + le32_to_cpu(attr->length);
455 if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
456 le32_to_cpu(ctx->mrec->bytes_in_use)) {
458 ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
459 "attribute. You should run chkdsk.");
462 if (attr->non_resident) {
463 ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
464 "name. You should run chkdsk.");
468 ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
469 "invalid flags. You should run "
473 if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
474 ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
475 "name. You should run chkdsk.");
478 file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
479 le16_to_cpu(attr->data.resident.value_offset));
480 p2 = (u8 *)file_name_attr + le32_to_cpu(attr->data.resident.value_length);
481 if (p2 < (u8*)attr || p2 > p)
482 goto err_corrupt_attr;
483 /* This attribute is ok, but is it in the $Extend directory? */
484 if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
485 return 1; /* YES, it's an extended system file. */
487 if (unlikely(err != -ENOENT))
489 if (unlikely(nr_links)) {
490 ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
491 "doesn't match number of name attributes. You "
492 "should run chkdsk.");
495 return 0; /* NO, it is not an extended system file. */
499 * ntfs_read_locked_inode - read an inode from its device
502 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
503 * described by @vi into memory from the device.
505 * The only fields in @vi that we need to/can look at when the function is
506 * called are i_sb, pointing to the mounted device's super block, and i_ino,
507 * the number of the inode to load.
509 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
510 * for reading and sets up the necessary @vi fields as well as initializing
513 * Q: What locks are held when the function is called?
514 * A: i_state has I_NEW set, hence the inode is locked, also
515 * i_count is set to 1, so it is not going to go away
516 * i_flags is set to 0 and we have no business touching it. Only an ioctl()
517 * is allowed to write to them. We should of course be honouring them but
518 * we need to do that using the IS_* macros defined in include/linux/fs.h.
519 * In any case ntfs_read_locked_inode() has nothing to do with i_flags.
521 * Return 0 on success and -errno on error. In the error case, the inode will
522 * have had make_bad_inode() executed on it.
524 static int ntfs_read_locked_inode(struct inode *vi)
526 ntfs_volume *vol = NTFS_SB(vi->i_sb);
531 STANDARD_INFORMATION *si;
532 ntfs_attr_search_ctx *ctx;
535 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
537 /* Setup the generic vfs inode parts now. */
538 vi->i_uid = vol->uid;
539 vi->i_gid = vol->gid;
543 * Initialize the ntfs specific part of @vi special casing
544 * FILE_MFT which we need to do at mount time.
546 if (vi->i_ino != FILE_MFT)
547 ntfs_init_big_inode(vi);
550 m = map_mft_record(ni);
555 ctx = ntfs_attr_get_search_ctx(ni, m);
561 if (!(m->flags & MFT_RECORD_IN_USE)) {
562 ntfs_error(vi->i_sb, "Inode is not in use!");
565 if (m->base_mft_record) {
566 ntfs_error(vi->i_sb, "Inode is an extent inode!");
570 /* Transfer information from mft record into vfs and ntfs inodes. */
571 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
574 * FIXME: Keep in mind that link_count is two for files which have both
575 * a long file name and a short file name as separate entries, so if
576 * we are hiding short file names this will be too high. Either we need
577 * to account for the short file names by subtracting them or we need
578 * to make sure we delete files even though i_nlink is not zero which
579 * might be tricky due to vfs interactions. Need to think about this
580 * some more when implementing the unlink command.
582 set_nlink(vi, le16_to_cpu(m->link_count));
584 * FIXME: Reparse points can have the directory bit set even though
585 * they would be S_IFLNK. Need to deal with this further below when we
586 * implement reparse points / symbolic links but it will do for now.
587 * Also if not a directory, it could be something else, rather than
588 * a regular file. But again, will do for now.
590 /* Everyone gets all permissions. */
591 vi->i_mode |= S_IRWXUGO;
592 /* If read-only, no one gets write permissions. */
594 vi->i_mode &= ~S_IWUGO;
595 if (m->flags & MFT_RECORD_IS_DIRECTORY) {
596 vi->i_mode |= S_IFDIR;
598 * Apply the directory permissions mask set in the mount
601 vi->i_mode &= ~vol->dmask;
602 /* Things break without this kludge! */
606 vi->i_mode |= S_IFREG;
607 /* Apply the file permissions mask set in the mount options. */
608 vi->i_mode &= ~vol->fmask;
611 * Find the standard information attribute in the mft record. At this
612 * stage we haven't setup the attribute list stuff yet, so this could
613 * in fact fail if the standard information is in an extent record, but
614 * I don't think this actually ever happens.
616 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
619 if (err == -ENOENT) {
621 * TODO: We should be performing a hot fix here (if the
622 * recover mount option is set) by creating a new
625 ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
631 /* Get the standard information attribute value. */
632 if ((u8 *)a + le16_to_cpu(a->data.resident.value_offset)
633 + le32_to_cpu(a->data.resident.value_length) >
634 (u8 *)ctx->mrec + vol->mft_record_size) {
635 ntfs_error(vi->i_sb, "Corrupt standard information attribute in inode.");
638 si = (STANDARD_INFORMATION*)((u8*)a +
639 le16_to_cpu(a->data.resident.value_offset));
641 /* Transfer information from the standard information into vi. */
643 * Note: The i_?times do not quite map perfectly onto the NTFS times,
644 * but they are close enough, and in the end it doesn't really matter
648 * mtime is the last change of the data within the file. Not changed
649 * when only metadata is changed, e.g. a rename doesn't affect mtime.
651 vi->i_mtime = ntfs2utc(si->last_data_change_time);
653 * ctime is the last change of the metadata of the file. This obviously
654 * always changes, when mtime is changed. ctime can be changed on its
655 * own, mtime is then not changed, e.g. when a file is renamed.
657 vi->i_ctime = ntfs2utc(si->last_mft_change_time);
659 * Last access to the data within the file. Not changed during a rename
660 * for example but changed whenever the file is written to.
662 vi->i_atime = ntfs2utc(si->last_access_time);
664 /* Find the attribute list attribute if present. */
665 ntfs_attr_reinit_search_ctx(ctx);
666 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
668 if (unlikely(err != -ENOENT)) {
669 ntfs_error(vi->i_sb, "Failed to lookup attribute list "
673 } else /* if (!err) */ {
674 if (vi->i_ino == FILE_MFT)
675 goto skip_attr_list_load;
676 ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
679 if (a->flags & ATTR_COMPRESSION_MASK) {
680 ntfs_error(vi->i_sb, "Attribute list attribute is "
684 if (a->flags & ATTR_IS_ENCRYPTED ||
685 a->flags & ATTR_IS_SPARSE) {
686 if (a->non_resident) {
687 ntfs_error(vi->i_sb, "Non-resident attribute "
688 "list attribute is encrypted/"
692 ntfs_warning(vi->i_sb, "Resident attribute list "
693 "attribute in inode 0x%lx is marked "
694 "encrypted/sparse which is not true. "
695 "However, Windows allows this and "
696 "chkdsk does not detect or correct it "
697 "so we will just ignore the invalid "
698 "flags and pretend they are not set.",
701 /* Now allocate memory for the attribute list. */
702 ni->attr_list_size = (u32)ntfs_attr_size(a);
703 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
704 if (!ni->attr_list) {
705 ntfs_error(vi->i_sb, "Not enough memory to allocate "
706 "buffer for attribute list.");
710 if (a->non_resident) {
711 NInoSetAttrListNonResident(ni);
712 if (a->data.non_resident.lowest_vcn) {
713 ntfs_error(vi->i_sb, "Attribute list has non "
718 * Setup the runlist. No need for locking as we have
719 * exclusive access to the inode at this time.
721 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
723 if (IS_ERR(ni->attr_list_rl.rl)) {
724 err = PTR_ERR(ni->attr_list_rl.rl);
725 ni->attr_list_rl.rl = NULL;
726 ntfs_error(vi->i_sb, "Mapping pairs "
727 "decompression failed.");
730 /* Now load the attribute list. */
731 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
732 ni->attr_list, ni->attr_list_size,
733 sle64_to_cpu(a->data.non_resident.
734 initialized_size)))) {
735 ntfs_error(vi->i_sb, "Failed to load "
736 "attribute list attribute.");
739 } else /* if (!a->non_resident) */ {
740 if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
742 a->data.resident.value_length) >
743 (u8*)ctx->mrec + vol->mft_record_size) {
744 ntfs_error(vi->i_sb, "Corrupt attribute list "
748 /* Now copy the attribute list. */
749 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
750 a->data.resident.value_offset),
752 a->data.resident.value_length));
757 * If an attribute list is present we now have the attribute list value
758 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
760 if (S_ISDIR(vi->i_mode)) {
764 u8 *ir_end, *index_end;
766 /* It is a directory, find index root attribute. */
767 ntfs_attr_reinit_search_ctx(ctx);
768 err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
771 if (err == -ENOENT) {
772 // FIXME: File is corrupt! Hot-fix with empty
773 // index root attribute if recovery option is
775 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
781 /* Set up the state. */
782 if (unlikely(a->non_resident)) {
783 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
787 /* Ensure the attribute name is placed before the value. */
788 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
789 le16_to_cpu(a->data.resident.value_offset)))) {
790 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
791 "placed after the attribute value.");
795 * Compressed/encrypted index root just means that the newly
796 * created files in that directory should be created compressed/
797 * encrypted. However index root cannot be both compressed and
800 if (a->flags & ATTR_COMPRESSION_MASK)
801 NInoSetCompressed(ni);
802 if (a->flags & ATTR_IS_ENCRYPTED) {
803 if (a->flags & ATTR_COMPRESSION_MASK) {
804 ntfs_error(vi->i_sb, "Found encrypted and "
805 "compressed attribute.");
808 NInoSetEncrypted(ni);
810 if (a->flags & ATTR_IS_SPARSE)
812 ir = (INDEX_ROOT*)((u8*)a +
813 le16_to_cpu(a->data.resident.value_offset));
814 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
815 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
816 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
820 index_end = (u8*)&ir->index +
821 le32_to_cpu(ir->index.index_length);
822 if (index_end > ir_end) {
823 ntfs_error(vi->i_sb, "Directory index is corrupt.");
826 if (ir->type != AT_FILE_NAME) {
827 ntfs_error(vi->i_sb, "Indexed attribute is not "
831 if (ir->collation_rule != COLLATION_FILE_NAME) {
832 ntfs_error(vi->i_sb, "Index collation rule is not "
833 "COLLATION_FILE_NAME.");
836 ni->itype.index.collation_rule = ir->collation_rule;
837 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
838 if (ni->itype.index.block_size &
839 (ni->itype.index.block_size - 1)) {
840 ntfs_error(vi->i_sb, "Index block size (%u) is not a "
842 ni->itype.index.block_size);
845 if (ni->itype.index.block_size > PAGE_SIZE) {
846 ntfs_error(vi->i_sb, "Index block size (%u) > "
847 "PAGE_SIZE (%ld) is not "
849 ni->itype.index.block_size,
854 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
855 ntfs_error(vi->i_sb, "Index block size (%u) < "
856 "NTFS_BLOCK_SIZE (%i) is not "
858 ni->itype.index.block_size,
863 ni->itype.index.block_size_bits =
864 ffs(ni->itype.index.block_size) - 1;
865 /* Determine the size of a vcn in the directory index. */
866 if (vol->cluster_size <= ni->itype.index.block_size) {
867 ni->itype.index.vcn_size = vol->cluster_size;
868 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
870 ni->itype.index.vcn_size = vol->sector_size;
871 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
874 /* Setup the index allocation attribute, even if not present. */
875 NInoSetMstProtected(ni);
876 ni->type = AT_INDEX_ALLOCATION;
880 if (!(ir->index.flags & LARGE_INDEX)) {
881 /* No index allocation. */
882 vi->i_size = ni->initialized_size =
883 ni->allocated_size = 0;
884 /* We are done with the mft record, so we release it. */
885 ntfs_attr_put_search_ctx(ctx);
886 unmap_mft_record(ni);
889 goto skip_large_dir_stuff;
890 } /* LARGE_INDEX: Index allocation present. Setup state. */
891 NInoSetIndexAllocPresent(ni);
892 /* Find index allocation attribute. */
893 ntfs_attr_reinit_search_ctx(ctx);
894 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
895 CASE_SENSITIVE, 0, NULL, 0, ctx);
898 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
899 "attribute is not present but "
900 "$INDEX_ROOT indicated it is.");
902 ntfs_error(vi->i_sb, "Failed to lookup "
908 if (!a->non_resident) {
909 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
914 * Ensure the attribute name is placed before the mapping pairs
917 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
919 a->data.non_resident.mapping_pairs_offset)))) {
920 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
921 "is placed after the mapping pairs "
925 if (a->flags & ATTR_IS_ENCRYPTED) {
926 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
930 if (a->flags & ATTR_IS_SPARSE) {
931 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
935 if (a->flags & ATTR_COMPRESSION_MASK) {
936 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
940 if (a->data.non_resident.lowest_vcn) {
941 ntfs_error(vi->i_sb, "First extent of "
942 "$INDEX_ALLOCATION attribute has non "
946 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
947 ni->initialized_size = sle64_to_cpu(
948 a->data.non_resident.initialized_size);
949 ni->allocated_size = sle64_to_cpu(
950 a->data.non_resident.allocated_size);
952 * We are done with the mft record, so we release it. Otherwise
953 * we would deadlock in ntfs_attr_iget().
955 ntfs_attr_put_search_ctx(ctx);
956 unmap_mft_record(ni);
959 /* Get the index bitmap attribute inode. */
960 bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
962 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
967 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
969 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
970 "and/or encrypted and/or sparse.");
971 goto iput_unm_err_out;
973 /* Consistency check bitmap size vs. index allocation size. */
974 bvi_size = i_size_read(bvi);
975 if ((bvi_size << 3) < (vi->i_size >>
976 ni->itype.index.block_size_bits)) {
977 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
978 "for index allocation (0x%llx).",
979 bvi_size << 3, vi->i_size);
980 goto iput_unm_err_out;
982 /* No longer need the bitmap attribute inode. */
984 skip_large_dir_stuff:
985 /* Setup the operations for this inode. */
986 vi->i_op = &ntfs_dir_inode_ops;
987 vi->i_fop = &ntfs_dir_ops;
988 vi->i_mapping->a_ops = &ntfs_mst_aops;
991 ntfs_attr_reinit_search_ctx(ctx);
993 /* Setup the data attribute, even if not present. */
998 /* Find first extent of the unnamed data attribute. */
999 err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1000 if (unlikely(err)) {
1001 vi->i_size = ni->initialized_size =
1002 ni->allocated_size = 0;
1003 if (err != -ENOENT) {
1004 ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1009 * FILE_Secure does not have an unnamed $DATA
1010 * attribute, so we special case it here.
1012 if (vi->i_ino == FILE_Secure)
1013 goto no_data_attr_special_case;
1015 * Most if not all the system files in the $Extend
1016 * system directory do not have unnamed data
1017 * attributes so we need to check if the parent
1018 * directory of the file is FILE_Extend and if it is
1019 * ignore this error. To do this we need to get the
1020 * name of this inode from the mft record as the name
1021 * contains the back reference to the parent directory.
1023 if (ntfs_is_extended_system_file(ctx) > 0)
1024 goto no_data_attr_special_case;
1025 // FIXME: File is corrupt! Hot-fix with empty data
1026 // attribute if recovery option is set.
1027 ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1031 /* Setup the state. */
1032 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1033 if (a->flags & ATTR_COMPRESSION_MASK) {
1034 NInoSetCompressed(ni);
1035 if (vol->cluster_size > 4096) {
1036 ntfs_error(vi->i_sb, "Found "
1037 "compressed data but "
1040 "cluster size (%i) > "
1045 if ((a->flags & ATTR_COMPRESSION_MASK)
1046 != ATTR_IS_COMPRESSED) {
1047 ntfs_error(vi->i_sb, "Found unknown "
1048 "compression method "
1049 "or corrupt file.");
1053 if (a->flags & ATTR_IS_SPARSE)
1056 if (a->flags & ATTR_IS_ENCRYPTED) {
1057 if (NInoCompressed(ni)) {
1058 ntfs_error(vi->i_sb, "Found encrypted and "
1059 "compressed data.");
1062 NInoSetEncrypted(ni);
1064 if (a->non_resident) {
1065 NInoSetNonResident(ni);
1066 if (NInoCompressed(ni) || NInoSparse(ni)) {
1067 if (NInoCompressed(ni) && a->data.non_resident.
1068 compression_unit != 4) {
1069 ntfs_error(vi->i_sb, "Found "
1071 "compression unit (%u "
1073 "Cannot handle this.",
1074 a->data.non_resident.
1079 if (a->data.non_resident.compression_unit) {
1080 ni->itype.compressed.block_size = 1U <<
1081 (a->data.non_resident.
1083 vol->cluster_size_bits);
1084 ni->itype.compressed.block_size_bits =
1088 ni->itype.compressed.block_clusters =
1093 ni->itype.compressed.block_size = 0;
1094 ni->itype.compressed.block_size_bits =
1096 ni->itype.compressed.block_clusters =
1099 ni->itype.compressed.size = sle64_to_cpu(
1100 a->data.non_resident.
1103 if (a->data.non_resident.lowest_vcn) {
1104 ntfs_error(vi->i_sb, "First extent of $DATA "
1105 "attribute has non zero "
1109 vi->i_size = sle64_to_cpu(
1110 a->data.non_resident.data_size);
1111 ni->initialized_size = sle64_to_cpu(
1112 a->data.non_resident.initialized_size);
1113 ni->allocated_size = sle64_to_cpu(
1114 a->data.non_resident.allocated_size);
1115 } else { /* Resident attribute. */
1116 vi->i_size = ni->initialized_size = le32_to_cpu(
1117 a->data.resident.value_length);
1118 ni->allocated_size = le32_to_cpu(a->length) -
1120 a->data.resident.value_offset);
1121 if (vi->i_size > ni->allocated_size) {
1122 ntfs_error(vi->i_sb, "Resident data attribute "
1123 "is corrupt (size exceeds "
1128 no_data_attr_special_case:
1129 /* We are done with the mft record, so we release it. */
1130 ntfs_attr_put_search_ctx(ctx);
1131 unmap_mft_record(ni);
1134 /* Setup the operations for this inode. */
1135 vi->i_op = &ntfs_file_inode_ops;
1136 vi->i_fop = &ntfs_file_ops;
1137 vi->i_mapping->a_ops = &ntfs_normal_aops;
1138 if (NInoMstProtected(ni))
1139 vi->i_mapping->a_ops = &ntfs_mst_aops;
1140 else if (NInoCompressed(ni))
1141 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1144 * The number of 512-byte blocks used on disk (for stat). This is in so
1145 * far inaccurate as it doesn't account for any named streams or other
1146 * special non-resident attributes, but that is how Windows works, too,
1147 * so we are at least consistent with Windows, if not entirely
1148 * consistent with the Linux Way. Doing it the Linux Way would cause a
1149 * significant slowdown as it would involve iterating over all
1150 * attributes in the mft record and adding the allocated/compressed
1151 * sizes of all non-resident attributes present to give us the Linux
1152 * correct size that should go into i_blocks (after division by 512).
1154 if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1155 vi->i_blocks = ni->itype.compressed.size >> 9;
1157 vi->i_blocks = ni->allocated_size >> 9;
1158 ntfs_debug("Done.");
1166 ntfs_attr_put_search_ctx(ctx);
1168 unmap_mft_record(ni);
1170 ntfs_error(vol->sb, "Failed with error code %i. Marking corrupt "
1171 "inode 0x%lx as bad. Run chkdsk.", err, vi->i_ino);
1173 if (err != -EOPNOTSUPP && err != -ENOMEM)
1179 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1180 * @base_vi: base inode
1181 * @vi: attribute inode to read
1183 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1184 * attribute inode described by @vi into memory from the base mft record
1185 * described by @base_ni.
1187 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1188 * reading and looks up the attribute described by @vi before setting up the
1189 * necessary fields in @vi as well as initializing the ntfs inode.
1191 * Q: What locks are held when the function is called?
1192 * A: i_state has I_NEW set, hence the inode is locked, also
1193 * i_count is set to 1, so it is not going to go away
1195 * Return 0 on success and -errno on error. In the error case, the inode will
1196 * have had make_bad_inode() executed on it.
1198 * Note this cannot be called for AT_INDEX_ALLOCATION.
1200 static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1202 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1203 ntfs_inode *ni, *base_ni;
1206 ntfs_attr_search_ctx *ctx;
1209 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1211 ntfs_init_big_inode(vi);
1214 base_ni = NTFS_I(base_vi);
1216 /* Just mirror the values from the base inode. */
1217 vi->i_uid = base_vi->i_uid;
1218 vi->i_gid = base_vi->i_gid;
1219 set_nlink(vi, base_vi->i_nlink);
1220 vi->i_mtime = base_vi->i_mtime;
1221 vi->i_ctime = base_vi->i_ctime;
1222 vi->i_atime = base_vi->i_atime;
1223 vi->i_generation = ni->seq_no = base_ni->seq_no;
1225 /* Set inode type to zero but preserve permissions. */
1226 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1228 m = map_mft_record(base_ni);
1233 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1238 /* Find the attribute. */
1239 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1240 CASE_SENSITIVE, 0, NULL, 0, ctx);
1244 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1245 if (a->flags & ATTR_COMPRESSION_MASK) {
1246 NInoSetCompressed(ni);
1247 if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1249 ntfs_error(vi->i_sb, "Found compressed "
1250 "non-data or named data "
1251 "attribute. Please report "
1252 "you saw this message to "
1253 "linux-ntfs-dev@lists."
1257 if (vol->cluster_size > 4096) {
1258 ntfs_error(vi->i_sb, "Found compressed "
1259 "attribute but compression is "
1260 "disabled due to cluster size "
1265 if ((a->flags & ATTR_COMPRESSION_MASK) !=
1266 ATTR_IS_COMPRESSED) {
1267 ntfs_error(vi->i_sb, "Found unknown "
1268 "compression method.");
1273 * The compressed/sparse flag set in an index root just means
1274 * to compress all files.
1276 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1277 ntfs_error(vi->i_sb, "Found mst protected attribute "
1278 "but the attribute is %s. Please "
1279 "report you saw this message to "
1280 "linux-ntfs-dev@lists.sourceforge.net",
1281 NInoCompressed(ni) ? "compressed" :
1285 if (a->flags & ATTR_IS_SPARSE)
1288 if (a->flags & ATTR_IS_ENCRYPTED) {
1289 if (NInoCompressed(ni)) {
1290 ntfs_error(vi->i_sb, "Found encrypted and compressed "
1295 * The encryption flag set in an index root just means to
1296 * encrypt all files.
1298 if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1299 ntfs_error(vi->i_sb, "Found mst protected attribute "
1300 "but the attribute is encrypted. "
1301 "Please report you saw this message "
1302 "to linux-ntfs-dev@lists.sourceforge."
1306 if (ni->type != AT_DATA) {
1307 ntfs_error(vi->i_sb, "Found encrypted non-data "
1311 NInoSetEncrypted(ni);
1313 if (!a->non_resident) {
1314 /* Ensure the attribute name is placed before the value. */
1315 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1316 le16_to_cpu(a->data.resident.value_offset)))) {
1317 ntfs_error(vol->sb, "Attribute name is placed after "
1318 "the attribute value.");
1321 if (NInoMstProtected(ni)) {
1322 ntfs_error(vi->i_sb, "Found mst protected attribute "
1323 "but the attribute is resident. "
1324 "Please report you saw this message to "
1325 "linux-ntfs-dev@lists.sourceforge.net");
1328 vi->i_size = ni->initialized_size = le32_to_cpu(
1329 a->data.resident.value_length);
1330 ni->allocated_size = le32_to_cpu(a->length) -
1331 le16_to_cpu(a->data.resident.value_offset);
1332 if (vi->i_size > ni->allocated_size) {
1333 ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1334 "(size exceeds allocation).");
1338 NInoSetNonResident(ni);
1340 * Ensure the attribute name is placed before the mapping pairs
1343 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1345 a->data.non_resident.mapping_pairs_offset)))) {
1346 ntfs_error(vol->sb, "Attribute name is placed after "
1347 "the mapping pairs array.");
1350 if (NInoCompressed(ni) || NInoSparse(ni)) {
1351 if (NInoCompressed(ni) && a->data.non_resident.
1352 compression_unit != 4) {
1353 ntfs_error(vi->i_sb, "Found non-standard "
1354 "compression unit (%u instead "
1355 "of 4). Cannot handle this.",
1356 a->data.non_resident.
1361 if (a->data.non_resident.compression_unit) {
1362 ni->itype.compressed.block_size = 1U <<
1363 (a->data.non_resident.
1365 vol->cluster_size_bits);
1366 ni->itype.compressed.block_size_bits =
1367 ffs(ni->itype.compressed.
1369 ni->itype.compressed.block_clusters = 1U <<
1370 a->data.non_resident.
1373 ni->itype.compressed.block_size = 0;
1374 ni->itype.compressed.block_size_bits = 0;
1375 ni->itype.compressed.block_clusters = 0;
1377 ni->itype.compressed.size = sle64_to_cpu(
1378 a->data.non_resident.compressed_size);
1380 if (a->data.non_resident.lowest_vcn) {
1381 ntfs_error(vi->i_sb, "First extent of attribute has "
1382 "non-zero lowest_vcn.");
1385 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1386 ni->initialized_size = sle64_to_cpu(
1387 a->data.non_resident.initialized_size);
1388 ni->allocated_size = sle64_to_cpu(
1389 a->data.non_resident.allocated_size);
1391 vi->i_mapping->a_ops = &ntfs_normal_aops;
1392 if (NInoMstProtected(ni))
1393 vi->i_mapping->a_ops = &ntfs_mst_aops;
1394 else if (NInoCompressed(ni))
1395 vi->i_mapping->a_ops = &ntfs_compressed_aops;
1396 if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1397 vi->i_blocks = ni->itype.compressed.size >> 9;
1399 vi->i_blocks = ni->allocated_size >> 9;
1401 * Make sure the base inode does not go away and attach it to the
1405 ni->ext.base_ntfs_ino = base_ni;
1406 ni->nr_extents = -1;
1408 ntfs_attr_put_search_ctx(ctx);
1409 unmap_mft_record(base_ni);
1411 ntfs_debug("Done.");
1418 ntfs_attr_put_search_ctx(ctx);
1419 unmap_mft_record(base_ni);
1421 ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1422 "inode (mft_no 0x%lx, type 0x%x, name_len %i). "
1423 "Marking corrupt inode and base inode 0x%lx as bad. "
1424 "Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1433 * ntfs_read_locked_index_inode - read an index inode from its base inode
1434 * @base_vi: base inode
1435 * @vi: index inode to read
1437 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1438 * index inode described by @vi into memory from the base mft record described
1441 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1442 * reading and looks up the attributes relating to the index described by @vi
1443 * before setting up the necessary fields in @vi as well as initializing the
1446 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1447 * with the attribute type set to AT_INDEX_ALLOCATION. Apart from that, they
1448 * are setup like directory inodes since directories are a special case of
1449 * indices ao they need to be treated in much the same way. Most importantly,
1450 * for small indices the index allocation attribute might not actually exist.
1451 * However, the index root attribute always exists but this does not need to
1452 * have an inode associated with it and this is why we define a new inode type
1453 * index. Also, like for directories, we need to have an attribute inode for
1454 * the bitmap attribute corresponding to the index allocation attribute and we
1455 * can store this in the appropriate field of the inode, just like we do for
1456 * normal directory inodes.
1458 * Q: What locks are held when the function is called?
1459 * A: i_state has I_NEW set, hence the inode is locked, also
1460 * i_count is set to 1, so it is not going to go away
1462 * Return 0 on success and -errno on error. In the error case, the inode will
1463 * have had make_bad_inode() executed on it.
1465 static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1468 ntfs_volume *vol = NTFS_SB(vi->i_sb);
1469 ntfs_inode *ni, *base_ni, *bni;
1473 ntfs_attr_search_ctx *ctx;
1475 u8 *ir_end, *index_end;
1478 ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1479 ntfs_init_big_inode(vi);
1481 base_ni = NTFS_I(base_vi);
1482 /* Just mirror the values from the base inode. */
1483 vi->i_uid = base_vi->i_uid;
1484 vi->i_gid = base_vi->i_gid;
1485 set_nlink(vi, base_vi->i_nlink);
1486 vi->i_mtime = base_vi->i_mtime;
1487 vi->i_ctime = base_vi->i_ctime;
1488 vi->i_atime = base_vi->i_atime;
1489 vi->i_generation = ni->seq_no = base_ni->seq_no;
1490 /* Set inode type to zero but preserve permissions. */
1491 vi->i_mode = base_vi->i_mode & ~S_IFMT;
1492 /* Map the mft record for the base inode. */
1493 m = map_mft_record(base_ni);
1498 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1503 /* Find the index root attribute. */
1504 err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1505 CASE_SENSITIVE, 0, NULL, 0, ctx);
1506 if (unlikely(err)) {
1508 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1513 /* Set up the state. */
1514 if (unlikely(a->non_resident)) {
1515 ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1518 /* Ensure the attribute name is placed before the value. */
1519 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1520 le16_to_cpu(a->data.resident.value_offset)))) {
1521 ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1522 "after the attribute value.");
1526 * Compressed/encrypted/sparse index root is not allowed, except for
1527 * directories of course but those are not dealt with here.
1529 if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1531 ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1535 ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1536 ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1537 if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1538 ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1541 index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1542 if (index_end > ir_end) {
1543 ntfs_error(vi->i_sb, "Index is corrupt.");
1547 ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1548 le32_to_cpu(ir->type));
1551 ni->itype.index.collation_rule = ir->collation_rule;
1552 ntfs_debug("Index collation rule is 0x%x.",
1553 le32_to_cpu(ir->collation_rule));
1554 ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1555 if (!is_power_of_2(ni->itype.index.block_size)) {
1556 ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1557 "two.", ni->itype.index.block_size);
1560 if (ni->itype.index.block_size > PAGE_SIZE) {
1561 ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1562 "(%ld) is not supported. Sorry.",
1563 ni->itype.index.block_size, PAGE_SIZE);
1567 if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1568 ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1569 "(%i) is not supported. Sorry.",
1570 ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1574 ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1575 /* Determine the size of a vcn in the index. */
1576 if (vol->cluster_size <= ni->itype.index.block_size) {
1577 ni->itype.index.vcn_size = vol->cluster_size;
1578 ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1580 ni->itype.index.vcn_size = vol->sector_size;
1581 ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1583 /* Check for presence of index allocation attribute. */
1584 if (!(ir->index.flags & LARGE_INDEX)) {
1585 /* No index allocation. */
1586 vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1587 /* We are done with the mft record, so we release it. */
1588 ntfs_attr_put_search_ctx(ctx);
1589 unmap_mft_record(base_ni);
1592 goto skip_large_index_stuff;
1593 } /* LARGE_INDEX: Index allocation present. Setup state. */
1594 NInoSetIndexAllocPresent(ni);
1595 /* Find index allocation attribute. */
1596 ntfs_attr_reinit_search_ctx(ctx);
1597 err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1598 CASE_SENSITIVE, 0, NULL, 0, ctx);
1599 if (unlikely(err)) {
1601 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1602 "not present but $INDEX_ROOT "
1603 "indicated it is.");
1605 ntfs_error(vi->i_sb, "Failed to lookup "
1606 "$INDEX_ALLOCATION attribute.");
1610 if (!a->non_resident) {
1611 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1616 * Ensure the attribute name is placed before the mapping pairs array.
1618 if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1620 a->data.non_resident.mapping_pairs_offset)))) {
1621 ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1622 "placed after the mapping pairs array.");
1625 if (a->flags & ATTR_IS_ENCRYPTED) {
1626 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1630 if (a->flags & ATTR_IS_SPARSE) {
1631 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1634 if (a->flags & ATTR_COMPRESSION_MASK) {
1635 ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1639 if (a->data.non_resident.lowest_vcn) {
1640 ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1641 "attribute has non zero lowest_vcn.");
1644 vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1645 ni->initialized_size = sle64_to_cpu(
1646 a->data.non_resident.initialized_size);
1647 ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1649 * We are done with the mft record, so we release it. Otherwise
1650 * we would deadlock in ntfs_attr_iget().
1652 ntfs_attr_put_search_ctx(ctx);
1653 unmap_mft_record(base_ni);
1656 /* Get the index bitmap attribute inode. */
1657 bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1659 ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1664 if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1666 ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1667 "encrypted and/or sparse.");
1668 goto iput_unm_err_out;
1670 /* Consistency check bitmap size vs. index allocation size. */
1671 bvi_size = i_size_read(bvi);
1672 if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1673 ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1674 "index allocation (0x%llx).", bvi_size << 3,
1676 goto iput_unm_err_out;
1679 skip_large_index_stuff:
1680 /* Setup the operations for this index inode. */
1681 vi->i_mapping->a_ops = &ntfs_mst_aops;
1682 vi->i_blocks = ni->allocated_size >> 9;
1684 * Make sure the base inode doesn't go away and attach it to the
1688 ni->ext.base_ntfs_ino = base_ni;
1689 ni->nr_extents = -1;
1691 ntfs_debug("Done.");
1699 ntfs_attr_put_search_ctx(ctx);
1701 unmap_mft_record(base_ni);
1703 ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1704 "inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1707 if (err != -EOPNOTSUPP && err != -ENOMEM)
1713 * The MFT inode has special locking, so teach the lock validator
1714 * about this by splitting off the locking rules of the MFT from
1715 * the locking rules of other inodes. The MFT inode can never be
1716 * accessed from the VFS side (or even internally), only by the
1717 * map_mft functions.
1719 static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1722 * ntfs_read_inode_mount - special read_inode for mount time use only
1723 * @vi: inode to read
1725 * Read inode FILE_MFT at mount time, only called with super_block lock
1726 * held from within the read_super() code path.
1728 * This function exists because when it is called the page cache for $MFT/$DATA
1729 * is not initialized and hence we cannot get at the contents of mft records
1730 * by calling map_mft_record*().
1732 * Further it needs to cope with the circular references problem, i.e. cannot
1733 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1734 * we do not know where the other extent mft records are yet and again, because
1735 * we cannot call map_mft_record*() yet. Obviously this applies only when an
1736 * attribute list is actually present in $MFT inode.
1738 * We solve these problems by starting with the $DATA attribute before anything
1739 * else and iterating using ntfs_attr_lookup($DATA) over all extents. As each
1740 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1741 * ntfs_runlists_merge(). Each step of the iteration necessarily provides
1742 * sufficient information for the next step to complete.
1744 * This should work but there are two possible pit falls (see inline comments
1745 * below), but only time will tell if they are real pits or just smoke...
1747 int ntfs_read_inode_mount(struct inode *vi)
1749 VCN next_vcn, last_vcn, highest_vcn;
1751 struct super_block *sb = vi->i_sb;
1752 ntfs_volume *vol = NTFS_SB(sb);
1753 struct buffer_head *bh;
1755 MFT_RECORD *m = NULL;
1757 ntfs_attr_search_ctx *ctx;
1758 unsigned int i, nr_blocks;
1761 ntfs_debug("Entering.");
1763 /* Initialize the ntfs specific part of @vi. */
1764 ntfs_init_big_inode(vi);
1768 /* Setup the data attribute. It is special as it is mst protected. */
1769 NInoSetNonResident(ni);
1770 NInoSetMstProtected(ni);
1771 NInoSetSparseDisabled(ni);
1776 * This sets up our little cheat allowing us to reuse the async read io
1777 * completion handler for directories.
1779 ni->itype.index.block_size = vol->mft_record_size;
1780 ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1782 /* Very important! Needed to be able to call map_mft_record*(). */
1785 /* Allocate enough memory to read the first mft record. */
1786 if (vol->mft_record_size > 64 * 1024) {
1787 ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1788 vol->mft_record_size);
1791 i = vol->mft_record_size;
1792 if (i < sb->s_blocksize)
1793 i = sb->s_blocksize;
1794 m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1796 ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1800 /* Determine the first block of the $MFT/$DATA attribute. */
1801 block = vol->mft_lcn << vol->cluster_size_bits >>
1802 sb->s_blocksize_bits;
1803 nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1807 /* Load $MFT/$DATA's first mft record. */
1808 for (i = 0; i < nr_blocks; i++) {
1809 bh = sb_bread(sb, block++);
1811 ntfs_error(sb, "Device read failed.");
1814 memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1819 if (le32_to_cpu(m->bytes_allocated) != vol->mft_record_size) {
1820 ntfs_error(sb, "Incorrect mft record size %u in superblock, should be %u.",
1821 le32_to_cpu(m->bytes_allocated), vol->mft_record_size);
1825 /* Apply the mst fixups. */
1826 if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1827 /* FIXME: Try to use the $MFTMirr now. */
1828 ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1832 /* Sanity check offset to the first attribute */
1833 if (le16_to_cpu(m->attrs_offset) >= le32_to_cpu(m->bytes_allocated)) {
1834 ntfs_error(sb, "Incorrect mft offset to the first attribute %u in superblock.",
1835 le16_to_cpu(m->attrs_offset));
1839 /* Need this to sanity check attribute list references to $MFT. */
1840 vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1842 /* Provides read_folio() for map_mft_record(). */
1843 vi->i_mapping->a_ops = &ntfs_mst_aops;
1845 ctx = ntfs_attr_get_search_ctx(ni, m);
1851 /* Find the attribute list attribute if present. */
1852 err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1854 if (unlikely(err != -ENOENT)) {
1855 ntfs_error(sb, "Failed to lookup attribute list "
1856 "attribute. You should run chkdsk.");
1859 } else /* if (!err) */ {
1860 ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1862 static const char *es = " Not allowed. $MFT is corrupt. "
1863 "You should run chkdsk.";
1865 ntfs_debug("Attribute list attribute found in $MFT.");
1866 NInoSetAttrList(ni);
1868 if (a->flags & ATTR_COMPRESSION_MASK) {
1869 ntfs_error(sb, "Attribute list attribute is "
1870 "compressed.%s", es);
1873 if (a->flags & ATTR_IS_ENCRYPTED ||
1874 a->flags & ATTR_IS_SPARSE) {
1875 if (a->non_resident) {
1876 ntfs_error(sb, "Non-resident attribute list "
1877 "attribute is encrypted/"
1881 ntfs_warning(sb, "Resident attribute list attribute "
1882 "in $MFT system file is marked "
1883 "encrypted/sparse which is not true. "
1884 "However, Windows allows this and "
1885 "chkdsk does not detect or correct it "
1886 "so we will just ignore the invalid "
1887 "flags and pretend they are not set.");
1889 /* Now allocate memory for the attribute list. */
1890 ni->attr_list_size = (u32)ntfs_attr_size(a);
1891 if (!ni->attr_list_size) {
1892 ntfs_error(sb, "Attr_list_size is zero");
1895 ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1896 if (!ni->attr_list) {
1897 ntfs_error(sb, "Not enough memory to allocate buffer "
1898 "for attribute list.");
1901 if (a->non_resident) {
1902 NInoSetAttrListNonResident(ni);
1903 if (a->data.non_resident.lowest_vcn) {
1904 ntfs_error(sb, "Attribute list has non zero "
1905 "lowest_vcn. $MFT is corrupt. "
1906 "You should run chkdsk.");
1909 /* Setup the runlist. */
1910 ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1912 if (IS_ERR(ni->attr_list_rl.rl)) {
1913 err = PTR_ERR(ni->attr_list_rl.rl);
1914 ni->attr_list_rl.rl = NULL;
1915 ntfs_error(sb, "Mapping pairs decompression "
1916 "failed with error code %i.",
1920 /* Now load the attribute list. */
1921 if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1922 ni->attr_list, ni->attr_list_size,
1923 sle64_to_cpu(a->data.
1924 non_resident.initialized_size)))) {
1925 ntfs_error(sb, "Failed to load attribute list "
1926 "attribute with error code %i.",
1930 } else /* if (!ctx.attr->non_resident) */ {
1931 if ((u8*)a + le16_to_cpu(
1932 a->data.resident.value_offset) +
1934 a->data.resident.value_length) >
1935 (u8*)ctx->mrec + vol->mft_record_size) {
1936 ntfs_error(sb, "Corrupt attribute list "
1940 /* Now copy the attribute list. */
1941 memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1942 a->data.resident.value_offset),
1944 a->data.resident.value_length));
1946 /* The attribute list is now setup in memory. */
1948 * FIXME: I don't know if this case is actually possible.
1949 * According to logic it is not possible but I have seen too
1950 * many weird things in MS software to rely on logic... Thus we
1951 * perform a manual search and make sure the first $MFT/$DATA
1952 * extent is in the base inode. If it is not we abort with an
1953 * error and if we ever see a report of this error we will need
1954 * to do some magic in order to have the necessary mft record
1955 * loaded and in the right place in the page cache. But
1956 * hopefully logic will prevail and this never happens...
1958 al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1959 al_end = (u8*)al_entry + ni->attr_list_size;
1960 for (;; al_entry = next_al_entry) {
1961 /* Out of bounds check. */
1962 if ((u8*)al_entry < ni->attr_list ||
1963 (u8*)al_entry > al_end)
1964 goto em_put_err_out;
1965 /* Catch the end of the attribute list. */
1966 if ((u8*)al_entry == al_end)
1967 goto em_put_err_out;
1968 if (!al_entry->length)
1969 goto em_put_err_out;
1970 if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1971 le16_to_cpu(al_entry->length) > al_end)
1972 goto em_put_err_out;
1973 next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1974 le16_to_cpu(al_entry->length));
1975 if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1976 goto em_put_err_out;
1977 if (AT_DATA != al_entry->type)
1979 /* We want an unnamed attribute. */
1980 if (al_entry->name_length)
1981 goto em_put_err_out;
1982 /* Want the first entry, i.e. lowest_vcn == 0. */
1983 if (al_entry->lowest_vcn)
1984 goto em_put_err_out;
1985 /* First entry has to be in the base mft record. */
1986 if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1987 /* MFT references do not match, logic fails. */
1988 ntfs_error(sb, "BUG: The first $DATA extent "
1989 "of $MFT is not in the base "
1990 "mft record. Please report "
1991 "you saw this message to "
1992 "linux-ntfs-dev@lists."
1996 /* Sequence numbers must match. */
1997 if (MSEQNO_LE(al_entry->mft_reference) !=
1999 goto em_put_err_out;
2000 /* Got it. All is ok. We can stop now. */
2006 ntfs_attr_reinit_search_ctx(ctx);
2008 /* Now load all attribute extents. */
2010 next_vcn = last_vcn = highest_vcn = 0;
2011 while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2013 runlist_element *nrl;
2015 /* Cache the current attribute. */
2017 /* $MFT must be non-resident. */
2018 if (!a->non_resident) {
2019 ntfs_error(sb, "$MFT must be non-resident but a "
2020 "resident extent was found. $MFT is "
2021 "corrupt. Run chkdsk.");
2024 /* $MFT must be uncompressed and unencrypted. */
2025 if (a->flags & ATTR_COMPRESSION_MASK ||
2026 a->flags & ATTR_IS_ENCRYPTED ||
2027 a->flags & ATTR_IS_SPARSE) {
2028 ntfs_error(sb, "$MFT must be uncompressed, "
2029 "non-sparse, and unencrypted but a "
2030 "compressed/sparse/encrypted extent "
2031 "was found. $MFT is corrupt. Run "
2036 * Decompress the mapping pairs array of this extent and merge
2037 * the result into the existing runlist. No need for locking
2038 * as we have exclusive access to the inode at this time and we
2039 * are a mount in progress task, too.
2041 nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2043 ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2044 "failed with error code %ld. $MFT is "
2045 "corrupt.", PTR_ERR(nrl));
2048 ni->runlist.rl = nrl;
2050 /* Are we in the first extent? */
2052 if (a->data.non_resident.lowest_vcn) {
2053 ntfs_error(sb, "First extent of $DATA "
2054 "attribute has non zero "
2055 "lowest_vcn. $MFT is corrupt. "
2056 "You should run chkdsk.");
2059 /* Get the last vcn in the $DATA attribute. */
2060 last_vcn = sle64_to_cpu(
2061 a->data.non_resident.allocated_size)
2062 >> vol->cluster_size_bits;
2063 /* Fill in the inode size. */
2064 vi->i_size = sle64_to_cpu(
2065 a->data.non_resident.data_size);
2066 ni->initialized_size = sle64_to_cpu(
2067 a->data.non_resident.initialized_size);
2068 ni->allocated_size = sle64_to_cpu(
2069 a->data.non_resident.allocated_size);
2071 * Verify the number of mft records does not exceed
2074 if ((vi->i_size >> vol->mft_record_size_bits) >=
2076 ntfs_error(sb, "$MFT is too big! Aborting.");
2080 * We have got the first extent of the runlist for
2081 * $MFT which means it is now relatively safe to call
2082 * the normal ntfs_read_inode() function.
2083 * Complete reading the inode, this will actually
2084 * re-read the mft record for $MFT, this time entering
2085 * it into the page cache with which we complete the
2086 * kick start of the volume. It should be safe to do
2087 * this now as the first extent of $MFT/$DATA is
2088 * already known and we would hope that we don't need
2089 * further extents in order to find the other
2090 * attributes belonging to $MFT. Only time will tell if
2091 * this is really the case. If not we will have to play
2092 * magic at this point, possibly duplicating a lot of
2093 * ntfs_read_inode() at this point. We will need to
2094 * ensure we do enough of its work to be able to call
2095 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2096 * hope this never happens...
2098 ntfs_read_locked_inode(vi);
2099 if (is_bad_inode(vi)) {
2100 ntfs_error(sb, "ntfs_read_inode() of $MFT "
2101 "failed. BUG or corrupt $MFT. "
2102 "Run chkdsk and if no errors "
2103 "are found, please report you "
2104 "saw this message to "
2105 "linux-ntfs-dev@lists."
2107 ntfs_attr_put_search_ctx(ctx);
2108 /* Revert to the safe super operations. */
2113 * Re-initialize some specifics about $MFT's inode as
2114 * ntfs_read_inode() will have set up the default ones.
2116 /* Set uid and gid to root. */
2117 vi->i_uid = GLOBAL_ROOT_UID;
2118 vi->i_gid = GLOBAL_ROOT_GID;
2119 /* Regular file. No access for anyone. */
2120 vi->i_mode = S_IFREG;
2121 /* No VFS initiated operations allowed for $MFT. */
2122 vi->i_op = &ntfs_empty_inode_ops;
2123 vi->i_fop = &ntfs_empty_file_ops;
2126 /* Get the lowest vcn for the next extent. */
2127 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2128 next_vcn = highest_vcn + 1;
2130 /* Only one extent or error, which we catch below. */
2134 /* Avoid endless loops due to corruption. */
2135 if (next_vcn < sle64_to_cpu(
2136 a->data.non_resident.lowest_vcn)) {
2137 ntfs_error(sb, "$MFT has corrupt attribute list "
2138 "attribute. Run chkdsk.");
2142 if (err != -ENOENT) {
2143 ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2144 "$MFT is corrupt. Run chkdsk.");
2148 ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2149 "corrupt. Run chkdsk.");
2152 if (highest_vcn && highest_vcn != last_vcn - 1) {
2153 ntfs_error(sb, "Failed to load the complete runlist for "
2154 "$MFT/$DATA. Driver bug or corrupt $MFT. "
2156 ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2157 (unsigned long long)highest_vcn,
2158 (unsigned long long)last_vcn - 1);
2161 ntfs_attr_put_search_ctx(ctx);
2162 ntfs_debug("Done.");
2166 * Split the locking rules of the MFT inode from the
2167 * locking rules of other inodes:
2169 lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2170 lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2175 ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2176 "attribute list. $MFT is corrupt. Run chkdsk.");
2178 ntfs_attr_put_search_ctx(ctx);
2180 ntfs_error(sb, "Failed. Marking inode as bad.");
2186 static void __ntfs_clear_inode(ntfs_inode *ni)
2188 /* Free all alocated memory. */
2189 down_write(&ni->runlist.lock);
2190 if (ni->runlist.rl) {
2191 ntfs_free(ni->runlist.rl);
2192 ni->runlist.rl = NULL;
2194 up_write(&ni->runlist.lock);
2196 if (ni->attr_list) {
2197 ntfs_free(ni->attr_list);
2198 ni->attr_list = NULL;
2201 down_write(&ni->attr_list_rl.lock);
2202 if (ni->attr_list_rl.rl) {
2203 ntfs_free(ni->attr_list_rl.rl);
2204 ni->attr_list_rl.rl = NULL;
2206 up_write(&ni->attr_list_rl.lock);
2208 if (ni->name_len && ni->name != I30) {
2215 void ntfs_clear_extent_inode(ntfs_inode *ni)
2217 ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2219 BUG_ON(NInoAttr(ni));
2220 BUG_ON(ni->nr_extents != -1);
2223 if (NInoDirty(ni)) {
2224 if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2225 ntfs_error(ni->vol->sb, "Clearing dirty extent inode! "
2226 "Losing data! This is a BUG!!!");
2227 // FIXME: Do something!!!
2229 #endif /* NTFS_RW */
2231 __ntfs_clear_inode(ni);
2234 ntfs_destroy_extent_inode(ni);
2238 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2239 * @vi: vfs inode pending annihilation
2241 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2242 * is called, which deallocates all memory belonging to the NTFS specific part
2243 * of the inode and returns.
2245 * If the MFT record is dirty, we commit it before doing anything else.
2247 void ntfs_evict_big_inode(struct inode *vi)
2249 ntfs_inode *ni = NTFS_I(vi);
2251 truncate_inode_pages_final(&vi->i_data);
2255 if (NInoDirty(ni)) {
2256 bool was_bad = (is_bad_inode(vi));
2258 /* Committing the inode also commits all extent inodes. */
2259 ntfs_commit_inode(vi);
2261 if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2262 ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2263 "0x%lx. Losing data!", vi->i_ino);
2264 // FIXME: Do something!!!
2267 #endif /* NTFS_RW */
2269 /* No need to lock at this stage as no one else has a reference. */
2270 if (ni->nr_extents > 0) {
2273 for (i = 0; i < ni->nr_extents; i++)
2274 ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2275 kfree(ni->ext.extent_ntfs_inos);
2278 __ntfs_clear_inode(ni);
2281 /* Release the base inode if we are holding it. */
2282 if (ni->nr_extents == -1) {
2283 iput(VFS_I(ni->ext.base_ntfs_ino));
2285 ni->ext.base_ntfs_ino = NULL;
2289 if (!atomic_dec_and_test(&ni->count))
2295 * ntfs_show_options - show mount options in /proc/mounts
2296 * @sf: seq_file in which to write our mount options
2297 * @root: root of the mounted tree whose mount options to display
2299 * Called by the VFS once for each mounted ntfs volume when someone reads
2300 * /proc/mounts in order to display the NTFS specific mount options of each
2301 * mount. The mount options of fs specified by @root are written to the seq file
2302 * @sf and success is returned.
2304 int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2306 ntfs_volume *vol = NTFS_SB(root->d_sb);
2309 seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2310 seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2311 if (vol->fmask == vol->dmask)
2312 seq_printf(sf, ",umask=0%o", vol->fmask);
2314 seq_printf(sf, ",fmask=0%o", vol->fmask);
2315 seq_printf(sf, ",dmask=0%o", vol->dmask);
2317 seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2318 if (NVolCaseSensitive(vol))
2319 seq_printf(sf, ",case_sensitive");
2320 if (NVolShowSystemFiles(vol))
2321 seq_printf(sf, ",show_sys_files");
2322 if (!NVolSparseEnabled(vol))
2323 seq_printf(sf, ",disable_sparse");
2324 for (i = 0; on_errors_arr[i].val; i++) {
2325 if (on_errors_arr[i].val & vol->on_errors)
2326 seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2328 seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2334 static const char *es = " Leaving inconsistent metadata. Unmount and run "
2338 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2339 * @vi: inode for which the i_size was changed
2341 * We only support i_size changes for normal files at present, i.e. not
2342 * compressed and not encrypted. This is enforced in ntfs_setattr(), see
2345 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2346 * that the change is allowed.
2348 * This implies for us that @vi is a file inode rather than a directory, index,
2349 * or attribute inode as well as that @vi is a base inode.
2351 * Returns 0 on success or -errno on error.
2353 * Called with ->i_mutex held.
2355 int ntfs_truncate(struct inode *vi)
2357 s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2359 unsigned long flags;
2360 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2361 ntfs_volume *vol = ni->vol;
2362 ntfs_attr_search_ctx *ctx;
2365 const char *te = " Leaving file length out of sync with i_size.";
2366 int err, mp_size, size_change, alloc_change;
2368 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2369 BUG_ON(NInoAttr(ni));
2370 BUG_ON(S_ISDIR(vi->i_mode));
2371 BUG_ON(NInoMstProtected(ni));
2372 BUG_ON(ni->nr_extents < 0);
2375 * Lock the runlist for writing and map the mft record to ensure it is
2376 * safe to mess with the attribute runlist and sizes.
2378 down_write(&ni->runlist.lock);
2382 base_ni = ni->ext.base_ntfs_ino;
2383 m = map_mft_record(base_ni);
2386 ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2387 "(error code %d).%s", vi->i_ino, err, te);
2392 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2393 if (unlikely(!ctx)) {
2394 ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2395 "inode 0x%lx (not enough memory).%s",
2400 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2401 CASE_SENSITIVE, 0, NULL, 0, ctx);
2402 if (unlikely(err)) {
2403 if (err == -ENOENT) {
2404 ntfs_error(vi->i_sb, "Open attribute is missing from "
2405 "mft record. Inode 0x%lx is corrupt. "
2406 "Run chkdsk.%s", vi->i_ino, te);
2409 ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2410 "inode 0x%lx (error code %d).%s",
2411 vi->i_ino, err, te);
2417 * The i_size of the vfs inode is the new size for the attribute value.
2419 new_size = i_size_read(vi);
2420 /* The current size of the attribute value is the old size. */
2421 old_size = ntfs_attr_size(a);
2422 /* Calculate the new allocated size. */
2423 if (NInoNonResident(ni))
2424 new_alloc_size = (new_size + vol->cluster_size - 1) &
2425 ~(s64)vol->cluster_size_mask;
2427 new_alloc_size = (new_size + 7) & ~7;
2428 /* The current allocated size is the old allocated size. */
2429 read_lock_irqsave(&ni->size_lock, flags);
2430 old_alloc_size = ni->allocated_size;
2431 read_unlock_irqrestore(&ni->size_lock, flags);
2433 * The change in the file size. This will be 0 if no change, >0 if the
2434 * size is growing, and <0 if the size is shrinking.
2437 if (new_size - old_size >= 0) {
2439 if (new_size == old_size)
2442 /* As above for the allocated size. */
2444 if (new_alloc_size - old_alloc_size >= 0) {
2446 if (new_alloc_size == old_alloc_size)
2450 * If neither the size nor the allocation are being changed there is
2453 if (!size_change && !alloc_change)
2455 /* If the size is changing, check if new size is allowed in $AttrDef. */
2457 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2458 if (unlikely(err)) {
2459 if (err == -ERANGE) {
2460 ntfs_error(vol->sb, "Truncate would cause the "
2461 "inode 0x%lx to %simum size "
2462 "for its attribute type "
2463 "(0x%x). Aborting truncate.",
2465 new_size > old_size ? "exceed "
2466 "the max" : "go under the min",
2467 le32_to_cpu(ni->type));
2470 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2471 "attribute type 0x%x. "
2472 "Aborting truncate.",
2474 le32_to_cpu(ni->type));
2477 /* Reset the vfs inode size to the old size. */
2478 i_size_write(vi, old_size);
2482 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2483 ntfs_warning(vi->i_sb, "Changes in inode size are not "
2484 "supported yet for %s files, ignoring.",
2485 NInoCompressed(ni) ? "compressed" :
2490 if (a->non_resident)
2491 goto do_non_resident_truncate;
2492 BUG_ON(NInoNonResident(ni));
2493 /* Resize the attribute record to best fit the new attribute size. */
2494 if (new_size < vol->mft_record_size &&
2495 !ntfs_resident_attr_value_resize(m, a, new_size)) {
2496 /* The resize succeeded! */
2497 flush_dcache_mft_record_page(ctx->ntfs_ino);
2498 mark_mft_record_dirty(ctx->ntfs_ino);
2499 write_lock_irqsave(&ni->size_lock, flags);
2500 /* Update the sizes in the ntfs inode and all is done. */
2501 ni->allocated_size = le32_to_cpu(a->length) -
2502 le16_to_cpu(a->data.resident.value_offset);
2504 * Note ntfs_resident_attr_value_resize() has already done any
2505 * necessary data clearing in the attribute record. When the
2506 * file is being shrunk vmtruncate() will already have cleared
2507 * the top part of the last partial page, i.e. since this is
2508 * the resident case this is the page with index 0. However,
2509 * when the file is being expanded, the page cache page data
2510 * between the old data_size, i.e. old_size, and the new_size
2511 * has not been zeroed. Fortunately, we do not need to zero it
2512 * either since on one hand it will either already be zero due
2513 * to both read_folio and writepage clearing partial page data
2514 * beyond i_size in which case there is nothing to do or in the
2515 * case of the file being mmap()ped at the same time, POSIX
2516 * specifies that the behaviour is unspecified thus we do not
2517 * have to do anything. This means that in our implementation
2518 * in the rare case that the file is mmap()ped and a write
2519 * occurred into the mmap()ped region just beyond the file size
2520 * and writepage has not yet been called to write out the page
2521 * (which would clear the area beyond the file size) and we now
2522 * extend the file size to incorporate this dirty region
2523 * outside the file size, a write of the page would result in
2524 * this data being written to disk instead of being cleared.
2525 * Given both POSIX and the Linux mmap(2) man page specify that
2526 * this corner case is undefined, we choose to leave it like
2527 * that as this is much simpler for us as we cannot lock the
2528 * relevant page now since we are holding too many ntfs locks
2529 * which would result in a lock reversal deadlock.
2531 ni->initialized_size = new_size;
2532 write_unlock_irqrestore(&ni->size_lock, flags);
2535 /* If the above resize failed, this must be an attribute extension. */
2536 BUG_ON(size_change < 0);
2538 * We have to drop all the locks so we can call
2539 * ntfs_attr_make_non_resident(). This could be optimised by try-
2540 * locking the first page cache page and only if that fails dropping
2541 * the locks, locking the page, and redoing all the locking and
2542 * lookups. While this would be a huge optimisation, it is not worth
2543 * it as this is definitely a slow code path as it only ever can happen
2544 * once for any given file.
2546 ntfs_attr_put_search_ctx(ctx);
2547 unmap_mft_record(base_ni);
2548 up_write(&ni->runlist.lock);
2550 * Not enough space in the mft record, try to make the attribute
2551 * non-resident and if successful restart the truncation process.
2553 err = ntfs_attr_make_non_resident(ni, old_size);
2555 goto retry_truncate;
2557 * Could not make non-resident. If this is due to this not being
2558 * permitted for this attribute type or there not being enough space,
2559 * try to make other attributes non-resident. Otherwise fail.
2561 if (unlikely(err != -EPERM && err != -ENOSPC)) {
2562 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2563 "type 0x%x, because the conversion from "
2564 "resident to non-resident attribute failed "
2565 "with error code %i.", vi->i_ino,
2566 (unsigned)le32_to_cpu(ni->type), err);
2571 /* TODO: Not implemented from here, abort. */
2573 ntfs_error(vol->sb, "Not enough space in the mft record/on "
2574 "disk for the non-resident attribute value. "
2575 "This case is not implemented yet.");
2576 else /* if (err == -EPERM) */
2577 ntfs_error(vol->sb, "This attribute type may not be "
2578 "non-resident. This case is not implemented "
2583 // TODO: Attempt to make other attributes non-resident.
2585 goto do_resident_extend;
2587 * Both the attribute list attribute and the standard information
2588 * attribute must remain in the base inode. Thus, if this is one of
2589 * these attributes, we have to try to move other attributes out into
2590 * extent mft records instead.
2592 if (ni->type == AT_ATTRIBUTE_LIST ||
2593 ni->type == AT_STANDARD_INFORMATION) {
2594 // TODO: Attempt to move other attributes into extent mft
2598 goto do_resident_extend;
2601 // TODO: Attempt to move this attribute to an extent mft record, but
2602 // only if it is not already the only attribute in an mft record in
2603 // which case there would be nothing to gain.
2606 goto do_resident_extend;
2607 /* There is nothing we can do to make enough space. )-: */
2610 do_non_resident_truncate:
2611 BUG_ON(!NInoNonResident(ni));
2612 if (alloc_change < 0) {
2613 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2614 if (highest_vcn > 0 &&
2615 old_alloc_size >> vol->cluster_size_bits >
2618 * This attribute has multiple extents. Not yet
2621 ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2622 "attribute type 0x%x, because the "
2623 "attribute is highly fragmented (it "
2624 "consists of multiple extents) and "
2625 "this case is not implemented yet.",
2627 (unsigned)le32_to_cpu(ni->type));
2633 * If the size is shrinking, need to reduce the initialized_size and
2634 * the data_size before reducing the allocation.
2636 if (size_change < 0) {
2638 * Make the valid size smaller (i_size is already up-to-date).
2640 write_lock_irqsave(&ni->size_lock, flags);
2641 if (new_size < ni->initialized_size) {
2642 ni->initialized_size = new_size;
2643 a->data.non_resident.initialized_size =
2644 cpu_to_sle64(new_size);
2646 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2647 write_unlock_irqrestore(&ni->size_lock, flags);
2648 flush_dcache_mft_record_page(ctx->ntfs_ino);
2649 mark_mft_record_dirty(ctx->ntfs_ino);
2650 /* If the allocated size is not changing, we are done. */
2654 * If the size is shrinking it makes no sense for the
2655 * allocation to be growing.
2657 BUG_ON(alloc_change > 0);
2658 } else /* if (size_change >= 0) */ {
2660 * The file size is growing or staying the same but the
2661 * allocation can be shrinking, growing or staying the same.
2663 if (alloc_change > 0) {
2665 * We need to extend the allocation and possibly update
2666 * the data size. If we are updating the data size,
2667 * since we are not touching the initialized_size we do
2668 * not need to worry about the actual data on disk.
2669 * And as far as the page cache is concerned, there
2670 * will be no pages beyond the old data size and any
2671 * partial region in the last page between the old and
2672 * new data size (or the end of the page if the new
2673 * data size is outside the page) does not need to be
2674 * modified as explained above for the resident
2675 * attribute truncate case. To do this, we simply drop
2676 * the locks we hold and leave all the work to our
2677 * friendly helper ntfs_attr_extend_allocation().
2679 ntfs_attr_put_search_ctx(ctx);
2680 unmap_mft_record(base_ni);
2681 up_write(&ni->runlist.lock);
2682 err = ntfs_attr_extend_allocation(ni, new_size,
2683 size_change > 0 ? new_size : -1, -1);
2685 * ntfs_attr_extend_allocation() will have done error
2693 /* alloc_change < 0 */
2694 /* Free the clusters. */
2695 nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2696 vol->cluster_size_bits, -1, ctx);
2699 if (unlikely(nr_freed < 0)) {
2700 ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2701 "%lli). Unmount and run chkdsk to recover "
2702 "the lost cluster(s).", (long long)nr_freed);
2706 /* Truncate the runlist. */
2707 err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2708 new_alloc_size >> vol->cluster_size_bits);
2710 * If the runlist truncation failed and/or the search context is no
2711 * longer valid, we cannot resize the attribute record or build the
2712 * mapping pairs array thus we mark the inode bad so that no access to
2713 * the freed clusters can happen.
2715 if (unlikely(err || IS_ERR(m))) {
2716 ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2718 "restore attribute search context" :
2719 "truncate attribute runlist",
2720 IS_ERR(m) ? PTR_ERR(m) : err, es);
2724 /* Get the size for the shrunk mapping pairs array for the runlist. */
2725 mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2726 if (unlikely(mp_size <= 0)) {
2727 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2728 "attribute type 0x%x, because determining the "
2729 "size for the mapping pairs failed with error "
2730 "code %i.%s", vi->i_ino,
2731 (unsigned)le32_to_cpu(ni->type), mp_size, es);
2736 * Shrink the attribute record for the new mapping pairs array. Note,
2737 * this cannot fail since we are making the attribute smaller thus by
2738 * definition there is enough space to do so.
2740 err = ntfs_attr_record_resize(m, a, mp_size +
2741 le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2744 * Generate the mapping pairs array directly into the attribute record.
2746 err = ntfs_mapping_pairs_build(vol, (u8*)a +
2747 le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2748 mp_size, ni->runlist.rl, 0, -1, NULL);
2749 if (unlikely(err)) {
2750 ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2751 "attribute type 0x%x, because building the "
2752 "mapping pairs failed with error code %i.%s",
2753 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2758 /* Update the allocated/compressed size as well as the highest vcn. */
2759 a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2760 vol->cluster_size_bits) - 1);
2761 write_lock_irqsave(&ni->size_lock, flags);
2762 ni->allocated_size = new_alloc_size;
2763 a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2764 if (NInoSparse(ni) || NInoCompressed(ni)) {
2766 ni->itype.compressed.size -= nr_freed <<
2767 vol->cluster_size_bits;
2768 BUG_ON(ni->itype.compressed.size < 0);
2769 a->data.non_resident.compressed_size = cpu_to_sle64(
2770 ni->itype.compressed.size);
2771 vi->i_blocks = ni->itype.compressed.size >> 9;
2774 vi->i_blocks = new_alloc_size >> 9;
2775 write_unlock_irqrestore(&ni->size_lock, flags);
2777 * We have shrunk the allocation. If this is a shrinking truncate we
2778 * have already dealt with the initialized_size and the data_size above
2779 * and we are done. If the truncate is only changing the allocation
2780 * and not the data_size, we are also done. If this is an extending
2781 * truncate, need to extend the data_size now which is ensured by the
2782 * fact that @size_change is positive.
2786 * If the size is growing, need to update it now. If it is shrinking,
2787 * we have already updated it above (before the allocation change).
2789 if (size_change > 0)
2790 a->data.non_resident.data_size = cpu_to_sle64(new_size);
2791 /* Ensure the modified mft record is written out. */
2792 flush_dcache_mft_record_page(ctx->ntfs_ino);
2793 mark_mft_record_dirty(ctx->ntfs_ino);
2795 ntfs_attr_put_search_ctx(ctx);
2796 unmap_mft_record(base_ni);
2797 up_write(&ni->runlist.lock);
2799 /* Update the mtime and ctime on the base inode. */
2800 /* normally ->truncate shouldn't update ctime or mtime,
2801 * but ntfs did before so it got a copy & paste version
2802 * of file_update_time. one day someone should fix this
2805 if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2806 struct timespec64 now = current_time(VFS_I(base_ni));
2809 if (!timespec64_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2810 !timespec64_equal(&VFS_I(base_ni)->i_ctime, &now))
2812 VFS_I(base_ni)->i_mtime = now;
2813 VFS_I(base_ni)->i_ctime = now;
2816 mark_inode_dirty_sync(VFS_I(base_ni));
2820 NInoClearTruncateFailed(ni);
2821 ntfs_debug("Done.");
2827 if (err != -ENOMEM && err != -EOPNOTSUPP)
2829 if (err != -EOPNOTSUPP)
2830 NInoSetTruncateFailed(ni);
2831 else if (old_size >= 0)
2832 i_size_write(vi, old_size);
2835 ntfs_attr_put_search_ctx(ctx);
2837 unmap_mft_record(base_ni);
2838 up_write(&ni->runlist.lock);
2840 ntfs_debug("Failed. Returning error code %i.", err);
2843 if (err != -ENOMEM && err != -EOPNOTSUPP)
2845 if (err != -EOPNOTSUPP)
2846 NInoSetTruncateFailed(ni);
2848 i_size_write(vi, old_size);
2853 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2854 * @vi: inode for which the i_size was changed
2856 * Wrapper for ntfs_truncate() that has no return value.
2858 * See ntfs_truncate() description above for details.
2861 void ntfs_truncate_vfs(struct inode *vi) {
2867 * ntfs_setattr - called from notify_change() when an attribute is being changed
2868 * @idmap: idmap of the mount the inode was found from
2869 * @dentry: dentry whose attributes to change
2870 * @attr: structure describing the attributes and the changes
2872 * We have to trap VFS attempts to truncate the file described by @dentry as
2873 * soon as possible, because we do not implement changes in i_size yet. So we
2874 * abort all i_size changes here.
2876 * We also abort all changes of user, group, and mode as we do not implement
2877 * the NTFS ACLs yet.
2879 * Called with ->i_mutex held.
2881 int ntfs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2884 struct inode *vi = d_inode(dentry);
2886 unsigned int ia_valid = attr->ia_valid;
2888 err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
2891 /* We do not support NTFS ACLs yet. */
2892 if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2893 ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2894 "supported yet, ignoring.");
2898 if (ia_valid & ATTR_SIZE) {
2899 if (attr->ia_size != i_size_read(vi)) {
2900 ntfs_inode *ni = NTFS_I(vi);
2902 * FIXME: For now we do not support resizing of
2903 * compressed or encrypted files yet.
2905 if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2906 ntfs_warning(vi->i_sb, "Changes in inode size "
2907 "are not supported yet for "
2908 "%s files, ignoring.",
2909 NInoCompressed(ni) ?
2910 "compressed" : "encrypted");
2913 truncate_setsize(vi, attr->ia_size);
2914 ntfs_truncate_vfs(vi);
2916 if (err || ia_valid == ATTR_SIZE)
2920 * We skipped the truncate but must still update
2923 ia_valid |= ATTR_MTIME | ATTR_CTIME;
2926 if (ia_valid & ATTR_ATIME)
2927 vi->i_atime = attr->ia_atime;
2928 if (ia_valid & ATTR_MTIME)
2929 vi->i_mtime = attr->ia_mtime;
2930 if (ia_valid & ATTR_CTIME)
2931 vi->i_ctime = attr->ia_ctime;
2932 mark_inode_dirty(vi);
2938 * __ntfs_write_inode - write out a dirty inode
2939 * @vi: inode to write out
2940 * @sync: if true, write out synchronously
2942 * Write out a dirty inode to disk including any extent inodes if present.
2944 * If @sync is true, commit the inode to disk and wait for io completion. This
2945 * is done using write_mft_record().
2947 * If @sync is false, just schedule the write to happen but do not wait for i/o
2948 * completion. In 2.6 kernels, scheduling usually happens just by virtue of
2949 * marking the page (and in this case mft record) dirty but we do not implement
2950 * this yet as write_mft_record() largely ignores the @sync parameter and
2951 * always performs synchronous writes.
2953 * Return 0 on success and -errno on error.
2955 int __ntfs_write_inode(struct inode *vi, int sync)
2958 ntfs_inode *ni = NTFS_I(vi);
2959 ntfs_attr_search_ctx *ctx;
2961 STANDARD_INFORMATION *si;
2963 bool modified = false;
2965 ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2968 * Dirty attribute inodes are written via their real inodes so just
2969 * clean them here. Access time updates are taken care off when the
2970 * real inode is written.
2974 ntfs_debug("Done.");
2977 /* Map, pin, and lock the mft record belonging to the inode. */
2978 m = map_mft_record(ni);
2983 /* Update the access times in the standard information attribute. */
2984 ctx = ntfs_attr_get_search_ctx(ni, m);
2985 if (unlikely(!ctx)) {
2989 err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2990 CASE_SENSITIVE, 0, NULL, 0, ctx);
2991 if (unlikely(err)) {
2992 ntfs_attr_put_search_ctx(ctx);
2995 si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2996 le16_to_cpu(ctx->attr->data.resident.value_offset));
2997 /* Update the access times if they have changed. */
2998 nt = utc2ntfs(vi->i_mtime);
2999 if (si->last_data_change_time != nt) {
3000 ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3001 "new = 0x%llx", vi->i_ino, (long long)
3002 sle64_to_cpu(si->last_data_change_time),
3003 (long long)sle64_to_cpu(nt));
3004 si->last_data_change_time = nt;
3007 nt = utc2ntfs(vi->i_ctime);
3008 if (si->last_mft_change_time != nt) {
3009 ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3010 "new = 0x%llx", vi->i_ino, (long long)
3011 sle64_to_cpu(si->last_mft_change_time),
3012 (long long)sle64_to_cpu(nt));
3013 si->last_mft_change_time = nt;
3016 nt = utc2ntfs(vi->i_atime);
3017 if (si->last_access_time != nt) {
3018 ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3019 "new = 0x%llx", vi->i_ino,
3020 (long long)sle64_to_cpu(si->last_access_time),
3021 (long long)sle64_to_cpu(nt));
3022 si->last_access_time = nt;
3026 * If we just modified the standard information attribute we need to
3027 * mark the mft record it is in dirty. We do this manually so that
3028 * mark_inode_dirty() is not called which would redirty the inode and
3029 * hence result in an infinite loop of trying to write the inode.
3030 * There is no need to mark the base inode nor the base mft record
3031 * dirty, since we are going to write this mft record below in any case
3032 * and the base mft record may actually not have been modified so it
3033 * might not need to be written out.
3034 * NOTE: It is not a problem when the inode for $MFT itself is being
3035 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3036 * on the $MFT inode and hence __ntfs_write_inode() will not be
3037 * re-invoked because of it which in turn is ok since the dirtied mft
3038 * record will be cleaned and written out to disk below, i.e. before
3039 * this function returns.
3042 flush_dcache_mft_record_page(ctx->ntfs_ino);
3043 if (!NInoTestSetDirty(ctx->ntfs_ino))
3044 mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3045 ctx->ntfs_ino->page_ofs);
3047 ntfs_attr_put_search_ctx(ctx);
3048 /* Now the access times are updated, write the base mft record. */
3050 err = write_mft_record(ni, m, sync);
3051 /* Write all attached extent mft records. */
3052 mutex_lock(&ni->extent_lock);
3053 if (ni->nr_extents > 0) {
3054 ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3057 ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3058 for (i = 0; i < ni->nr_extents; i++) {
3059 ntfs_inode *tni = extent_nis[i];
3061 if (NInoDirty(tni)) {
3062 MFT_RECORD *tm = map_mft_record(tni);
3066 if (!err || err == -ENOMEM)
3070 ret = write_mft_record(tni, tm, sync);
3071 unmap_mft_record(tni);
3072 if (unlikely(ret)) {
3073 if (!err || err == -ENOMEM)
3079 mutex_unlock(&ni->extent_lock);
3080 unmap_mft_record(ni);
3083 ntfs_debug("Done.");
3086 unmap_mft_record(ni);
3088 if (err == -ENOMEM) {
3089 ntfs_warning(vi->i_sb, "Not enough memory to write inode. "
3090 "Marking the inode dirty again, so the VFS "
3092 mark_inode_dirty(vi);
3094 ntfs_error(vi->i_sb, "Failed (error %i): Run chkdsk.", -err);
3095 NVolSetErrors(ni->vol);
3100 #endif /* NTFS_RW */