1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
5 * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
8 #include <linux/backing-dev.h>
9 #include <linux/buffer_head.h>
10 #include <linux/gfp.h>
11 #include <linux/pagemap.h>
12 #include <linux/pagevec.h>
13 #include <linux/sched/signal.h>
14 #include <linux/swap.h>
15 #include <linux/uio.h>
16 #include <linux/writeback.h>
19 #include <linux/uaccess.h>
31 * ntfs_file_open - called when an inode is about to be opened
32 * @vi: inode to be opened
33 * @filp: file structure describing the inode
35 * Limit file size to the page cache limit on architectures where unsigned long
36 * is 32-bits. This is the most we can do for now without overflowing the page
37 * cache page index. Doing it this way means we don't run into problems because
38 * of existing too large files. It would be better to allow the user to read
39 * the beginning of the file but I doubt very much anyone is going to hit this
40 * check on a 32-bit architecture, so there is no point in adding the extra
41 * complexity required to support this.
43 * On 64-bit architectures, the check is hopefully optimized away by the
46 * After the check passes, just call generic_file_open() to do its work.
48 static int ntfs_file_open(struct inode *vi, struct file *filp)
50 if (sizeof(unsigned long) < 8) {
51 if (i_size_read(vi) > MAX_LFS_FILESIZE)
54 return generic_file_open(vi, filp);
60 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
61 * @ni: ntfs inode of the attribute to extend
62 * @new_init_size: requested new initialized size in bytes
64 * Extend the initialized size of an attribute described by the ntfs inode @ni
65 * to @new_init_size bytes. This involves zeroing any non-sparse space between
66 * the old initialized size and @new_init_size both in the page cache and on
67 * disk (if relevant complete pages are already uptodate in the page cache then
68 * these are simply marked dirty).
70 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
71 * in the resident attribute case, it is tied to the initialized size and, in
72 * the non-resident attribute case, it may not fall below the initialized size.
74 * Note that if the attribute is resident, we do not need to touch the page
75 * cache at all. This is because if the page cache page is not uptodate we
76 * bring it uptodate later, when doing the write to the mft record since we
77 * then already have the page mapped. And if the page is uptodate, the
78 * non-initialized region will already have been zeroed when the page was
79 * brought uptodate and the region may in fact already have been overwritten
80 * with new data via mmap() based writes, so we cannot just zero it. And since
81 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
82 * is unspecified, we choose not to do zeroing and thus we do not need to touch
83 * the page at all. For a more detailed explanation see ntfs_truncate() in
86 * Return 0 on success and -errno on error. In the case that an error is
87 * encountered it is possible that the initialized size will already have been
88 * incremented some way towards @new_init_size but it is guaranteed that if
89 * this is the case, the necessary zeroing will also have happened and that all
90 * metadata is self-consistent.
92 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
95 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
99 pgoff_t index, end_index;
101 struct inode *vi = VFS_I(ni);
103 MFT_RECORD *m = NULL;
105 ntfs_attr_search_ctx *ctx = NULL;
106 struct address_space *mapping;
107 struct page *page = NULL;
112 read_lock_irqsave(&ni->size_lock, flags);
113 old_init_size = ni->initialized_size;
114 old_i_size = i_size_read(vi);
115 BUG_ON(new_init_size > ni->allocated_size);
116 read_unlock_irqrestore(&ni->size_lock, flags);
117 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
118 "old_initialized_size 0x%llx, "
119 "new_initialized_size 0x%llx, i_size 0x%llx.",
120 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
121 (unsigned long long)old_init_size,
122 (unsigned long long)new_init_size, old_i_size);
126 base_ni = ni->ext.base_ntfs_ino;
127 /* Use goto to reduce indentation and we need the label below anyway. */
128 if (NInoNonResident(ni))
129 goto do_non_resident_extend;
130 BUG_ON(old_init_size != old_i_size);
131 m = map_mft_record(base_ni);
137 ctx = ntfs_attr_get_search_ctx(base_ni, m);
138 if (unlikely(!ctx)) {
142 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
143 CASE_SENSITIVE, 0, NULL, 0, ctx);
151 BUG_ON(a->non_resident);
152 /* The total length of the attribute value. */
153 attr_len = le32_to_cpu(a->data.resident.value_length);
154 BUG_ON(old_i_size != (loff_t)attr_len);
156 * Do the zeroing in the mft record and update the attribute size in
159 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
160 memset(kattr + attr_len, 0, new_init_size - attr_len);
161 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
162 /* Finally, update the sizes in the vfs and ntfs inodes. */
163 write_lock_irqsave(&ni->size_lock, flags);
164 i_size_write(vi, new_init_size);
165 ni->initialized_size = new_init_size;
166 write_unlock_irqrestore(&ni->size_lock, flags);
168 do_non_resident_extend:
170 * If the new initialized size @new_init_size exceeds the current file
171 * size (vfs inode->i_size), we need to extend the file size to the
172 * new initialized size.
174 if (new_init_size > old_i_size) {
175 m = map_mft_record(base_ni);
181 ctx = ntfs_attr_get_search_ctx(base_ni, m);
182 if (unlikely(!ctx)) {
186 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
187 CASE_SENSITIVE, 0, NULL, 0, ctx);
195 BUG_ON(!a->non_resident);
196 BUG_ON(old_i_size != (loff_t)
197 sle64_to_cpu(a->data.non_resident.data_size));
198 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
199 flush_dcache_mft_record_page(ctx->ntfs_ino);
200 mark_mft_record_dirty(ctx->ntfs_ino);
201 /* Update the file size in the vfs inode. */
202 i_size_write(vi, new_init_size);
203 ntfs_attr_put_search_ctx(ctx);
205 unmap_mft_record(base_ni);
208 mapping = vi->i_mapping;
209 index = old_init_size >> PAGE_SHIFT;
210 end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
213 * Read the page. If the page is not present, this will zero
214 * the uninitialized regions for us.
216 page = read_mapping_page(mapping, index, NULL);
221 if (unlikely(PageError(page))) {
227 * Update the initialized size in the ntfs inode. This is
228 * enough to make ntfs_writepage() work.
230 write_lock_irqsave(&ni->size_lock, flags);
231 ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
232 if (ni->initialized_size > new_init_size)
233 ni->initialized_size = new_init_size;
234 write_unlock_irqrestore(&ni->size_lock, flags);
235 /* Set the page dirty so it gets written out. */
236 set_page_dirty(page);
239 * Play nice with the vm and the rest of the system. This is
240 * very much needed as we can potentially be modifying the
241 * initialised size from a very small value to a really huge
243 * f = open(somefile, O_TRUNC);
244 * truncate(f, 10GiB);
247 * And this would mean we would be marking dirty hundreds of
248 * thousands of pages or as in the above example more than
249 * two and a half million pages!
251 * TODO: For sparse pages could optimize this workload by using
252 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
253 * would be set in readpage for sparse pages and here we would
254 * not need to mark dirty any pages which have this bit set.
255 * The only caveat is that we have to clear the bit everywhere
256 * where we allocate any clusters that lie in the page or that
259 * TODO: An even greater optimization would be for us to only
260 * call readpage() on pages which are not in sparse regions as
261 * determined from the runlist. This would greatly reduce the
262 * number of pages we read and make dirty in the case of sparse
265 balance_dirty_pages_ratelimited(mapping);
267 } while (++index < end_index);
268 read_lock_irqsave(&ni->size_lock, flags);
269 BUG_ON(ni->initialized_size != new_init_size);
270 read_unlock_irqrestore(&ni->size_lock, flags);
271 /* Now bring in sync the initialized_size in the mft record. */
272 m = map_mft_record(base_ni);
278 ctx = ntfs_attr_get_search_ctx(base_ni, m);
279 if (unlikely(!ctx)) {
283 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
284 CASE_SENSITIVE, 0, NULL, 0, ctx);
292 BUG_ON(!a->non_resident);
293 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
295 flush_dcache_mft_record_page(ctx->ntfs_ino);
296 mark_mft_record_dirty(ctx->ntfs_ino);
298 ntfs_attr_put_search_ctx(ctx);
300 unmap_mft_record(base_ni);
301 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
302 (unsigned long long)new_init_size, i_size_read(vi));
305 write_lock_irqsave(&ni->size_lock, flags);
306 ni->initialized_size = old_init_size;
307 write_unlock_irqrestore(&ni->size_lock, flags);
310 ntfs_attr_put_search_ctx(ctx);
312 unmap_mft_record(base_ni);
313 ntfs_debug("Failed. Returning error code %i.", err);
317 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
318 struct iov_iter *from)
324 struct file *file = iocb->ki_filp;
325 struct inode *vi = file_inode(file);
326 ntfs_inode *ni = NTFS_I(vi);
327 ntfs_volume *vol = ni->vol;
329 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
330 "0x%llx, count 0x%zx.", vi->i_ino,
331 (unsigned)le32_to_cpu(ni->type),
332 (unsigned long long)iocb->ki_pos,
333 iov_iter_count(from));
334 err = generic_write_checks(iocb, from);
335 if (unlikely(err <= 0))
338 * All checks have passed. Before we start doing any writing we want
339 * to abort any totally illegal writes.
341 BUG_ON(NInoMstProtected(ni));
342 BUG_ON(ni->type != AT_DATA);
343 /* If file is encrypted, deny access, just like NT4. */
344 if (NInoEncrypted(ni)) {
345 /* Only $DATA attributes can be encrypted. */
347 * Reminder for later: Encrypted files are _always_
348 * non-resident so that the content can always be encrypted.
350 ntfs_debug("Denying write access to encrypted file.");
354 if (NInoCompressed(ni)) {
355 /* Only unnamed $DATA attribute can be compressed. */
356 BUG_ON(ni->name_len);
358 * Reminder for later: If resident, the data is not actually
359 * compressed. Only on the switch to non-resident does
360 * compression kick in. This is in contrast to encrypted files
363 ntfs_error(vi->i_sb, "Writing to compressed files is not "
364 "implemented yet. Sorry.");
368 err = file_remove_privs(file);
372 * Our ->update_time method always succeeds thus file_update_time()
373 * cannot fail either so there is no need to check the return code.
375 file_update_time(file);
377 /* The first byte after the last cluster being written to. */
378 end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
379 ~(u64)vol->cluster_size_mask;
381 * If the write goes beyond the allocated size, extend the allocation
382 * to cover the whole of the write, rounded up to the nearest cluster.
384 read_lock_irqsave(&ni->size_lock, flags);
385 ll = ni->allocated_size;
386 read_unlock_irqrestore(&ni->size_lock, flags);
389 * Extend the allocation without changing the data size.
391 * Note we ensure the allocation is big enough to at least
392 * write some data but we do not require the allocation to be
393 * complete, i.e. it may be partial.
395 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
396 if (likely(ll >= 0)) {
398 /* If the extension was partial truncate the write. */
400 ntfs_debug("Truncating write to inode 0x%lx, "
401 "attribute type 0x%x, because "
402 "the allocation was only "
403 "partially extended.",
404 vi->i_ino, (unsigned)
405 le32_to_cpu(ni->type));
406 iov_iter_truncate(from, ll - pos);
410 read_lock_irqsave(&ni->size_lock, flags);
411 ll = ni->allocated_size;
412 read_unlock_irqrestore(&ni->size_lock, flags);
413 /* Perform a partial write if possible or fail. */
415 ntfs_debug("Truncating write to inode 0x%lx "
416 "attribute type 0x%x, because "
417 "extending the allocation "
418 "failed (error %d).",
419 vi->i_ino, (unsigned)
420 le32_to_cpu(ni->type),
422 iov_iter_truncate(from, ll - pos);
425 ntfs_error(vi->i_sb, "Cannot perform "
428 "type 0x%x, because "
432 vi->i_ino, (unsigned)
433 le32_to_cpu(ni->type),
436 ntfs_debug("Cannot perform write to "
438 "attribute type 0x%x, "
439 "because there is not "
441 vi->i_ino, (unsigned)
442 le32_to_cpu(ni->type));
448 * If the write starts beyond the initialized size, extend it up to the
449 * beginning of the write and initialize all non-sparse space between
450 * the old initialized size and the new one. This automatically also
451 * increments the vfs inode->i_size to keep it above or equal to the
454 read_lock_irqsave(&ni->size_lock, flags);
455 ll = ni->initialized_size;
456 read_unlock_irqrestore(&ni->size_lock, flags);
459 * Wait for ongoing direct i/o to complete before proceeding.
460 * New direct i/o cannot start as we hold i_mutex.
463 err = ntfs_attr_extend_initialized(ni, pos);
464 if (unlikely(err < 0))
465 ntfs_error(vi->i_sb, "Cannot perform write to inode "
466 "0x%lx, attribute type 0x%x, because "
467 "extending the initialized size "
468 "failed (error %d).", vi->i_ino,
469 (unsigned)le32_to_cpu(ni->type),
477 * __ntfs_grab_cache_pages - obtain a number of locked pages
478 * @mapping: address space mapping from which to obtain page cache pages
479 * @index: starting index in @mapping at which to begin obtaining pages
480 * @nr_pages: number of page cache pages to obtain
481 * @pages: array of pages in which to return the obtained page cache pages
482 * @cached_page: allocated but as yet unused page
484 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
485 * starting at index @index.
487 * If a page is newly created, add it to lru list
489 * Note, the page locks are obtained in ascending page index order.
491 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
492 pgoff_t index, const unsigned nr_pages, struct page **pages,
493 struct page **cached_page)
500 pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
504 *cached_page = page_cache_alloc(mapping);
505 if (unlikely(!*cached_page)) {
510 err = add_to_page_cache_lru(*cached_page, mapping,
512 mapping_gfp_constraint(mapping, GFP_KERNEL));
518 pages[nr] = *cached_page;
523 } while (nr < nr_pages);
528 unlock_page(pages[--nr]);
534 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
538 bh->b_end_io = end_buffer_read_sync;
539 return submit_bh(REQ_OP_READ, 0, bh);
543 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
544 * @pages: array of destination pages
545 * @nr_pages: number of pages in @pages
546 * @pos: byte position in file at which the write begins
547 * @bytes: number of bytes to be written
549 * This is called for non-resident attributes from ntfs_file_buffered_write()
550 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
551 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
552 * data has not yet been copied into the @pages.
554 * Need to fill any holes with actual clusters, allocate buffers if necessary,
555 * ensure all the buffers are mapped, and bring uptodate any buffers that are
556 * only partially being written to.
558 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
559 * greater than PAGE_SIZE, that all pages in @pages are entirely inside
560 * the same cluster and that they are the entirety of that cluster, and that
561 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
563 * i_size is not to be modified yet.
565 * Return 0 on success or -errno on error.
567 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
568 unsigned nr_pages, s64 pos, size_t bytes)
570 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
572 s64 bh_pos, vcn_len, end, initialized_size;
576 ntfs_inode *ni, *base_ni = NULL;
578 runlist_element *rl, *rl2;
579 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
580 ntfs_attr_search_ctx *ctx = NULL;
581 MFT_RECORD *m = NULL;
582 ATTR_RECORD *a = NULL;
584 u32 attr_rec_len = 0;
585 unsigned blocksize, u;
587 bool rl_write_locked, was_hole, is_retry;
588 unsigned char blocksize_bits;
591 u8 mft_attr_mapped:1;
594 } status = { 0, 0, 0, 0 };
599 vi = pages[0]->mapping->host;
602 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
603 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
604 vi->i_ino, ni->type, pages[0]->index, nr_pages,
605 (long long)pos, bytes);
606 blocksize = vol->sb->s_blocksize;
607 blocksize_bits = vol->sb->s_blocksize_bits;
613 * create_empty_buffers() will create uptodate/dirty buffers if
614 * the page is uptodate/dirty.
616 if (!page_has_buffers(page)) {
617 create_empty_buffers(page, blocksize, 0);
618 if (unlikely(!page_has_buffers(page)))
621 } while (++u < nr_pages);
622 rl_write_locked = false;
629 cpos = pos >> vol->cluster_size_bits;
631 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
633 * Loop over each page and for each page over each buffer. Use goto to
634 * reduce indentation.
639 bh_pos = (s64)page->index << PAGE_SHIFT;
640 bh = head = page_buffers(page);
646 /* Clear buffer_new on all buffers to reinitialise state. */
648 clear_buffer_new(bh);
649 bh_end = bh_pos + blocksize;
650 bh_cpos = bh_pos >> vol->cluster_size_bits;
651 bh_cofs = bh_pos & vol->cluster_size_mask;
652 if (buffer_mapped(bh)) {
654 * The buffer is already mapped. If it is uptodate,
657 if (buffer_uptodate(bh))
660 * The buffer is not uptodate. If the page is uptodate
661 * set the buffer uptodate and otherwise ignore it.
663 if (PageUptodate(page)) {
664 set_buffer_uptodate(bh);
668 * Neither the page nor the buffer are uptodate. If
669 * the buffer is only partially being written to, we
670 * need to read it in before the write, i.e. now.
672 if ((bh_pos < pos && bh_end > pos) ||
673 (bh_pos < end && bh_end > end)) {
675 * If the buffer is fully or partially within
676 * the initialized size, do an actual read.
677 * Otherwise, simply zero the buffer.
679 read_lock_irqsave(&ni->size_lock, flags);
680 initialized_size = ni->initialized_size;
681 read_unlock_irqrestore(&ni->size_lock, flags);
682 if (bh_pos < initialized_size) {
683 ntfs_submit_bh_for_read(bh);
686 zero_user(page, bh_offset(bh),
688 set_buffer_uptodate(bh);
693 /* Unmapped buffer. Need to map it. */
694 bh->b_bdev = vol->sb->s_bdev;
696 * If the current buffer is in the same clusters as the map
697 * cache, there is no need to check the runlist again. The
698 * map cache is made up of @vcn, which is the first cached file
699 * cluster, @vcn_len which is the number of cached file
700 * clusters, @lcn is the device cluster corresponding to @vcn,
701 * and @lcn_block is the block number corresponding to @lcn.
703 cdelta = bh_cpos - vcn;
704 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
707 bh->b_blocknr = lcn_block +
708 (cdelta << (vol->cluster_size_bits -
710 (bh_cofs >> blocksize_bits);
711 set_buffer_mapped(bh);
713 * If the page is uptodate so is the buffer. If the
714 * buffer is fully outside the write, we ignore it if
715 * it was already allocated and we mark it dirty so it
716 * gets written out if we allocated it. On the other
717 * hand, if we allocated the buffer but we are not
718 * marking it dirty we set buffer_new so we can do
721 if (PageUptodate(page)) {
722 if (!buffer_uptodate(bh))
723 set_buffer_uptodate(bh);
724 if (unlikely(was_hole)) {
725 /* We allocated the buffer. */
726 clean_bdev_bh_alias(bh);
727 if (bh_end <= pos || bh_pos >= end)
728 mark_buffer_dirty(bh);
734 /* Page is _not_ uptodate. */
735 if (likely(!was_hole)) {
737 * Buffer was already allocated. If it is not
738 * uptodate and is only partially being written
739 * to, we need to read it in before the write,
742 if (!buffer_uptodate(bh) && bh_pos < end &&
747 * If the buffer is fully or partially
748 * within the initialized size, do an
749 * actual read. Otherwise, simply zero
752 read_lock_irqsave(&ni->size_lock,
754 initialized_size = ni->initialized_size;
755 read_unlock_irqrestore(&ni->size_lock,
757 if (bh_pos < initialized_size) {
758 ntfs_submit_bh_for_read(bh);
761 zero_user(page, bh_offset(bh),
763 set_buffer_uptodate(bh);
768 /* We allocated the buffer. */
769 clean_bdev_bh_alias(bh);
771 * If the buffer is fully outside the write, zero it,
772 * set it uptodate, and mark it dirty so it gets
773 * written out. If it is partially being written to,
774 * zero region surrounding the write but leave it to
775 * commit write to do anything else. Finally, if the
776 * buffer is fully being overwritten, do nothing.
778 if (bh_end <= pos || bh_pos >= end) {
779 if (!buffer_uptodate(bh)) {
780 zero_user(page, bh_offset(bh),
782 set_buffer_uptodate(bh);
784 mark_buffer_dirty(bh);
788 if (!buffer_uptodate(bh) &&
789 (bh_pos < pos || bh_end > end)) {
793 kaddr = kmap_atomic(page);
795 pofs = bh_pos & ~PAGE_MASK;
796 memset(kaddr + pofs, 0, pos - bh_pos);
799 pofs = end & ~PAGE_MASK;
800 memset(kaddr + pofs, 0, bh_end - end);
802 kunmap_atomic(kaddr);
803 flush_dcache_page(page);
808 * Slow path: this is the first buffer in the cluster. If it
809 * is outside allocated size and is not uptodate, zero it and
812 read_lock_irqsave(&ni->size_lock, flags);
813 initialized_size = ni->allocated_size;
814 read_unlock_irqrestore(&ni->size_lock, flags);
815 if (bh_pos > initialized_size) {
816 if (PageUptodate(page)) {
817 if (!buffer_uptodate(bh))
818 set_buffer_uptodate(bh);
819 } else if (!buffer_uptodate(bh)) {
820 zero_user(page, bh_offset(bh), blocksize);
821 set_buffer_uptodate(bh);
827 down_read(&ni->runlist.lock);
831 if (likely(rl != NULL)) {
832 /* Seek to element containing target cluster. */
833 while (rl->length && rl[1].vcn <= bh_cpos)
835 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
836 if (likely(lcn >= 0)) {
838 * Successful remap, setup the map cache and
839 * use that to deal with the buffer.
843 vcn_len = rl[1].vcn - vcn;
844 lcn_block = lcn << (vol->cluster_size_bits -
848 * If the number of remaining clusters touched
849 * by the write is smaller or equal to the
850 * number of cached clusters, unlock the
851 * runlist as the map cache will be used from
854 if (likely(vcn + vcn_len >= cend)) {
855 if (rl_write_locked) {
856 up_write(&ni->runlist.lock);
857 rl_write_locked = false;
859 up_read(&ni->runlist.lock);
862 goto map_buffer_cached;
865 lcn = LCN_RL_NOT_MAPPED;
867 * If it is not a hole and not out of bounds, the runlist is
868 * probably unmapped so try to map it now.
870 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
871 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
872 /* Attempt to map runlist. */
873 if (!rl_write_locked) {
875 * We need the runlist locked for
876 * writing, so if it is locked for
877 * reading relock it now and retry in
878 * case it changed whilst we dropped
881 up_read(&ni->runlist.lock);
882 down_write(&ni->runlist.lock);
883 rl_write_locked = true;
886 err = ntfs_map_runlist_nolock(ni, bh_cpos,
893 * If @vcn is out of bounds, pretend @lcn is
894 * LCN_ENOENT. As long as the buffer is out
895 * of bounds this will work fine.
897 if (err == -ENOENT) {
900 goto rl_not_mapped_enoent;
904 /* Failed to map the buffer, even after retrying. */
906 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
907 "attribute type 0x%x, vcn 0x%llx, "
908 "vcn offset 0x%x, because its "
909 "location on disk could not be "
910 "determined%s (error code %i).",
911 ni->mft_no, ni->type,
912 (unsigned long long)bh_cpos,
914 vol->cluster_size_mask,
915 is_retry ? " even after retrying" : "",
919 rl_not_mapped_enoent:
921 * The buffer is in a hole or out of bounds. We need to fill
922 * the hole, unless the buffer is in a cluster which is not
923 * touched by the write, in which case we just leave the buffer
924 * unmapped. This can only happen when the cluster size is
925 * less than the page cache size.
927 if (unlikely(vol->cluster_size < PAGE_SIZE)) {
928 bh_cend = (bh_end + vol->cluster_size - 1) >>
929 vol->cluster_size_bits;
930 if ((bh_cend <= cpos || bh_cpos >= cend)) {
933 * If the buffer is uptodate we skip it. If it
934 * is not but the page is uptodate, we can set
935 * the buffer uptodate. If the page is not
936 * uptodate, we can clear the buffer and set it
937 * uptodate. Whether this is worthwhile is
938 * debatable and this could be removed.
940 if (PageUptodate(page)) {
941 if (!buffer_uptodate(bh))
942 set_buffer_uptodate(bh);
943 } else if (!buffer_uptodate(bh)) {
944 zero_user(page, bh_offset(bh),
946 set_buffer_uptodate(bh);
952 * Out of bounds buffer is invalid if it was not really out of
955 BUG_ON(lcn != LCN_HOLE);
957 * We need the runlist locked for writing, so if it is locked
958 * for reading relock it now and retry in case it changed
959 * whilst we dropped the lock.
962 if (!rl_write_locked) {
963 up_read(&ni->runlist.lock);
964 down_write(&ni->runlist.lock);
965 rl_write_locked = true;
968 /* Find the previous last allocated cluster. */
969 BUG_ON(rl->lcn != LCN_HOLE);
972 while (--rl2 >= ni->runlist.rl) {
974 lcn = rl2->lcn + rl2->length;
978 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
982 ntfs_debug("Failed to allocate cluster, error code %i.",
987 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
992 if (ntfs_cluster_free_from_rl(vol, rl2)) {
993 ntfs_error(vol->sb, "Failed to release "
994 "allocated cluster in error "
995 "code path. Run chkdsk to "
996 "recover the lost cluster.");
1002 ni->runlist.rl = rl;
1003 status.runlist_merged = 1;
1004 ntfs_debug("Allocated cluster, lcn 0x%llx.",
1005 (unsigned long long)lcn);
1006 /* Map and lock the mft record and get the attribute record. */
1010 base_ni = ni->ext.base_ntfs_ino;
1011 m = map_mft_record(base_ni);
1016 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1017 if (unlikely(!ctx)) {
1019 unmap_mft_record(base_ni);
1022 status.mft_attr_mapped = 1;
1023 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1024 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1025 if (unlikely(err)) {
1033 * Find the runlist element with which the attribute extent
1034 * starts. Note, we cannot use the _attr_ version because we
1035 * have mapped the mft record. That is ok because we know the
1036 * runlist fragment must be mapped already to have ever gotten
1037 * here, so we can just use the _rl_ version.
1039 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1040 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1042 BUG_ON(!rl2->length);
1043 BUG_ON(rl2->lcn < LCN_HOLE);
1044 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1046 * If @highest_vcn is zero, calculate the real highest_vcn
1047 * (which can really be zero).
1050 highest_vcn = (sle64_to_cpu(
1051 a->data.non_resident.allocated_size) >>
1052 vol->cluster_size_bits) - 1;
1054 * Determine the size of the mapping pairs array for the new
1055 * extent, i.e. the old extent with the hole filled.
1057 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1059 if (unlikely(mp_size <= 0)) {
1060 if (!(err = mp_size))
1062 ntfs_debug("Failed to get size for mapping pairs "
1063 "array, error code %i.", err);
1067 * Resize the attribute record to fit the new mapping pairs
1070 attr_rec_len = le32_to_cpu(a->length);
1071 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1072 a->data.non_resident.mapping_pairs_offset));
1073 if (unlikely(err)) {
1074 BUG_ON(err != -ENOSPC);
1075 // TODO: Deal with this by using the current attribute
1076 // and fill it with as much of the mapping pairs
1077 // array as possible. Then loop over each attribute
1078 // extent rewriting the mapping pairs arrays as we go
1079 // along and if when we reach the end we have not
1080 // enough space, try to resize the last attribute
1081 // extent and if even that fails, add a new attribute
1083 // We could also try to resize at each step in the hope
1084 // that we will not need to rewrite every single extent.
1085 // Note, we may need to decompress some extents to fill
1086 // the runlist as we are walking the extents...
1087 ntfs_error(vol->sb, "Not enough space in the mft "
1088 "record for the extended attribute "
1089 "record. This case is not "
1090 "implemented yet.");
1094 status.mp_rebuilt = 1;
1096 * Generate the mapping pairs array directly into the attribute
1099 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1100 a->data.non_resident.mapping_pairs_offset),
1101 mp_size, rl2, vcn, highest_vcn, NULL);
1102 if (unlikely(err)) {
1103 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1104 "attribute type 0x%x, because building "
1105 "the mapping pairs failed with error "
1106 "code %i.", vi->i_ino,
1107 (unsigned)le32_to_cpu(ni->type), err);
1111 /* Update the highest_vcn but only if it was not set. */
1112 if (unlikely(!a->data.non_resident.highest_vcn))
1113 a->data.non_resident.highest_vcn =
1114 cpu_to_sle64(highest_vcn);
1116 * If the attribute is sparse/compressed, update the compressed
1117 * size in the ntfs_inode structure and the attribute record.
1119 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1121 * If we are not in the first attribute extent, switch
1122 * to it, but first ensure the changes will make it to
1125 if (a->data.non_resident.lowest_vcn) {
1126 flush_dcache_mft_record_page(ctx->ntfs_ino);
1127 mark_mft_record_dirty(ctx->ntfs_ino);
1128 ntfs_attr_reinit_search_ctx(ctx);
1129 err = ntfs_attr_lookup(ni->type, ni->name,
1130 ni->name_len, CASE_SENSITIVE,
1132 if (unlikely(err)) {
1133 status.attr_switched = 1;
1136 /* @m is not used any more so do not set it. */
1139 write_lock_irqsave(&ni->size_lock, flags);
1140 ni->itype.compressed.size += vol->cluster_size;
1141 a->data.non_resident.compressed_size =
1142 cpu_to_sle64(ni->itype.compressed.size);
1143 write_unlock_irqrestore(&ni->size_lock, flags);
1145 /* Ensure the changes make it to disk. */
1146 flush_dcache_mft_record_page(ctx->ntfs_ino);
1147 mark_mft_record_dirty(ctx->ntfs_ino);
1148 ntfs_attr_put_search_ctx(ctx);
1149 unmap_mft_record(base_ni);
1150 /* Successfully filled the hole. */
1151 status.runlist_merged = 0;
1152 status.mft_attr_mapped = 0;
1153 status.mp_rebuilt = 0;
1154 /* Setup the map cache and use that to deal with the buffer. */
1158 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1161 * If the number of remaining clusters in the @pages is smaller
1162 * or equal to the number of cached clusters, unlock the
1163 * runlist as the map cache will be used from now on.
1165 if (likely(vcn + vcn_len >= cend)) {
1166 up_write(&ni->runlist.lock);
1167 rl_write_locked = false;
1170 goto map_buffer_cached;
1171 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1172 /* If there are no errors, do the next page. */
1173 if (likely(!err && ++u < nr_pages))
1175 /* If there are no errors, release the runlist lock if we took it. */
1177 if (unlikely(rl_write_locked)) {
1178 up_write(&ni->runlist.lock);
1179 rl_write_locked = false;
1180 } else if (unlikely(rl))
1181 up_read(&ni->runlist.lock);
1184 /* If we issued read requests, let them complete. */
1185 read_lock_irqsave(&ni->size_lock, flags);
1186 initialized_size = ni->initialized_size;
1187 read_unlock_irqrestore(&ni->size_lock, flags);
1188 while (wait_bh > wait) {
1191 if (likely(buffer_uptodate(bh))) {
1193 bh_pos = ((s64)page->index << PAGE_SHIFT) +
1196 * If the buffer overflows the initialized size, need
1197 * to zero the overflowing region.
1199 if (unlikely(bh_pos + blocksize > initialized_size)) {
1202 if (likely(bh_pos < initialized_size))
1203 ofs = initialized_size - bh_pos;
1204 zero_user_segment(page, bh_offset(bh) + ofs,
1207 } else /* if (unlikely(!buffer_uptodate(bh))) */
1211 /* Clear buffer_new on all buffers. */
1214 bh = head = page_buffers(pages[u]);
1217 clear_buffer_new(bh);
1218 } while ((bh = bh->b_this_page) != head);
1219 } while (++u < nr_pages);
1220 ntfs_debug("Done.");
1223 if (status.attr_switched) {
1224 /* Get back to the attribute extent we modified. */
1225 ntfs_attr_reinit_search_ctx(ctx);
1226 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1227 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1228 ntfs_error(vol->sb, "Failed to find required "
1229 "attribute extent of attribute in "
1230 "error code path. Run chkdsk to "
1232 write_lock_irqsave(&ni->size_lock, flags);
1233 ni->itype.compressed.size += vol->cluster_size;
1234 write_unlock_irqrestore(&ni->size_lock, flags);
1235 flush_dcache_mft_record_page(ctx->ntfs_ino);
1236 mark_mft_record_dirty(ctx->ntfs_ino);
1238 * The only thing that is now wrong is the compressed
1239 * size of the base attribute extent which chkdsk
1240 * should be able to fix.
1246 status.attr_switched = 0;
1250 * If the runlist has been modified, need to restore it by punching a
1251 * hole into it and we then need to deallocate the on-disk cluster as
1252 * well. Note, we only modify the runlist if we are able to generate a
1253 * new mapping pairs array, i.e. only when the mapped attribute extent
1256 if (status.runlist_merged && !status.attr_switched) {
1257 BUG_ON(!rl_write_locked);
1258 /* Make the file cluster we allocated sparse in the runlist. */
1259 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1260 ntfs_error(vol->sb, "Failed to punch hole into "
1261 "attribute runlist in error code "
1262 "path. Run chkdsk to recover the "
1265 } else /* if (success) */ {
1266 status.runlist_merged = 0;
1268 * Deallocate the on-disk cluster we allocated but only
1269 * if we succeeded in punching its vcn out of the
1272 down_write(&vol->lcnbmp_lock);
1273 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1274 ntfs_error(vol->sb, "Failed to release "
1275 "allocated cluster in error "
1276 "code path. Run chkdsk to "
1277 "recover the lost cluster.");
1280 up_write(&vol->lcnbmp_lock);
1284 * Resize the attribute record to its old size and rebuild the mapping
1285 * pairs array. Note, we only can do this if the runlist has been
1286 * restored to its old state which also implies that the mapped
1287 * attribute extent is not switched.
1289 if (status.mp_rebuilt && !status.runlist_merged) {
1290 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1291 ntfs_error(vol->sb, "Failed to restore attribute "
1292 "record in error code path. Run "
1293 "chkdsk to recover.");
1295 } else /* if (success) */ {
1296 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1297 le16_to_cpu(a->data.non_resident.
1298 mapping_pairs_offset), attr_rec_len -
1299 le16_to_cpu(a->data.non_resident.
1300 mapping_pairs_offset), ni->runlist.rl,
1301 vcn, highest_vcn, NULL)) {
1302 ntfs_error(vol->sb, "Failed to restore "
1303 "mapping pairs array in error "
1304 "code path. Run chkdsk to "
1308 flush_dcache_mft_record_page(ctx->ntfs_ino);
1309 mark_mft_record_dirty(ctx->ntfs_ino);
1312 /* Release the mft record and the attribute. */
1313 if (status.mft_attr_mapped) {
1314 ntfs_attr_put_search_ctx(ctx);
1315 unmap_mft_record(base_ni);
1317 /* Release the runlist lock. */
1318 if (rl_write_locked)
1319 up_write(&ni->runlist.lock);
1321 up_read(&ni->runlist.lock);
1323 * Zero out any newly allocated blocks to avoid exposing stale data.
1324 * If BH_New is set, we know that the block was newly allocated above
1325 * and that it has not been fully zeroed and marked dirty yet.
1329 end = bh_cpos << vol->cluster_size_bits;
1332 bh = head = page_buffers(page);
1334 if (u == nr_pages &&
1335 ((s64)page->index << PAGE_SHIFT) +
1336 bh_offset(bh) >= end)
1338 if (!buffer_new(bh))
1340 clear_buffer_new(bh);
1341 if (!buffer_uptodate(bh)) {
1342 if (PageUptodate(page))
1343 set_buffer_uptodate(bh);
1345 zero_user(page, bh_offset(bh),
1347 set_buffer_uptodate(bh);
1350 mark_buffer_dirty(bh);
1351 } while ((bh = bh->b_this_page) != head);
1352 } while (++u <= nr_pages);
1353 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1357 static inline void ntfs_flush_dcache_pages(struct page **pages,
1362 * Warning: Do not do the decrement at the same time as the call to
1363 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1364 * decrement never happens so the loop never terminates.
1368 flush_dcache_page(pages[nr_pages]);
1369 } while (nr_pages > 0);
1373 * ntfs_commit_pages_after_non_resident_write - commit the received data
1374 * @pages: array of destination pages
1375 * @nr_pages: number of pages in @pages
1376 * @pos: byte position in file at which the write begins
1377 * @bytes: number of bytes to be written
1379 * See description of ntfs_commit_pages_after_write(), below.
1381 static inline int ntfs_commit_pages_after_non_resident_write(
1382 struct page **pages, const unsigned nr_pages,
1383 s64 pos, size_t bytes)
1385 s64 end, initialized_size;
1387 ntfs_inode *ni, *base_ni;
1388 struct buffer_head *bh, *head;
1389 ntfs_attr_search_ctx *ctx;
1392 unsigned long flags;
1393 unsigned blocksize, u;
1396 vi = pages[0]->mapping->host;
1398 blocksize = vi->i_sb->s_blocksize;
1407 bh_pos = (s64)page->index << PAGE_SHIFT;
1408 bh = head = page_buffers(page);
1413 bh_end = bh_pos + blocksize;
1414 if (bh_end <= pos || bh_pos >= end) {
1415 if (!buffer_uptodate(bh))
1418 set_buffer_uptodate(bh);
1419 mark_buffer_dirty(bh);
1421 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1423 * If all buffers are now uptodate but the page is not, set the
1426 if (!partial && !PageUptodate(page))
1427 SetPageUptodate(page);
1428 } while (++u < nr_pages);
1430 * Finally, if we do not need to update initialized_size or i_size we
1433 read_lock_irqsave(&ni->size_lock, flags);
1434 initialized_size = ni->initialized_size;
1435 read_unlock_irqrestore(&ni->size_lock, flags);
1436 if (end <= initialized_size) {
1437 ntfs_debug("Done.");
1441 * Update initialized_size/i_size as appropriate, both in the inode and
1447 base_ni = ni->ext.base_ntfs_ino;
1448 /* Map, pin, and lock the mft record. */
1449 m = map_mft_record(base_ni);
1456 BUG_ON(!NInoNonResident(ni));
1457 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1458 if (unlikely(!ctx)) {
1462 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1463 CASE_SENSITIVE, 0, NULL, 0, ctx);
1464 if (unlikely(err)) {
1470 BUG_ON(!a->non_resident);
1471 write_lock_irqsave(&ni->size_lock, flags);
1472 BUG_ON(end > ni->allocated_size);
1473 ni->initialized_size = end;
1474 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1475 if (end > i_size_read(vi)) {
1476 i_size_write(vi, end);
1477 a->data.non_resident.data_size =
1478 a->data.non_resident.initialized_size;
1480 write_unlock_irqrestore(&ni->size_lock, flags);
1481 /* Mark the mft record dirty, so it gets written back. */
1482 flush_dcache_mft_record_page(ctx->ntfs_ino);
1483 mark_mft_record_dirty(ctx->ntfs_ino);
1484 ntfs_attr_put_search_ctx(ctx);
1485 unmap_mft_record(base_ni);
1486 ntfs_debug("Done.");
1490 ntfs_attr_put_search_ctx(ctx);
1492 unmap_mft_record(base_ni);
1493 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1496 NVolSetErrors(ni->vol);
1501 * ntfs_commit_pages_after_write - commit the received data
1502 * @pages: array of destination pages
1503 * @nr_pages: number of pages in @pages
1504 * @pos: byte position in file at which the write begins
1505 * @bytes: number of bytes to be written
1507 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1508 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1509 * locked but not kmap()ped. The source data has already been copied into the
1510 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1511 * the data was copied (for non-resident attributes only) and it returned
1514 * Need to set uptodate and mark dirty all buffers within the boundary of the
1515 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1517 * Setting the buffers dirty ensures that they get written out later when
1518 * ntfs_writepage() is invoked by the VM.
1520 * Finally, we need to update i_size and initialized_size as appropriate both
1521 * in the inode and the mft record.
1523 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1524 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1525 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1526 * that case, it also marks the inode dirty.
1528 * If things have gone as outlined in
1529 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1530 * content modifications here for non-resident attributes. For resident
1531 * attributes we need to do the uptodate bringing here which we combine with
1532 * the copying into the mft record which means we save one atomic kmap.
1534 * Return 0 on success or -errno on error.
1536 static int ntfs_commit_pages_after_write(struct page **pages,
1537 const unsigned nr_pages, s64 pos, size_t bytes)
1539 s64 end, initialized_size;
1542 ntfs_inode *ni, *base_ni;
1544 ntfs_attr_search_ctx *ctx;
1547 char *kattr, *kaddr;
1548 unsigned long flags;
1556 vi = page->mapping->host;
1558 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1559 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1560 vi->i_ino, ni->type, page->index, nr_pages,
1561 (long long)pos, bytes);
1562 if (NInoNonResident(ni))
1563 return ntfs_commit_pages_after_non_resident_write(pages,
1564 nr_pages, pos, bytes);
1565 BUG_ON(nr_pages > 1);
1567 * Attribute is resident, implying it is not compressed, encrypted, or
1573 base_ni = ni->ext.base_ntfs_ino;
1574 BUG_ON(NInoNonResident(ni));
1575 /* Map, pin, and lock the mft record. */
1576 m = map_mft_record(base_ni);
1583 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1584 if (unlikely(!ctx)) {
1588 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1589 CASE_SENSITIVE, 0, NULL, 0, ctx);
1590 if (unlikely(err)) {
1596 BUG_ON(a->non_resident);
1597 /* The total length of the attribute value. */
1598 attr_len = le32_to_cpu(a->data.resident.value_length);
1599 i_size = i_size_read(vi);
1600 BUG_ON(attr_len != i_size);
1601 BUG_ON(pos > attr_len);
1603 BUG_ON(end > le32_to_cpu(a->length) -
1604 le16_to_cpu(a->data.resident.value_offset));
1605 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1606 kaddr = kmap_atomic(page);
1607 /* Copy the received data from the page to the mft record. */
1608 memcpy(kattr + pos, kaddr + pos, bytes);
1609 /* Update the attribute length if necessary. */
1610 if (end > attr_len) {
1612 a->data.resident.value_length = cpu_to_le32(attr_len);
1615 * If the page is not uptodate, bring the out of bounds area(s)
1616 * uptodate by copying data from the mft record to the page.
1618 if (!PageUptodate(page)) {
1620 memcpy(kaddr, kattr, pos);
1622 memcpy(kaddr + end, kattr + end, attr_len - end);
1623 /* Zero the region outside the end of the attribute value. */
1624 memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1625 flush_dcache_page(page);
1626 SetPageUptodate(page);
1628 kunmap_atomic(kaddr);
1629 /* Update initialized_size/i_size if necessary. */
1630 read_lock_irqsave(&ni->size_lock, flags);
1631 initialized_size = ni->initialized_size;
1632 BUG_ON(end > ni->allocated_size);
1633 read_unlock_irqrestore(&ni->size_lock, flags);
1634 BUG_ON(initialized_size != i_size);
1635 if (end > initialized_size) {
1636 write_lock_irqsave(&ni->size_lock, flags);
1637 ni->initialized_size = end;
1638 i_size_write(vi, end);
1639 write_unlock_irqrestore(&ni->size_lock, flags);
1641 /* Mark the mft record dirty, so it gets written back. */
1642 flush_dcache_mft_record_page(ctx->ntfs_ino);
1643 mark_mft_record_dirty(ctx->ntfs_ino);
1644 ntfs_attr_put_search_ctx(ctx);
1645 unmap_mft_record(base_ni);
1646 ntfs_debug("Done.");
1649 if (err == -ENOMEM) {
1650 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1651 "commit the write.");
1652 if (PageUptodate(page)) {
1653 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1654 "dirty so the write will be retried "
1655 "later on by the VM.");
1657 * Put the page on mapping->dirty_pages, but leave its
1658 * buffers' dirty state as-is.
1660 __set_page_dirty_nobuffers(page);
1663 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1664 "data has been lost.");
1666 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1667 "with error %i.", err);
1668 NVolSetErrors(ni->vol);
1671 ntfs_attr_put_search_ctx(ctx);
1673 unmap_mft_record(base_ni);
1678 * Copy as much as we can into the pages and return the number of bytes which
1679 * were successfully copied. If a fault is encountered then clear the pages
1680 * out to (ofs + bytes) and return the number of bytes which were copied.
1682 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1683 unsigned ofs, struct iov_iter *i, size_t bytes)
1685 struct page **last_page = pages + nr_pages;
1687 struct iov_iter data = *i;
1688 unsigned len, copied;
1691 len = PAGE_SIZE - ofs;
1694 copied = iov_iter_copy_from_user_atomic(*pages, &data, ofs,
1700 iov_iter_advance(&data, copied);
1704 } while (++pages < last_page);
1708 /* Zero the rest of the target like __copy_from_user(). */
1709 len = PAGE_SIZE - copied;
1713 zero_user(*pages, copied, len);
1717 } while (++pages < last_page);
1722 * ntfs_perform_write - perform buffered write to a file
1723 * @file: file to write to
1724 * @i: iov_iter with data to write
1725 * @pos: byte offset in file at which to begin writing to
1727 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1730 struct address_space *mapping = file->f_mapping;
1731 struct inode *vi = mapping->host;
1732 ntfs_inode *ni = NTFS_I(vi);
1733 ntfs_volume *vol = ni->vol;
1734 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1735 struct page *cached_page = NULL;
1739 ssize_t status, written = 0;
1742 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1743 "0x%llx, count 0x%lx.", vi->i_ino,
1744 (unsigned)le32_to_cpu(ni->type),
1745 (unsigned long long)pos,
1746 (unsigned long)iov_iter_count(i));
1748 * If a previous ntfs_truncate() failed, repeat it and abort if it
1751 if (unlikely(NInoTruncateFailed(ni))) {
1755 err = ntfs_truncate(vi);
1756 if (err || NInoTruncateFailed(ni)) {
1759 ntfs_error(vol->sb, "Cannot perform write to inode "
1760 "0x%lx, attribute type 0x%x, because "
1761 "ntfs_truncate() failed (error code "
1763 (unsigned)le32_to_cpu(ni->type), err);
1768 * Determine the number of pages per cluster for non-resident
1772 if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1773 nr_pages = vol->cluster_size >> PAGE_SHIFT;
1777 pgoff_t idx, start_idx;
1778 unsigned ofs, do_pages, u;
1781 start_idx = idx = pos >> PAGE_SHIFT;
1782 ofs = pos & ~PAGE_MASK;
1783 bytes = PAGE_SIZE - ofs;
1786 vcn = pos >> vol->cluster_size_bits;
1787 if (vcn != last_vcn) {
1790 * Get the lcn of the vcn the write is in. If
1791 * it is a hole, need to lock down all pages in
1794 down_read(&ni->runlist.lock);
1795 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1796 vol->cluster_size_bits, false);
1797 up_read(&ni->runlist.lock);
1798 if (unlikely(lcn < LCN_HOLE)) {
1799 if (lcn == LCN_ENOMEM)
1803 ntfs_error(vol->sb, "Cannot "
1806 "attribute type 0x%x, "
1807 "because the attribute "
1809 vi->i_ino, (unsigned)
1810 le32_to_cpu(ni->type));
1814 if (lcn == LCN_HOLE) {
1815 start_idx = (pos & ~(s64)
1816 vol->cluster_size_mask)
1818 bytes = vol->cluster_size - (pos &
1819 vol->cluster_size_mask);
1820 do_pages = nr_pages;
1824 if (bytes > iov_iter_count(i))
1825 bytes = iov_iter_count(i);
1828 * Bring in the user page(s) that we will copy from _first_.
1829 * Otherwise there is a nasty deadlock on copying from the same
1830 * page(s) as we are writing to, without it/them being marked
1831 * up-to-date. Note, at present there is nothing to stop the
1832 * pages being swapped out between us bringing them into memory
1833 * and doing the actual copying.
1835 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
1839 /* Get and lock @do_pages starting at index @start_idx. */
1840 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1841 pages, &cached_page);
1842 if (unlikely(status))
1845 * For non-resident attributes, we need to fill any holes with
1846 * actual clusters and ensure all bufferes are mapped. We also
1847 * need to bring uptodate any buffers that are only partially
1850 if (NInoNonResident(ni)) {
1851 status = ntfs_prepare_pages_for_non_resident_write(
1852 pages, do_pages, pos, bytes);
1853 if (unlikely(status)) {
1855 unlock_page(pages[--do_pages]);
1856 put_page(pages[do_pages]);
1861 u = (pos >> PAGE_SHIFT) - pages[0]->index;
1862 copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1864 ntfs_flush_dcache_pages(pages + u, do_pages - u);
1866 if (likely(copied == bytes)) {
1867 status = ntfs_commit_pages_after_write(pages, do_pages,
1873 unlock_page(pages[--do_pages]);
1874 put_page(pages[do_pages]);
1876 if (unlikely(status < 0))
1880 if (unlikely(!copied)) {
1884 * We failed to copy anything. Fall back to single
1885 * segment length write.
1887 * This is needed to avoid possible livelock in the
1888 * case that all segments in the iov cannot be copied
1889 * at once without a pagefault.
1891 sc = iov_iter_single_seg_count(i);
1896 iov_iter_advance(i, copied);
1899 balance_dirty_pages_ratelimited(mapping);
1900 if (fatal_signal_pending(current)) {
1904 } while (iov_iter_count(i));
1906 put_page(cached_page);
1907 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
1908 written ? "written" : "status", (unsigned long)written,
1910 return written ? written : status;
1914 * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1915 * @iocb: IO state structure
1916 * @from: iov_iter with data to write
1918 * Basically the same as generic_file_write_iter() except that it ends up
1919 * up calling ntfs_perform_write() instead of generic_perform_write() and that
1920 * O_DIRECT is not implemented.
1922 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1924 struct file *file = iocb->ki_filp;
1925 struct inode *vi = file_inode(file);
1926 ssize_t written = 0;
1930 /* We can write back this queue in page reclaim. */
1931 current->backing_dev_info = inode_to_bdi(vi);
1932 err = ntfs_prepare_file_for_write(iocb, from);
1933 if (iov_iter_count(from) && !err)
1934 written = ntfs_perform_write(file, from, iocb->ki_pos);
1935 current->backing_dev_info = NULL;
1937 iocb->ki_pos += written;
1938 if (likely(written > 0))
1939 written = generic_write_sync(iocb, written);
1940 return written ? written : err;
1944 * ntfs_file_fsync - sync a file to disk
1945 * @filp: file to be synced
1946 * @datasync: if non-zero only flush user data and not metadata
1948 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
1949 * system calls. This function is inspired by fs/buffer.c::file_fsync().
1951 * If @datasync is false, write the mft record and all associated extent mft
1952 * records as well as the $DATA attribute and then sync the block device.
1954 * If @datasync is true and the attribute is non-resident, we skip the writing
1955 * of the mft record and all associated extent mft records (this might still
1956 * happen due to the write_inode_now() call).
1958 * Also, if @datasync is true, we do not wait on the inode to be written out
1959 * but we always wait on the page cache pages to be written out.
1961 * Locking: Caller must hold i_mutex on the inode.
1963 * TODO: We should probably also write all attribute/index inodes associated
1964 * with this inode but since we have no simple way of getting to them we ignore
1965 * this problem for now.
1967 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1970 struct inode *vi = filp->f_mapping->host;
1973 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1975 err = file_write_and_wait_range(filp, start, end);
1980 BUG_ON(S_ISDIR(vi->i_mode));
1981 if (!datasync || !NInoNonResident(NTFS_I(vi)))
1982 ret = __ntfs_write_inode(vi, 1);
1983 write_inode_now(vi, !datasync);
1985 * NOTE: If we were to use mapping->private_list (see ext2 and
1986 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1987 * sync_mapping_buffers(vi->i_mapping).
1989 err = sync_blockdev(vi->i_sb->s_bdev);
1990 if (unlikely(err && !ret))
1993 ntfs_debug("Done.");
1995 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
1996 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2001 #endif /* NTFS_RW */
2003 const struct file_operations ntfs_file_ops = {
2004 .llseek = generic_file_llseek,
2005 .read_iter = generic_file_read_iter,
2007 .write_iter = ntfs_file_write_iter,
2008 .fsync = ntfs_file_fsync,
2009 #endif /* NTFS_RW */
2010 .mmap = generic_file_mmap,
2011 .open = ntfs_file_open,
2012 .splice_read = generic_file_splice_read,
2015 const struct inode_operations ntfs_file_inode_ops = {
2017 .setattr = ntfs_setattr,
2018 #endif /* NTFS_RW */
2021 const struct file_operations ntfs_empty_file_ops = {};
2023 const struct inode_operations ntfs_empty_inode_ops = {};