2 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
6 * This program/include file is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program/include file is distributed in the hope that it will be
12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program (in the main directory of the Linux-NTFS
18 * distribution in the file COPYING); if not, write to the Free Software
19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 #include <linux/buffer_head.h>
23 #include <linux/pagemap.h>
24 #include <linux/pagevec.h>
25 #include <linux/sched.h>
26 #include <linux/swap.h>
27 #include <linux/uio.h>
28 #include <linux/writeback.h>
31 #include <asm/uaccess.h>
43 * ntfs_file_open - called when an inode is about to be opened
44 * @vi: inode to be opened
45 * @filp: file structure describing the inode
47 * Limit file size to the page cache limit on architectures where unsigned long
48 * is 32-bits. This is the most we can do for now without overflowing the page
49 * cache page index. Doing it this way means we don't run into problems because
50 * of existing too large files. It would be better to allow the user to read
51 * the beginning of the file but I doubt very much anyone is going to hit this
52 * check on a 32-bit architecture, so there is no point in adding the extra
53 * complexity required to support this.
55 * On 64-bit architectures, the check is hopefully optimized away by the
58 * After the check passes, just call generic_file_open() to do its work.
60 static int ntfs_file_open(struct inode *vi, struct file *filp)
62 if (sizeof(unsigned long) < 8) {
63 if (i_size_read(vi) > MAX_LFS_FILESIZE)
66 return generic_file_open(vi, filp);
72 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
73 * @ni: ntfs inode of the attribute to extend
74 * @new_init_size: requested new initialized size in bytes
75 * @cached_page: store any allocated but unused page here
76 * @lru_pvec: lru-buffering pagevec of the caller
78 * Extend the initialized size of an attribute described by the ntfs inode @ni
79 * to @new_init_size bytes. This involves zeroing any non-sparse space between
80 * the old initialized size and @new_init_size both in the page cache and on
81 * disk (if relevant complete pages are already uptodate in the page cache then
82 * these are simply marked dirty).
84 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
85 * in the resident attribute case, it is tied to the initialized size and, in
86 * the non-resident attribute case, it may not fall below the initialized size.
88 * Note that if the attribute is resident, we do not need to touch the page
89 * cache at all. This is because if the page cache page is not uptodate we
90 * bring it uptodate later, when doing the write to the mft record since we
91 * then already have the page mapped. And if the page is uptodate, the
92 * non-initialized region will already have been zeroed when the page was
93 * brought uptodate and the region may in fact already have been overwritten
94 * with new data via mmap() based writes, so we cannot just zero it. And since
95 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
96 * is unspecified, we choose not to do zeroing and thus we do not need to touch
97 * the page at all. For a more detailed explanation see ntfs_truncate() in
100 * @cached_page and @lru_pvec are just optimizations for dealing with multiple
103 * Return 0 on success and -errno on error. In the case that an error is
104 * encountered it is possible that the initialized size will already have been
105 * incremented some way towards @new_init_size but it is guaranteed that if
106 * this is the case, the necessary zeroing will also have happened and that all
107 * metadata is self-consistent.
109 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
110 * held by the caller.
112 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size,
113 struct page **cached_page, struct pagevec *lru_pvec)
117 pgoff_t index, end_index;
119 struct inode *vi = VFS_I(ni);
121 MFT_RECORD *m = NULL;
123 ntfs_attr_search_ctx *ctx = NULL;
124 struct address_space *mapping;
125 struct page *page = NULL;
130 read_lock_irqsave(&ni->size_lock, flags);
131 old_init_size = ni->initialized_size;
132 old_i_size = i_size_read(vi);
133 BUG_ON(new_init_size > ni->allocated_size);
134 read_unlock_irqrestore(&ni->size_lock, flags);
135 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
136 "old_initialized_size 0x%llx, "
137 "new_initialized_size 0x%llx, i_size 0x%llx.",
138 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
139 (unsigned long long)old_init_size,
140 (unsigned long long)new_init_size, old_i_size);
144 base_ni = ni->ext.base_ntfs_ino;
145 /* Use goto to reduce indentation and we need the label below anyway. */
146 if (NInoNonResident(ni))
147 goto do_non_resident_extend;
148 BUG_ON(old_init_size != old_i_size);
149 m = map_mft_record(base_ni);
155 ctx = ntfs_attr_get_search_ctx(base_ni, m);
156 if (unlikely(!ctx)) {
160 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
161 CASE_SENSITIVE, 0, NULL, 0, ctx);
169 BUG_ON(a->non_resident);
170 /* The total length of the attribute value. */
171 attr_len = le32_to_cpu(a->data.resident.value_length);
172 BUG_ON(old_i_size != (loff_t)attr_len);
174 * Do the zeroing in the mft record and update the attribute size in
177 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
178 memset(kattr + attr_len, 0, new_init_size - attr_len);
179 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
180 /* Finally, update the sizes in the vfs and ntfs inodes. */
181 write_lock_irqsave(&ni->size_lock, flags);
182 i_size_write(vi, new_init_size);
183 ni->initialized_size = new_init_size;
184 write_unlock_irqrestore(&ni->size_lock, flags);
186 do_non_resident_extend:
188 * If the new initialized size @new_init_size exceeds the current file
189 * size (vfs inode->i_size), we need to extend the file size to the
190 * new initialized size.
192 if (new_init_size > old_i_size) {
193 m = map_mft_record(base_ni);
199 ctx = ntfs_attr_get_search_ctx(base_ni, m);
200 if (unlikely(!ctx)) {
204 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
205 CASE_SENSITIVE, 0, NULL, 0, ctx);
213 BUG_ON(!a->non_resident);
214 BUG_ON(old_i_size != (loff_t)
215 sle64_to_cpu(a->data.non_resident.data_size));
216 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
217 flush_dcache_mft_record_page(ctx->ntfs_ino);
218 mark_mft_record_dirty(ctx->ntfs_ino);
219 /* Update the file size in the vfs inode. */
220 i_size_write(vi, new_init_size);
221 ntfs_attr_put_search_ctx(ctx);
223 unmap_mft_record(base_ni);
226 mapping = vi->i_mapping;
227 index = old_init_size >> PAGE_CACHE_SHIFT;
228 end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
231 * Read the page. If the page is not present, this will zero
232 * the uninitialized regions for us.
234 page = read_mapping_page(mapping, index, NULL);
239 if (unlikely(PageError(page))) {
240 page_cache_release(page);
245 * Update the initialized size in the ntfs inode. This is
246 * enough to make ntfs_writepage() work.
248 write_lock_irqsave(&ni->size_lock, flags);
249 ni->initialized_size = (s64)(index + 1) << PAGE_CACHE_SHIFT;
250 if (ni->initialized_size > new_init_size)
251 ni->initialized_size = new_init_size;
252 write_unlock_irqrestore(&ni->size_lock, flags);
253 /* Set the page dirty so it gets written out. */
254 set_page_dirty(page);
255 page_cache_release(page);
257 * Play nice with the vm and the rest of the system. This is
258 * very much needed as we can potentially be modifying the
259 * initialised size from a very small value to a really huge
261 * f = open(somefile, O_TRUNC);
262 * truncate(f, 10GiB);
265 * And this would mean we would be marking dirty hundreds of
266 * thousands of pages or as in the above example more than
267 * two and a half million pages!
269 * TODO: For sparse pages could optimize this workload by using
270 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
271 * would be set in readpage for sparse pages and here we would
272 * not need to mark dirty any pages which have this bit set.
273 * The only caveat is that we have to clear the bit everywhere
274 * where we allocate any clusters that lie in the page or that
277 * TODO: An even greater optimization would be for us to only
278 * call readpage() on pages which are not in sparse regions as
279 * determined from the runlist. This would greatly reduce the
280 * number of pages we read and make dirty in the case of sparse
283 balance_dirty_pages_ratelimited(mapping);
285 } while (++index < end_index);
286 read_lock_irqsave(&ni->size_lock, flags);
287 BUG_ON(ni->initialized_size != new_init_size);
288 read_unlock_irqrestore(&ni->size_lock, flags);
289 /* Now bring in sync the initialized_size in the mft record. */
290 m = map_mft_record(base_ni);
296 ctx = ntfs_attr_get_search_ctx(base_ni, m);
297 if (unlikely(!ctx)) {
301 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
302 CASE_SENSITIVE, 0, NULL, 0, ctx);
310 BUG_ON(!a->non_resident);
311 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
313 flush_dcache_mft_record_page(ctx->ntfs_ino);
314 mark_mft_record_dirty(ctx->ntfs_ino);
316 ntfs_attr_put_search_ctx(ctx);
318 unmap_mft_record(base_ni);
319 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
320 (unsigned long long)new_init_size, i_size_read(vi));
323 write_lock_irqsave(&ni->size_lock, flags);
324 ni->initialized_size = old_init_size;
325 write_unlock_irqrestore(&ni->size_lock, flags);
328 ntfs_attr_put_search_ctx(ctx);
330 unmap_mft_record(base_ni);
331 ntfs_debug("Failed. Returning error code %i.", err);
336 * ntfs_fault_in_pages_readable -
338 * Fault a number of userspace pages into pagetables.
340 * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes
341 * with more than two userspace pages as well as handling the single page case
344 * If you find this difficult to understand, then think of the while loop being
345 * the following code, except that we do without the integer variable ret:
348 * ret = __get_user(c, uaddr);
349 * uaddr += PAGE_SIZE;
350 * } while (!ret && uaddr < end);
352 * Note, the final __get_user() may well run out-of-bounds of the user buffer,
353 * but _not_ out-of-bounds of the page the user buffer belongs to, and since
354 * this is only a read and not a write, and since it is still in the same page,
355 * it should not matter and this makes the code much simpler.
357 static inline void ntfs_fault_in_pages_readable(const char __user *uaddr,
360 const char __user *end;
363 /* Set @end to the first byte outside the last page we care about. */
364 end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes);
366 while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end))
371 * ntfs_fault_in_pages_readable_iovec -
373 * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs.
375 static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov,
376 size_t iov_ofs, int bytes)
379 const char __user *buf;
382 buf = iov->iov_base + iov_ofs;
383 len = iov->iov_len - iov_ofs;
386 ntfs_fault_in_pages_readable(buf, len);
394 * __ntfs_grab_cache_pages - obtain a number of locked pages
395 * @mapping: address space mapping from which to obtain page cache pages
396 * @index: starting index in @mapping at which to begin obtaining pages
397 * @nr_pages: number of page cache pages to obtain
398 * @pages: array of pages in which to return the obtained page cache pages
399 * @cached_page: allocated but as yet unused page
400 * @lru_pvec: lru-buffering pagevec of caller
402 * Obtain @nr_pages locked page cache pages from the mapping @maping and
403 * starting at index @index.
405 * If a page is newly created, increment its refcount and add it to the
406 * caller's lru-buffering pagevec @lru_pvec.
408 * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages
409 * are obtained at once instead of just one page and that 0 is returned on
410 * success and -errno on error.
412 * Note, the page locks are obtained in ascending page index order.
414 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
415 pgoff_t index, const unsigned nr_pages, struct page **pages,
416 struct page **cached_page, struct pagevec *lru_pvec)
423 pages[nr] = find_lock_page(mapping, index);
426 *cached_page = page_cache_alloc(mapping);
427 if (unlikely(!*cached_page)) {
432 err = add_to_page_cache(*cached_page, mapping, index,
439 pages[nr] = *cached_page;
440 page_cache_get(*cached_page);
441 if (unlikely(!pagevec_add(lru_pvec, *cached_page)))
442 __pagevec_lru_add(lru_pvec);
447 } while (nr < nr_pages);
452 unlock_page(pages[--nr]);
453 page_cache_release(pages[nr]);
458 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
462 bh->b_end_io = end_buffer_read_sync;
463 return submit_bh(READ, bh);
467 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
468 * @pages: array of destination pages
469 * @nr_pages: number of pages in @pages
470 * @pos: byte position in file at which the write begins
471 * @bytes: number of bytes to be written
473 * This is called for non-resident attributes from ntfs_file_buffered_write()
474 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
475 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
476 * data has not yet been copied into the @pages.
478 * Need to fill any holes with actual clusters, allocate buffers if necessary,
479 * ensure all the buffers are mapped, and bring uptodate any buffers that are
480 * only partially being written to.
482 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
483 * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside
484 * the same cluster and that they are the entirety of that cluster, and that
485 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
487 * i_size is not to be modified yet.
489 * Return 0 on success or -errno on error.
491 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
492 unsigned nr_pages, s64 pos, size_t bytes)
494 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
496 s64 bh_pos, vcn_len, end, initialized_size;
500 ntfs_inode *ni, *base_ni = NULL;
502 runlist_element *rl, *rl2;
503 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
504 ntfs_attr_search_ctx *ctx = NULL;
505 MFT_RECORD *m = NULL;
506 ATTR_RECORD *a = NULL;
508 u32 attr_rec_len = 0;
509 unsigned blocksize, u;
511 bool rl_write_locked, was_hole, is_retry;
512 unsigned char blocksize_bits;
515 u8 mft_attr_mapped:1;
518 } status = { 0, 0, 0, 0 };
523 vi = pages[0]->mapping->host;
526 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
527 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
528 vi->i_ino, ni->type, pages[0]->index, nr_pages,
529 (long long)pos, bytes);
530 blocksize = vol->sb->s_blocksize;
531 blocksize_bits = vol->sb->s_blocksize_bits;
534 struct page *page = pages[u];
536 * create_empty_buffers() will create uptodate/dirty buffers if
537 * the page is uptodate/dirty.
539 if (!page_has_buffers(page)) {
540 create_empty_buffers(page, blocksize, 0);
541 if (unlikely(!page_has_buffers(page)))
544 } while (++u < nr_pages);
545 rl_write_locked = false;
552 cpos = pos >> vol->cluster_size_bits;
554 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
556 * Loop over each page and for each page over each buffer. Use goto to
557 * reduce indentation.
562 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
563 bh = head = page_buffers(page);
569 /* Clear buffer_new on all buffers to reinitialise state. */
571 clear_buffer_new(bh);
572 bh_end = bh_pos + blocksize;
573 bh_cpos = bh_pos >> vol->cluster_size_bits;
574 bh_cofs = bh_pos & vol->cluster_size_mask;
575 if (buffer_mapped(bh)) {
577 * The buffer is already mapped. If it is uptodate,
580 if (buffer_uptodate(bh))
583 * The buffer is not uptodate. If the page is uptodate
584 * set the buffer uptodate and otherwise ignore it.
586 if (PageUptodate(page)) {
587 set_buffer_uptodate(bh);
591 * Neither the page nor the buffer are uptodate. If
592 * the buffer is only partially being written to, we
593 * need to read it in before the write, i.e. now.
595 if ((bh_pos < pos && bh_end > pos) ||
596 (bh_pos < end && bh_end > end)) {
598 * If the buffer is fully or partially within
599 * the initialized size, do an actual read.
600 * Otherwise, simply zero the buffer.
602 read_lock_irqsave(&ni->size_lock, flags);
603 initialized_size = ni->initialized_size;
604 read_unlock_irqrestore(&ni->size_lock, flags);
605 if (bh_pos < initialized_size) {
606 ntfs_submit_bh_for_read(bh);
609 zero_user_page(page, bh_offset(bh),
610 blocksize, KM_USER0);
611 set_buffer_uptodate(bh);
616 /* Unmapped buffer. Need to map it. */
617 bh->b_bdev = vol->sb->s_bdev;
619 * If the current buffer is in the same clusters as the map
620 * cache, there is no need to check the runlist again. The
621 * map cache is made up of @vcn, which is the first cached file
622 * cluster, @vcn_len which is the number of cached file
623 * clusters, @lcn is the device cluster corresponding to @vcn,
624 * and @lcn_block is the block number corresponding to @lcn.
626 cdelta = bh_cpos - vcn;
627 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
630 bh->b_blocknr = lcn_block +
631 (cdelta << (vol->cluster_size_bits -
633 (bh_cofs >> blocksize_bits);
634 set_buffer_mapped(bh);
636 * If the page is uptodate so is the buffer. If the
637 * buffer is fully outside the write, we ignore it if
638 * it was already allocated and we mark it dirty so it
639 * gets written out if we allocated it. On the other
640 * hand, if we allocated the buffer but we are not
641 * marking it dirty we set buffer_new so we can do
644 if (PageUptodate(page)) {
645 if (!buffer_uptodate(bh))
646 set_buffer_uptodate(bh);
647 if (unlikely(was_hole)) {
648 /* We allocated the buffer. */
649 unmap_underlying_metadata(bh->b_bdev,
651 if (bh_end <= pos || bh_pos >= end)
652 mark_buffer_dirty(bh);
658 /* Page is _not_ uptodate. */
659 if (likely(!was_hole)) {
661 * Buffer was already allocated. If it is not
662 * uptodate and is only partially being written
663 * to, we need to read it in before the write,
666 if (!buffer_uptodate(bh) && bh_pos < end &&
671 * If the buffer is fully or partially
672 * within the initialized size, do an
673 * actual read. Otherwise, simply zero
676 read_lock_irqsave(&ni->size_lock,
678 initialized_size = ni->initialized_size;
679 read_unlock_irqrestore(&ni->size_lock,
681 if (bh_pos < initialized_size) {
682 ntfs_submit_bh_for_read(bh);
687 blocksize, KM_USER0);
688 set_buffer_uptodate(bh);
693 /* We allocated the buffer. */
694 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
696 * If the buffer is fully outside the write, zero it,
697 * set it uptodate, and mark it dirty so it gets
698 * written out. If it is partially being written to,
699 * zero region surrounding the write but leave it to
700 * commit write to do anything else. Finally, if the
701 * buffer is fully being overwritten, do nothing.
703 if (bh_end <= pos || bh_pos >= end) {
704 if (!buffer_uptodate(bh)) {
705 zero_user_page(page, bh_offset(bh),
706 blocksize, KM_USER0);
707 set_buffer_uptodate(bh);
709 mark_buffer_dirty(bh);
713 if (!buffer_uptodate(bh) &&
714 (bh_pos < pos || bh_end > end)) {
718 kaddr = kmap_atomic(page, KM_USER0);
720 pofs = bh_pos & ~PAGE_CACHE_MASK;
721 memset(kaddr + pofs, 0, pos - bh_pos);
724 pofs = end & ~PAGE_CACHE_MASK;
725 memset(kaddr + pofs, 0, bh_end - end);
727 kunmap_atomic(kaddr, KM_USER0);
728 flush_dcache_page(page);
733 * Slow path: this is the first buffer in the cluster. If it
734 * is outside allocated size and is not uptodate, zero it and
737 read_lock_irqsave(&ni->size_lock, flags);
738 initialized_size = ni->allocated_size;
739 read_unlock_irqrestore(&ni->size_lock, flags);
740 if (bh_pos > initialized_size) {
741 if (PageUptodate(page)) {
742 if (!buffer_uptodate(bh))
743 set_buffer_uptodate(bh);
744 } else if (!buffer_uptodate(bh)) {
745 zero_user_page(page, bh_offset(bh), blocksize,
747 set_buffer_uptodate(bh);
753 down_read(&ni->runlist.lock);
757 if (likely(rl != NULL)) {
758 /* Seek to element containing target cluster. */
759 while (rl->length && rl[1].vcn <= bh_cpos)
761 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
762 if (likely(lcn >= 0)) {
764 * Successful remap, setup the map cache and
765 * use that to deal with the buffer.
769 vcn_len = rl[1].vcn - vcn;
770 lcn_block = lcn << (vol->cluster_size_bits -
774 * If the number of remaining clusters touched
775 * by the write is smaller or equal to the
776 * number of cached clusters, unlock the
777 * runlist as the map cache will be used from
780 if (likely(vcn + vcn_len >= cend)) {
781 if (rl_write_locked) {
782 up_write(&ni->runlist.lock);
783 rl_write_locked = false;
785 up_read(&ni->runlist.lock);
788 goto map_buffer_cached;
791 lcn = LCN_RL_NOT_MAPPED;
793 * If it is not a hole and not out of bounds, the runlist is
794 * probably unmapped so try to map it now.
796 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
797 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
798 /* Attempt to map runlist. */
799 if (!rl_write_locked) {
801 * We need the runlist locked for
802 * writing, so if it is locked for
803 * reading relock it now and retry in
804 * case it changed whilst we dropped
807 up_read(&ni->runlist.lock);
808 down_write(&ni->runlist.lock);
809 rl_write_locked = true;
812 err = ntfs_map_runlist_nolock(ni, bh_cpos,
819 * If @vcn is out of bounds, pretend @lcn is
820 * LCN_ENOENT. As long as the buffer is out
821 * of bounds this will work fine.
823 if (err == -ENOENT) {
826 goto rl_not_mapped_enoent;
830 /* Failed to map the buffer, even after retrying. */
832 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
833 "attribute type 0x%x, vcn 0x%llx, "
834 "vcn offset 0x%x, because its "
835 "location on disk could not be "
836 "determined%s (error code %i).",
837 ni->mft_no, ni->type,
838 (unsigned long long)bh_cpos,
840 vol->cluster_size_mask,
841 is_retry ? " even after retrying" : "",
845 rl_not_mapped_enoent:
847 * The buffer is in a hole or out of bounds. We need to fill
848 * the hole, unless the buffer is in a cluster which is not
849 * touched by the write, in which case we just leave the buffer
850 * unmapped. This can only happen when the cluster size is
851 * less than the page cache size.
853 if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) {
854 bh_cend = (bh_end + vol->cluster_size - 1) >>
855 vol->cluster_size_bits;
856 if ((bh_cend <= cpos || bh_cpos >= cend)) {
859 * If the buffer is uptodate we skip it. If it
860 * is not but the page is uptodate, we can set
861 * the buffer uptodate. If the page is not
862 * uptodate, we can clear the buffer and set it
863 * uptodate. Whether this is worthwhile is
864 * debatable and this could be removed.
866 if (PageUptodate(page)) {
867 if (!buffer_uptodate(bh))
868 set_buffer_uptodate(bh);
869 } else if (!buffer_uptodate(bh)) {
870 zero_user_page(page, bh_offset(bh),
871 blocksize, KM_USER0);
872 set_buffer_uptodate(bh);
878 * Out of bounds buffer is invalid if it was not really out of
881 BUG_ON(lcn != LCN_HOLE);
883 * We need the runlist locked for writing, so if it is locked
884 * for reading relock it now and retry in case it changed
885 * whilst we dropped the lock.
888 if (!rl_write_locked) {
889 up_read(&ni->runlist.lock);
890 down_write(&ni->runlist.lock);
891 rl_write_locked = true;
894 /* Find the previous last allocated cluster. */
895 BUG_ON(rl->lcn != LCN_HOLE);
898 while (--rl2 >= ni->runlist.rl) {
900 lcn = rl2->lcn + rl2->length;
904 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
908 ntfs_debug("Failed to allocate cluster, error code %i.",
913 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
918 if (ntfs_cluster_free_from_rl(vol, rl2)) {
919 ntfs_error(vol->sb, "Failed to release "
920 "allocated cluster in error "
921 "code path. Run chkdsk to "
922 "recover the lost cluster.");
929 status.runlist_merged = 1;
930 ntfs_debug("Allocated cluster, lcn 0x%llx.",
931 (unsigned long long)lcn);
932 /* Map and lock the mft record and get the attribute record. */
936 base_ni = ni->ext.base_ntfs_ino;
937 m = map_mft_record(base_ni);
942 ctx = ntfs_attr_get_search_ctx(base_ni, m);
943 if (unlikely(!ctx)) {
945 unmap_mft_record(base_ni);
948 status.mft_attr_mapped = 1;
949 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
950 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
959 * Find the runlist element with which the attribute extent
960 * starts. Note, we cannot use the _attr_ version because we
961 * have mapped the mft record. That is ok because we know the
962 * runlist fragment must be mapped already to have ever gotten
963 * here, so we can just use the _rl_ version.
965 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
966 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
968 BUG_ON(!rl2->length);
969 BUG_ON(rl2->lcn < LCN_HOLE);
970 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
972 * If @highest_vcn is zero, calculate the real highest_vcn
973 * (which can really be zero).
976 highest_vcn = (sle64_to_cpu(
977 a->data.non_resident.allocated_size) >>
978 vol->cluster_size_bits) - 1;
980 * Determine the size of the mapping pairs array for the new
981 * extent, i.e. the old extent with the hole filled.
983 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
985 if (unlikely(mp_size <= 0)) {
986 if (!(err = mp_size))
988 ntfs_debug("Failed to get size for mapping pairs "
989 "array, error code %i.", err);
993 * Resize the attribute record to fit the new mapping pairs
996 attr_rec_len = le32_to_cpu(a->length);
997 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
998 a->data.non_resident.mapping_pairs_offset));
1000 BUG_ON(err != -ENOSPC);
1001 // TODO: Deal with this by using the current attribute
1002 // and fill it with as much of the mapping pairs
1003 // array as possible. Then loop over each attribute
1004 // extent rewriting the mapping pairs arrays as we go
1005 // along and if when we reach the end we have not
1006 // enough space, try to resize the last attribute
1007 // extent and if even that fails, add a new attribute
1009 // We could also try to resize at each step in the hope
1010 // that we will not need to rewrite every single extent.
1011 // Note, we may need to decompress some extents to fill
1012 // the runlist as we are walking the extents...
1013 ntfs_error(vol->sb, "Not enough space in the mft "
1014 "record for the extended attribute "
1015 "record. This case is not "
1016 "implemented yet.");
1020 status.mp_rebuilt = 1;
1022 * Generate the mapping pairs array directly into the attribute
1025 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1026 a->data.non_resident.mapping_pairs_offset),
1027 mp_size, rl2, vcn, highest_vcn, NULL);
1028 if (unlikely(err)) {
1029 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1030 "attribute type 0x%x, because building "
1031 "the mapping pairs failed with error "
1032 "code %i.", vi->i_ino,
1033 (unsigned)le32_to_cpu(ni->type), err);
1037 /* Update the highest_vcn but only if it was not set. */
1038 if (unlikely(!a->data.non_resident.highest_vcn))
1039 a->data.non_resident.highest_vcn =
1040 cpu_to_sle64(highest_vcn);
1042 * If the attribute is sparse/compressed, update the compressed
1043 * size in the ntfs_inode structure and the attribute record.
1045 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1047 * If we are not in the first attribute extent, switch
1048 * to it, but first ensure the changes will make it to
1051 if (a->data.non_resident.lowest_vcn) {
1052 flush_dcache_mft_record_page(ctx->ntfs_ino);
1053 mark_mft_record_dirty(ctx->ntfs_ino);
1054 ntfs_attr_reinit_search_ctx(ctx);
1055 err = ntfs_attr_lookup(ni->type, ni->name,
1056 ni->name_len, CASE_SENSITIVE,
1058 if (unlikely(err)) {
1059 status.attr_switched = 1;
1062 /* @m is not used any more so do not set it. */
1065 write_lock_irqsave(&ni->size_lock, flags);
1066 ni->itype.compressed.size += vol->cluster_size;
1067 a->data.non_resident.compressed_size =
1068 cpu_to_sle64(ni->itype.compressed.size);
1069 write_unlock_irqrestore(&ni->size_lock, flags);
1071 /* Ensure the changes make it to disk. */
1072 flush_dcache_mft_record_page(ctx->ntfs_ino);
1073 mark_mft_record_dirty(ctx->ntfs_ino);
1074 ntfs_attr_put_search_ctx(ctx);
1075 unmap_mft_record(base_ni);
1076 /* Successfully filled the hole. */
1077 status.runlist_merged = 0;
1078 status.mft_attr_mapped = 0;
1079 status.mp_rebuilt = 0;
1080 /* Setup the map cache and use that to deal with the buffer. */
1084 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1087 * If the number of remaining clusters in the @pages is smaller
1088 * or equal to the number of cached clusters, unlock the
1089 * runlist as the map cache will be used from now on.
1091 if (likely(vcn + vcn_len >= cend)) {
1092 up_write(&ni->runlist.lock);
1093 rl_write_locked = false;
1096 goto map_buffer_cached;
1097 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1098 /* If there are no errors, do the next page. */
1099 if (likely(!err && ++u < nr_pages))
1101 /* If there are no errors, release the runlist lock if we took it. */
1103 if (unlikely(rl_write_locked)) {
1104 up_write(&ni->runlist.lock);
1105 rl_write_locked = false;
1106 } else if (unlikely(rl))
1107 up_read(&ni->runlist.lock);
1110 /* If we issued read requests, let them complete. */
1111 read_lock_irqsave(&ni->size_lock, flags);
1112 initialized_size = ni->initialized_size;
1113 read_unlock_irqrestore(&ni->size_lock, flags);
1114 while (wait_bh > wait) {
1117 if (likely(buffer_uptodate(bh))) {
1119 bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) +
1122 * If the buffer overflows the initialized size, need
1123 * to zero the overflowing region.
1125 if (unlikely(bh_pos + blocksize > initialized_size)) {
1128 if (likely(bh_pos < initialized_size))
1129 ofs = initialized_size - bh_pos;
1130 zero_user_page(page, bh_offset(bh) + ofs,
1131 blocksize - ofs, KM_USER0);
1133 } else /* if (unlikely(!buffer_uptodate(bh))) */
1137 /* Clear buffer_new on all buffers. */
1140 bh = head = page_buffers(pages[u]);
1143 clear_buffer_new(bh);
1144 } while ((bh = bh->b_this_page) != head);
1145 } while (++u < nr_pages);
1146 ntfs_debug("Done.");
1149 if (status.attr_switched) {
1150 /* Get back to the attribute extent we modified. */
1151 ntfs_attr_reinit_search_ctx(ctx);
1152 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1153 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1154 ntfs_error(vol->sb, "Failed to find required "
1155 "attribute extent of attribute in "
1156 "error code path. Run chkdsk to "
1158 write_lock_irqsave(&ni->size_lock, flags);
1159 ni->itype.compressed.size += vol->cluster_size;
1160 write_unlock_irqrestore(&ni->size_lock, flags);
1161 flush_dcache_mft_record_page(ctx->ntfs_ino);
1162 mark_mft_record_dirty(ctx->ntfs_ino);
1164 * The only thing that is now wrong is the compressed
1165 * size of the base attribute extent which chkdsk
1166 * should be able to fix.
1172 status.attr_switched = 0;
1176 * If the runlist has been modified, need to restore it by punching a
1177 * hole into it and we then need to deallocate the on-disk cluster as
1178 * well. Note, we only modify the runlist if we are able to generate a
1179 * new mapping pairs array, i.e. only when the mapped attribute extent
1182 if (status.runlist_merged && !status.attr_switched) {
1183 BUG_ON(!rl_write_locked);
1184 /* Make the file cluster we allocated sparse in the runlist. */
1185 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1186 ntfs_error(vol->sb, "Failed to punch hole into "
1187 "attribute runlist in error code "
1188 "path. Run chkdsk to recover the "
1191 } else /* if (success) */ {
1192 status.runlist_merged = 0;
1194 * Deallocate the on-disk cluster we allocated but only
1195 * if we succeeded in punching its vcn out of the
1198 down_write(&vol->lcnbmp_lock);
1199 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1200 ntfs_error(vol->sb, "Failed to release "
1201 "allocated cluster in error "
1202 "code path. Run chkdsk to "
1203 "recover the lost cluster.");
1206 up_write(&vol->lcnbmp_lock);
1210 * Resize the attribute record to its old size and rebuild the mapping
1211 * pairs array. Note, we only can do this if the runlist has been
1212 * restored to its old state which also implies that the mapped
1213 * attribute extent is not switched.
1215 if (status.mp_rebuilt && !status.runlist_merged) {
1216 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1217 ntfs_error(vol->sb, "Failed to restore attribute "
1218 "record in error code path. Run "
1219 "chkdsk to recover.");
1221 } else /* if (success) */ {
1222 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1223 le16_to_cpu(a->data.non_resident.
1224 mapping_pairs_offset), attr_rec_len -
1225 le16_to_cpu(a->data.non_resident.
1226 mapping_pairs_offset), ni->runlist.rl,
1227 vcn, highest_vcn, NULL)) {
1228 ntfs_error(vol->sb, "Failed to restore "
1229 "mapping pairs array in error "
1230 "code path. Run chkdsk to "
1234 flush_dcache_mft_record_page(ctx->ntfs_ino);
1235 mark_mft_record_dirty(ctx->ntfs_ino);
1238 /* Release the mft record and the attribute. */
1239 if (status.mft_attr_mapped) {
1240 ntfs_attr_put_search_ctx(ctx);
1241 unmap_mft_record(base_ni);
1243 /* Release the runlist lock. */
1244 if (rl_write_locked)
1245 up_write(&ni->runlist.lock);
1247 up_read(&ni->runlist.lock);
1249 * Zero out any newly allocated blocks to avoid exposing stale data.
1250 * If BH_New is set, we know that the block was newly allocated above
1251 * and that it has not been fully zeroed and marked dirty yet.
1255 end = bh_cpos << vol->cluster_size_bits;
1258 bh = head = page_buffers(page);
1260 if (u == nr_pages &&
1261 ((s64)page->index << PAGE_CACHE_SHIFT) +
1262 bh_offset(bh) >= end)
1264 if (!buffer_new(bh))
1266 clear_buffer_new(bh);
1267 if (!buffer_uptodate(bh)) {
1268 if (PageUptodate(page))
1269 set_buffer_uptodate(bh);
1271 zero_user_page(page, bh_offset(bh),
1272 blocksize, KM_USER0);
1273 set_buffer_uptodate(bh);
1276 mark_buffer_dirty(bh);
1277 } while ((bh = bh->b_this_page) != head);
1278 } while (++u <= nr_pages);
1279 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1284 * Copy as much as we can into the pages and return the number of bytes which
1285 * were sucessfully copied. If a fault is encountered then clear the pages
1286 * out to (ofs + bytes) and return the number of bytes which were copied.
1288 static inline size_t ntfs_copy_from_user(struct page **pages,
1289 unsigned nr_pages, unsigned ofs, const char __user *buf,
1292 struct page **last_page = pages + nr_pages;
1299 len = PAGE_CACHE_SIZE - ofs;
1302 kaddr = kmap_atomic(*pages, KM_USER0);
1303 left = __copy_from_user_inatomic(kaddr + ofs, buf, len);
1304 kunmap_atomic(kaddr, KM_USER0);
1305 if (unlikely(left)) {
1306 /* Do it the slow way. */
1307 kaddr = kmap(*pages);
1308 left = __copy_from_user(kaddr + ofs, buf, len);
1319 } while (++pages < last_page);
1323 total += len - left;
1324 /* Zero the rest of the target like __copy_from_user(). */
1325 while (++pages < last_page) {
1329 len = PAGE_CACHE_SIZE;
1332 zero_user_page(*pages, 0, len, KM_USER0);
1337 static size_t __ntfs_copy_from_user_iovec_inatomic(char *vaddr,
1338 const struct iovec *iov, size_t iov_ofs, size_t bytes)
1343 const char __user *buf = iov->iov_base + iov_ofs;
1347 len = iov->iov_len - iov_ofs;
1350 left = __copy_from_user_inatomic(vaddr, buf, len);
1354 if (unlikely(left)) {
1366 static inline void ntfs_set_next_iovec(const struct iovec **iovp,
1367 size_t *iov_ofsp, size_t bytes)
1369 const struct iovec *iov = *iovp;
1370 size_t iov_ofs = *iov_ofsp;
1375 len = iov->iov_len - iov_ofs;
1380 if (iov->iov_len == iov_ofs) {
1386 *iov_ofsp = iov_ofs;
1390 * This has the same side-effects and return value as ntfs_copy_from_user().
1391 * The difference is that on a fault we need to memset the remainder of the
1392 * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s
1393 * single-segment behaviour.
1395 * We call the same helper (__ntfs_copy_from_user_iovec_inatomic()) both
1396 * when atomic and when not atomic. This is ok because
1397 * __ntfs_copy_from_user_iovec_inatomic() calls __copy_from_user_inatomic()
1398 * and it is ok to call this when non-atomic.
1399 * Infact, the only difference between __copy_from_user_inatomic() and
1400 * __copy_from_user() is that the latter calls might_sleep() and the former
1401 * should not zero the tail of the buffer on error. And on many
1402 * architectures __copy_from_user_inatomic() is just defined to
1403 * __copy_from_user() so it makes no difference at all on those architectures.
1405 static inline size_t ntfs_copy_from_user_iovec(struct page **pages,
1406 unsigned nr_pages, unsigned ofs, const struct iovec **iov,
1407 size_t *iov_ofs, size_t bytes)
1409 struct page **last_page = pages + nr_pages;
1411 size_t copied, len, total = 0;
1414 len = PAGE_CACHE_SIZE - ofs;
1417 kaddr = kmap_atomic(*pages, KM_USER0);
1418 copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1419 *iov, *iov_ofs, len);
1420 kunmap_atomic(kaddr, KM_USER0);
1421 if (unlikely(copied != len)) {
1422 /* Do it the slow way. */
1423 kaddr = kmap(*pages);
1424 copied = __ntfs_copy_from_user_iovec_inatomic(kaddr + ofs,
1425 *iov, *iov_ofs, len);
1427 * Zero the rest of the target like __copy_from_user().
1429 memset(kaddr + ofs + copied, 0, len - copied);
1431 if (unlikely(copied != len))
1438 ntfs_set_next_iovec(iov, iov_ofs, len);
1440 } while (++pages < last_page);
1445 /* Zero the rest of the target like __copy_from_user(). */
1446 while (++pages < last_page) {
1450 len = PAGE_CACHE_SIZE;
1453 zero_user_page(*pages, 0, len, KM_USER0);
1458 static inline void ntfs_flush_dcache_pages(struct page **pages,
1463 * Warning: Do not do the decrement at the same time as the call to
1464 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1465 * decrement never happens so the loop never terminates.
1469 flush_dcache_page(pages[nr_pages]);
1470 } while (nr_pages > 0);
1474 * ntfs_commit_pages_after_non_resident_write - commit the received data
1475 * @pages: array of destination pages
1476 * @nr_pages: number of pages in @pages
1477 * @pos: byte position in file at which the write begins
1478 * @bytes: number of bytes to be written
1480 * See description of ntfs_commit_pages_after_write(), below.
1482 static inline int ntfs_commit_pages_after_non_resident_write(
1483 struct page **pages, const unsigned nr_pages,
1484 s64 pos, size_t bytes)
1486 s64 end, initialized_size;
1488 ntfs_inode *ni, *base_ni;
1489 struct buffer_head *bh, *head;
1490 ntfs_attr_search_ctx *ctx;
1493 unsigned long flags;
1494 unsigned blocksize, u;
1497 vi = pages[0]->mapping->host;
1499 blocksize = vi->i_sb->s_blocksize;
1508 bh_pos = (s64)page->index << PAGE_CACHE_SHIFT;
1509 bh = head = page_buffers(page);
1514 bh_end = bh_pos + blocksize;
1515 if (bh_end <= pos || bh_pos >= end) {
1516 if (!buffer_uptodate(bh))
1519 set_buffer_uptodate(bh);
1520 mark_buffer_dirty(bh);
1522 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1524 * If all buffers are now uptodate but the page is not, set the
1527 if (!partial && !PageUptodate(page))
1528 SetPageUptodate(page);
1529 } while (++u < nr_pages);
1531 * Finally, if we do not need to update initialized_size or i_size we
1534 read_lock_irqsave(&ni->size_lock, flags);
1535 initialized_size = ni->initialized_size;
1536 read_unlock_irqrestore(&ni->size_lock, flags);
1537 if (end <= initialized_size) {
1538 ntfs_debug("Done.");
1542 * Update initialized_size/i_size as appropriate, both in the inode and
1548 base_ni = ni->ext.base_ntfs_ino;
1549 /* Map, pin, and lock the mft record. */
1550 m = map_mft_record(base_ni);
1557 BUG_ON(!NInoNonResident(ni));
1558 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1559 if (unlikely(!ctx)) {
1563 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1564 CASE_SENSITIVE, 0, NULL, 0, ctx);
1565 if (unlikely(err)) {
1571 BUG_ON(!a->non_resident);
1572 write_lock_irqsave(&ni->size_lock, flags);
1573 BUG_ON(end > ni->allocated_size);
1574 ni->initialized_size = end;
1575 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1576 if (end > i_size_read(vi)) {
1577 i_size_write(vi, end);
1578 a->data.non_resident.data_size =
1579 a->data.non_resident.initialized_size;
1581 write_unlock_irqrestore(&ni->size_lock, flags);
1582 /* Mark the mft record dirty, so it gets written back. */
1583 flush_dcache_mft_record_page(ctx->ntfs_ino);
1584 mark_mft_record_dirty(ctx->ntfs_ino);
1585 ntfs_attr_put_search_ctx(ctx);
1586 unmap_mft_record(base_ni);
1587 ntfs_debug("Done.");
1591 ntfs_attr_put_search_ctx(ctx);
1593 unmap_mft_record(base_ni);
1594 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1597 NVolSetErrors(ni->vol);
1602 * ntfs_commit_pages_after_write - commit the received data
1603 * @pages: array of destination pages
1604 * @nr_pages: number of pages in @pages
1605 * @pos: byte position in file at which the write begins
1606 * @bytes: number of bytes to be written
1608 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1609 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1610 * locked but not kmap()ped. The source data has already been copied into the
1611 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1612 * the data was copied (for non-resident attributes only) and it returned
1615 * Need to set uptodate and mark dirty all buffers within the boundary of the
1616 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1618 * Setting the buffers dirty ensures that they get written out later when
1619 * ntfs_writepage() is invoked by the VM.
1621 * Finally, we need to update i_size and initialized_size as appropriate both
1622 * in the inode and the mft record.
1624 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1625 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1626 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1627 * that case, it also marks the inode dirty.
1629 * If things have gone as outlined in
1630 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1631 * content modifications here for non-resident attributes. For resident
1632 * attributes we need to do the uptodate bringing here which we combine with
1633 * the copying into the mft record which means we save one atomic kmap.
1635 * Return 0 on success or -errno on error.
1637 static int ntfs_commit_pages_after_write(struct page **pages,
1638 const unsigned nr_pages, s64 pos, size_t bytes)
1640 s64 end, initialized_size;
1643 ntfs_inode *ni, *base_ni;
1645 ntfs_attr_search_ctx *ctx;
1648 char *kattr, *kaddr;
1649 unsigned long flags;
1657 vi = page->mapping->host;
1659 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1660 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1661 vi->i_ino, ni->type, page->index, nr_pages,
1662 (long long)pos, bytes);
1663 if (NInoNonResident(ni))
1664 return ntfs_commit_pages_after_non_resident_write(pages,
1665 nr_pages, pos, bytes);
1666 BUG_ON(nr_pages > 1);
1668 * Attribute is resident, implying it is not compressed, encrypted, or
1674 base_ni = ni->ext.base_ntfs_ino;
1675 BUG_ON(NInoNonResident(ni));
1676 /* Map, pin, and lock the mft record. */
1677 m = map_mft_record(base_ni);
1684 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1685 if (unlikely(!ctx)) {
1689 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1690 CASE_SENSITIVE, 0, NULL, 0, ctx);
1691 if (unlikely(err)) {
1697 BUG_ON(a->non_resident);
1698 /* The total length of the attribute value. */
1699 attr_len = le32_to_cpu(a->data.resident.value_length);
1700 i_size = i_size_read(vi);
1701 BUG_ON(attr_len != i_size);
1702 BUG_ON(pos > attr_len);
1704 BUG_ON(end > le32_to_cpu(a->length) -
1705 le16_to_cpu(a->data.resident.value_offset));
1706 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1707 kaddr = kmap_atomic(page, KM_USER0);
1708 /* Copy the received data from the page to the mft record. */
1709 memcpy(kattr + pos, kaddr + pos, bytes);
1710 /* Update the attribute length if necessary. */
1711 if (end > attr_len) {
1713 a->data.resident.value_length = cpu_to_le32(attr_len);
1716 * If the page is not uptodate, bring the out of bounds area(s)
1717 * uptodate by copying data from the mft record to the page.
1719 if (!PageUptodate(page)) {
1721 memcpy(kaddr, kattr, pos);
1723 memcpy(kaddr + end, kattr + end, attr_len - end);
1724 /* Zero the region outside the end of the attribute value. */
1725 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1726 flush_dcache_page(page);
1727 SetPageUptodate(page);
1729 kunmap_atomic(kaddr, KM_USER0);
1730 /* Update initialized_size/i_size if necessary. */
1731 read_lock_irqsave(&ni->size_lock, flags);
1732 initialized_size = ni->initialized_size;
1733 BUG_ON(end > ni->allocated_size);
1734 read_unlock_irqrestore(&ni->size_lock, flags);
1735 BUG_ON(initialized_size != i_size);
1736 if (end > initialized_size) {
1737 unsigned long flags;
1739 write_lock_irqsave(&ni->size_lock, flags);
1740 ni->initialized_size = end;
1741 i_size_write(vi, end);
1742 write_unlock_irqrestore(&ni->size_lock, flags);
1744 /* Mark the mft record dirty, so it gets written back. */
1745 flush_dcache_mft_record_page(ctx->ntfs_ino);
1746 mark_mft_record_dirty(ctx->ntfs_ino);
1747 ntfs_attr_put_search_ctx(ctx);
1748 unmap_mft_record(base_ni);
1749 ntfs_debug("Done.");
1752 if (err == -ENOMEM) {
1753 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1754 "commit the write.");
1755 if (PageUptodate(page)) {
1756 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1757 "dirty so the write will be retried "
1758 "later on by the VM.");
1760 * Put the page on mapping->dirty_pages, but leave its
1761 * buffers' dirty state as-is.
1763 __set_page_dirty_nobuffers(page);
1766 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1767 "data has been lost.");
1769 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1770 "with error %i.", err);
1771 NVolSetErrors(ni->vol);
1774 ntfs_attr_put_search_ctx(ctx);
1776 unmap_mft_record(base_ni);
1781 * ntfs_file_buffered_write -
1783 * Locking: The vfs is holding ->i_mutex on the inode.
1785 static ssize_t ntfs_file_buffered_write(struct kiocb *iocb,
1786 const struct iovec *iov, unsigned long nr_segs,
1787 loff_t pos, loff_t *ppos, size_t count)
1789 struct file *file = iocb->ki_filp;
1790 struct address_space *mapping = file->f_mapping;
1791 struct inode *vi = mapping->host;
1792 ntfs_inode *ni = NTFS_I(vi);
1793 ntfs_volume *vol = ni->vol;
1794 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1795 struct page *cached_page = NULL;
1796 char __user *buf = NULL;
1800 unsigned long flags;
1801 size_t bytes, iov_ofs = 0; /* Offset in the current iovec. */
1802 ssize_t status, written;
1805 struct pagevec lru_pvec;
1807 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1808 "pos 0x%llx, count 0x%lx.",
1809 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
1810 (unsigned long long)pos, (unsigned long)count);
1811 if (unlikely(!count))
1813 BUG_ON(NInoMstProtected(ni));
1815 * If the attribute is not an index root and it is encrypted or
1816 * compressed, we cannot write to it yet. Note we need to check for
1817 * AT_INDEX_ALLOCATION since this is the type of both directory and
1820 if (ni->type != AT_INDEX_ALLOCATION) {
1821 /* If file is encrypted, deny access, just like NT4. */
1822 if (NInoEncrypted(ni)) {
1824 * Reminder for later: Encrypted files are _always_
1825 * non-resident so that the content can always be
1828 ntfs_debug("Denying write access to encrypted file.");
1831 if (NInoCompressed(ni)) {
1832 /* Only unnamed $DATA attribute can be compressed. */
1833 BUG_ON(ni->type != AT_DATA);
1834 BUG_ON(ni->name_len);
1836 * Reminder for later: If resident, the data is not
1837 * actually compressed. Only on the switch to non-
1838 * resident does compression kick in. This is in
1839 * contrast to encrypted files (see above).
1841 ntfs_error(vi->i_sb, "Writing to compressed files is "
1842 "not implemented yet. Sorry.");
1847 * If a previous ntfs_truncate() failed, repeat it and abort if it
1850 if (unlikely(NInoTruncateFailed(ni))) {
1851 down_write(&vi->i_alloc_sem);
1852 err = ntfs_truncate(vi);
1853 up_write(&vi->i_alloc_sem);
1854 if (err || NInoTruncateFailed(ni)) {
1857 ntfs_error(vol->sb, "Cannot perform write to inode "
1858 "0x%lx, attribute type 0x%x, because "
1859 "ntfs_truncate() failed (error code "
1861 (unsigned)le32_to_cpu(ni->type), err);
1865 /* The first byte after the write. */
1868 * If the write goes beyond the allocated size, extend the allocation
1869 * to cover the whole of the write, rounded up to the nearest cluster.
1871 read_lock_irqsave(&ni->size_lock, flags);
1872 ll = ni->allocated_size;
1873 read_unlock_irqrestore(&ni->size_lock, flags);
1875 /* Extend the allocation without changing the data size. */
1876 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
1877 if (likely(ll >= 0)) {
1879 /* If the extension was partial truncate the write. */
1881 ntfs_debug("Truncating write to inode 0x%lx, "
1882 "attribute type 0x%x, because "
1883 "the allocation was only "
1884 "partially extended.",
1885 vi->i_ino, (unsigned)
1886 le32_to_cpu(ni->type));
1892 read_lock_irqsave(&ni->size_lock, flags);
1893 ll = ni->allocated_size;
1894 read_unlock_irqrestore(&ni->size_lock, flags);
1895 /* Perform a partial write if possible or fail. */
1897 ntfs_debug("Truncating write to inode 0x%lx, "
1898 "attribute type 0x%x, because "
1899 "extending the allocation "
1900 "failed (error code %i).",
1901 vi->i_ino, (unsigned)
1902 le32_to_cpu(ni->type), err);
1906 ntfs_error(vol->sb, "Cannot perform write to "
1907 "inode 0x%lx, attribute type "
1908 "0x%x, because extending the "
1909 "allocation failed (error "
1910 "code %i).", vi->i_ino,
1912 le32_to_cpu(ni->type), err);
1917 pagevec_init(&lru_pvec, 0);
1920 * If the write starts beyond the initialized size, extend it up to the
1921 * beginning of the write and initialize all non-sparse space between
1922 * the old initialized size and the new one. This automatically also
1923 * increments the vfs inode->i_size to keep it above or equal to the
1926 read_lock_irqsave(&ni->size_lock, flags);
1927 ll = ni->initialized_size;
1928 read_unlock_irqrestore(&ni->size_lock, flags);
1930 err = ntfs_attr_extend_initialized(ni, pos, &cached_page,
1933 ntfs_error(vol->sb, "Cannot perform write to inode "
1934 "0x%lx, attribute type 0x%x, because "
1935 "extending the initialized size "
1936 "failed (error code %i).", vi->i_ino,
1937 (unsigned)le32_to_cpu(ni->type), err);
1943 * Determine the number of pages per cluster for non-resident
1947 if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni))
1948 nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT;
1949 /* Finally, perform the actual write. */
1951 if (likely(nr_segs == 1))
1952 buf = iov->iov_base;
1955 pgoff_t idx, start_idx;
1956 unsigned ofs, do_pages, u;
1959 start_idx = idx = pos >> PAGE_CACHE_SHIFT;
1960 ofs = pos & ~PAGE_CACHE_MASK;
1961 bytes = PAGE_CACHE_SIZE - ofs;
1964 vcn = pos >> vol->cluster_size_bits;
1965 if (vcn != last_vcn) {
1968 * Get the lcn of the vcn the write is in. If
1969 * it is a hole, need to lock down all pages in
1972 down_read(&ni->runlist.lock);
1973 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1974 vol->cluster_size_bits, false);
1975 up_read(&ni->runlist.lock);
1976 if (unlikely(lcn < LCN_HOLE)) {
1978 if (lcn == LCN_ENOMEM)
1981 ntfs_error(vol->sb, "Cannot "
1984 "attribute type 0x%x, "
1985 "because the attribute "
1987 vi->i_ino, (unsigned)
1988 le32_to_cpu(ni->type));
1991 if (lcn == LCN_HOLE) {
1992 start_idx = (pos & ~(s64)
1993 vol->cluster_size_mask)
1994 >> PAGE_CACHE_SHIFT;
1995 bytes = vol->cluster_size - (pos &
1996 vol->cluster_size_mask);
1997 do_pages = nr_pages;
2004 * Bring in the user page(s) that we will copy from _first_.
2005 * Otherwise there is a nasty deadlock on copying from the same
2006 * page(s) as we are writing to, without it/them being marked
2007 * up-to-date. Note, at present there is nothing to stop the
2008 * pages being swapped out between us bringing them into memory
2009 * and doing the actual copying.
2011 if (likely(nr_segs == 1))
2012 ntfs_fault_in_pages_readable(buf, bytes);
2014 ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes);
2015 /* Get and lock @do_pages starting at index @start_idx. */
2016 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
2017 pages, &cached_page, &lru_pvec);
2018 if (unlikely(status))
2021 * For non-resident attributes, we need to fill any holes with
2022 * actual clusters and ensure all bufferes are mapped. We also
2023 * need to bring uptodate any buffers that are only partially
2026 if (NInoNonResident(ni)) {
2027 status = ntfs_prepare_pages_for_non_resident_write(
2028 pages, do_pages, pos, bytes);
2029 if (unlikely(status)) {
2033 unlock_page(pages[--do_pages]);
2034 page_cache_release(pages[do_pages]);
2037 * The write preparation may have instantiated
2038 * allocated space outside i_size. Trim this
2039 * off again. We can ignore any errors in this
2040 * case as we will just be waisting a bit of
2041 * allocated space, which is not a disaster.
2043 i_size = i_size_read(vi);
2044 if (pos + bytes > i_size)
2045 vmtruncate(vi, i_size);
2049 u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index;
2050 if (likely(nr_segs == 1)) {
2051 copied = ntfs_copy_from_user(pages + u, do_pages - u,
2055 copied = ntfs_copy_from_user_iovec(pages + u,
2056 do_pages - u, ofs, &iov, &iov_ofs,
2058 ntfs_flush_dcache_pages(pages + u, do_pages - u);
2059 status = ntfs_commit_pages_after_write(pages, do_pages, pos,
2061 if (likely(!status)) {
2065 if (unlikely(copied != bytes))
2069 unlock_page(pages[--do_pages]);
2070 mark_page_accessed(pages[do_pages]);
2071 page_cache_release(pages[do_pages]);
2073 if (unlikely(status))
2075 balance_dirty_pages_ratelimited(mapping);
2081 page_cache_release(cached_page);
2082 /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */
2083 if (likely(!status)) {
2084 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) {
2085 if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb))
2086 status = generic_osync_inode(vi, mapping,
2087 OSYNC_METADATA|OSYNC_DATA);
2090 pagevec_lru_add(&lru_pvec);
2091 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
2092 written ? "written" : "status", (unsigned long)written,
2094 return written ? written : status;
2098 * ntfs_file_aio_write_nolock -
2100 static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb,
2101 const struct iovec *iov, unsigned long nr_segs, loff_t *ppos)
2103 struct file *file = iocb->ki_filp;
2104 struct address_space *mapping = file->f_mapping;
2105 struct inode *inode = mapping->host;
2107 size_t count; /* after file limit checks */
2108 ssize_t written, err;
2111 err = generic_segment_checks(iov, &nr_segs, &count, VERIFY_READ);
2115 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2116 /* We can write back this queue in page reclaim. */
2117 current->backing_dev_info = mapping->backing_dev_info;
2119 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2124 err = remove_suid(file->f_path.dentry);
2127 file_update_time(file);
2128 written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos,
2131 current->backing_dev_info = NULL;
2132 return written ? written : err;
2136 * ntfs_file_aio_write -
2138 static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2139 unsigned long nr_segs, loff_t pos)
2141 struct file *file = iocb->ki_filp;
2142 struct address_space *mapping = file->f_mapping;
2143 struct inode *inode = mapping->host;
2146 BUG_ON(iocb->ki_pos != pos);
2148 mutex_lock(&inode->i_mutex);
2149 ret = ntfs_file_aio_write_nolock(iocb, iov, nr_segs, &iocb->ki_pos);
2150 mutex_unlock(&inode->i_mutex);
2151 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2152 int err = sync_page_range(inode, mapping, pos, ret);
2160 * ntfs_file_writev -
2162 * Basically the same as generic_file_writev() except that it ends up calling
2163 * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock().
2165 static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov,
2166 unsigned long nr_segs, loff_t *ppos)
2168 struct address_space *mapping = file->f_mapping;
2169 struct inode *inode = mapping->host;
2173 mutex_lock(&inode->i_mutex);
2174 init_sync_kiocb(&kiocb, file);
2175 ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2176 if (ret == -EIOCBQUEUED)
2177 ret = wait_on_sync_kiocb(&kiocb);
2178 mutex_unlock(&inode->i_mutex);
2179 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2180 int err = sync_page_range(inode, mapping, *ppos - ret, ret);
2188 * ntfs_file_write - simple wrapper for ntfs_file_writev()
2190 static ssize_t ntfs_file_write(struct file *file, const char __user *buf,
2191 size_t count, loff_t *ppos)
2193 struct iovec local_iov = { .iov_base = (void __user *)buf,
2196 return ntfs_file_writev(file, &local_iov, 1, ppos);
2200 * ntfs_file_fsync - sync a file to disk
2201 * @filp: file to be synced
2202 * @dentry: dentry describing the file to sync
2203 * @datasync: if non-zero only flush user data and not metadata
2205 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
2206 * system calls. This function is inspired by fs/buffer.c::file_fsync().
2208 * If @datasync is false, write the mft record and all associated extent mft
2209 * records as well as the $DATA attribute and then sync the block device.
2211 * If @datasync is true and the attribute is non-resident, we skip the writing
2212 * of the mft record and all associated extent mft records (this might still
2213 * happen due to the write_inode_now() call).
2215 * Also, if @datasync is true, we do not wait on the inode to be written out
2216 * but we always wait on the page cache pages to be written out.
2218 * Note: In the past @filp could be NULL so we ignore it as we don't need it
2221 * Locking: Caller must hold i_mutex on the inode.
2223 * TODO: We should probably also write all attribute/index inodes associated
2224 * with this inode but since we have no simple way of getting to them we ignore
2225 * this problem for now.
2227 static int ntfs_file_fsync(struct file *filp, struct dentry *dentry,
2230 struct inode *vi = dentry->d_inode;
2233 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2234 BUG_ON(S_ISDIR(vi->i_mode));
2235 if (!datasync || !NInoNonResident(NTFS_I(vi)))
2236 ret = ntfs_write_inode(vi, 1);
2237 write_inode_now(vi, !datasync);
2239 * NOTE: If we were to use mapping->private_list (see ext2 and
2240 * fs/buffer.c) for dirty blocks then we could optimize the below to be
2241 * sync_mapping_buffers(vi->i_mapping).
2243 err = sync_blockdev(vi->i_sb->s_bdev);
2244 if (unlikely(err && !ret))
2247 ntfs_debug("Done.");
2249 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
2250 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
2254 #endif /* NTFS_RW */
2256 const struct file_operations ntfs_file_ops = {
2257 .llseek = generic_file_llseek, /* Seek inside file. */
2258 .read = do_sync_read, /* Read from file. */
2259 .aio_read = generic_file_aio_read, /* Async read from file. */
2261 .write = ntfs_file_write, /* Write to file. */
2262 .aio_write = ntfs_file_aio_write, /* Async write to file. */
2263 /*.release = ,*/ /* Last file is closed. See
2265 ext2_release_file() for
2266 how to use this to discard
2267 preallocated space for
2268 write opened files. */
2269 .fsync = ntfs_file_fsync, /* Sync a file to disk. */
2270 /*.aio_fsync = ,*/ /* Sync all outstanding async
2273 #endif /* NTFS_RW */
2274 /*.ioctl = ,*/ /* Perform function on the
2275 mounted filesystem. */
2276 .mmap = generic_file_mmap, /* Mmap file. */
2277 .open = ntfs_file_open, /* Open file. */
2278 .sendfile = generic_file_sendfile, /* Zero-copy data send with
2279 the data source being on
2280 the ntfs partition. We do
2281 not need to care about the
2282 data destination. */
2283 /*.sendpage = ,*/ /* Zero-copy data send with
2284 the data destination being
2285 on the ntfs partition. We
2286 do not need to care about
2290 const struct inode_operations ntfs_file_inode_ops = {
2292 .truncate = ntfs_truncate_vfs,
2293 .setattr = ntfs_setattr,
2294 #endif /* NTFS_RW */
2297 const struct file_operations ntfs_empty_file_ops = {};
2299 const struct inode_operations ntfs_empty_inode_ops = {};