1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * file.c - NTFS kernel file operations. Part of the Linux-NTFS project.
5 * Copyright (c) 2001-2015 Anton Altaparmakov and Tuxera Inc.
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 #include <linux/buffer_head.h>
11 #include <linux/gfp.h>
12 #include <linux/pagemap.h>
13 #include <linux/pagevec.h>
14 #include <linux/sched/signal.h>
15 #include <linux/swap.h>
16 #include <linux/uio.h>
17 #include <linux/writeback.h>
20 #include <linux/uaccess.h>
32 * ntfs_file_open - called when an inode is about to be opened
33 * @vi: inode to be opened
34 * @filp: file structure describing the inode
36 * Limit file size to the page cache limit on architectures where unsigned long
37 * is 32-bits. This is the most we can do for now without overflowing the page
38 * cache page index. Doing it this way means we don't run into problems because
39 * of existing too large files. It would be better to allow the user to read
40 * the beginning of the file but I doubt very much anyone is going to hit this
41 * check on a 32-bit architecture, so there is no point in adding the extra
42 * complexity required to support this.
44 * On 64-bit architectures, the check is hopefully optimized away by the
47 * After the check passes, just call generic_file_open() to do its work.
49 static int ntfs_file_open(struct inode *vi, struct file *filp)
51 if (sizeof(unsigned long) < 8) {
52 if (i_size_read(vi) > MAX_LFS_FILESIZE)
55 return generic_file_open(vi, filp);
61 * ntfs_attr_extend_initialized - extend the initialized size of an attribute
62 * @ni: ntfs inode of the attribute to extend
63 * @new_init_size: requested new initialized size in bytes
65 * Extend the initialized size of an attribute described by the ntfs inode @ni
66 * to @new_init_size bytes. This involves zeroing any non-sparse space between
67 * the old initialized size and @new_init_size both in the page cache and on
68 * disk (if relevant complete pages are already uptodate in the page cache then
69 * these are simply marked dirty).
71 * As a side-effect, the file size (vfs inode->i_size) may be incremented as,
72 * in the resident attribute case, it is tied to the initialized size and, in
73 * the non-resident attribute case, it may not fall below the initialized size.
75 * Note that if the attribute is resident, we do not need to touch the page
76 * cache at all. This is because if the page cache page is not uptodate we
77 * bring it uptodate later, when doing the write to the mft record since we
78 * then already have the page mapped. And if the page is uptodate, the
79 * non-initialized region will already have been zeroed when the page was
80 * brought uptodate and the region may in fact already have been overwritten
81 * with new data via mmap() based writes, so we cannot just zero it. And since
82 * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped
83 * is unspecified, we choose not to do zeroing and thus we do not need to touch
84 * the page at all. For a more detailed explanation see ntfs_truncate() in
87 * Return 0 on success and -errno on error. In the case that an error is
88 * encountered it is possible that the initialized size will already have been
89 * incremented some way towards @new_init_size but it is guaranteed that if
90 * this is the case, the necessary zeroing will also have happened and that all
91 * metadata is self-consistent.
93 * Locking: i_mutex on the vfs inode corrseponsind to the ntfs inode @ni must be
96 static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size)
100 pgoff_t index, end_index;
102 struct inode *vi = VFS_I(ni);
104 MFT_RECORD *m = NULL;
106 ntfs_attr_search_ctx *ctx = NULL;
107 struct address_space *mapping;
108 struct page *page = NULL;
113 read_lock_irqsave(&ni->size_lock, flags);
114 old_init_size = ni->initialized_size;
115 old_i_size = i_size_read(vi);
116 BUG_ON(new_init_size > ni->allocated_size);
117 read_unlock_irqrestore(&ni->size_lock, flags);
118 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
119 "old_initialized_size 0x%llx, "
120 "new_initialized_size 0x%llx, i_size 0x%llx.",
121 vi->i_ino, (unsigned)le32_to_cpu(ni->type),
122 (unsigned long long)old_init_size,
123 (unsigned long long)new_init_size, old_i_size);
127 base_ni = ni->ext.base_ntfs_ino;
128 /* Use goto to reduce indentation and we need the label below anyway. */
129 if (NInoNonResident(ni))
130 goto do_non_resident_extend;
131 BUG_ON(old_init_size != old_i_size);
132 m = map_mft_record(base_ni);
138 ctx = ntfs_attr_get_search_ctx(base_ni, m);
139 if (unlikely(!ctx)) {
143 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
144 CASE_SENSITIVE, 0, NULL, 0, ctx);
152 BUG_ON(a->non_resident);
153 /* The total length of the attribute value. */
154 attr_len = le32_to_cpu(a->data.resident.value_length);
155 BUG_ON(old_i_size != (loff_t)attr_len);
157 * Do the zeroing in the mft record and update the attribute size in
160 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
161 memset(kattr + attr_len, 0, new_init_size - attr_len);
162 a->data.resident.value_length = cpu_to_le32((u32)new_init_size);
163 /* Finally, update the sizes in the vfs and ntfs inodes. */
164 write_lock_irqsave(&ni->size_lock, flags);
165 i_size_write(vi, new_init_size);
166 ni->initialized_size = new_init_size;
167 write_unlock_irqrestore(&ni->size_lock, flags);
169 do_non_resident_extend:
171 * If the new initialized size @new_init_size exceeds the current file
172 * size (vfs inode->i_size), we need to extend the file size to the
173 * new initialized size.
175 if (new_init_size > old_i_size) {
176 m = map_mft_record(base_ni);
182 ctx = ntfs_attr_get_search_ctx(base_ni, m);
183 if (unlikely(!ctx)) {
187 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
188 CASE_SENSITIVE, 0, NULL, 0, ctx);
196 BUG_ON(!a->non_resident);
197 BUG_ON(old_i_size != (loff_t)
198 sle64_to_cpu(a->data.non_resident.data_size));
199 a->data.non_resident.data_size = cpu_to_sle64(new_init_size);
200 flush_dcache_mft_record_page(ctx->ntfs_ino);
201 mark_mft_record_dirty(ctx->ntfs_ino);
202 /* Update the file size in the vfs inode. */
203 i_size_write(vi, new_init_size);
204 ntfs_attr_put_search_ctx(ctx);
206 unmap_mft_record(base_ni);
209 mapping = vi->i_mapping;
210 index = old_init_size >> PAGE_SHIFT;
211 end_index = (new_init_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
214 * Read the page. If the page is not present, this will zero
215 * the uninitialized regions for us.
217 page = read_mapping_page(mapping, index, NULL);
222 if (unlikely(PageError(page))) {
228 * Update the initialized size in the ntfs inode. This is
229 * enough to make ntfs_writepage() work.
231 write_lock_irqsave(&ni->size_lock, flags);
232 ni->initialized_size = (s64)(index + 1) << PAGE_SHIFT;
233 if (ni->initialized_size > new_init_size)
234 ni->initialized_size = new_init_size;
235 write_unlock_irqrestore(&ni->size_lock, flags);
236 /* Set the page dirty so it gets written out. */
237 set_page_dirty(page);
240 * Play nice with the vm and the rest of the system. This is
241 * very much needed as we can potentially be modifying the
242 * initialised size from a very small value to a really huge
244 * f = open(somefile, O_TRUNC);
245 * truncate(f, 10GiB);
248 * And this would mean we would be marking dirty hundreds of
249 * thousands of pages or as in the above example more than
250 * two and a half million pages!
252 * TODO: For sparse pages could optimize this workload by using
253 * the FsMisc / MiscFs page bit as a "PageIsSparse" bit. This
254 * would be set in readpage for sparse pages and here we would
255 * not need to mark dirty any pages which have this bit set.
256 * The only caveat is that we have to clear the bit everywhere
257 * where we allocate any clusters that lie in the page or that
260 * TODO: An even greater optimization would be for us to only
261 * call readpage() on pages which are not in sparse regions as
262 * determined from the runlist. This would greatly reduce the
263 * number of pages we read and make dirty in the case of sparse
266 balance_dirty_pages_ratelimited(mapping);
268 } while (++index < end_index);
269 read_lock_irqsave(&ni->size_lock, flags);
270 BUG_ON(ni->initialized_size != new_init_size);
271 read_unlock_irqrestore(&ni->size_lock, flags);
272 /* Now bring in sync the initialized_size in the mft record. */
273 m = map_mft_record(base_ni);
279 ctx = ntfs_attr_get_search_ctx(base_ni, m);
280 if (unlikely(!ctx)) {
284 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
285 CASE_SENSITIVE, 0, NULL, 0, ctx);
293 BUG_ON(!a->non_resident);
294 a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size);
296 flush_dcache_mft_record_page(ctx->ntfs_ino);
297 mark_mft_record_dirty(ctx->ntfs_ino);
299 ntfs_attr_put_search_ctx(ctx);
301 unmap_mft_record(base_ni);
302 ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.",
303 (unsigned long long)new_init_size, i_size_read(vi));
306 write_lock_irqsave(&ni->size_lock, flags);
307 ni->initialized_size = old_init_size;
308 write_unlock_irqrestore(&ni->size_lock, flags);
311 ntfs_attr_put_search_ctx(ctx);
313 unmap_mft_record(base_ni);
314 ntfs_debug("Failed. Returning error code %i.", err);
318 static ssize_t ntfs_prepare_file_for_write(struct kiocb *iocb,
319 struct iov_iter *from)
325 struct file *file = iocb->ki_filp;
326 struct inode *vi = file_inode(file);
327 ntfs_inode *ni = NTFS_I(vi);
328 ntfs_volume *vol = ni->vol;
330 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
331 "0x%llx, count 0x%zx.", vi->i_ino,
332 (unsigned)le32_to_cpu(ni->type),
333 (unsigned long long)iocb->ki_pos,
334 iov_iter_count(from));
335 err = generic_write_checks(iocb, from);
336 if (unlikely(err <= 0))
339 * All checks have passed. Before we start doing any writing we want
340 * to abort any totally illegal writes.
342 BUG_ON(NInoMstProtected(ni));
343 BUG_ON(ni->type != AT_DATA);
344 /* If file is encrypted, deny access, just like NT4. */
345 if (NInoEncrypted(ni)) {
346 /* Only $DATA attributes can be encrypted. */
348 * Reminder for later: Encrypted files are _always_
349 * non-resident so that the content can always be encrypted.
351 ntfs_debug("Denying write access to encrypted file.");
355 if (NInoCompressed(ni)) {
356 /* Only unnamed $DATA attribute can be compressed. */
357 BUG_ON(ni->name_len);
359 * Reminder for later: If resident, the data is not actually
360 * compressed. Only on the switch to non-resident does
361 * compression kick in. This is in contrast to encrypted files
364 ntfs_error(vi->i_sb, "Writing to compressed files is not "
365 "implemented yet. Sorry.");
369 err = file_remove_privs(file);
373 * Our ->update_time method always succeeds thus file_update_time()
374 * cannot fail either so there is no need to check the return code.
376 file_update_time(file);
378 /* The first byte after the last cluster being written to. */
379 end = (pos + iov_iter_count(from) + vol->cluster_size_mask) &
380 ~(u64)vol->cluster_size_mask;
382 * If the write goes beyond the allocated size, extend the allocation
383 * to cover the whole of the write, rounded up to the nearest cluster.
385 read_lock_irqsave(&ni->size_lock, flags);
386 ll = ni->allocated_size;
387 read_unlock_irqrestore(&ni->size_lock, flags);
390 * Extend the allocation without changing the data size.
392 * Note we ensure the allocation is big enough to at least
393 * write some data but we do not require the allocation to be
394 * complete, i.e. it may be partial.
396 ll = ntfs_attr_extend_allocation(ni, end, -1, pos);
397 if (likely(ll >= 0)) {
399 /* If the extension was partial truncate the write. */
401 ntfs_debug("Truncating write to inode 0x%lx, "
402 "attribute type 0x%x, because "
403 "the allocation was only "
404 "partially extended.",
405 vi->i_ino, (unsigned)
406 le32_to_cpu(ni->type));
407 iov_iter_truncate(from, ll - pos);
411 read_lock_irqsave(&ni->size_lock, flags);
412 ll = ni->allocated_size;
413 read_unlock_irqrestore(&ni->size_lock, flags);
414 /* Perform a partial write if possible or fail. */
416 ntfs_debug("Truncating write to inode 0x%lx "
417 "attribute type 0x%x, because "
418 "extending the allocation "
419 "failed (error %d).",
420 vi->i_ino, (unsigned)
421 le32_to_cpu(ni->type),
423 iov_iter_truncate(from, ll - pos);
426 ntfs_error(vi->i_sb, "Cannot perform "
429 "type 0x%x, because "
433 vi->i_ino, (unsigned)
434 le32_to_cpu(ni->type),
437 ntfs_debug("Cannot perform write to "
439 "attribute type 0x%x, "
440 "because there is not "
442 vi->i_ino, (unsigned)
443 le32_to_cpu(ni->type));
449 * If the write starts beyond the initialized size, extend it up to the
450 * beginning of the write and initialize all non-sparse space between
451 * the old initialized size and the new one. This automatically also
452 * increments the vfs inode->i_size to keep it above or equal to the
455 read_lock_irqsave(&ni->size_lock, flags);
456 ll = ni->initialized_size;
457 read_unlock_irqrestore(&ni->size_lock, flags);
460 * Wait for ongoing direct i/o to complete before proceeding.
461 * New direct i/o cannot start as we hold i_mutex.
464 err = ntfs_attr_extend_initialized(ni, pos);
465 if (unlikely(err < 0))
466 ntfs_error(vi->i_sb, "Cannot perform write to inode "
467 "0x%lx, attribute type 0x%x, because "
468 "extending the initialized size "
469 "failed (error %d).", vi->i_ino,
470 (unsigned)le32_to_cpu(ni->type),
478 * __ntfs_grab_cache_pages - obtain a number of locked pages
479 * @mapping: address space mapping from which to obtain page cache pages
480 * @index: starting index in @mapping at which to begin obtaining pages
481 * @nr_pages: number of page cache pages to obtain
482 * @pages: array of pages in which to return the obtained page cache pages
483 * @cached_page: allocated but as yet unused page
485 * Obtain @nr_pages locked page cache pages from the mapping @mapping and
486 * starting at index @index.
488 * If a page is newly created, add it to lru list
490 * Note, the page locks are obtained in ascending page index order.
492 static inline int __ntfs_grab_cache_pages(struct address_space *mapping,
493 pgoff_t index, const unsigned nr_pages, struct page **pages,
494 struct page **cached_page)
501 pages[nr] = find_get_page_flags(mapping, index, FGP_LOCK |
505 *cached_page = page_cache_alloc(mapping);
506 if (unlikely(!*cached_page)) {
511 err = add_to_page_cache_lru(*cached_page, mapping,
513 mapping_gfp_constraint(mapping, GFP_KERNEL));
519 pages[nr] = *cached_page;
524 } while (nr < nr_pages);
529 unlock_page(pages[--nr]);
535 static inline int ntfs_submit_bh_for_read(struct buffer_head *bh)
539 bh->b_end_io = end_buffer_read_sync;
540 return submit_bh(REQ_OP_READ, 0, bh);
544 * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data
545 * @pages: array of destination pages
546 * @nr_pages: number of pages in @pages
547 * @pos: byte position in file at which the write begins
548 * @bytes: number of bytes to be written
550 * This is called for non-resident attributes from ntfs_file_buffered_write()
551 * with i_mutex held on the inode (@pages[0]->mapping->host). There are
552 * @nr_pages pages in @pages which are locked but not kmap()ped. The source
553 * data has not yet been copied into the @pages.
555 * Need to fill any holes with actual clusters, allocate buffers if necessary,
556 * ensure all the buffers are mapped, and bring uptodate any buffers that are
557 * only partially being written to.
559 * If @nr_pages is greater than one, we are guaranteed that the cluster size is
560 * greater than PAGE_SIZE, that all pages in @pages are entirely inside
561 * the same cluster and that they are the entirety of that cluster, and that
562 * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole.
564 * i_size is not to be modified yet.
566 * Return 0 on success or -errno on error.
568 static int ntfs_prepare_pages_for_non_resident_write(struct page **pages,
569 unsigned nr_pages, s64 pos, size_t bytes)
571 VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend;
573 s64 bh_pos, vcn_len, end, initialized_size;
577 ntfs_inode *ni, *base_ni = NULL;
579 runlist_element *rl, *rl2;
580 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
581 ntfs_attr_search_ctx *ctx = NULL;
582 MFT_RECORD *m = NULL;
583 ATTR_RECORD *a = NULL;
585 u32 attr_rec_len = 0;
586 unsigned blocksize, u;
588 bool rl_write_locked, was_hole, is_retry;
589 unsigned char blocksize_bits;
592 u8 mft_attr_mapped:1;
595 } status = { 0, 0, 0, 0 };
600 vi = pages[0]->mapping->host;
603 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
604 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
605 vi->i_ino, ni->type, pages[0]->index, nr_pages,
606 (long long)pos, bytes);
607 blocksize = vol->sb->s_blocksize;
608 blocksize_bits = vol->sb->s_blocksize_bits;
614 * create_empty_buffers() will create uptodate/dirty buffers if
615 * the page is uptodate/dirty.
617 if (!page_has_buffers(page)) {
618 create_empty_buffers(page, blocksize, 0);
619 if (unlikely(!page_has_buffers(page)))
622 } while (++u < nr_pages);
623 rl_write_locked = false;
630 cpos = pos >> vol->cluster_size_bits;
632 cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits;
634 * Loop over each page and for each page over each buffer. Use goto to
635 * reduce indentation.
640 bh_pos = (s64)page->index << PAGE_SHIFT;
641 bh = head = page_buffers(page);
647 /* Clear buffer_new on all buffers to reinitialise state. */
649 clear_buffer_new(bh);
650 bh_end = bh_pos + blocksize;
651 bh_cpos = bh_pos >> vol->cluster_size_bits;
652 bh_cofs = bh_pos & vol->cluster_size_mask;
653 if (buffer_mapped(bh)) {
655 * The buffer is already mapped. If it is uptodate,
658 if (buffer_uptodate(bh))
661 * The buffer is not uptodate. If the page is uptodate
662 * set the buffer uptodate and otherwise ignore it.
664 if (PageUptodate(page)) {
665 set_buffer_uptodate(bh);
669 * Neither the page nor the buffer are uptodate. If
670 * the buffer is only partially being written to, we
671 * need to read it in before the write, i.e. now.
673 if ((bh_pos < pos && bh_end > pos) ||
674 (bh_pos < end && bh_end > end)) {
676 * If the buffer is fully or partially within
677 * the initialized size, do an actual read.
678 * Otherwise, simply zero the buffer.
680 read_lock_irqsave(&ni->size_lock, flags);
681 initialized_size = ni->initialized_size;
682 read_unlock_irqrestore(&ni->size_lock, flags);
683 if (bh_pos < initialized_size) {
684 ntfs_submit_bh_for_read(bh);
687 zero_user(page, bh_offset(bh),
689 set_buffer_uptodate(bh);
694 /* Unmapped buffer. Need to map it. */
695 bh->b_bdev = vol->sb->s_bdev;
697 * If the current buffer is in the same clusters as the map
698 * cache, there is no need to check the runlist again. The
699 * map cache is made up of @vcn, which is the first cached file
700 * cluster, @vcn_len which is the number of cached file
701 * clusters, @lcn is the device cluster corresponding to @vcn,
702 * and @lcn_block is the block number corresponding to @lcn.
704 cdelta = bh_cpos - vcn;
705 if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) {
708 bh->b_blocknr = lcn_block +
709 (cdelta << (vol->cluster_size_bits -
711 (bh_cofs >> blocksize_bits);
712 set_buffer_mapped(bh);
714 * If the page is uptodate so is the buffer. If the
715 * buffer is fully outside the write, we ignore it if
716 * it was already allocated and we mark it dirty so it
717 * gets written out if we allocated it. On the other
718 * hand, if we allocated the buffer but we are not
719 * marking it dirty we set buffer_new so we can do
722 if (PageUptodate(page)) {
723 if (!buffer_uptodate(bh))
724 set_buffer_uptodate(bh);
725 if (unlikely(was_hole)) {
726 /* We allocated the buffer. */
727 clean_bdev_bh_alias(bh);
728 if (bh_end <= pos || bh_pos >= end)
729 mark_buffer_dirty(bh);
735 /* Page is _not_ uptodate. */
736 if (likely(!was_hole)) {
738 * Buffer was already allocated. If it is not
739 * uptodate and is only partially being written
740 * to, we need to read it in before the write,
743 if (!buffer_uptodate(bh) && bh_pos < end &&
748 * If the buffer is fully or partially
749 * within the initialized size, do an
750 * actual read. Otherwise, simply zero
753 read_lock_irqsave(&ni->size_lock,
755 initialized_size = ni->initialized_size;
756 read_unlock_irqrestore(&ni->size_lock,
758 if (bh_pos < initialized_size) {
759 ntfs_submit_bh_for_read(bh);
762 zero_user(page, bh_offset(bh),
764 set_buffer_uptodate(bh);
769 /* We allocated the buffer. */
770 clean_bdev_bh_alias(bh);
772 * If the buffer is fully outside the write, zero it,
773 * set it uptodate, and mark it dirty so it gets
774 * written out. If it is partially being written to,
775 * zero region surrounding the write but leave it to
776 * commit write to do anything else. Finally, if the
777 * buffer is fully being overwritten, do nothing.
779 if (bh_end <= pos || bh_pos >= end) {
780 if (!buffer_uptodate(bh)) {
781 zero_user(page, bh_offset(bh),
783 set_buffer_uptodate(bh);
785 mark_buffer_dirty(bh);
789 if (!buffer_uptodate(bh) &&
790 (bh_pos < pos || bh_end > end)) {
794 kaddr = kmap_atomic(page);
796 pofs = bh_pos & ~PAGE_MASK;
797 memset(kaddr + pofs, 0, pos - bh_pos);
800 pofs = end & ~PAGE_MASK;
801 memset(kaddr + pofs, 0, bh_end - end);
803 kunmap_atomic(kaddr);
804 flush_dcache_page(page);
809 * Slow path: this is the first buffer in the cluster. If it
810 * is outside allocated size and is not uptodate, zero it and
813 read_lock_irqsave(&ni->size_lock, flags);
814 initialized_size = ni->allocated_size;
815 read_unlock_irqrestore(&ni->size_lock, flags);
816 if (bh_pos > initialized_size) {
817 if (PageUptodate(page)) {
818 if (!buffer_uptodate(bh))
819 set_buffer_uptodate(bh);
820 } else if (!buffer_uptodate(bh)) {
821 zero_user(page, bh_offset(bh), blocksize);
822 set_buffer_uptodate(bh);
828 down_read(&ni->runlist.lock);
832 if (likely(rl != NULL)) {
833 /* Seek to element containing target cluster. */
834 while (rl->length && rl[1].vcn <= bh_cpos)
836 lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos);
837 if (likely(lcn >= 0)) {
839 * Successful remap, setup the map cache and
840 * use that to deal with the buffer.
844 vcn_len = rl[1].vcn - vcn;
845 lcn_block = lcn << (vol->cluster_size_bits -
849 * If the number of remaining clusters touched
850 * by the write is smaller or equal to the
851 * number of cached clusters, unlock the
852 * runlist as the map cache will be used from
855 if (likely(vcn + vcn_len >= cend)) {
856 if (rl_write_locked) {
857 up_write(&ni->runlist.lock);
858 rl_write_locked = false;
860 up_read(&ni->runlist.lock);
863 goto map_buffer_cached;
866 lcn = LCN_RL_NOT_MAPPED;
868 * If it is not a hole and not out of bounds, the runlist is
869 * probably unmapped so try to map it now.
871 if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) {
872 if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) {
873 /* Attempt to map runlist. */
874 if (!rl_write_locked) {
876 * We need the runlist locked for
877 * writing, so if it is locked for
878 * reading relock it now and retry in
879 * case it changed whilst we dropped
882 up_read(&ni->runlist.lock);
883 down_write(&ni->runlist.lock);
884 rl_write_locked = true;
887 err = ntfs_map_runlist_nolock(ni, bh_cpos,
894 * If @vcn is out of bounds, pretend @lcn is
895 * LCN_ENOENT. As long as the buffer is out
896 * of bounds this will work fine.
898 if (err == -ENOENT) {
901 goto rl_not_mapped_enoent;
905 /* Failed to map the buffer, even after retrying. */
907 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
908 "attribute type 0x%x, vcn 0x%llx, "
909 "vcn offset 0x%x, because its "
910 "location on disk could not be "
911 "determined%s (error code %i).",
912 ni->mft_no, ni->type,
913 (unsigned long long)bh_cpos,
915 vol->cluster_size_mask,
916 is_retry ? " even after retrying" : "",
920 rl_not_mapped_enoent:
922 * The buffer is in a hole or out of bounds. We need to fill
923 * the hole, unless the buffer is in a cluster which is not
924 * touched by the write, in which case we just leave the buffer
925 * unmapped. This can only happen when the cluster size is
926 * less than the page cache size.
928 if (unlikely(vol->cluster_size < PAGE_SIZE)) {
929 bh_cend = (bh_end + vol->cluster_size - 1) >>
930 vol->cluster_size_bits;
931 if ((bh_cend <= cpos || bh_cpos >= cend)) {
934 * If the buffer is uptodate we skip it. If it
935 * is not but the page is uptodate, we can set
936 * the buffer uptodate. If the page is not
937 * uptodate, we can clear the buffer and set it
938 * uptodate. Whether this is worthwhile is
939 * debatable and this could be removed.
941 if (PageUptodate(page)) {
942 if (!buffer_uptodate(bh))
943 set_buffer_uptodate(bh);
944 } else if (!buffer_uptodate(bh)) {
945 zero_user(page, bh_offset(bh),
947 set_buffer_uptodate(bh);
953 * Out of bounds buffer is invalid if it was not really out of
956 BUG_ON(lcn != LCN_HOLE);
958 * We need the runlist locked for writing, so if it is locked
959 * for reading relock it now and retry in case it changed
960 * whilst we dropped the lock.
963 if (!rl_write_locked) {
964 up_read(&ni->runlist.lock);
965 down_write(&ni->runlist.lock);
966 rl_write_locked = true;
969 /* Find the previous last allocated cluster. */
970 BUG_ON(rl->lcn != LCN_HOLE);
973 while (--rl2 >= ni->runlist.rl) {
975 lcn = rl2->lcn + rl2->length;
979 rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE,
983 ntfs_debug("Failed to allocate cluster, error code %i.",
988 rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
993 if (ntfs_cluster_free_from_rl(vol, rl2)) {
994 ntfs_error(vol->sb, "Failed to release "
995 "allocated cluster in error "
996 "code path. Run chkdsk to "
997 "recover the lost cluster.");
1003 ni->runlist.rl = rl;
1004 status.runlist_merged = 1;
1005 ntfs_debug("Allocated cluster, lcn 0x%llx.",
1006 (unsigned long long)lcn);
1007 /* Map and lock the mft record and get the attribute record. */
1011 base_ni = ni->ext.base_ntfs_ino;
1012 m = map_mft_record(base_ni);
1017 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1018 if (unlikely(!ctx)) {
1020 unmap_mft_record(base_ni);
1023 status.mft_attr_mapped = 1;
1024 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1025 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx);
1026 if (unlikely(err)) {
1034 * Find the runlist element with which the attribute extent
1035 * starts. Note, we cannot use the _attr_ version because we
1036 * have mapped the mft record. That is ok because we know the
1037 * runlist fragment must be mapped already to have ever gotten
1038 * here, so we can just use the _rl_ version.
1040 vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn);
1041 rl2 = ntfs_rl_find_vcn_nolock(rl, vcn);
1043 BUG_ON(!rl2->length);
1044 BUG_ON(rl2->lcn < LCN_HOLE);
1045 highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
1047 * If @highest_vcn is zero, calculate the real highest_vcn
1048 * (which can really be zero).
1051 highest_vcn = (sle64_to_cpu(
1052 a->data.non_resident.allocated_size) >>
1053 vol->cluster_size_bits) - 1;
1055 * Determine the size of the mapping pairs array for the new
1056 * extent, i.e. the old extent with the hole filled.
1058 mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn,
1060 if (unlikely(mp_size <= 0)) {
1061 if (!(err = mp_size))
1063 ntfs_debug("Failed to get size for mapping pairs "
1064 "array, error code %i.", err);
1068 * Resize the attribute record to fit the new mapping pairs
1071 attr_rec_len = le32_to_cpu(a->length);
1072 err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu(
1073 a->data.non_resident.mapping_pairs_offset));
1074 if (unlikely(err)) {
1075 BUG_ON(err != -ENOSPC);
1076 // TODO: Deal with this by using the current attribute
1077 // and fill it with as much of the mapping pairs
1078 // array as possible. Then loop over each attribute
1079 // extent rewriting the mapping pairs arrays as we go
1080 // along and if when we reach the end we have not
1081 // enough space, try to resize the last attribute
1082 // extent and if even that fails, add a new attribute
1084 // We could also try to resize at each step in the hope
1085 // that we will not need to rewrite every single extent.
1086 // Note, we may need to decompress some extents to fill
1087 // the runlist as we are walking the extents...
1088 ntfs_error(vol->sb, "Not enough space in the mft "
1089 "record for the extended attribute "
1090 "record. This case is not "
1091 "implemented yet.");
1095 status.mp_rebuilt = 1;
1097 * Generate the mapping pairs array directly into the attribute
1100 err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
1101 a->data.non_resident.mapping_pairs_offset),
1102 mp_size, rl2, vcn, highest_vcn, NULL);
1103 if (unlikely(err)) {
1104 ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, "
1105 "attribute type 0x%x, because building "
1106 "the mapping pairs failed with error "
1107 "code %i.", vi->i_ino,
1108 (unsigned)le32_to_cpu(ni->type), err);
1112 /* Update the highest_vcn but only if it was not set. */
1113 if (unlikely(!a->data.non_resident.highest_vcn))
1114 a->data.non_resident.highest_vcn =
1115 cpu_to_sle64(highest_vcn);
1117 * If the attribute is sparse/compressed, update the compressed
1118 * size in the ntfs_inode structure and the attribute record.
1120 if (likely(NInoSparse(ni) || NInoCompressed(ni))) {
1122 * If we are not in the first attribute extent, switch
1123 * to it, but first ensure the changes will make it to
1126 if (a->data.non_resident.lowest_vcn) {
1127 flush_dcache_mft_record_page(ctx->ntfs_ino);
1128 mark_mft_record_dirty(ctx->ntfs_ino);
1129 ntfs_attr_reinit_search_ctx(ctx);
1130 err = ntfs_attr_lookup(ni->type, ni->name,
1131 ni->name_len, CASE_SENSITIVE,
1133 if (unlikely(err)) {
1134 status.attr_switched = 1;
1137 /* @m is not used any more so do not set it. */
1140 write_lock_irqsave(&ni->size_lock, flags);
1141 ni->itype.compressed.size += vol->cluster_size;
1142 a->data.non_resident.compressed_size =
1143 cpu_to_sle64(ni->itype.compressed.size);
1144 write_unlock_irqrestore(&ni->size_lock, flags);
1146 /* Ensure the changes make it to disk. */
1147 flush_dcache_mft_record_page(ctx->ntfs_ino);
1148 mark_mft_record_dirty(ctx->ntfs_ino);
1149 ntfs_attr_put_search_ctx(ctx);
1150 unmap_mft_record(base_ni);
1151 /* Successfully filled the hole. */
1152 status.runlist_merged = 0;
1153 status.mft_attr_mapped = 0;
1154 status.mp_rebuilt = 0;
1155 /* Setup the map cache and use that to deal with the buffer. */
1159 lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits);
1162 * If the number of remaining clusters in the @pages is smaller
1163 * or equal to the number of cached clusters, unlock the
1164 * runlist as the map cache will be used from now on.
1166 if (likely(vcn + vcn_len >= cend)) {
1167 up_write(&ni->runlist.lock);
1168 rl_write_locked = false;
1171 goto map_buffer_cached;
1172 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1173 /* If there are no errors, do the next page. */
1174 if (likely(!err && ++u < nr_pages))
1176 /* If there are no errors, release the runlist lock if we took it. */
1178 if (unlikely(rl_write_locked)) {
1179 up_write(&ni->runlist.lock);
1180 rl_write_locked = false;
1181 } else if (unlikely(rl))
1182 up_read(&ni->runlist.lock);
1185 /* If we issued read requests, let them complete. */
1186 read_lock_irqsave(&ni->size_lock, flags);
1187 initialized_size = ni->initialized_size;
1188 read_unlock_irqrestore(&ni->size_lock, flags);
1189 while (wait_bh > wait) {
1192 if (likely(buffer_uptodate(bh))) {
1194 bh_pos = ((s64)page->index << PAGE_SHIFT) +
1197 * If the buffer overflows the initialized size, need
1198 * to zero the overflowing region.
1200 if (unlikely(bh_pos + blocksize > initialized_size)) {
1203 if (likely(bh_pos < initialized_size))
1204 ofs = initialized_size - bh_pos;
1205 zero_user_segment(page, bh_offset(bh) + ofs,
1208 } else /* if (unlikely(!buffer_uptodate(bh))) */
1212 /* Clear buffer_new on all buffers. */
1215 bh = head = page_buffers(pages[u]);
1218 clear_buffer_new(bh);
1219 } while ((bh = bh->b_this_page) != head);
1220 } while (++u < nr_pages);
1221 ntfs_debug("Done.");
1224 if (status.attr_switched) {
1225 /* Get back to the attribute extent we modified. */
1226 ntfs_attr_reinit_search_ctx(ctx);
1227 if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1228 CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) {
1229 ntfs_error(vol->sb, "Failed to find required "
1230 "attribute extent of attribute in "
1231 "error code path. Run chkdsk to "
1233 write_lock_irqsave(&ni->size_lock, flags);
1234 ni->itype.compressed.size += vol->cluster_size;
1235 write_unlock_irqrestore(&ni->size_lock, flags);
1236 flush_dcache_mft_record_page(ctx->ntfs_ino);
1237 mark_mft_record_dirty(ctx->ntfs_ino);
1239 * The only thing that is now wrong is the compressed
1240 * size of the base attribute extent which chkdsk
1241 * should be able to fix.
1247 status.attr_switched = 0;
1251 * If the runlist has been modified, need to restore it by punching a
1252 * hole into it and we then need to deallocate the on-disk cluster as
1253 * well. Note, we only modify the runlist if we are able to generate a
1254 * new mapping pairs array, i.e. only when the mapped attribute extent
1257 if (status.runlist_merged && !status.attr_switched) {
1258 BUG_ON(!rl_write_locked);
1259 /* Make the file cluster we allocated sparse in the runlist. */
1260 if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) {
1261 ntfs_error(vol->sb, "Failed to punch hole into "
1262 "attribute runlist in error code "
1263 "path. Run chkdsk to recover the "
1266 } else /* if (success) */ {
1267 status.runlist_merged = 0;
1269 * Deallocate the on-disk cluster we allocated but only
1270 * if we succeeded in punching its vcn out of the
1273 down_write(&vol->lcnbmp_lock);
1274 if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) {
1275 ntfs_error(vol->sb, "Failed to release "
1276 "allocated cluster in error "
1277 "code path. Run chkdsk to "
1278 "recover the lost cluster.");
1281 up_write(&vol->lcnbmp_lock);
1285 * Resize the attribute record to its old size and rebuild the mapping
1286 * pairs array. Note, we only can do this if the runlist has been
1287 * restored to its old state which also implies that the mapped
1288 * attribute extent is not switched.
1290 if (status.mp_rebuilt && !status.runlist_merged) {
1291 if (ntfs_attr_record_resize(m, a, attr_rec_len)) {
1292 ntfs_error(vol->sb, "Failed to restore attribute "
1293 "record in error code path. Run "
1294 "chkdsk to recover.");
1296 } else /* if (success) */ {
1297 if (ntfs_mapping_pairs_build(vol, (u8*)a +
1298 le16_to_cpu(a->data.non_resident.
1299 mapping_pairs_offset), attr_rec_len -
1300 le16_to_cpu(a->data.non_resident.
1301 mapping_pairs_offset), ni->runlist.rl,
1302 vcn, highest_vcn, NULL)) {
1303 ntfs_error(vol->sb, "Failed to restore "
1304 "mapping pairs array in error "
1305 "code path. Run chkdsk to "
1309 flush_dcache_mft_record_page(ctx->ntfs_ino);
1310 mark_mft_record_dirty(ctx->ntfs_ino);
1313 /* Release the mft record and the attribute. */
1314 if (status.mft_attr_mapped) {
1315 ntfs_attr_put_search_ctx(ctx);
1316 unmap_mft_record(base_ni);
1318 /* Release the runlist lock. */
1319 if (rl_write_locked)
1320 up_write(&ni->runlist.lock);
1322 up_read(&ni->runlist.lock);
1324 * Zero out any newly allocated blocks to avoid exposing stale data.
1325 * If BH_New is set, we know that the block was newly allocated above
1326 * and that it has not been fully zeroed and marked dirty yet.
1330 end = bh_cpos << vol->cluster_size_bits;
1333 bh = head = page_buffers(page);
1335 if (u == nr_pages &&
1336 ((s64)page->index << PAGE_SHIFT) +
1337 bh_offset(bh) >= end)
1339 if (!buffer_new(bh))
1341 clear_buffer_new(bh);
1342 if (!buffer_uptodate(bh)) {
1343 if (PageUptodate(page))
1344 set_buffer_uptodate(bh);
1346 zero_user(page, bh_offset(bh),
1348 set_buffer_uptodate(bh);
1351 mark_buffer_dirty(bh);
1352 } while ((bh = bh->b_this_page) != head);
1353 } while (++u <= nr_pages);
1354 ntfs_error(vol->sb, "Failed. Returning error code %i.", err);
1358 static inline void ntfs_flush_dcache_pages(struct page **pages,
1363 * Warning: Do not do the decrement at the same time as the call to
1364 * flush_dcache_page() because it is a NULL macro on i386 and hence the
1365 * decrement never happens so the loop never terminates.
1369 flush_dcache_page(pages[nr_pages]);
1370 } while (nr_pages > 0);
1374 * ntfs_commit_pages_after_non_resident_write - commit the received data
1375 * @pages: array of destination pages
1376 * @nr_pages: number of pages in @pages
1377 * @pos: byte position in file at which the write begins
1378 * @bytes: number of bytes to be written
1380 * See description of ntfs_commit_pages_after_write(), below.
1382 static inline int ntfs_commit_pages_after_non_resident_write(
1383 struct page **pages, const unsigned nr_pages,
1384 s64 pos, size_t bytes)
1386 s64 end, initialized_size;
1388 ntfs_inode *ni, *base_ni;
1389 struct buffer_head *bh, *head;
1390 ntfs_attr_search_ctx *ctx;
1393 unsigned long flags;
1394 unsigned blocksize, u;
1397 vi = pages[0]->mapping->host;
1399 blocksize = vi->i_sb->s_blocksize;
1408 bh_pos = (s64)page->index << PAGE_SHIFT;
1409 bh = head = page_buffers(page);
1414 bh_end = bh_pos + blocksize;
1415 if (bh_end <= pos || bh_pos >= end) {
1416 if (!buffer_uptodate(bh))
1419 set_buffer_uptodate(bh);
1420 mark_buffer_dirty(bh);
1422 } while (bh_pos += blocksize, (bh = bh->b_this_page) != head);
1424 * If all buffers are now uptodate but the page is not, set the
1427 if (!partial && !PageUptodate(page))
1428 SetPageUptodate(page);
1429 } while (++u < nr_pages);
1431 * Finally, if we do not need to update initialized_size or i_size we
1434 read_lock_irqsave(&ni->size_lock, flags);
1435 initialized_size = ni->initialized_size;
1436 read_unlock_irqrestore(&ni->size_lock, flags);
1437 if (end <= initialized_size) {
1438 ntfs_debug("Done.");
1442 * Update initialized_size/i_size as appropriate, both in the inode and
1448 base_ni = ni->ext.base_ntfs_ino;
1449 /* Map, pin, and lock the mft record. */
1450 m = map_mft_record(base_ni);
1457 BUG_ON(!NInoNonResident(ni));
1458 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1459 if (unlikely(!ctx)) {
1463 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1464 CASE_SENSITIVE, 0, NULL, 0, ctx);
1465 if (unlikely(err)) {
1471 BUG_ON(!a->non_resident);
1472 write_lock_irqsave(&ni->size_lock, flags);
1473 BUG_ON(end > ni->allocated_size);
1474 ni->initialized_size = end;
1475 a->data.non_resident.initialized_size = cpu_to_sle64(end);
1476 if (end > i_size_read(vi)) {
1477 i_size_write(vi, end);
1478 a->data.non_resident.data_size =
1479 a->data.non_resident.initialized_size;
1481 write_unlock_irqrestore(&ni->size_lock, flags);
1482 /* Mark the mft record dirty, so it gets written back. */
1483 flush_dcache_mft_record_page(ctx->ntfs_ino);
1484 mark_mft_record_dirty(ctx->ntfs_ino);
1485 ntfs_attr_put_search_ctx(ctx);
1486 unmap_mft_record(base_ni);
1487 ntfs_debug("Done.");
1491 ntfs_attr_put_search_ctx(ctx);
1493 unmap_mft_record(base_ni);
1494 ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error "
1497 NVolSetErrors(ni->vol);
1502 * ntfs_commit_pages_after_write - commit the received data
1503 * @pages: array of destination pages
1504 * @nr_pages: number of pages in @pages
1505 * @pos: byte position in file at which the write begins
1506 * @bytes: number of bytes to be written
1508 * This is called from ntfs_file_buffered_write() with i_mutex held on the inode
1509 * (@pages[0]->mapping->host). There are @nr_pages pages in @pages which are
1510 * locked but not kmap()ped. The source data has already been copied into the
1511 * @page. ntfs_prepare_pages_for_non_resident_write() has been called before
1512 * the data was copied (for non-resident attributes only) and it returned
1515 * Need to set uptodate and mark dirty all buffers within the boundary of the
1516 * write. If all buffers in a page are uptodate we set the page uptodate, too.
1518 * Setting the buffers dirty ensures that they get written out later when
1519 * ntfs_writepage() is invoked by the VM.
1521 * Finally, we need to update i_size and initialized_size as appropriate both
1522 * in the inode and the mft record.
1524 * This is modelled after fs/buffer.c::generic_commit_write(), which marks
1525 * buffers uptodate and dirty, sets the page uptodate if all buffers in the
1526 * page are uptodate, and updates i_size if the end of io is beyond i_size. In
1527 * that case, it also marks the inode dirty.
1529 * If things have gone as outlined in
1530 * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page
1531 * content modifications here for non-resident attributes. For resident
1532 * attributes we need to do the uptodate bringing here which we combine with
1533 * the copying into the mft record which means we save one atomic kmap.
1535 * Return 0 on success or -errno on error.
1537 static int ntfs_commit_pages_after_write(struct page **pages,
1538 const unsigned nr_pages, s64 pos, size_t bytes)
1540 s64 end, initialized_size;
1543 ntfs_inode *ni, *base_ni;
1545 ntfs_attr_search_ctx *ctx;
1548 char *kattr, *kaddr;
1549 unsigned long flags;
1557 vi = page->mapping->host;
1559 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page "
1560 "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.",
1561 vi->i_ino, ni->type, page->index, nr_pages,
1562 (long long)pos, bytes);
1563 if (NInoNonResident(ni))
1564 return ntfs_commit_pages_after_non_resident_write(pages,
1565 nr_pages, pos, bytes);
1566 BUG_ON(nr_pages > 1);
1568 * Attribute is resident, implying it is not compressed, encrypted, or
1574 base_ni = ni->ext.base_ntfs_ino;
1575 BUG_ON(NInoNonResident(ni));
1576 /* Map, pin, and lock the mft record. */
1577 m = map_mft_record(base_ni);
1584 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1585 if (unlikely(!ctx)) {
1589 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1590 CASE_SENSITIVE, 0, NULL, 0, ctx);
1591 if (unlikely(err)) {
1597 BUG_ON(a->non_resident);
1598 /* The total length of the attribute value. */
1599 attr_len = le32_to_cpu(a->data.resident.value_length);
1600 i_size = i_size_read(vi);
1601 BUG_ON(attr_len != i_size);
1602 BUG_ON(pos > attr_len);
1604 BUG_ON(end > le32_to_cpu(a->length) -
1605 le16_to_cpu(a->data.resident.value_offset));
1606 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
1607 kaddr = kmap_atomic(page);
1608 /* Copy the received data from the page to the mft record. */
1609 memcpy(kattr + pos, kaddr + pos, bytes);
1610 /* Update the attribute length if necessary. */
1611 if (end > attr_len) {
1613 a->data.resident.value_length = cpu_to_le32(attr_len);
1616 * If the page is not uptodate, bring the out of bounds area(s)
1617 * uptodate by copying data from the mft record to the page.
1619 if (!PageUptodate(page)) {
1621 memcpy(kaddr, kattr, pos);
1623 memcpy(kaddr + end, kattr + end, attr_len - end);
1624 /* Zero the region outside the end of the attribute value. */
1625 memset(kaddr + attr_len, 0, PAGE_SIZE - attr_len);
1626 flush_dcache_page(page);
1627 SetPageUptodate(page);
1629 kunmap_atomic(kaddr);
1630 /* Update initialized_size/i_size if necessary. */
1631 read_lock_irqsave(&ni->size_lock, flags);
1632 initialized_size = ni->initialized_size;
1633 BUG_ON(end > ni->allocated_size);
1634 read_unlock_irqrestore(&ni->size_lock, flags);
1635 BUG_ON(initialized_size != i_size);
1636 if (end > initialized_size) {
1637 write_lock_irqsave(&ni->size_lock, flags);
1638 ni->initialized_size = end;
1639 i_size_write(vi, end);
1640 write_unlock_irqrestore(&ni->size_lock, flags);
1642 /* Mark the mft record dirty, so it gets written back. */
1643 flush_dcache_mft_record_page(ctx->ntfs_ino);
1644 mark_mft_record_dirty(ctx->ntfs_ino);
1645 ntfs_attr_put_search_ctx(ctx);
1646 unmap_mft_record(base_ni);
1647 ntfs_debug("Done.");
1650 if (err == -ENOMEM) {
1651 ntfs_warning(vi->i_sb, "Error allocating memory required to "
1652 "commit the write.");
1653 if (PageUptodate(page)) {
1654 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
1655 "dirty so the write will be retried "
1656 "later on by the VM.");
1658 * Put the page on mapping->dirty_pages, but leave its
1659 * buffers' dirty state as-is.
1661 __set_page_dirty_nobuffers(page);
1664 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
1665 "data has been lost.");
1667 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
1668 "with error %i.", err);
1669 NVolSetErrors(ni->vol);
1672 ntfs_attr_put_search_ctx(ctx);
1674 unmap_mft_record(base_ni);
1679 * Copy as much as we can into the pages and return the number of bytes which
1680 * were successfully copied. If a fault is encountered then clear the pages
1681 * out to (ofs + bytes) and return the number of bytes which were copied.
1683 static size_t ntfs_copy_from_user_iter(struct page **pages, unsigned nr_pages,
1684 unsigned ofs, struct iov_iter *i, size_t bytes)
1686 struct page **last_page = pages + nr_pages;
1688 unsigned len, copied;
1691 len = PAGE_SIZE - ofs;
1694 copied = copy_page_from_iter_atomic(*pages, ofs, len, i);
1702 } while (++pages < last_page);
1706 /* Zero the rest of the target like __copy_from_user(). */
1707 len = PAGE_SIZE - copied;
1711 zero_user(*pages, copied, len);
1715 } while (++pages < last_page);
1720 * ntfs_perform_write - perform buffered write to a file
1721 * @file: file to write to
1722 * @i: iov_iter with data to write
1723 * @pos: byte offset in file at which to begin writing to
1725 static ssize_t ntfs_perform_write(struct file *file, struct iov_iter *i,
1728 struct address_space *mapping = file->f_mapping;
1729 struct inode *vi = mapping->host;
1730 ntfs_inode *ni = NTFS_I(vi);
1731 ntfs_volume *vol = ni->vol;
1732 struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER];
1733 struct page *cached_page = NULL;
1737 ssize_t status, written = 0;
1740 ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, pos "
1741 "0x%llx, count 0x%lx.", vi->i_ino,
1742 (unsigned)le32_to_cpu(ni->type),
1743 (unsigned long long)pos,
1744 (unsigned long)iov_iter_count(i));
1746 * If a previous ntfs_truncate() failed, repeat it and abort if it
1749 if (unlikely(NInoTruncateFailed(ni))) {
1753 err = ntfs_truncate(vi);
1754 if (err || NInoTruncateFailed(ni)) {
1757 ntfs_error(vol->sb, "Cannot perform write to inode "
1758 "0x%lx, attribute type 0x%x, because "
1759 "ntfs_truncate() failed (error code "
1761 (unsigned)le32_to_cpu(ni->type), err);
1766 * Determine the number of pages per cluster for non-resident
1770 if (vol->cluster_size > PAGE_SIZE && NInoNonResident(ni))
1771 nr_pages = vol->cluster_size >> PAGE_SHIFT;
1775 pgoff_t idx, start_idx;
1776 unsigned ofs, do_pages, u;
1779 start_idx = idx = pos >> PAGE_SHIFT;
1780 ofs = pos & ~PAGE_MASK;
1781 bytes = PAGE_SIZE - ofs;
1784 vcn = pos >> vol->cluster_size_bits;
1785 if (vcn != last_vcn) {
1788 * Get the lcn of the vcn the write is in. If
1789 * it is a hole, need to lock down all pages in
1792 down_read(&ni->runlist.lock);
1793 lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >>
1794 vol->cluster_size_bits, false);
1795 up_read(&ni->runlist.lock);
1796 if (unlikely(lcn < LCN_HOLE)) {
1797 if (lcn == LCN_ENOMEM)
1801 ntfs_error(vol->sb, "Cannot "
1804 "attribute type 0x%x, "
1805 "because the attribute "
1807 vi->i_ino, (unsigned)
1808 le32_to_cpu(ni->type));
1812 if (lcn == LCN_HOLE) {
1813 start_idx = (pos & ~(s64)
1814 vol->cluster_size_mask)
1816 bytes = vol->cluster_size - (pos &
1817 vol->cluster_size_mask);
1818 do_pages = nr_pages;
1822 if (bytes > iov_iter_count(i))
1823 bytes = iov_iter_count(i);
1826 * Bring in the user page(s) that we will copy from _first_.
1827 * Otherwise there is a nasty deadlock on copying from the same
1828 * page(s) as we are writing to, without it/them being marked
1829 * up-to-date. Note, at present there is nothing to stop the
1830 * pages being swapped out between us bringing them into memory
1831 * and doing the actual copying.
1833 if (unlikely(fault_in_iov_iter_readable(i, bytes))) {
1837 /* Get and lock @do_pages starting at index @start_idx. */
1838 status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages,
1839 pages, &cached_page);
1840 if (unlikely(status))
1843 * For non-resident attributes, we need to fill any holes with
1844 * actual clusters and ensure all bufferes are mapped. We also
1845 * need to bring uptodate any buffers that are only partially
1848 if (NInoNonResident(ni)) {
1849 status = ntfs_prepare_pages_for_non_resident_write(
1850 pages, do_pages, pos, bytes);
1851 if (unlikely(status)) {
1853 unlock_page(pages[--do_pages]);
1854 put_page(pages[do_pages]);
1859 u = (pos >> PAGE_SHIFT) - pages[0]->index;
1860 copied = ntfs_copy_from_user_iter(pages + u, do_pages - u, ofs,
1862 ntfs_flush_dcache_pages(pages + u, do_pages - u);
1864 if (likely(copied == bytes)) {
1865 status = ntfs_commit_pages_after_write(pages, do_pages,
1869 unlock_page(pages[--do_pages]);
1870 put_page(pages[do_pages]);
1872 if (unlikely(status < 0)) {
1873 iov_iter_revert(i, copied);
1877 if (unlikely(copied < bytes)) {
1878 iov_iter_revert(i, copied);
1881 else if (bytes > PAGE_SIZE - ofs)
1882 bytes = PAGE_SIZE - ofs;
1887 balance_dirty_pages_ratelimited(mapping);
1888 if (fatal_signal_pending(current)) {
1892 } while (iov_iter_count(i));
1894 put_page(cached_page);
1895 ntfs_debug("Done. Returning %s (written 0x%lx, status %li).",
1896 written ? "written" : "status", (unsigned long)written,
1898 return written ? written : status;
1902 * ntfs_file_write_iter - simple wrapper for ntfs_file_write_iter_nolock()
1903 * @iocb: IO state structure
1904 * @from: iov_iter with data to write
1906 * Basically the same as generic_file_write_iter() except that it ends up
1907 * up calling ntfs_perform_write() instead of generic_perform_write() and that
1908 * O_DIRECT is not implemented.
1910 static ssize_t ntfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1912 struct file *file = iocb->ki_filp;
1913 struct inode *vi = file_inode(file);
1914 ssize_t written = 0;
1918 /* We can write back this queue in page reclaim. */
1919 current->backing_dev_info = inode_to_bdi(vi);
1920 err = ntfs_prepare_file_for_write(iocb, from);
1921 if (iov_iter_count(from) && !err)
1922 written = ntfs_perform_write(file, from, iocb->ki_pos);
1923 current->backing_dev_info = NULL;
1925 iocb->ki_pos += written;
1926 if (likely(written > 0))
1927 written = generic_write_sync(iocb, written);
1928 return written ? written : err;
1932 * ntfs_file_fsync - sync a file to disk
1933 * @filp: file to be synced
1934 * @datasync: if non-zero only flush user data and not metadata
1936 * Data integrity sync of a file to disk. Used for fsync, fdatasync, and msync
1937 * system calls. This function is inspired by fs/buffer.c::file_fsync().
1939 * If @datasync is false, write the mft record and all associated extent mft
1940 * records as well as the $DATA attribute and then sync the block device.
1942 * If @datasync is true and the attribute is non-resident, we skip the writing
1943 * of the mft record and all associated extent mft records (this might still
1944 * happen due to the write_inode_now() call).
1946 * Also, if @datasync is true, we do not wait on the inode to be written out
1947 * but we always wait on the page cache pages to be written out.
1949 * Locking: Caller must hold i_mutex on the inode.
1951 * TODO: We should probably also write all attribute/index inodes associated
1952 * with this inode but since we have no simple way of getting to them we ignore
1953 * this problem for now.
1955 static int ntfs_file_fsync(struct file *filp, loff_t start, loff_t end,
1958 struct inode *vi = filp->f_mapping->host;
1961 ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
1963 err = file_write_and_wait_range(filp, start, end);
1968 BUG_ON(S_ISDIR(vi->i_mode));
1969 if (!datasync || !NInoNonResident(NTFS_I(vi)))
1970 ret = __ntfs_write_inode(vi, 1);
1971 write_inode_now(vi, !datasync);
1973 * NOTE: If we were to use mapping->private_list (see ext2 and
1974 * fs/buffer.c) for dirty blocks then we could optimize the below to be
1975 * sync_mapping_buffers(vi->i_mapping).
1977 err = sync_blockdev(vi->i_sb->s_bdev);
1978 if (unlikely(err && !ret))
1981 ntfs_debug("Done.");
1983 ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx. Error "
1984 "%u.", datasync ? "data" : "", vi->i_ino, -ret);
1989 #endif /* NTFS_RW */
1991 const struct file_operations ntfs_file_ops = {
1992 .llseek = generic_file_llseek,
1993 .read_iter = generic_file_read_iter,
1995 .write_iter = ntfs_file_write_iter,
1996 .fsync = ntfs_file_fsync,
1997 #endif /* NTFS_RW */
1998 .mmap = generic_file_mmap,
1999 .open = ntfs_file_open,
2000 .splice_read = generic_file_splice_read,
2003 const struct inode_operations ntfs_file_inode_ops = {
2005 .setattr = ntfs_setattr,
2006 #endif /* NTFS_RW */
2009 const struct file_operations ntfs_empty_file_ops = {};
2011 const struct inode_operations ntfs_empty_inode_ops = {};