2 * super.c - NILFS module and super block management.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 * Written by Ryusuke Konishi <ryusuke@osrg.net>
23 * linux/fs/ext2/super.c
25 * Copyright (C) 1992, 1993, 1994, 1995
26 * Remy Card (card@masi.ibp.fr)
27 * Laboratoire MASI - Institut Blaise Pascal
28 * Universite Pierre et Marie Curie (Paris VI)
32 * linux/fs/minix/inode.c
34 * Copyright (C) 1991, 1992 Linus Torvalds
36 * Big-endian to little-endian byte-swapping/bitmaps by
37 * David S. Miller (davem@caip.rutgers.edu), 1995
40 #include <linux/module.h>
41 #include <linux/string.h>
42 #include <linux/slab.h>
43 #include <linux/init.h>
44 #include <linux/blkdev.h>
45 #include <linux/parser.h>
46 #include <linux/random.h>
47 #include <linux/crc32.h>
48 #include <linux/smp_lock.h>
49 #include <linux/vfs.h>
50 #include <linux/writeback.h>
51 #include <linux/kobject.h>
52 #include <linux/exportfs.h>
53 #include <linux/seq_file.h>
54 #include <linux/mount.h>
65 MODULE_AUTHOR("NTT Corp.");
66 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
68 MODULE_LICENSE("GPL");
70 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
73 * nilfs_error() - report failure condition on a filesystem
75 * nilfs_error() sets an ERROR_FS flag on the superblock as well as
76 * reporting an error message. It should be called when NILFS detects
77 * incoherences or defects of meta data on disk. As for sustainable
78 * errors such as a single-shot I/O error, nilfs_warning() or the printk()
79 * function should be used instead.
81 * The segment constructor must not call this function because it can
84 void nilfs_error(struct super_block *sb, const char *function,
87 struct nilfs_sb_info *sbi = NILFS_SB(sb);
91 printk(KERN_CRIT "NILFS error (device %s): %s: ", sb->s_id, function);
96 if (!(sb->s_flags & MS_RDONLY)) {
97 struct the_nilfs *nilfs = sbi->s_nilfs;
99 down_write(&nilfs->ns_sem);
100 if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
101 nilfs->ns_mount_state |= NILFS_ERROR_FS;
102 nilfs->ns_sbp[0]->s_state |=
103 cpu_to_le16(NILFS_ERROR_FS);
104 nilfs_commit_super(sbi, 1);
106 up_write(&nilfs->ns_sem);
108 if (nilfs_test_opt(sbi, ERRORS_RO)) {
109 printk(KERN_CRIT "Remounting filesystem read-only\n");
110 sb->s_flags |= MS_RDONLY;
114 if (nilfs_test_opt(sbi, ERRORS_PANIC))
115 panic("NILFS (device %s): panic forced after error\n",
119 void nilfs_warning(struct super_block *sb, const char *function,
120 const char *fmt, ...)
125 printk(KERN_WARNING "NILFS warning (device %s): %s: ",
132 static struct kmem_cache *nilfs_inode_cachep;
134 struct inode *nilfs_alloc_inode_common(struct the_nilfs *nilfs)
136 struct nilfs_inode_info *ii;
138 ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
143 ii->vfs_inode.i_version = 1;
144 nilfs_btnode_cache_init(&ii->i_btnode_cache, nilfs->ns_bdi);
145 return &ii->vfs_inode;
148 struct inode *nilfs_alloc_inode(struct super_block *sb)
150 return nilfs_alloc_inode_common(NILFS_SB(sb)->s_nilfs);
153 void nilfs_destroy_inode(struct inode *inode)
155 kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
158 static void init_once(void *obj)
160 struct nilfs_inode_info *ii = obj;
162 INIT_LIST_HEAD(&ii->i_dirty);
163 #ifdef CONFIG_NILFS_XATTR
164 init_rwsem(&ii->xattr_sem);
166 nilfs_btnode_cache_init_once(&ii->i_btnode_cache);
167 ii->i_bmap = (struct nilfs_bmap *)&ii->i_bmap_union;
168 inode_init_once(&ii->vfs_inode);
171 static int nilfs_init_inode_cache(void)
173 nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
174 sizeof(struct nilfs_inode_info),
175 0, SLAB_RECLAIM_ACCOUNT,
178 return (nilfs_inode_cachep == NULL) ? -ENOMEM : 0;
181 static inline void nilfs_destroy_inode_cache(void)
183 kmem_cache_destroy(nilfs_inode_cachep);
186 static void nilfs_clear_inode(struct inode *inode)
188 struct nilfs_inode_info *ii = NILFS_I(inode);
191 * Free resources allocated in nilfs_read_inode(), here.
193 BUG_ON(!list_empty(&ii->i_dirty));
197 if (test_bit(NILFS_I_BMAP, &ii->i_state))
198 nilfs_bmap_clear(ii->i_bmap);
200 nilfs_btnode_cache_clear(&ii->i_btnode_cache);
203 static int nilfs_sync_super(struct nilfs_sb_info *sbi, int dupsb)
205 struct the_nilfs *nilfs = sbi->s_nilfs;
207 int barrier_done = 0;
209 if (nilfs_test_opt(sbi, BARRIER)) {
210 set_buffer_ordered(nilfs->ns_sbh[0]);
214 set_buffer_dirty(nilfs->ns_sbh[0]);
215 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
216 if (err == -EOPNOTSUPP && barrier_done) {
217 nilfs_warning(sbi->s_super, __func__,
218 "barrier-based sync failed. "
219 "disabling barriers\n");
220 nilfs_clear_opt(sbi, BARRIER);
222 clear_buffer_ordered(nilfs->ns_sbh[0]);
227 "NILFS: unable to write superblock (err=%d)\n", err);
228 if (err == -EIO && nilfs->ns_sbh[1]) {
229 nilfs_fall_back_super_block(nilfs);
233 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
236 * The latest segment becomes trailable from the position
237 * written in superblock.
239 clear_nilfs_discontinued(nilfs);
241 /* update GC protection for recent segments */
242 if (nilfs->ns_sbh[1]) {
245 set_buffer_dirty(nilfs->ns_sbh[1]);
246 if (!sync_dirty_buffer(nilfs->ns_sbh[1]))
247 sbp = nilfs->ns_sbp[1];
251 spin_lock(&nilfs->ns_last_segment_lock);
252 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
253 spin_unlock(&nilfs->ns_last_segment_lock);
260 int nilfs_commit_super(struct nilfs_sb_info *sbi, int dupsb)
262 struct the_nilfs *nilfs = sbi->s_nilfs;
263 struct nilfs_super_block **sbp = nilfs->ns_sbp;
264 sector_t nfreeblocks;
268 /* nilfs->sem must be locked by the caller. */
269 if (sbp[0]->s_magic != NILFS_SUPER_MAGIC) {
270 if (sbp[1] && sbp[1]->s_magic == NILFS_SUPER_MAGIC)
271 nilfs_swap_super_block(nilfs);
273 printk(KERN_CRIT "NILFS: superblock broke on dev %s\n",
278 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
280 printk(KERN_ERR "NILFS: failed to count free blocks\n");
283 spin_lock(&nilfs->ns_last_segment_lock);
284 sbp[0]->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
285 sbp[0]->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
286 sbp[0]->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
287 spin_unlock(&nilfs->ns_last_segment_lock);
290 nilfs->ns_sbwtime[0] = t;
291 sbp[0]->s_free_blocks_count = cpu_to_le64(nfreeblocks);
292 sbp[0]->s_wtime = cpu_to_le64(t);
294 sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
295 (unsigned char *)sbp[0],
297 if (dupsb && sbp[1]) {
298 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
299 nilfs->ns_sbwtime[1] = t;
301 clear_nilfs_sb_dirty(nilfs);
302 return nilfs_sync_super(sbi, dupsb);
305 static void nilfs_put_super(struct super_block *sb)
307 struct nilfs_sb_info *sbi = NILFS_SB(sb);
308 struct the_nilfs *nilfs = sbi->s_nilfs;
312 nilfs_detach_segment_constructor(sbi);
314 if (!(sb->s_flags & MS_RDONLY)) {
315 down_write(&nilfs->ns_sem);
316 nilfs->ns_sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
317 nilfs_commit_super(sbi, 1);
318 up_write(&nilfs->ns_sem);
320 down_write(&nilfs->ns_super_sem);
321 if (nilfs->ns_current == sbi)
322 nilfs->ns_current = NULL;
323 up_write(&nilfs->ns_super_sem);
325 nilfs_detach_checkpoint(sbi);
326 put_nilfs(sbi->s_nilfs);
328 sb->s_fs_info = NULL;
329 nilfs_put_sbinfo(sbi);
334 static int nilfs_sync_fs(struct super_block *sb, int wait)
336 struct nilfs_sb_info *sbi = NILFS_SB(sb);
337 struct the_nilfs *nilfs = sbi->s_nilfs;
340 /* This function is called when super block should be written back */
342 err = nilfs_construct_segment(sb);
344 down_write(&nilfs->ns_sem);
345 if (nilfs_sb_dirty(nilfs))
346 nilfs_commit_super(sbi, 1);
347 up_write(&nilfs->ns_sem);
352 int nilfs_attach_checkpoint(struct nilfs_sb_info *sbi, __u64 cno)
354 struct the_nilfs *nilfs = sbi->s_nilfs;
355 struct nilfs_checkpoint *raw_cp;
356 struct buffer_head *bh_cp;
359 down_write(&nilfs->ns_super_sem);
360 list_add(&sbi->s_list, &nilfs->ns_supers);
361 up_write(&nilfs->ns_super_sem);
363 sbi->s_ifile = nilfs_ifile_new(sbi, nilfs->ns_inode_size);
367 down_read(&nilfs->ns_segctor_sem);
368 err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
370 up_read(&nilfs->ns_segctor_sem);
372 if (err == -ENOENT || err == -EINVAL) {
374 "NILFS: Invalid checkpoint "
375 "(checkpoint number=%llu)\n",
376 (unsigned long long)cno);
381 err = nilfs_read_inode_common(sbi->s_ifile, &raw_cp->cp_ifile_inode);
384 atomic_set(&sbi->s_inodes_count, le64_to_cpu(raw_cp->cp_inodes_count));
385 atomic_set(&sbi->s_blocks_count, le64_to_cpu(raw_cp->cp_blocks_count));
387 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
391 nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
393 nilfs_mdt_destroy(sbi->s_ifile);
396 down_write(&nilfs->ns_super_sem);
397 list_del_init(&sbi->s_list);
398 up_write(&nilfs->ns_super_sem);
403 void nilfs_detach_checkpoint(struct nilfs_sb_info *sbi)
405 struct the_nilfs *nilfs = sbi->s_nilfs;
407 nilfs_mdt_destroy(sbi->s_ifile);
409 down_write(&nilfs->ns_super_sem);
410 list_del_init(&sbi->s_list);
411 up_write(&nilfs->ns_super_sem);
414 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
416 struct super_block *sb = dentry->d_sb;
417 struct nilfs_sb_info *sbi = NILFS_SB(sb);
418 struct the_nilfs *nilfs = sbi->s_nilfs;
419 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
420 unsigned long long blocks;
421 unsigned long overhead;
422 unsigned long nrsvblocks;
423 sector_t nfreeblocks;
427 * Compute all of the segment blocks
429 * The blocks before first segment and after last segment
432 blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
433 - nilfs->ns_first_data_block;
434 nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
437 * Compute the overhead
439 * When distributing meta data blocks outside segment structure,
440 * We must count them as the overhead.
444 err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
448 buf->f_type = NILFS_SUPER_MAGIC;
449 buf->f_bsize = sb->s_blocksize;
450 buf->f_blocks = blocks - overhead;
451 buf->f_bfree = nfreeblocks;
452 buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
453 (buf->f_bfree - nrsvblocks) : 0;
454 buf->f_files = atomic_read(&sbi->s_inodes_count);
455 buf->f_ffree = 0; /* nilfs_count_free_inodes(sb); */
456 buf->f_namelen = NILFS_NAME_LEN;
457 buf->f_fsid.val[0] = (u32)id;
458 buf->f_fsid.val[1] = (u32)(id >> 32);
463 static int nilfs_show_options(struct seq_file *seq, struct vfsmount *vfs)
465 struct super_block *sb = vfs->mnt_sb;
466 struct nilfs_sb_info *sbi = NILFS_SB(sb);
468 if (!nilfs_test_opt(sbi, BARRIER))
469 seq_printf(seq, ",nobarrier");
470 if (nilfs_test_opt(sbi, SNAPSHOT))
471 seq_printf(seq, ",cp=%llu",
472 (unsigned long long int)sbi->s_snapshot_cno);
473 if (nilfs_test_opt(sbi, ERRORS_RO))
474 seq_printf(seq, ",errors=remount-ro");
475 if (nilfs_test_opt(sbi, ERRORS_PANIC))
476 seq_printf(seq, ",errors=panic");
477 if (nilfs_test_opt(sbi, STRICT_ORDER))
478 seq_printf(seq, ",order=strict");
479 if (nilfs_test_opt(sbi, NORECOVERY))
480 seq_printf(seq, ",norecovery");
481 if (nilfs_test_opt(sbi, DISCARD))
482 seq_printf(seq, ",discard");
487 static const struct super_operations nilfs_sops = {
488 .alloc_inode = nilfs_alloc_inode,
489 .destroy_inode = nilfs_destroy_inode,
490 .dirty_inode = nilfs_dirty_inode,
491 /* .write_inode = nilfs_write_inode, */
492 /* .put_inode = nilfs_put_inode, */
493 /* .drop_inode = nilfs_drop_inode, */
494 .delete_inode = nilfs_delete_inode,
495 .put_super = nilfs_put_super,
496 /* .write_super = nilfs_write_super, */
497 .sync_fs = nilfs_sync_fs,
498 /* .write_super_lockfs */
500 .statfs = nilfs_statfs,
501 .remount_fs = nilfs_remount,
502 .clear_inode = nilfs_clear_inode,
504 .show_options = nilfs_show_options
507 static struct inode *
508 nilfs_nfs_get_inode(struct super_block *sb, u64 ino, u32 generation)
512 if (ino < NILFS_FIRST_INO(sb) && ino != NILFS_ROOT_INO &&
513 ino != NILFS_SKETCH_INO)
514 return ERR_PTR(-ESTALE);
516 inode = nilfs_iget(sb, ino);
518 return ERR_CAST(inode);
519 if (generation && inode->i_generation != generation) {
521 return ERR_PTR(-ESTALE);
527 static struct dentry *
528 nilfs_fh_to_dentry(struct super_block *sb, struct fid *fid, int fh_len,
531 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
532 nilfs_nfs_get_inode);
535 static struct dentry *
536 nilfs_fh_to_parent(struct super_block *sb, struct fid *fid, int fh_len,
539 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
540 nilfs_nfs_get_inode);
543 static const struct export_operations nilfs_export_ops = {
544 .fh_to_dentry = nilfs_fh_to_dentry,
545 .fh_to_parent = nilfs_fh_to_parent,
546 .get_parent = nilfs_get_parent,
550 Opt_err_cont, Opt_err_panic, Opt_err_ro,
551 Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
552 Opt_discard, Opt_err,
555 static match_table_t tokens = {
556 {Opt_err_cont, "errors=continue"},
557 {Opt_err_panic, "errors=panic"},
558 {Opt_err_ro, "errors=remount-ro"},
559 {Opt_nobarrier, "nobarrier"},
560 {Opt_snapshot, "cp=%u"},
561 {Opt_order, "order=%s"},
562 {Opt_norecovery, "norecovery"},
563 {Opt_discard, "discard"},
567 static int parse_options(char *options, struct super_block *sb)
569 struct nilfs_sb_info *sbi = NILFS_SB(sb);
571 substring_t args[MAX_OPT_ARGS];
577 while ((p = strsep(&options, ",")) != NULL) {
582 token = match_token(p, tokens, args);
585 nilfs_clear_opt(sbi, BARRIER);
588 if (strcmp(args[0].from, "relaxed") == 0)
589 /* Ordered data semantics */
590 nilfs_clear_opt(sbi, STRICT_ORDER);
591 else if (strcmp(args[0].from, "strict") == 0)
592 /* Strict in-order semantics */
593 nilfs_set_opt(sbi, STRICT_ORDER);
598 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_PANIC);
601 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_RO);
604 nilfs_write_opt(sbi, ERROR_MODE, ERRORS_CONT);
607 if (match_int(&args[0], &option) || option <= 0)
609 if (!(sb->s_flags & MS_RDONLY))
611 sbi->s_snapshot_cno = option;
612 nilfs_set_opt(sbi, SNAPSHOT);
615 nilfs_set_opt(sbi, NORECOVERY);
618 nilfs_set_opt(sbi, DISCARD);
622 "NILFS: Unrecognized mount option \"%s\"\n", p);
630 nilfs_set_default_options(struct nilfs_sb_info *sbi,
631 struct nilfs_super_block *sbp)
634 NILFS_MOUNT_ERRORS_CONT | NILFS_MOUNT_BARRIER;
637 static int nilfs_setup_super(struct nilfs_sb_info *sbi)
639 struct the_nilfs *nilfs = sbi->s_nilfs;
640 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
641 int max_mnt_count = le16_to_cpu(sbp->s_max_mnt_count);
642 int mnt_count = le16_to_cpu(sbp->s_mnt_count);
644 /* nilfs->sem must be locked by the caller. */
645 if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
647 "NILFS warning: mounting fs with errors\n");
649 } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
651 "NILFS warning: maximal mount count reached\n");
655 sbp->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
657 sbp->s_mnt_count = cpu_to_le16(mnt_count + 1);
658 sbp->s_state = cpu_to_le16(le16_to_cpu(sbp->s_state) & ~NILFS_VALID_FS);
659 sbp->s_mtime = cpu_to_le64(get_seconds());
660 return nilfs_commit_super(sbi, 1);
663 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
664 u64 pos, int blocksize,
665 struct buffer_head **pbh)
667 unsigned long long sb_index = pos;
668 unsigned long offset;
670 offset = do_div(sb_index, blocksize);
671 *pbh = sb_bread(sb, sb_index);
674 return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
677 int nilfs_store_magic_and_option(struct super_block *sb,
678 struct nilfs_super_block *sbp,
681 struct nilfs_sb_info *sbi = NILFS_SB(sb);
683 sb->s_magic = le16_to_cpu(sbp->s_magic);
685 /* FS independent flags */
686 #ifdef NILFS_ATIME_DISABLE
687 sb->s_flags |= MS_NOATIME;
690 nilfs_set_default_options(sbi, sbp);
692 sbi->s_resuid = le16_to_cpu(sbp->s_def_resuid);
693 sbi->s_resgid = le16_to_cpu(sbp->s_def_resgid);
694 sbi->s_interval = le32_to_cpu(sbp->s_c_interval);
695 sbi->s_watermark = le32_to_cpu(sbp->s_c_block_max);
697 return !parse_options(data, sb) ? -EINVAL : 0 ;
701 * nilfs_fill_super() - initialize a super block instance
703 * @data: mount options
704 * @silent: silent mode flag
705 * @nilfs: the_nilfs struct
707 * This function is called exclusively by nilfs->ns_mount_mutex.
708 * So, the recovery process is protected from other simultaneous mounts.
711 nilfs_fill_super(struct super_block *sb, void *data, int silent,
712 struct the_nilfs *nilfs)
714 struct nilfs_sb_info *sbi;
719 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
726 sbi->s_nilfs = nilfs;
728 atomic_set(&sbi->s_count, 1);
730 err = init_nilfs(nilfs, sbi, (char *)data);
734 spin_lock_init(&sbi->s_inode_lock);
735 INIT_LIST_HEAD(&sbi->s_dirty_files);
736 INIT_LIST_HEAD(&sbi->s_list);
739 * Following initialization is overlapped because
740 * nilfs_sb_info structure has been cleared at the beginning.
741 * But we reserve them to keep our interest and make ready
742 * for the future change.
744 get_random_bytes(&sbi->s_next_generation,
745 sizeof(sbi->s_next_generation));
746 spin_lock_init(&sbi->s_next_gen_lock);
748 sb->s_op = &nilfs_sops;
749 sb->s_export_op = &nilfs_export_ops;
752 sb->s_bdi = nilfs->ns_bdi;
754 err = load_nilfs(nilfs, sbi);
758 cno = nilfs_last_cno(nilfs);
760 if (sb->s_flags & MS_RDONLY) {
761 if (nilfs_test_opt(sbi, SNAPSHOT)) {
762 down_read(&nilfs->ns_segctor_sem);
763 err = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile,
764 sbi->s_snapshot_cno);
765 up_read(&nilfs->ns_segctor_sem);
773 "NILFS: The specified checkpoint is "
775 "(checkpoint number=%llu).\n",
776 (unsigned long long)sbi->s_snapshot_cno);
780 cno = sbi->s_snapshot_cno;
782 /* Read-only mount */
783 sbi->s_snapshot_cno = cno;
786 err = nilfs_attach_checkpoint(sbi, cno);
788 printk(KERN_ERR "NILFS: error loading a checkpoint"
789 " (checkpoint number=%llu).\n", (unsigned long long)cno);
793 if (!(sb->s_flags & MS_RDONLY)) {
794 err = nilfs_attach_segment_constructor(sbi);
796 goto failed_checkpoint;
799 root = nilfs_iget(sb, NILFS_ROOT_INO);
801 printk(KERN_ERR "NILFS: get root inode failed\n");
805 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
807 printk(KERN_ERR "NILFS: corrupt root inode.\n");
811 sb->s_root = d_alloc_root(root);
814 printk(KERN_ERR "NILFS: get root dentry failed\n");
819 if (!(sb->s_flags & MS_RDONLY)) {
820 down_write(&nilfs->ns_sem);
821 nilfs_setup_super(sbi);
822 up_write(&nilfs->ns_sem);
825 down_write(&nilfs->ns_super_sem);
826 if (!nilfs_test_opt(sbi, SNAPSHOT))
827 nilfs->ns_current = sbi;
828 up_write(&nilfs->ns_super_sem);
833 nilfs_detach_segment_constructor(sbi);
836 nilfs_detach_checkpoint(sbi);
840 sb->s_fs_info = NULL;
841 nilfs_put_sbinfo(sbi);
845 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
847 struct nilfs_sb_info *sbi = NILFS_SB(sb);
848 struct nilfs_super_block *sbp;
849 struct the_nilfs *nilfs = sbi->s_nilfs;
850 unsigned long old_sb_flags;
851 struct nilfs_mount_options old_opts;
856 down_write(&nilfs->ns_super_sem);
857 old_sb_flags = sb->s_flags;
858 old_opts.mount_opt = sbi->s_mount_opt;
859 old_opts.snapshot_cno = sbi->s_snapshot_cno;
861 if (!parse_options(data, sb)) {
865 sb->s_flags = (sb->s_flags & ~MS_POSIXACL);
867 if ((*flags & MS_RDONLY) &&
868 sbi->s_snapshot_cno != old_opts.snapshot_cno) {
869 printk(KERN_WARNING "NILFS (device %s): couldn't "
870 "remount to a different snapshot.\n",
876 if (!nilfs_valid_fs(nilfs)) {
877 printk(KERN_WARNING "NILFS (device %s): couldn't "
878 "remount because the filesystem is in an "
879 "incomplete recovery state.\n", sb->s_id);
884 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
886 if (*flags & MS_RDONLY) {
887 /* Shutting down the segment constructor */
888 nilfs_detach_segment_constructor(sbi);
889 sb->s_flags |= MS_RDONLY;
891 sbi->s_snapshot_cno = nilfs_last_cno(nilfs);
892 /* nilfs_set_opt(sbi, SNAPSHOT); */
895 * Remounting a valid RW partition RDONLY, so set
896 * the RDONLY flag and then mark the partition as valid again.
898 down_write(&nilfs->ns_sem);
899 sbp = nilfs->ns_sbp[0];
900 if (!(sbp->s_state & le16_to_cpu(NILFS_VALID_FS)) &&
901 (nilfs->ns_mount_state & NILFS_VALID_FS))
902 sbp->s_state = cpu_to_le16(nilfs->ns_mount_state);
903 sbp->s_mtime = cpu_to_le64(get_seconds());
904 nilfs_commit_super(sbi, 1);
905 up_write(&nilfs->ns_sem);
908 * Mounting a RDONLY partition read-write, so reread and
909 * store the current valid flag. (It may have been changed
910 * by fsck since we originally mounted the partition.)
912 if (nilfs->ns_current && nilfs->ns_current != sbi) {
913 printk(KERN_WARNING "NILFS (device %s): couldn't "
914 "remount because an RW-mount exists.\n",
919 if (sbi->s_snapshot_cno != nilfs_last_cno(nilfs)) {
920 printk(KERN_WARNING "NILFS (device %s): couldn't "
921 "remount because the current RO-mount is not "
927 sb->s_flags &= ~MS_RDONLY;
928 nilfs_clear_opt(sbi, SNAPSHOT);
929 sbi->s_snapshot_cno = 0;
931 err = nilfs_attach_segment_constructor(sbi);
935 down_write(&nilfs->ns_sem);
936 nilfs_setup_super(sbi);
937 up_write(&nilfs->ns_sem);
939 nilfs->ns_current = sbi;
942 up_write(&nilfs->ns_super_sem);
947 sb->s_flags = old_sb_flags;
948 sbi->s_mount_opt = old_opts.mount_opt;
949 sbi->s_snapshot_cno = old_opts.snapshot_cno;
950 up_write(&nilfs->ns_super_sem);
955 struct nilfs_super_data {
956 struct block_device *bdev;
957 struct nilfs_sb_info *sbi;
963 * nilfs_identify - pre-read mount options needed to identify mount instance
964 * @data: mount options
965 * @sd: nilfs_super_data
967 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
969 char *p, *options = data;
970 substring_t args[MAX_OPT_ARGS];
975 p = strsep(&options, ",");
976 if (p != NULL && *p) {
977 token = match_token(p, tokens, args);
978 if (token == Opt_snapshot) {
979 if (!(sd->flags & MS_RDONLY))
982 ret = match_int(&args[0], &option);
993 "NILFS: invalid mount option: %s\n", p);
997 BUG_ON(options == data);
998 *(options - 1) = ',';
1003 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1005 struct nilfs_super_data *sd = data;
1007 s->s_bdev = sd->bdev;
1008 s->s_dev = s->s_bdev->bd_dev;
1012 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1014 struct nilfs_super_data *sd = data;
1016 return sd->sbi && s->s_fs_info == (void *)sd->sbi;
1020 nilfs_get_sb(struct file_system_type *fs_type, int flags,
1021 const char *dev_name, void *data, struct vfsmount *mnt)
1023 struct nilfs_super_data sd;
1024 struct super_block *s;
1025 struct the_nilfs *nilfs;
1026 int err, need_to_close = 1;
1028 sd.bdev = open_bdev_exclusive(dev_name, flags, fs_type);
1029 if (IS_ERR(sd.bdev))
1030 return PTR_ERR(sd.bdev);
1033 * To get mount instance using sget() vfs-routine, NILFS needs
1034 * much more information than normal filesystems to identify mount
1035 * instance. For snapshot mounts, not only a mount type (ro-mount
1036 * or rw-mount) but also a checkpoint number is required.
1040 if (nilfs_identify((char *)data, &sd)) {
1045 nilfs = find_or_create_nilfs(sd.bdev);
1051 mutex_lock(&nilfs->ns_mount_mutex);
1055 * Check if an exclusive mount exists or not.
1056 * Snapshot mounts coexist with a current mount
1057 * (i.e. rw-mount or ro-mount), whereas rw-mount and
1058 * ro-mount are mutually exclusive.
1060 down_read(&nilfs->ns_super_sem);
1061 if (nilfs->ns_current &&
1062 ((nilfs->ns_current->s_super->s_flags ^ flags)
1064 up_read(&nilfs->ns_super_sem);
1068 up_read(&nilfs->ns_super_sem);
1072 * Find existing nilfs_sb_info struct
1074 sd.sbi = nilfs_find_sbinfo(nilfs, !(flags & MS_RDONLY), sd.cno);
1077 * Get super block instance holding the nilfs_sb_info struct.
1078 * A new instance is allocated if no existing mount is present or
1079 * existing instance has been unmounted.
1081 s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, &sd);
1083 nilfs_put_sbinfo(sd.sbi);
1091 char b[BDEVNAME_SIZE];
1093 /* New superblock instance created */
1095 strlcpy(s->s_id, bdevname(sd.bdev, b), sizeof(s->s_id));
1096 sb_set_blocksize(s, block_size(sd.bdev));
1098 err = nilfs_fill_super(s, data, flags & MS_VERBOSE, nilfs);
1102 s->s_flags |= MS_ACTIVE;
1106 mutex_unlock(&nilfs->ns_mount_mutex);
1109 close_bdev_exclusive(sd.bdev, flags);
1110 simple_set_mnt(mnt, s);
1114 mutex_unlock(&nilfs->ns_mount_mutex);
1117 close_bdev_exclusive(sd.bdev, flags);
1122 /* Abandoning the newly allocated superblock */
1123 mutex_unlock(&nilfs->ns_mount_mutex);
1125 deactivate_locked_super(s);
1127 * deactivate_super() invokes close_bdev_exclusive().
1128 * We must finish all post-cleaning before this call;
1129 * put_nilfs() needs the block device.
1134 struct file_system_type nilfs_fs_type = {
1135 .owner = THIS_MODULE,
1137 .get_sb = nilfs_get_sb,
1138 .kill_sb = kill_block_super,
1139 .fs_flags = FS_REQUIRES_DEV,
1142 static int __init init_nilfs_fs(void)
1146 err = nilfs_init_inode_cache();
1150 err = nilfs_init_transaction_cache();
1152 goto failed_inode_cache;
1154 err = nilfs_init_segbuf_cache();
1156 goto failed_transaction_cache;
1158 err = nilfs_btree_path_cache_init();
1160 goto failed_segbuf_cache;
1162 err = register_filesystem(&nilfs_fs_type);
1164 goto failed_btree_path_cache;
1168 failed_btree_path_cache:
1169 nilfs_btree_path_cache_destroy();
1171 failed_segbuf_cache:
1172 nilfs_destroy_segbuf_cache();
1174 failed_transaction_cache:
1175 nilfs_destroy_transaction_cache();
1178 nilfs_destroy_inode_cache();
1184 static void __exit exit_nilfs_fs(void)
1186 nilfs_destroy_segbuf_cache();
1187 nilfs_destroy_transaction_cache();
1188 nilfs_destroy_inode_cache();
1189 nilfs_btree_path_cache_destroy();
1190 unregister_filesystem(&nilfs_fs_type);
1193 module_init(init_nilfs_fs)
1194 module_exit(exit_nilfs_fs)