nilfs2: use setup_bdev_super to de-duplicate the mount code
[platform/kernel/linux-starfive.git] / fs / nilfs2 / super.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * NILFS module and super block management.
4  *
5  * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6  *
7  * Written by Ryusuke Konishi.
8  */
9 /*
10  *  linux/fs/ext2/super.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Big-endian to little-endian byte-swapping/bitmaps by
24  *        David S. Miller (davem@caip.rutgers.edu), 1995
25  */
26
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
38 #include <linux/fs_context.h>
39 #include "nilfs.h"
40 #include "export.h"
41 #include "mdt.h"
42 #include "alloc.h"
43 #include "btree.h"
44 #include "btnode.h"
45 #include "page.h"
46 #include "cpfile.h"
47 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
48 #include "ifile.h"
49 #include "dat.h"
50 #include "segment.h"
51 #include "segbuf.h"
52
53 MODULE_AUTHOR("NTT Corp.");
54 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
55                    "(NILFS)");
56 MODULE_LICENSE("GPL");
57
58 static struct kmem_cache *nilfs_inode_cachep;
59 struct kmem_cache *nilfs_transaction_cachep;
60 struct kmem_cache *nilfs_segbuf_cachep;
61 struct kmem_cache *nilfs_btree_path_cache;
62
63 static int nilfs_setup_super(struct super_block *sb, int is_mount);
64 static int nilfs_remount(struct super_block *sb, int *flags, char *data);
65
66 void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
67 {
68         struct va_format vaf;
69         va_list args;
70         int level;
71
72         va_start(args, fmt);
73
74         level = printk_get_level(fmt);
75         vaf.fmt = printk_skip_level(fmt);
76         vaf.va = &args;
77
78         if (sb)
79                 printk("%c%cNILFS (%s): %pV\n",
80                        KERN_SOH_ASCII, level, sb->s_id, &vaf);
81         else
82                 printk("%c%cNILFS: %pV\n",
83                        KERN_SOH_ASCII, level, &vaf);
84
85         va_end(args);
86 }
87
88 static void nilfs_set_error(struct super_block *sb)
89 {
90         struct the_nilfs *nilfs = sb->s_fs_info;
91         struct nilfs_super_block **sbp;
92
93         down_write(&nilfs->ns_sem);
94         if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
95                 nilfs->ns_mount_state |= NILFS_ERROR_FS;
96                 sbp = nilfs_prepare_super(sb, 0);
97                 if (likely(sbp)) {
98                         sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
99                         if (sbp[1])
100                                 sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
101                         nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
102                 }
103         }
104         up_write(&nilfs->ns_sem);
105 }
106
107 /**
108  * __nilfs_error() - report failure condition on a filesystem
109  *
110  * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
111  * reporting an error message.  This function should be called when
112  * NILFS detects incoherences or defects of meta data on disk.
113  *
114  * This implements the body of nilfs_error() macro.  Normally,
115  * nilfs_error() should be used.  As for sustainable errors such as a
116  * single-shot I/O error, nilfs_err() should be used instead.
117  *
118  * Callers should not add a trailing newline since this will do it.
119  */
120 void __nilfs_error(struct super_block *sb, const char *function,
121                    const char *fmt, ...)
122 {
123         struct the_nilfs *nilfs = sb->s_fs_info;
124         struct va_format vaf;
125         va_list args;
126
127         va_start(args, fmt);
128
129         vaf.fmt = fmt;
130         vaf.va = &args;
131
132         printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
133                sb->s_id, function, &vaf);
134
135         va_end(args);
136
137         if (!sb_rdonly(sb)) {
138                 nilfs_set_error(sb);
139
140                 if (nilfs_test_opt(nilfs, ERRORS_RO)) {
141                         printk(KERN_CRIT "Remounting filesystem read-only\n");
142                         sb->s_flags |= SB_RDONLY;
143                 }
144         }
145
146         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
147                 panic("NILFS (device %s): panic forced after error\n",
148                       sb->s_id);
149 }
150
151 struct inode *nilfs_alloc_inode(struct super_block *sb)
152 {
153         struct nilfs_inode_info *ii;
154
155         ii = alloc_inode_sb(sb, nilfs_inode_cachep, GFP_NOFS);
156         if (!ii)
157                 return NULL;
158         ii->i_bh = NULL;
159         ii->i_state = 0;
160         ii->i_cno = 0;
161         ii->i_assoc_inode = NULL;
162         ii->i_bmap = &ii->i_bmap_data;
163         return &ii->vfs_inode;
164 }
165
166 static void nilfs_free_inode(struct inode *inode)
167 {
168         if (nilfs_is_metadata_file_inode(inode))
169                 nilfs_mdt_destroy(inode);
170
171         kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
172 }
173
174 static int nilfs_sync_super(struct super_block *sb, int flag)
175 {
176         struct the_nilfs *nilfs = sb->s_fs_info;
177         int err;
178
179  retry:
180         set_buffer_dirty(nilfs->ns_sbh[0]);
181         if (nilfs_test_opt(nilfs, BARRIER)) {
182                 err = __sync_dirty_buffer(nilfs->ns_sbh[0],
183                                           REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
184         } else {
185                 err = sync_dirty_buffer(nilfs->ns_sbh[0]);
186         }
187
188         if (unlikely(err)) {
189                 nilfs_err(sb, "unable to write superblock: err=%d", err);
190                 if (err == -EIO && nilfs->ns_sbh[1]) {
191                         /*
192                          * sbp[0] points to newer log than sbp[1],
193                          * so copy sbp[0] to sbp[1] to take over sbp[0].
194                          */
195                         memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
196                                nilfs->ns_sbsize);
197                         nilfs_fall_back_super_block(nilfs);
198                         goto retry;
199                 }
200         } else {
201                 struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
202
203                 nilfs->ns_sbwcount++;
204
205                 /*
206                  * The latest segment becomes trailable from the position
207                  * written in superblock.
208                  */
209                 clear_nilfs_discontinued(nilfs);
210
211                 /* update GC protection for recent segments */
212                 if (nilfs->ns_sbh[1]) {
213                         if (flag == NILFS_SB_COMMIT_ALL) {
214                                 set_buffer_dirty(nilfs->ns_sbh[1]);
215                                 if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
216                                         goto out;
217                         }
218                         if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
219                             le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
220                                 sbp = nilfs->ns_sbp[1];
221                 }
222
223                 spin_lock(&nilfs->ns_last_segment_lock);
224                 nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
225                 spin_unlock(&nilfs->ns_last_segment_lock);
226         }
227  out:
228         return err;
229 }
230
231 void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
232                           struct the_nilfs *nilfs)
233 {
234         sector_t nfreeblocks;
235
236         /* nilfs->ns_sem must be locked by the caller. */
237         nilfs_count_free_blocks(nilfs, &nfreeblocks);
238         sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
239
240         spin_lock(&nilfs->ns_last_segment_lock);
241         sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
242         sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
243         sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
244         spin_unlock(&nilfs->ns_last_segment_lock);
245 }
246
247 struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
248                                                int flip)
249 {
250         struct the_nilfs *nilfs = sb->s_fs_info;
251         struct nilfs_super_block **sbp = nilfs->ns_sbp;
252
253         /* nilfs->ns_sem must be locked by the caller. */
254         if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
255                 if (sbp[1] &&
256                     sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
257                         memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
258                 } else {
259                         nilfs_crit(sb, "superblock broke");
260                         return NULL;
261                 }
262         } else if (sbp[1] &&
263                    sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
264                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
265         }
266
267         if (flip && sbp[1])
268                 nilfs_swap_super_block(nilfs);
269
270         return sbp;
271 }
272
273 int nilfs_commit_super(struct super_block *sb, int flag)
274 {
275         struct the_nilfs *nilfs = sb->s_fs_info;
276         struct nilfs_super_block **sbp = nilfs->ns_sbp;
277         time64_t t;
278
279         /* nilfs->ns_sem must be locked by the caller. */
280         t = ktime_get_real_seconds();
281         nilfs->ns_sbwtime = t;
282         sbp[0]->s_wtime = cpu_to_le64(t);
283         sbp[0]->s_sum = 0;
284         sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
285                                              (unsigned char *)sbp[0],
286                                              nilfs->ns_sbsize));
287         if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
288                 sbp[1]->s_wtime = sbp[0]->s_wtime;
289                 sbp[1]->s_sum = 0;
290                 sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
291                                             (unsigned char *)sbp[1],
292                                             nilfs->ns_sbsize));
293         }
294         clear_nilfs_sb_dirty(nilfs);
295         nilfs->ns_flushed_device = 1;
296         /* make sure store to ns_flushed_device cannot be reordered */
297         smp_wmb();
298         return nilfs_sync_super(sb, flag);
299 }
300
301 /**
302  * nilfs_cleanup_super() - write filesystem state for cleanup
303  * @sb: super block instance to be unmounted or degraded to read-only
304  *
305  * This function restores state flags in the on-disk super block.
306  * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
307  * filesystem was not clean previously.
308  */
309 int nilfs_cleanup_super(struct super_block *sb)
310 {
311         struct the_nilfs *nilfs = sb->s_fs_info;
312         struct nilfs_super_block **sbp;
313         int flag = NILFS_SB_COMMIT;
314         int ret = -EIO;
315
316         sbp = nilfs_prepare_super(sb, 0);
317         if (sbp) {
318                 sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
319                 nilfs_set_log_cursor(sbp[0], nilfs);
320                 if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
321                         /*
322                          * make the "clean" flag also to the opposite
323                          * super block if both super blocks point to
324                          * the same checkpoint.
325                          */
326                         sbp[1]->s_state = sbp[0]->s_state;
327                         flag = NILFS_SB_COMMIT_ALL;
328                 }
329                 ret = nilfs_commit_super(sb, flag);
330         }
331         return ret;
332 }
333
334 /**
335  * nilfs_move_2nd_super - relocate secondary super block
336  * @sb: super block instance
337  * @sb2off: new offset of the secondary super block (in bytes)
338  */
339 static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
340 {
341         struct the_nilfs *nilfs = sb->s_fs_info;
342         struct buffer_head *nsbh;
343         struct nilfs_super_block *nsbp;
344         sector_t blocknr, newblocknr;
345         unsigned long offset;
346         int sb2i;  /* array index of the secondary superblock */
347         int ret = 0;
348
349         /* nilfs->ns_sem must be locked by the caller. */
350         if (nilfs->ns_sbh[1] &&
351             nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
352                 sb2i = 1;
353                 blocknr = nilfs->ns_sbh[1]->b_blocknr;
354         } else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
355                 sb2i = 0;
356                 blocknr = nilfs->ns_sbh[0]->b_blocknr;
357         } else {
358                 sb2i = -1;
359                 blocknr = 0;
360         }
361         if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
362                 goto out;  /* super block location is unchanged */
363
364         /* Get new super block buffer */
365         newblocknr = sb2off >> nilfs->ns_blocksize_bits;
366         offset = sb2off & (nilfs->ns_blocksize - 1);
367         nsbh = sb_getblk(sb, newblocknr);
368         if (!nsbh) {
369                 nilfs_warn(sb,
370                            "unable to move secondary superblock to block %llu",
371                            (unsigned long long)newblocknr);
372                 ret = -EIO;
373                 goto out;
374         }
375         nsbp = (void *)nsbh->b_data + offset;
376
377         lock_buffer(nsbh);
378         if (sb2i >= 0) {
379                 /*
380                  * The position of the second superblock only changes by 4KiB,
381                  * which is larger than the maximum superblock data size
382                  * (= 1KiB), so there is no need to use memmove() to allow
383                  * overlap between source and destination.
384                  */
385                 memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
386
387                 /*
388                  * Zero fill after copy to avoid overwriting in case of move
389                  * within the same block.
390                  */
391                 memset(nsbh->b_data, 0, offset);
392                 memset((void *)nsbp + nilfs->ns_sbsize, 0,
393                        nsbh->b_size - offset - nilfs->ns_sbsize);
394         } else {
395                 memset(nsbh->b_data, 0, nsbh->b_size);
396         }
397         set_buffer_uptodate(nsbh);
398         unlock_buffer(nsbh);
399
400         if (sb2i >= 0) {
401                 brelse(nilfs->ns_sbh[sb2i]);
402                 nilfs->ns_sbh[sb2i] = nsbh;
403                 nilfs->ns_sbp[sb2i] = nsbp;
404         } else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
405                 /* secondary super block will be restored to index 1 */
406                 nilfs->ns_sbh[1] = nsbh;
407                 nilfs->ns_sbp[1] = nsbp;
408         } else {
409                 brelse(nsbh);
410         }
411 out:
412         return ret;
413 }
414
415 /**
416  * nilfs_resize_fs - resize the filesystem
417  * @sb: super block instance
418  * @newsize: new size of the filesystem (in bytes)
419  */
420 int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
421 {
422         struct the_nilfs *nilfs = sb->s_fs_info;
423         struct nilfs_super_block **sbp;
424         __u64 devsize, newnsegs;
425         loff_t sb2off;
426         int ret;
427
428         ret = -ERANGE;
429         devsize = bdev_nr_bytes(sb->s_bdev);
430         if (newsize > devsize)
431                 goto out;
432
433         /*
434          * Prevent underflow in second superblock position calculation.
435          * The exact minimum size check is done in nilfs_sufile_resize().
436          */
437         if (newsize < 4096) {
438                 ret = -ENOSPC;
439                 goto out;
440         }
441
442         /*
443          * Write lock is required to protect some functions depending
444          * on the number of segments, the number of reserved segments,
445          * and so forth.
446          */
447         down_write(&nilfs->ns_segctor_sem);
448
449         sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
450         newnsegs = sb2off >> nilfs->ns_blocksize_bits;
451         do_div(newnsegs, nilfs->ns_blocks_per_segment);
452
453         ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
454         up_write(&nilfs->ns_segctor_sem);
455         if (ret < 0)
456                 goto out;
457
458         ret = nilfs_construct_segment(sb);
459         if (ret < 0)
460                 goto out;
461
462         down_write(&nilfs->ns_sem);
463         nilfs_move_2nd_super(sb, sb2off);
464         ret = -EIO;
465         sbp = nilfs_prepare_super(sb, 0);
466         if (likely(sbp)) {
467                 nilfs_set_log_cursor(sbp[0], nilfs);
468                 /*
469                  * Drop NILFS_RESIZE_FS flag for compatibility with
470                  * mount-time resize which may be implemented in a
471                  * future release.
472                  */
473                 sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
474                                               ~NILFS_RESIZE_FS);
475                 sbp[0]->s_dev_size = cpu_to_le64(newsize);
476                 sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
477                 if (sbp[1])
478                         memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
479                 ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
480         }
481         up_write(&nilfs->ns_sem);
482
483         /*
484          * Reset the range of allocatable segments last.  This order
485          * is important in the case of expansion because the secondary
486          * superblock must be protected from log write until migration
487          * completes.
488          */
489         if (!ret)
490                 nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
491 out:
492         return ret;
493 }
494
495 static void nilfs_put_super(struct super_block *sb)
496 {
497         struct the_nilfs *nilfs = sb->s_fs_info;
498
499         nilfs_detach_log_writer(sb);
500
501         if (!sb_rdonly(sb)) {
502                 down_write(&nilfs->ns_sem);
503                 nilfs_cleanup_super(sb);
504                 up_write(&nilfs->ns_sem);
505         }
506
507         nilfs_sysfs_delete_device_group(nilfs);
508         iput(nilfs->ns_sufile);
509         iput(nilfs->ns_cpfile);
510         iput(nilfs->ns_dat);
511
512         destroy_nilfs(nilfs);
513         sb->s_fs_info = NULL;
514 }
515
516 static int nilfs_sync_fs(struct super_block *sb, int wait)
517 {
518         struct the_nilfs *nilfs = sb->s_fs_info;
519         struct nilfs_super_block **sbp;
520         int err = 0;
521
522         /* This function is called when super block should be written back */
523         if (wait)
524                 err = nilfs_construct_segment(sb);
525
526         down_write(&nilfs->ns_sem);
527         if (nilfs_sb_dirty(nilfs)) {
528                 sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
529                 if (likely(sbp)) {
530                         nilfs_set_log_cursor(sbp[0], nilfs);
531                         nilfs_commit_super(sb, NILFS_SB_COMMIT);
532                 }
533         }
534         up_write(&nilfs->ns_sem);
535
536         if (!err)
537                 err = nilfs_flush_device(nilfs);
538
539         return err;
540 }
541
542 int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
543                             struct nilfs_root **rootp)
544 {
545         struct the_nilfs *nilfs = sb->s_fs_info;
546         struct nilfs_root *root;
547         struct nilfs_checkpoint *raw_cp;
548         struct buffer_head *bh_cp;
549         int err = -ENOMEM;
550
551         root = nilfs_find_or_create_root(
552                 nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
553         if (!root)
554                 return err;
555
556         if (root->ifile)
557                 goto reuse; /* already attached checkpoint */
558
559         down_read(&nilfs->ns_segctor_sem);
560         err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
561                                           &bh_cp);
562         up_read(&nilfs->ns_segctor_sem);
563         if (unlikely(err)) {
564                 if (err == -ENOENT || err == -EINVAL) {
565                         nilfs_err(sb,
566                                   "Invalid checkpoint (checkpoint number=%llu)",
567                                   (unsigned long long)cno);
568                         err = -EINVAL;
569                 }
570                 goto failed;
571         }
572
573         err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
574                                &raw_cp->cp_ifile_inode, &root->ifile);
575         if (err)
576                 goto failed_bh;
577
578         atomic64_set(&root->inodes_count,
579                         le64_to_cpu(raw_cp->cp_inodes_count));
580         atomic64_set(&root->blocks_count,
581                         le64_to_cpu(raw_cp->cp_blocks_count));
582
583         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
584
585  reuse:
586         *rootp = root;
587         return 0;
588
589  failed_bh:
590         nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
591  failed:
592         nilfs_put_root(root);
593
594         return err;
595 }
596
597 static int nilfs_freeze(struct super_block *sb)
598 {
599         struct the_nilfs *nilfs = sb->s_fs_info;
600         int err;
601
602         if (sb_rdonly(sb))
603                 return 0;
604
605         /* Mark super block clean */
606         down_write(&nilfs->ns_sem);
607         err = nilfs_cleanup_super(sb);
608         up_write(&nilfs->ns_sem);
609         return err;
610 }
611
612 static int nilfs_unfreeze(struct super_block *sb)
613 {
614         struct the_nilfs *nilfs = sb->s_fs_info;
615
616         if (sb_rdonly(sb))
617                 return 0;
618
619         down_write(&nilfs->ns_sem);
620         nilfs_setup_super(sb, false);
621         up_write(&nilfs->ns_sem);
622         return 0;
623 }
624
625 static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
626 {
627         struct super_block *sb = dentry->d_sb;
628         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
629         struct the_nilfs *nilfs = root->nilfs;
630         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
631         unsigned long long blocks;
632         unsigned long overhead;
633         unsigned long nrsvblocks;
634         sector_t nfreeblocks;
635         u64 nmaxinodes, nfreeinodes;
636         int err;
637
638         /*
639          * Compute all of the segment blocks
640          *
641          * The blocks before first segment and after last segment
642          * are excluded.
643          */
644         blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
645                 - nilfs->ns_first_data_block;
646         nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
647
648         /*
649          * Compute the overhead
650          *
651          * When distributing meta data blocks outside segment structure,
652          * We must count them as the overhead.
653          */
654         overhead = 0;
655
656         err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
657         if (unlikely(err))
658                 return err;
659
660         err = nilfs_ifile_count_free_inodes(root->ifile,
661                                             &nmaxinodes, &nfreeinodes);
662         if (unlikely(err)) {
663                 nilfs_warn(sb, "failed to count free inodes: err=%d", err);
664                 if (err == -ERANGE) {
665                         /*
666                          * If nilfs_palloc_count_max_entries() returns
667                          * -ERANGE error code then we simply treat
668                          * curent inodes count as maximum possible and
669                          * zero as free inodes value.
670                          */
671                         nmaxinodes = atomic64_read(&root->inodes_count);
672                         nfreeinodes = 0;
673                         err = 0;
674                 } else
675                         return err;
676         }
677
678         buf->f_type = NILFS_SUPER_MAGIC;
679         buf->f_bsize = sb->s_blocksize;
680         buf->f_blocks = blocks - overhead;
681         buf->f_bfree = nfreeblocks;
682         buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
683                 (buf->f_bfree - nrsvblocks) : 0;
684         buf->f_files = nmaxinodes;
685         buf->f_ffree = nfreeinodes;
686         buf->f_namelen = NILFS_NAME_LEN;
687         buf->f_fsid = u64_to_fsid(id);
688
689         return 0;
690 }
691
692 static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
693 {
694         struct super_block *sb = dentry->d_sb;
695         struct the_nilfs *nilfs = sb->s_fs_info;
696         struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
697
698         if (!nilfs_test_opt(nilfs, BARRIER))
699                 seq_puts(seq, ",nobarrier");
700         if (root->cno != NILFS_CPTREE_CURRENT_CNO)
701                 seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
702         if (nilfs_test_opt(nilfs, ERRORS_PANIC))
703                 seq_puts(seq, ",errors=panic");
704         if (nilfs_test_opt(nilfs, ERRORS_CONT))
705                 seq_puts(seq, ",errors=continue");
706         if (nilfs_test_opt(nilfs, STRICT_ORDER))
707                 seq_puts(seq, ",order=strict");
708         if (nilfs_test_opt(nilfs, NORECOVERY))
709                 seq_puts(seq, ",norecovery");
710         if (nilfs_test_opt(nilfs, DISCARD))
711                 seq_puts(seq, ",discard");
712
713         return 0;
714 }
715
716 static const struct super_operations nilfs_sops = {
717         .alloc_inode    = nilfs_alloc_inode,
718         .free_inode     = nilfs_free_inode,
719         .dirty_inode    = nilfs_dirty_inode,
720         .evict_inode    = nilfs_evict_inode,
721         .put_super      = nilfs_put_super,
722         .sync_fs        = nilfs_sync_fs,
723         .freeze_fs      = nilfs_freeze,
724         .unfreeze_fs    = nilfs_unfreeze,
725         .statfs         = nilfs_statfs,
726         .remount_fs     = nilfs_remount,
727         .show_options = nilfs_show_options
728 };
729
730 enum {
731         Opt_err_cont, Opt_err_panic, Opt_err_ro,
732         Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
733         Opt_discard, Opt_nodiscard, Opt_err,
734 };
735
736 static match_table_t tokens = {
737         {Opt_err_cont, "errors=continue"},
738         {Opt_err_panic, "errors=panic"},
739         {Opt_err_ro, "errors=remount-ro"},
740         {Opt_barrier, "barrier"},
741         {Opt_nobarrier, "nobarrier"},
742         {Opt_snapshot, "cp=%u"},
743         {Opt_order, "order=%s"},
744         {Opt_norecovery, "norecovery"},
745         {Opt_discard, "discard"},
746         {Opt_nodiscard, "nodiscard"},
747         {Opt_err, NULL}
748 };
749
750 static int parse_options(char *options, struct super_block *sb, int is_remount)
751 {
752         struct the_nilfs *nilfs = sb->s_fs_info;
753         char *p;
754         substring_t args[MAX_OPT_ARGS];
755
756         if (!options)
757                 return 1;
758
759         while ((p = strsep(&options, ",")) != NULL) {
760                 int token;
761
762                 if (!*p)
763                         continue;
764
765                 token = match_token(p, tokens, args);
766                 switch (token) {
767                 case Opt_barrier:
768                         nilfs_set_opt(nilfs, BARRIER);
769                         break;
770                 case Opt_nobarrier:
771                         nilfs_clear_opt(nilfs, BARRIER);
772                         break;
773                 case Opt_order:
774                         if (strcmp(args[0].from, "relaxed") == 0)
775                                 /* Ordered data semantics */
776                                 nilfs_clear_opt(nilfs, STRICT_ORDER);
777                         else if (strcmp(args[0].from, "strict") == 0)
778                                 /* Strict in-order semantics */
779                                 nilfs_set_opt(nilfs, STRICT_ORDER);
780                         else
781                                 return 0;
782                         break;
783                 case Opt_err_panic:
784                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
785                         break;
786                 case Opt_err_ro:
787                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
788                         break;
789                 case Opt_err_cont:
790                         nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
791                         break;
792                 case Opt_snapshot:
793                         if (is_remount) {
794                                 nilfs_err(sb,
795                                           "\"%s\" option is invalid for remount",
796                                           p);
797                                 return 0;
798                         }
799                         break;
800                 case Opt_norecovery:
801                         nilfs_set_opt(nilfs, NORECOVERY);
802                         break;
803                 case Opt_discard:
804                         nilfs_set_opt(nilfs, DISCARD);
805                         break;
806                 case Opt_nodiscard:
807                         nilfs_clear_opt(nilfs, DISCARD);
808                         break;
809                 default:
810                         nilfs_err(sb, "unrecognized mount option \"%s\"", p);
811                         return 0;
812                 }
813         }
814         return 1;
815 }
816
817 static inline void
818 nilfs_set_default_options(struct super_block *sb,
819                           struct nilfs_super_block *sbp)
820 {
821         struct the_nilfs *nilfs = sb->s_fs_info;
822
823         nilfs->ns_mount_opt =
824                 NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
825 }
826
827 static int nilfs_setup_super(struct super_block *sb, int is_mount)
828 {
829         struct the_nilfs *nilfs = sb->s_fs_info;
830         struct nilfs_super_block **sbp;
831         int max_mnt_count;
832         int mnt_count;
833
834         /* nilfs->ns_sem must be locked by the caller. */
835         sbp = nilfs_prepare_super(sb, 0);
836         if (!sbp)
837                 return -EIO;
838
839         if (!is_mount)
840                 goto skip_mount_setup;
841
842         max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
843         mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
844
845         if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
846                 nilfs_warn(sb, "mounting fs with errors");
847 #if 0
848         } else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
849                 nilfs_warn(sb, "maximal mount count reached");
850 #endif
851         }
852         if (!max_mnt_count)
853                 sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
854
855         sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
856         sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
857
858 skip_mount_setup:
859         sbp[0]->s_state =
860                 cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
861         /* synchronize sbp[1] with sbp[0] */
862         if (sbp[1])
863                 memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
864         return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
865 }
866
867 struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
868                                                  u64 pos, int blocksize,
869                                                  struct buffer_head **pbh)
870 {
871         unsigned long long sb_index = pos;
872         unsigned long offset;
873
874         offset = do_div(sb_index, blocksize);
875         *pbh = sb_bread(sb, sb_index);
876         if (!*pbh)
877                 return NULL;
878         return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
879 }
880
881 int nilfs_store_magic_and_option(struct super_block *sb,
882                                  struct nilfs_super_block *sbp,
883                                  char *data)
884 {
885         struct the_nilfs *nilfs = sb->s_fs_info;
886
887         sb->s_magic = le16_to_cpu(sbp->s_magic);
888
889         /* FS independent flags */
890 #ifdef NILFS_ATIME_DISABLE
891         sb->s_flags |= SB_NOATIME;
892 #endif
893
894         nilfs_set_default_options(sb, sbp);
895
896         nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
897         nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
898         nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
899         nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
900
901         return !parse_options(data, sb, 0) ? -EINVAL : 0;
902 }
903
904 int nilfs_check_feature_compatibility(struct super_block *sb,
905                                       struct nilfs_super_block *sbp)
906 {
907         __u64 features;
908
909         features = le64_to_cpu(sbp->s_feature_incompat) &
910                 ~NILFS_FEATURE_INCOMPAT_SUPP;
911         if (features) {
912                 nilfs_err(sb,
913                           "couldn't mount because of unsupported optional features (%llx)",
914                           (unsigned long long)features);
915                 return -EINVAL;
916         }
917         features = le64_to_cpu(sbp->s_feature_compat_ro) &
918                 ~NILFS_FEATURE_COMPAT_RO_SUPP;
919         if (!sb_rdonly(sb) && features) {
920                 nilfs_err(sb,
921                           "couldn't mount RDWR because of unsupported optional features (%llx)",
922                           (unsigned long long)features);
923                 return -EINVAL;
924         }
925         return 0;
926 }
927
928 static int nilfs_get_root_dentry(struct super_block *sb,
929                                  struct nilfs_root *root,
930                                  struct dentry **root_dentry)
931 {
932         struct inode *inode;
933         struct dentry *dentry;
934         int ret = 0;
935
936         inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
937         if (IS_ERR(inode)) {
938                 ret = PTR_ERR(inode);
939                 nilfs_err(sb, "error %d getting root inode", ret);
940                 goto out;
941         }
942         if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
943                 iput(inode);
944                 nilfs_err(sb, "corrupt root inode");
945                 ret = -EINVAL;
946                 goto out;
947         }
948
949         if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
950                 dentry = d_find_alias(inode);
951                 if (!dentry) {
952                         dentry = d_make_root(inode);
953                         if (!dentry) {
954                                 ret = -ENOMEM;
955                                 goto failed_dentry;
956                         }
957                 } else {
958                         iput(inode);
959                 }
960         } else {
961                 dentry = d_obtain_root(inode);
962                 if (IS_ERR(dentry)) {
963                         ret = PTR_ERR(dentry);
964                         goto failed_dentry;
965                 }
966         }
967         *root_dentry = dentry;
968  out:
969         return ret;
970
971  failed_dentry:
972         nilfs_err(sb, "error %d getting root dentry", ret);
973         goto out;
974 }
975
976 static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
977                                  struct dentry **root_dentry)
978 {
979         struct the_nilfs *nilfs = s->s_fs_info;
980         struct nilfs_root *root;
981         int ret;
982
983         mutex_lock(&nilfs->ns_snapshot_mount_mutex);
984
985         down_read(&nilfs->ns_segctor_sem);
986         ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
987         up_read(&nilfs->ns_segctor_sem);
988         if (ret < 0) {
989                 ret = (ret == -ENOENT) ? -EINVAL : ret;
990                 goto out;
991         } else if (!ret) {
992                 nilfs_err(s,
993                           "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
994                           (unsigned long long)cno);
995                 ret = -EINVAL;
996                 goto out;
997         }
998
999         ret = nilfs_attach_checkpoint(s, cno, false, &root);
1000         if (ret) {
1001                 nilfs_err(s,
1002                           "error %d while loading snapshot (checkpoint number=%llu)",
1003                           ret, (unsigned long long)cno);
1004                 goto out;
1005         }
1006         ret = nilfs_get_root_dentry(s, root, root_dentry);
1007         nilfs_put_root(root);
1008  out:
1009         mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1010         return ret;
1011 }
1012
1013 /**
1014  * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1015  * @root_dentry: root dentry of the tree to be shrunk
1016  *
1017  * This function returns true if the tree was in-use.
1018  */
1019 static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1020 {
1021         shrink_dcache_parent(root_dentry);
1022         return d_count(root_dentry) > 1;
1023 }
1024
1025 int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1026 {
1027         struct the_nilfs *nilfs = sb->s_fs_info;
1028         struct nilfs_root *root;
1029         struct inode *inode;
1030         struct dentry *dentry;
1031         int ret;
1032
1033         if (cno > nilfs->ns_cno)
1034                 return false;
1035
1036         if (cno >= nilfs_last_cno(nilfs))
1037                 return true;    /* protect recent checkpoints */
1038
1039         ret = false;
1040         root = nilfs_lookup_root(nilfs, cno);
1041         if (root) {
1042                 inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1043                 if (inode) {
1044                         dentry = d_find_alias(inode);
1045                         if (dentry) {
1046                                 ret = nilfs_tree_is_busy(dentry);
1047                                 dput(dentry);
1048                         }
1049                         iput(inode);
1050                 }
1051                 nilfs_put_root(root);
1052         }
1053         return ret;
1054 }
1055
1056 /**
1057  * nilfs_fill_super() - initialize a super block instance
1058  * @sb: super_block
1059  * @data: mount options
1060  * @silent: silent mode flag
1061  *
1062  * This function is called exclusively by nilfs->ns_mount_mutex.
1063  * So, the recovery process is protected from other simultaneous mounts.
1064  */
1065 static int
1066 nilfs_fill_super(struct super_block *sb, void *data, int silent)
1067 {
1068         struct the_nilfs *nilfs;
1069         struct nilfs_root *fsroot;
1070         __u64 cno;
1071         int err;
1072
1073         nilfs = alloc_nilfs(sb);
1074         if (!nilfs)
1075                 return -ENOMEM;
1076
1077         sb->s_fs_info = nilfs;
1078
1079         err = init_nilfs(nilfs, sb, (char *)data);
1080         if (err)
1081                 goto failed_nilfs;
1082
1083         sb->s_op = &nilfs_sops;
1084         sb->s_export_op = &nilfs_export_ops;
1085         sb->s_root = NULL;
1086         sb->s_time_gran = 1;
1087         sb->s_max_links = NILFS_LINK_MAX;
1088
1089         sb->s_bdi = bdi_get(sb->s_bdev->bd_disk->bdi);
1090
1091         err = load_nilfs(nilfs, sb);
1092         if (err)
1093                 goto failed_nilfs;
1094
1095         cno = nilfs_last_cno(nilfs);
1096         err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1097         if (err) {
1098                 nilfs_err(sb,
1099                           "error %d while loading last checkpoint (checkpoint number=%llu)",
1100                           err, (unsigned long long)cno);
1101                 goto failed_unload;
1102         }
1103
1104         if (!sb_rdonly(sb)) {
1105                 err = nilfs_attach_log_writer(sb, fsroot);
1106                 if (err)
1107                         goto failed_checkpoint;
1108         }
1109
1110         err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1111         if (err)
1112                 goto failed_segctor;
1113
1114         nilfs_put_root(fsroot);
1115
1116         if (!sb_rdonly(sb)) {
1117                 down_write(&nilfs->ns_sem);
1118                 nilfs_setup_super(sb, true);
1119                 up_write(&nilfs->ns_sem);
1120         }
1121
1122         return 0;
1123
1124  failed_segctor:
1125         nilfs_detach_log_writer(sb);
1126
1127  failed_checkpoint:
1128         nilfs_put_root(fsroot);
1129
1130  failed_unload:
1131         nilfs_sysfs_delete_device_group(nilfs);
1132         iput(nilfs->ns_sufile);
1133         iput(nilfs->ns_cpfile);
1134         iput(nilfs->ns_dat);
1135
1136  failed_nilfs:
1137         destroy_nilfs(nilfs);
1138         return err;
1139 }
1140
1141 static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1142 {
1143         struct the_nilfs *nilfs = sb->s_fs_info;
1144         unsigned long old_sb_flags;
1145         unsigned long old_mount_opt;
1146         int err;
1147
1148         sync_filesystem(sb);
1149         old_sb_flags = sb->s_flags;
1150         old_mount_opt = nilfs->ns_mount_opt;
1151
1152         if (!parse_options(data, sb, 1)) {
1153                 err = -EINVAL;
1154                 goto restore_opts;
1155         }
1156         sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1157
1158         err = -EINVAL;
1159
1160         if (!nilfs_valid_fs(nilfs)) {
1161                 nilfs_warn(sb,
1162                            "couldn't remount because the filesystem is in an incomplete recovery state");
1163                 goto restore_opts;
1164         }
1165
1166         if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1167                 goto out;
1168         if (*flags & SB_RDONLY) {
1169                 sb->s_flags |= SB_RDONLY;
1170
1171                 /*
1172                  * Remounting a valid RW partition RDONLY, so set
1173                  * the RDONLY flag and then mark the partition as valid again.
1174                  */
1175                 down_write(&nilfs->ns_sem);
1176                 nilfs_cleanup_super(sb);
1177                 up_write(&nilfs->ns_sem);
1178         } else {
1179                 __u64 features;
1180                 struct nilfs_root *root;
1181
1182                 /*
1183                  * Mounting a RDONLY partition read-write, so reread and
1184                  * store the current valid flag.  (It may have been changed
1185                  * by fsck since we originally mounted the partition.)
1186                  */
1187                 down_read(&nilfs->ns_sem);
1188                 features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1189                         ~NILFS_FEATURE_COMPAT_RO_SUPP;
1190                 up_read(&nilfs->ns_sem);
1191                 if (features) {
1192                         nilfs_warn(sb,
1193                                    "couldn't remount RDWR because of unsupported optional features (%llx)",
1194                                    (unsigned long long)features);
1195                         err = -EROFS;
1196                         goto restore_opts;
1197                 }
1198
1199                 sb->s_flags &= ~SB_RDONLY;
1200
1201                 root = NILFS_I(d_inode(sb->s_root))->i_root;
1202                 err = nilfs_attach_log_writer(sb, root);
1203                 if (err)
1204                         goto restore_opts;
1205
1206                 down_write(&nilfs->ns_sem);
1207                 nilfs_setup_super(sb, true);
1208                 up_write(&nilfs->ns_sem);
1209         }
1210  out:
1211         return 0;
1212
1213  restore_opts:
1214         sb->s_flags = old_sb_flags;
1215         nilfs->ns_mount_opt = old_mount_opt;
1216         return err;
1217 }
1218
1219 struct nilfs_super_data {
1220         __u64 cno;
1221         int flags;
1222 };
1223
1224 static int nilfs_parse_snapshot_option(const char *option,
1225                                        const substring_t *arg,
1226                                        struct nilfs_super_data *sd)
1227 {
1228         unsigned long long val;
1229         const char *msg = NULL;
1230         int err;
1231
1232         if (!(sd->flags & SB_RDONLY)) {
1233                 msg = "read-only option is not specified";
1234                 goto parse_error;
1235         }
1236
1237         err = kstrtoull(arg->from, 0, &val);
1238         if (err) {
1239                 if (err == -ERANGE)
1240                         msg = "too large checkpoint number";
1241                 else
1242                         msg = "malformed argument";
1243                 goto parse_error;
1244         } else if (val == 0) {
1245                 msg = "invalid checkpoint number 0";
1246                 goto parse_error;
1247         }
1248         sd->cno = val;
1249         return 0;
1250
1251 parse_error:
1252         nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253         return 1;
1254 }
1255
1256 /**
1257  * nilfs_identify - pre-read mount options needed to identify mount instance
1258  * @data: mount options
1259  * @sd: nilfs_super_data
1260  */
1261 static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262 {
1263         char *p, *options = data;
1264         substring_t args[MAX_OPT_ARGS];
1265         int token;
1266         int ret = 0;
1267
1268         do {
1269                 p = strsep(&options, ",");
1270                 if (p != NULL && *p) {
1271                         token = match_token(p, tokens, args);
1272                         if (token == Opt_snapshot)
1273                                 ret = nilfs_parse_snapshot_option(p, &args[0],
1274                                                                   sd);
1275                 }
1276                 if (!options)
1277                         break;
1278                 BUG_ON(options == data);
1279                 *(options - 1) = ',';
1280         } while (!ret);
1281         return ret;
1282 }
1283
1284 static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285 {
1286         s->s_dev = *(dev_t *)data;
1287         return 0;
1288 }
1289
1290 static int nilfs_test_bdev_super(struct super_block *s, void *data)
1291 {
1292         return !(s->s_iflags & SB_I_RETIRED) && s->s_dev == *(dev_t *)data;
1293 }
1294
1295 static struct dentry *
1296 nilfs_mount(struct file_system_type *fs_type, int flags,
1297              const char *dev_name, void *data)
1298 {
1299         struct nilfs_super_data sd = { .flags = flags };
1300         struct super_block *s;
1301         dev_t dev;
1302         int err;
1303
1304         if (nilfs_identify(data, &sd))
1305                 return ERR_PTR(-EINVAL);
1306
1307         err = lookup_bdev(dev_name, &dev);
1308         if (err)
1309                 return ERR_PTR(err);
1310
1311         s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1312                  &dev);
1313         if (IS_ERR(s))
1314                 return ERR_CAST(s);
1315
1316         if (!s->s_root) {
1317                 /*
1318                  * We drop s_umount here because we need to open the bdev and
1319                  * bdev->open_mutex ranks above s_umount (blkdev_put() ->
1320                  * __invalidate_device()). It is safe because we have active sb
1321                  * reference and SB_BORN is not set yet.
1322                  */
1323                 up_write(&s->s_umount);
1324                 err = setup_bdev_super(s, flags, NULL);
1325                 down_write(&s->s_umount);
1326                 if (!err)
1327                         err = nilfs_fill_super(s, data,
1328                                                flags & SB_SILENT ? 1 : 0);
1329                 if (err)
1330                         goto failed_super;
1331
1332                 s->s_flags |= SB_ACTIVE;
1333         } else if (!sd.cno) {
1334                 if (nilfs_tree_is_busy(s->s_root)) {
1335                         if ((flags ^ s->s_flags) & SB_RDONLY) {
1336                                 nilfs_err(s,
1337                                           "the device already has a %s mount.",
1338                                           sb_rdonly(s) ? "read-only" : "read/write");
1339                                 err = -EBUSY;
1340                                 goto failed_super;
1341                         }
1342                 } else {
1343                         /*
1344                          * Try remount to setup mount states if the current
1345                          * tree is not mounted and only snapshots use this sb.
1346                          */
1347                         err = nilfs_remount(s, &flags, data);
1348                         if (err)
1349                                 goto failed_super;
1350                 }
1351         }
1352
1353         if (sd.cno) {
1354                 struct dentry *root_dentry;
1355
1356                 err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1357                 if (err)
1358                         goto failed_super;
1359                 return root_dentry;
1360         }
1361
1362         return dget(s->s_root);
1363
1364  failed_super:
1365         deactivate_locked_super(s);
1366         return ERR_PTR(err);
1367 }
1368
1369 struct file_system_type nilfs_fs_type = {
1370         .owner    = THIS_MODULE,
1371         .name     = "nilfs2",
1372         .mount    = nilfs_mount,
1373         .kill_sb  = kill_block_super,
1374         .fs_flags = FS_REQUIRES_DEV,
1375 };
1376 MODULE_ALIAS_FS("nilfs2");
1377
1378 static void nilfs_inode_init_once(void *obj)
1379 {
1380         struct nilfs_inode_info *ii = obj;
1381
1382         INIT_LIST_HEAD(&ii->i_dirty);
1383 #ifdef CONFIG_NILFS_XATTR
1384         init_rwsem(&ii->xattr_sem);
1385 #endif
1386         inode_init_once(&ii->vfs_inode);
1387 }
1388
1389 static void nilfs_segbuf_init_once(void *obj)
1390 {
1391         memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1392 }
1393
1394 static void nilfs_destroy_cachep(void)
1395 {
1396         /*
1397          * Make sure all delayed rcu free inodes are flushed before we
1398          * destroy cache.
1399          */
1400         rcu_barrier();
1401
1402         kmem_cache_destroy(nilfs_inode_cachep);
1403         kmem_cache_destroy(nilfs_transaction_cachep);
1404         kmem_cache_destroy(nilfs_segbuf_cachep);
1405         kmem_cache_destroy(nilfs_btree_path_cache);
1406 }
1407
1408 static int __init nilfs_init_cachep(void)
1409 {
1410         nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1411                         sizeof(struct nilfs_inode_info), 0,
1412                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1413                         nilfs_inode_init_once);
1414         if (!nilfs_inode_cachep)
1415                 goto fail;
1416
1417         nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1418                         sizeof(struct nilfs_transaction_info), 0,
1419                         SLAB_RECLAIM_ACCOUNT, NULL);
1420         if (!nilfs_transaction_cachep)
1421                 goto fail;
1422
1423         nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1424                         sizeof(struct nilfs_segment_buffer), 0,
1425                         SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1426         if (!nilfs_segbuf_cachep)
1427                 goto fail;
1428
1429         nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1430                         sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1431                         0, 0, NULL);
1432         if (!nilfs_btree_path_cache)
1433                 goto fail;
1434
1435         return 0;
1436
1437 fail:
1438         nilfs_destroy_cachep();
1439         return -ENOMEM;
1440 }
1441
1442 static int __init init_nilfs_fs(void)
1443 {
1444         int err;
1445
1446         err = nilfs_init_cachep();
1447         if (err)
1448                 goto fail;
1449
1450         err = nilfs_sysfs_init();
1451         if (err)
1452                 goto free_cachep;
1453
1454         err = register_filesystem(&nilfs_fs_type);
1455         if (err)
1456                 goto deinit_sysfs_entry;
1457
1458         printk(KERN_INFO "NILFS version 2 loaded\n");
1459         return 0;
1460
1461 deinit_sysfs_entry:
1462         nilfs_sysfs_exit();
1463 free_cachep:
1464         nilfs_destroy_cachep();
1465 fail:
1466         return err;
1467 }
1468
1469 static void __exit exit_nilfs_fs(void)
1470 {
1471         nilfs_destroy_cachep();
1472         nilfs_sysfs_exit();
1473         unregister_filesystem(&nilfs_fs_type);
1474 }
1475
1476 module_init(init_nilfs_fs)
1477 module_exit(exit_nilfs_fs)