2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
50 #include <linux/nfs_fs.h>
51 #include <linux/nfs_page.h>
52 #include <linux/sunrpc/clnt.h>
54 #include <asm/uaccess.h>
55 #include <linux/atomic.h>
61 #define NFSDBG_FACILITY NFSDBG_VFS
63 static struct kmem_cache *nfs_direct_cachep;
66 * This represents a set of asynchronous requests that we're waiting on
68 struct nfs_direct_req {
69 struct kref kref; /* release manager */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80 ssize_t count, /* bytes actually processed */
81 error; /* any reported error */
82 struct completion completion; /* wait for i/o completion */
85 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
86 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
87 struct work_struct work;
89 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
90 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
91 struct nfs_writeverf verf; /* unstable write verifier */
94 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
95 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
96 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
97 static void nfs_direct_write_schedule_work(struct work_struct *work);
99 static inline void get_dreq(struct nfs_direct_req *dreq)
101 atomic_inc(&dreq->io_count);
104 static inline int put_dreq(struct nfs_direct_req *dreq)
106 return atomic_dec_and_test(&dreq->io_count);
110 * nfs_direct_IO - NFS address space operation for direct I/O
111 * @rw: direction (read or write)
112 * @iocb: target I/O control block
113 * @iov: array of vectors that define I/O buffer
114 * @pos: offset in file to begin the operation
115 * @nr_segs: size of iovec array
117 * The presence of this routine in the address space ops vector means
118 * the NFS client supports direct I/O. However, for most direct IO, we
119 * shunt off direct read and write requests before the VFS gets them,
120 * so this method is only ever called for swap.
122 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
124 #ifndef CONFIG_NFS_SWAP
125 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
126 iocb->ki_filp->f_path.dentry->d_name.name,
127 (long long) pos, nr_segs);
131 VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
132 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
134 if (rw == READ || rw == KERNEL_READ)
135 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
136 rw == READ ? true : false);
137 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
138 rw == WRITE ? true : false);
139 #endif /* CONFIG_NFS_SWAP */
142 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
145 for (i = 0; i < npages; i++)
146 page_cache_release(pages[i]);
149 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
150 struct nfs_direct_req *dreq)
152 cinfo->lock = &dreq->lock;
153 cinfo->mds = &dreq->mds_cinfo;
154 cinfo->ds = &dreq->ds_cinfo;
156 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
159 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
161 struct nfs_direct_req *dreq;
163 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
167 kref_init(&dreq->kref);
168 kref_get(&dreq->kref);
169 init_completion(&dreq->completion);
170 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
171 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
172 spin_lock_init(&dreq->lock);
177 static void nfs_direct_req_free(struct kref *kref)
179 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
181 if (dreq->l_ctx != NULL)
182 nfs_put_lock_context(dreq->l_ctx);
183 if (dreq->ctx != NULL)
184 put_nfs_open_context(dreq->ctx);
185 kmem_cache_free(nfs_direct_cachep, dreq);
188 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
190 kref_put(&dreq->kref, nfs_direct_req_free);
194 * Collects and returns the final error value/byte-count.
196 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
198 ssize_t result = -EIOCBQUEUED;
200 /* Async requests don't wait here */
204 result = wait_for_completion_killable(&dreq->completion);
207 result = dreq->error;
209 result = dreq->count;
212 return (ssize_t) result;
216 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
217 * the iocb is still valid here if this is a synchronous request.
219 static void nfs_direct_complete(struct nfs_direct_req *dreq)
222 long res = (long) dreq->error;
224 res = (long) dreq->count;
225 aio_complete(dreq->iocb, res, 0);
227 complete_all(&dreq->completion);
229 nfs_direct_req_release(dreq);
232 static void nfs_direct_readpage_release(struct nfs_page *req)
234 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
235 req->wb_context->dentry->d_inode->i_sb->s_id,
236 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
238 (long long)req_offset(req));
239 nfs_release_request(req);
242 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
244 unsigned long bytes = 0;
245 struct nfs_direct_req *dreq = hdr->dreq;
247 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
250 spin_lock(&dreq->lock);
251 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
252 dreq->error = hdr->error;
254 dreq->count += hdr->good_bytes;
255 spin_unlock(&dreq->lock);
257 while (!list_empty(&hdr->pages)) {
258 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
259 struct page *page = req->wb_page;
261 if (test_bit(NFS_IOHDR_EOF, &hdr->flags)) {
262 if (bytes > hdr->good_bytes)
263 zero_user(page, 0, PAGE_SIZE);
264 else if (hdr->good_bytes - bytes < PAGE_SIZE)
265 zero_user_segment(page,
266 hdr->good_bytes & ~PAGE_MASK,
269 if (!PageCompound(page)) {
270 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
271 if (bytes < hdr->good_bytes)
272 set_page_dirty(page);
274 set_page_dirty(page);
276 bytes += req->wb_bytes;
277 nfs_list_remove_request(req);
278 nfs_direct_readpage_release(req);
282 nfs_direct_complete(dreq);
286 static void nfs_read_sync_pgio_error(struct list_head *head)
288 struct nfs_page *req;
290 while (!list_empty(head)) {
291 req = nfs_list_entry(head->next);
292 nfs_list_remove_request(req);
293 nfs_release_request(req);
297 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
302 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
303 .error_cleanup = nfs_read_sync_pgio_error,
304 .init_hdr = nfs_direct_pgio_init,
305 .completion = nfs_direct_read_completion,
309 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
310 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
311 * bail and stop sending more reads. Read length accounting is
312 * handled automatically by nfs_direct_read_result(). Otherwise, if
313 * no requests have been sent, just return an error.
315 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
316 const struct iovec *iov,
317 loff_t pos, bool uio)
319 struct nfs_direct_req *dreq = desc->pg_dreq;
320 struct nfs_open_context *ctx = dreq->ctx;
321 struct inode *inode = ctx->dentry->d_inode;
322 unsigned long user_addr = (unsigned long)iov->iov_base;
323 size_t count = iov->iov_len;
324 size_t rsize = NFS_SERVER(inode)->rsize;
328 struct page **pagevec = NULL;
335 pgbase = user_addr & ~PAGE_MASK;
336 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
339 npages = nfs_page_array_len(pgbase, bytes);
341 pagevec = kmalloc(npages * sizeof(struct page *),
346 down_read(¤t->mm->mmap_sem);
347 result = get_user_pages(current, current->mm, user_addr,
348 npages, 1, 0, pagevec, NULL);
349 up_read(¤t->mm->mmap_sem);
353 WARN_ON(npages != 1);
354 result = get_kernel_page(user_addr, 1, pagevec);
355 if (WARN_ON(result != 1))
359 if ((unsigned)result < npages) {
360 bytes = result * PAGE_SIZE;
361 if (bytes <= pgbase) {
362 nfs_direct_release_pages(pagevec, result);
369 for (i = 0; i < npages; i++) {
370 struct nfs_page *req;
371 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
372 /* XXX do we need to do the eof zeroing found in async_filler? */
373 req = nfs_create_request(dreq->ctx, dreq->inode,
377 result = PTR_ERR(req);
380 req->wb_index = pos >> PAGE_SHIFT;
381 req->wb_offset = pos & ~PAGE_MASK;
382 if (!nfs_pageio_add_request(desc, req)) {
383 result = desc->pg_error;
384 nfs_release_request(req);
390 user_addr += req_len;
394 /* The nfs_page now hold references to these pages */
395 nfs_direct_release_pages(pagevec, npages);
396 } while (count != 0 && result >= 0);
402 return result < 0 ? (ssize_t) result : -EFAULT;
405 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
406 const struct iovec *iov,
407 unsigned long nr_segs,
408 loff_t pos, bool uio)
410 struct nfs_pageio_descriptor desc;
411 ssize_t result = -EINVAL;
412 size_t requested_bytes = 0;
415 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
416 &nfs_direct_read_completion_ops);
420 for (seg = 0; seg < nr_segs; seg++) {
421 const struct iovec *vec = &iov[seg];
422 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
425 requested_bytes += result;
426 if ((size_t)result < vec->iov_len)
431 nfs_pageio_complete(&desc);
434 * If no bytes were started, return the error, and let the
435 * generic layer handle the completion.
437 if (requested_bytes == 0) {
438 nfs_direct_req_release(dreq);
439 return result < 0 ? result : -EIO;
443 nfs_direct_complete(dreq);
447 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
448 unsigned long nr_segs, loff_t pos, bool uio)
450 ssize_t result = -ENOMEM;
451 struct inode *inode = iocb->ki_filp->f_mapping->host;
452 struct nfs_direct_req *dreq;
454 dreq = nfs_direct_req_alloc();
459 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
460 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
461 if (dreq->l_ctx == NULL)
463 if (!is_sync_kiocb(iocb))
466 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
468 result = nfs_direct_wait(dreq);
469 NFS_I(inode)->read_io += result;
471 nfs_direct_req_release(dreq);
476 static void nfs_inode_dio_write_done(struct inode *inode)
478 nfs_zap_mapping(inode, inode->i_mapping);
479 inode_dio_done(inode);
482 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
483 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
485 struct nfs_pageio_descriptor desc;
486 struct nfs_page *req, *tmp;
488 struct nfs_commit_info cinfo;
491 nfs_init_cinfo_from_dreq(&cinfo, dreq);
492 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
493 spin_lock(cinfo.lock);
494 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
495 spin_unlock(cinfo.lock);
500 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
501 &nfs_direct_write_completion_ops);
504 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
505 if (!nfs_pageio_add_request(&desc, req)) {
506 nfs_list_remove_request(req);
507 nfs_list_add_request(req, &failed);
508 spin_lock(cinfo.lock);
511 spin_unlock(cinfo.lock);
513 nfs_release_request(req);
515 nfs_pageio_complete(&desc);
517 while (!list_empty(&failed)) {
518 req = nfs_list_entry(failed.next);
519 nfs_list_remove_request(req);
520 nfs_unlock_and_release_request(req);
524 nfs_direct_write_complete(dreq, dreq->inode);
527 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
529 struct nfs_direct_req *dreq = data->dreq;
530 struct nfs_commit_info cinfo;
531 struct nfs_page *req;
532 int status = data->task.tk_status;
534 nfs_init_cinfo_from_dreq(&cinfo, dreq);
536 dprintk("NFS: %5u commit failed with error %d.\n",
537 data->task.tk_pid, status);
538 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
539 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
540 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
541 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
544 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
545 while (!list_empty(&data->pages)) {
546 req = nfs_list_entry(data->pages.next);
547 nfs_list_remove_request(req);
548 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
549 /* Note the rewrite will go through mds */
550 nfs_mark_request_commit(req, NULL, &cinfo);
552 nfs_release_request(req);
553 nfs_unlock_and_release_request(req);
556 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
557 nfs_direct_write_complete(dreq, data->inode);
560 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
562 /* There is no lock to clear */
565 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
566 .completion = nfs_direct_commit_complete,
567 .error_cleanup = nfs_direct_error_cleanup,
570 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
573 struct nfs_commit_info cinfo;
576 nfs_init_cinfo_from_dreq(&cinfo, dreq);
577 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
578 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
579 if (res < 0) /* res == -ENOMEM */
580 nfs_direct_write_reschedule(dreq);
583 static void nfs_direct_write_schedule_work(struct work_struct *work)
585 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
586 int flags = dreq->flags;
590 case NFS_ODIRECT_DO_COMMIT:
591 nfs_direct_commit_schedule(dreq);
593 case NFS_ODIRECT_RESCHED_WRITES:
594 nfs_direct_write_reschedule(dreq);
597 nfs_inode_dio_write_done(dreq->inode);
598 nfs_direct_complete(dreq);
602 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
604 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
608 static void nfs_direct_write_schedule_work(struct work_struct *work)
612 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
614 nfs_inode_dio_write_done(inode);
615 nfs_direct_complete(dreq);
620 * NB: Return the value of the first error return code. Subsequent
621 * errors after the first one are ignored.
624 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
625 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
626 * bail and stop sending more writes. Write length accounting is
627 * handled automatically by nfs_direct_write_result(). Otherwise, if
628 * no requests have been sent, just return an error.
630 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
631 const struct iovec *iov,
632 loff_t pos, bool uio)
634 struct nfs_direct_req *dreq = desc->pg_dreq;
635 struct nfs_open_context *ctx = dreq->ctx;
636 struct inode *inode = ctx->dentry->d_inode;
637 unsigned long user_addr = (unsigned long)iov->iov_base;
638 size_t count = iov->iov_len;
639 size_t wsize = NFS_SERVER(inode)->wsize;
643 struct page **pagevec = NULL;
650 pgbase = user_addr & ~PAGE_MASK;
651 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
654 npages = nfs_page_array_len(pgbase, bytes);
656 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
661 down_read(¤t->mm->mmap_sem);
662 result = get_user_pages(current, current->mm, user_addr,
663 npages, 0, 0, pagevec, NULL);
664 up_read(¤t->mm->mmap_sem);
668 WARN_ON(npages != 1);
669 result = get_kernel_page(user_addr, 0, pagevec);
670 if (WARN_ON(result != 1))
674 if ((unsigned)result < npages) {
675 bytes = result * PAGE_SIZE;
676 if (bytes <= pgbase) {
677 nfs_direct_release_pages(pagevec, result);
684 for (i = 0; i < npages; i++) {
685 struct nfs_page *req;
686 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
688 req = nfs_create_request(dreq->ctx, dreq->inode,
692 result = PTR_ERR(req);
695 nfs_lock_request(req);
696 req->wb_index = pos >> PAGE_SHIFT;
697 req->wb_offset = pos & ~PAGE_MASK;
698 if (!nfs_pageio_add_request(desc, req)) {
699 result = desc->pg_error;
700 nfs_unlock_and_release_request(req);
706 user_addr += req_len;
710 /* The nfs_page now hold references to these pages */
711 nfs_direct_release_pages(pagevec, npages);
712 } while (count != 0 && result >= 0);
718 return result < 0 ? (ssize_t) result : -EFAULT;
721 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
723 struct nfs_direct_req *dreq = hdr->dreq;
724 struct nfs_commit_info cinfo;
726 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
728 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
731 nfs_init_cinfo_from_dreq(&cinfo, dreq);
733 spin_lock(&dreq->lock);
735 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
737 dreq->error = hdr->error;
739 if (dreq->error != 0)
740 bit = NFS_IOHDR_ERROR;
742 dreq->count += hdr->good_bytes;
743 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
744 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
745 bit = NFS_IOHDR_NEED_RESCHED;
746 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
747 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
748 bit = NFS_IOHDR_NEED_RESCHED;
749 else if (dreq->flags == 0) {
750 memcpy(&dreq->verf, hdr->verf,
752 bit = NFS_IOHDR_NEED_COMMIT;
753 dreq->flags = NFS_ODIRECT_DO_COMMIT;
754 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
755 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
756 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
757 bit = NFS_IOHDR_NEED_RESCHED;
759 bit = NFS_IOHDR_NEED_COMMIT;
763 spin_unlock(&dreq->lock);
765 while (!list_empty(&hdr->pages)) {
766 req = nfs_list_entry(hdr->pages.next);
767 nfs_list_remove_request(req);
769 case NFS_IOHDR_NEED_RESCHED:
770 case NFS_IOHDR_NEED_COMMIT:
771 kref_get(&req->wb_kref);
772 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
774 nfs_unlock_and_release_request(req);
779 nfs_direct_write_complete(dreq, hdr->inode);
783 static void nfs_write_sync_pgio_error(struct list_head *head)
785 struct nfs_page *req;
787 while (!list_empty(head)) {
788 req = nfs_list_entry(head->next);
789 nfs_list_remove_request(req);
790 nfs_unlock_and_release_request(req);
794 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
795 .error_cleanup = nfs_write_sync_pgio_error,
796 .init_hdr = nfs_direct_pgio_init,
797 .completion = nfs_direct_write_completion,
800 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
801 const struct iovec *iov,
802 unsigned long nr_segs,
803 loff_t pos, bool uio)
805 struct nfs_pageio_descriptor desc;
806 struct inode *inode = dreq->inode;
808 size_t requested_bytes = 0;
811 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
812 &nfs_direct_write_completion_ops);
815 atomic_inc(&inode->i_dio_count);
817 for (seg = 0; seg < nr_segs; seg++) {
818 const struct iovec *vec = &iov[seg];
819 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
822 requested_bytes += result;
823 if ((size_t)result < vec->iov_len)
827 nfs_pageio_complete(&desc);
828 NFS_I(dreq->inode)->write_io += desc.pg_bytes_written;
831 * If no bytes were started, return the error, and let the
832 * generic layer handle the completion.
834 if (requested_bytes == 0) {
835 inode_dio_done(inode);
836 nfs_direct_req_release(dreq);
837 return result < 0 ? result : -EIO;
841 nfs_direct_write_complete(dreq, dreq->inode);
845 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
846 unsigned long nr_segs, loff_t pos,
847 size_t count, bool uio)
849 ssize_t result = -ENOMEM;
850 struct inode *inode = iocb->ki_filp->f_mapping->host;
851 struct nfs_direct_req *dreq;
853 dreq = nfs_direct_req_alloc();
858 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
859 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
860 if (dreq->l_ctx == NULL)
862 if (!is_sync_kiocb(iocb))
865 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
867 result = nfs_direct_wait(dreq);
869 nfs_direct_req_release(dreq);
875 * nfs_file_direct_read - file direct read operation for NFS files
876 * @iocb: target I/O control block
877 * @iov: vector of user buffers into which to read data
878 * @nr_segs: size of iov vector
879 * @pos: byte offset in file where reading starts
881 * We use this function for direct reads instead of calling
882 * generic_file_aio_read() in order to avoid gfar's check to see if
883 * the request starts before the end of the file. For that check
884 * to work, we must generate a GETATTR before each direct read, and
885 * even then there is a window between the GETATTR and the subsequent
886 * READ where the file size could change. Our preference is simply
887 * to do all reads the application wants, and the server will take
888 * care of managing the end of file boundary.
890 * This function also eliminates unnecessarily updating the file's
891 * atime locally, as the NFS server sets the file's atime, and this
892 * client must read the updated atime from the server back into its
895 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
896 unsigned long nr_segs, loff_t pos, bool uio)
898 ssize_t retval = -EINVAL;
899 struct file *file = iocb->ki_filp;
900 struct address_space *mapping = file->f_mapping;
903 count = iov_length(iov, nr_segs);
904 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
906 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
907 file->f_path.dentry->d_parent->d_name.name,
908 file->f_path.dentry->d_name.name,
909 count, (long long) pos);
915 retval = nfs_sync_mapping(mapping);
919 task_io_account_read(count);
921 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
923 iocb->ki_pos = pos + retval;
930 * nfs_file_direct_write - file direct write operation for NFS files
931 * @iocb: target I/O control block
932 * @iov: vector of user buffers from which to write data
933 * @nr_segs: size of iov vector
934 * @pos: byte offset in file where writing starts
936 * We use this function for direct writes instead of calling
937 * generic_file_aio_write() in order to avoid taking the inode
938 * semaphore and updating the i_size. The NFS server will set
939 * the new i_size and this client must read the updated size
940 * back into its cache. We let the server do generic write
941 * parameter checking and report problems.
943 * We eliminate local atime updates, see direct read above.
945 * We avoid unnecessary page cache invalidations for normal cached
946 * readers of this file.
948 * Note that O_APPEND is not supported for NFS direct writes, as there
949 * is no atomic O_APPEND write facility in the NFS protocol.
951 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
952 unsigned long nr_segs, loff_t pos, bool uio)
954 ssize_t retval = -EINVAL;
955 struct file *file = iocb->ki_filp;
956 struct address_space *mapping = file->f_mapping;
959 count = iov_length(iov, nr_segs);
960 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
962 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
963 file->f_path.dentry->d_parent->d_name.name,
964 file->f_path.dentry->d_name.name,
965 count, (long long) pos);
967 retval = generic_write_checks(file, &pos, &count, 0);
972 if ((ssize_t) count < 0)
978 retval = nfs_sync_mapping(mapping);
982 task_io_account_write(count);
984 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
986 struct inode *inode = mapping->host;
988 iocb->ki_pos = pos + retval;
989 spin_lock(&inode->i_lock);
990 if (i_size_read(inode) < iocb->ki_pos)
991 i_size_write(inode, iocb->ki_pos);
992 spin_unlock(&inode->i_lock);
999 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1002 int __init nfs_init_directcache(void)
1004 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1005 sizeof(struct nfs_direct_req),
1006 0, (SLAB_RECLAIM_ACCOUNT|
1009 if (nfs_direct_cachep == NULL)
1016 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1019 void nfs_destroy_directcache(void)
1021 kmem_cache_destroy(nfs_direct_cachep);