2 * linux/fs/nfs/direct.c
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 * High-performance uncached I/O for the Linux NFS client
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
41 #include <linux/errno.h>
42 #include <linux/sched.h>
43 #include <linux/kernel.h>
44 #include <linux/file.h>
45 #include <linux/pagemap.h>
46 #include <linux/kref.h>
47 #include <linux/slab.h>
48 #include <linux/task_io_accounting_ops.h>
49 #include <linux/module.h>
51 #include <linux/nfs_fs.h>
52 #include <linux/nfs_page.h>
53 #include <linux/sunrpc/clnt.h>
55 #include <asm/uaccess.h>
56 #include <linux/atomic.h>
62 #define NFSDBG_FACILITY NFSDBG_VFS
64 static struct kmem_cache *nfs_direct_cachep;
67 * This represents a set of asynchronous requests that we're waiting on
69 struct nfs_direct_req {
70 struct kref kref; /* release manager */
73 struct nfs_open_context *ctx; /* file open context info */
74 struct nfs_lock_context *l_ctx; /* Lock context info */
75 struct kiocb * iocb; /* controlling i/o request */
76 struct inode * inode; /* target file of i/o */
78 /* completion state */
79 atomic_t io_count; /* i/os we're waiting for */
80 spinlock_t lock; /* protect completion state */
81 ssize_t count, /* bytes actually processed */
82 bytes_left, /* bytes left to be sent */
83 error; /* any reported error */
84 struct completion completion; /* wait for i/o completion */
87 struct nfs_mds_commit_info mds_cinfo; /* Storage for cinfo */
88 struct pnfs_ds_commit_info ds_cinfo; /* Storage for cinfo */
89 struct work_struct work;
91 #define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
92 #define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
93 struct nfs_writeverf verf; /* unstable write verifier */
96 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
97 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
98 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
99 static void nfs_direct_write_schedule_work(struct work_struct *work);
101 static inline void get_dreq(struct nfs_direct_req *dreq)
103 atomic_inc(&dreq->io_count);
106 static inline int put_dreq(struct nfs_direct_req *dreq)
108 return atomic_dec_and_test(&dreq->io_count);
112 * nfs_direct_IO - NFS address space operation for direct I/O
113 * @rw: direction (read or write)
114 * @iocb: target I/O control block
115 * @iov: array of vectors that define I/O buffer
116 * @pos: offset in file to begin the operation
117 * @nr_segs: size of iovec array
119 * The presence of this routine in the address space ops vector means
120 * the NFS client supports direct I/O. However, for most direct IO, we
121 * shunt off direct read and write requests before the VFS gets them,
122 * so this method is only ever called for swap.
124 ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
126 #ifndef CONFIG_NFS_SWAP
127 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
128 iocb->ki_filp->f_path.dentry->d_name.name,
129 (long long) pos, nr_segs);
133 VM_BUG_ON(iocb->ki_left != PAGE_SIZE);
134 VM_BUG_ON(iocb->ki_nbytes != PAGE_SIZE);
136 if (rw == READ || rw == KERNEL_READ)
137 return nfs_file_direct_read(iocb, iov, nr_segs, pos,
138 rw == READ ? true : false);
139 return nfs_file_direct_write(iocb, iov, nr_segs, pos,
140 rw == WRITE ? true : false);
141 #endif /* CONFIG_NFS_SWAP */
144 static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
147 for (i = 0; i < npages; i++)
148 page_cache_release(pages[i]);
151 void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
152 struct nfs_direct_req *dreq)
154 cinfo->lock = &dreq->lock;
155 cinfo->mds = &dreq->mds_cinfo;
156 cinfo->ds = &dreq->ds_cinfo;
158 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
161 static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
163 struct nfs_direct_req *dreq;
165 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
169 kref_init(&dreq->kref);
170 kref_get(&dreq->kref);
171 init_completion(&dreq->completion);
172 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
173 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
174 spin_lock_init(&dreq->lock);
179 static void nfs_direct_req_free(struct kref *kref)
181 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
183 if (dreq->l_ctx != NULL)
184 nfs_put_lock_context(dreq->l_ctx);
185 if (dreq->ctx != NULL)
186 put_nfs_open_context(dreq->ctx);
187 kmem_cache_free(nfs_direct_cachep, dreq);
190 static void nfs_direct_req_release(struct nfs_direct_req *dreq)
192 kref_put(&dreq->kref, nfs_direct_req_free);
195 ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
197 return dreq->bytes_left;
199 EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
202 * Collects and returns the final error value/byte-count.
204 static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
206 ssize_t result = -EIOCBQUEUED;
208 /* Async requests don't wait here */
212 result = wait_for_completion_killable(&dreq->completion);
215 result = dreq->error;
217 result = dreq->count;
220 return (ssize_t) result;
224 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
225 * the iocb is still valid here if this is a synchronous request.
227 static void nfs_direct_complete(struct nfs_direct_req *dreq)
230 long res = (long) dreq->error;
232 res = (long) dreq->count;
233 aio_complete(dreq->iocb, res, 0);
235 complete_all(&dreq->completion);
237 nfs_direct_req_release(dreq);
240 static void nfs_direct_readpage_release(struct nfs_page *req)
242 dprintk("NFS: direct read done (%s/%lld %d@%lld)\n",
243 req->wb_context->dentry->d_inode->i_sb->s_id,
244 (long long)NFS_FILEID(req->wb_context->dentry->d_inode),
246 (long long)req_offset(req));
247 nfs_release_request(req);
250 static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
252 unsigned long bytes = 0;
253 struct nfs_direct_req *dreq = hdr->dreq;
255 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
258 spin_lock(&dreq->lock);
259 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && (hdr->good_bytes == 0))
260 dreq->error = hdr->error;
262 dreq->count += hdr->good_bytes;
263 spin_unlock(&dreq->lock);
265 while (!list_empty(&hdr->pages)) {
266 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
267 struct page *page = req->wb_page;
269 if (!PageCompound(page) && bytes < hdr->good_bytes)
270 set_page_dirty(page);
271 bytes += req->wb_bytes;
272 nfs_list_remove_request(req);
273 nfs_direct_readpage_release(req);
277 nfs_direct_complete(dreq);
281 static void nfs_read_sync_pgio_error(struct list_head *head)
283 struct nfs_page *req;
285 while (!list_empty(head)) {
286 req = nfs_list_entry(head->next);
287 nfs_list_remove_request(req);
288 nfs_release_request(req);
292 static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
297 static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
298 .error_cleanup = nfs_read_sync_pgio_error,
299 .init_hdr = nfs_direct_pgio_init,
300 .completion = nfs_direct_read_completion,
304 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
305 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
306 * bail and stop sending more reads. Read length accounting is
307 * handled automatically by nfs_direct_read_result(). Otherwise, if
308 * no requests have been sent, just return an error.
310 static ssize_t nfs_direct_read_schedule_segment(struct nfs_pageio_descriptor *desc,
311 const struct iovec *iov,
312 loff_t pos, bool uio)
314 struct nfs_direct_req *dreq = desc->pg_dreq;
315 struct nfs_open_context *ctx = dreq->ctx;
316 struct inode *inode = ctx->dentry->d_inode;
317 unsigned long user_addr = (unsigned long)iov->iov_base;
318 size_t count = iov->iov_len;
319 size_t rsize = NFS_SERVER(inode)->rsize;
323 struct page **pagevec = NULL;
330 pgbase = user_addr & ~PAGE_MASK;
331 bytes = min(max_t(size_t, rsize, PAGE_SIZE), count);
334 npages = nfs_page_array_len(pgbase, bytes);
336 pagevec = kmalloc(npages * sizeof(struct page *),
341 down_read(¤t->mm->mmap_sem);
342 result = get_user_pages(current, current->mm, user_addr,
343 npages, 1, 0, pagevec, NULL);
344 up_read(¤t->mm->mmap_sem);
348 WARN_ON(npages != 1);
349 result = get_kernel_page(user_addr, 1, pagevec);
350 if (WARN_ON(result != 1))
354 if ((unsigned)result < npages) {
355 bytes = result * PAGE_SIZE;
356 if (bytes <= pgbase) {
357 nfs_direct_release_pages(pagevec, result);
364 for (i = 0; i < npages; i++) {
365 struct nfs_page *req;
366 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
367 /* XXX do we need to do the eof zeroing found in async_filler? */
368 req = nfs_create_request(dreq->ctx, dreq->inode,
372 result = PTR_ERR(req);
375 req->wb_index = pos >> PAGE_SHIFT;
376 req->wb_offset = pos & ~PAGE_MASK;
377 if (!nfs_pageio_add_request(desc, req)) {
378 result = desc->pg_error;
379 nfs_release_request(req);
385 user_addr += req_len;
388 dreq->bytes_left -= req_len;
390 /* The nfs_page now hold references to these pages */
391 nfs_direct_release_pages(pagevec, npages);
392 } while (count != 0 && result >= 0);
398 return result < 0 ? (ssize_t) result : -EFAULT;
401 static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
402 const struct iovec *iov,
403 unsigned long nr_segs,
404 loff_t pos, bool uio)
406 struct nfs_pageio_descriptor desc;
407 ssize_t result = -EINVAL;
408 size_t requested_bytes = 0;
411 NFS_PROTO(dreq->inode)->read_pageio_init(&desc, dreq->inode,
412 &nfs_direct_read_completion_ops);
416 for (seg = 0; seg < nr_segs; seg++) {
417 const struct iovec *vec = &iov[seg];
418 result = nfs_direct_read_schedule_segment(&desc, vec, pos, uio);
421 requested_bytes += result;
422 if ((size_t)result < vec->iov_len)
427 nfs_pageio_complete(&desc);
430 * If no bytes were started, return the error, and let the
431 * generic layer handle the completion.
433 if (requested_bytes == 0) {
434 nfs_direct_req_release(dreq);
435 return result < 0 ? result : -EIO;
439 nfs_direct_complete(dreq);
443 static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
444 unsigned long nr_segs, loff_t pos, bool uio)
446 ssize_t result = -ENOMEM;
447 struct inode *inode = iocb->ki_filp->f_mapping->host;
448 struct nfs_direct_req *dreq;
449 struct nfs_lock_context *l_ctx;
451 dreq = nfs_direct_req_alloc();
456 dreq->bytes_left = iov_length(iov, nr_segs);
457 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
458 l_ctx = nfs_get_lock_context(dreq->ctx);
460 result = PTR_ERR(l_ctx);
464 if (!is_sync_kiocb(iocb))
467 NFS_I(inode)->read_io += iov_length(iov, nr_segs);
468 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos, uio);
470 result = nfs_direct_wait(dreq);
472 nfs_direct_req_release(dreq);
477 static void nfs_inode_dio_write_done(struct inode *inode)
479 nfs_zap_mapping(inode, inode->i_mapping);
480 inode_dio_done(inode);
483 #if IS_ENABLED(CONFIG_NFS_V3) || IS_ENABLED(CONFIG_NFS_V4)
484 static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
486 struct nfs_pageio_descriptor desc;
487 struct nfs_page *req, *tmp;
489 struct nfs_commit_info cinfo;
492 nfs_init_cinfo_from_dreq(&cinfo, dreq);
493 pnfs_recover_commit_reqs(dreq->inode, &reqs, &cinfo);
494 spin_lock(cinfo.lock);
495 nfs_scan_commit_list(&cinfo.mds->list, &reqs, &cinfo, 0);
496 spin_unlock(cinfo.lock);
501 NFS_PROTO(dreq->inode)->write_pageio_init(&desc, dreq->inode, FLUSH_STABLE,
502 &nfs_direct_write_completion_ops);
505 list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
506 if (!nfs_pageio_add_request(&desc, req)) {
507 nfs_list_remove_request(req);
508 nfs_list_add_request(req, &failed);
509 spin_lock(cinfo.lock);
512 spin_unlock(cinfo.lock);
514 nfs_release_request(req);
516 nfs_pageio_complete(&desc);
518 while (!list_empty(&failed)) {
519 req = nfs_list_entry(failed.next);
520 nfs_list_remove_request(req);
521 nfs_unlock_and_release_request(req);
525 nfs_direct_write_complete(dreq, dreq->inode);
528 static void nfs_direct_commit_complete(struct nfs_commit_data *data)
530 struct nfs_direct_req *dreq = data->dreq;
531 struct nfs_commit_info cinfo;
532 struct nfs_page *req;
533 int status = data->task.tk_status;
535 nfs_init_cinfo_from_dreq(&cinfo, dreq);
537 dprintk("NFS: %5u commit failed with error %d.\n",
538 data->task.tk_pid, status);
539 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
540 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
541 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
542 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
545 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
546 while (!list_empty(&data->pages)) {
547 req = nfs_list_entry(data->pages.next);
548 nfs_list_remove_request(req);
549 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES) {
550 /* Note the rewrite will go through mds */
551 nfs_mark_request_commit(req, NULL, &cinfo);
553 nfs_release_request(req);
554 nfs_unlock_and_release_request(req);
557 if (atomic_dec_and_test(&cinfo.mds->rpcs_out))
558 nfs_direct_write_complete(dreq, data->inode);
561 static void nfs_direct_error_cleanup(struct nfs_inode *nfsi)
563 /* There is no lock to clear */
566 static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
567 .completion = nfs_direct_commit_complete,
568 .error_cleanup = nfs_direct_error_cleanup,
571 static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
574 struct nfs_commit_info cinfo;
577 nfs_init_cinfo_from_dreq(&cinfo, dreq);
578 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
579 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
580 if (res < 0) /* res == -ENOMEM */
581 nfs_direct_write_reschedule(dreq);
584 static void nfs_direct_write_schedule_work(struct work_struct *work)
586 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
587 int flags = dreq->flags;
591 case NFS_ODIRECT_DO_COMMIT:
592 nfs_direct_commit_schedule(dreq);
594 case NFS_ODIRECT_RESCHED_WRITES:
595 nfs_direct_write_reschedule(dreq);
598 nfs_inode_dio_write_done(dreq->inode);
599 nfs_direct_complete(dreq);
603 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
605 schedule_work(&dreq->work); /* Calls nfs_direct_write_schedule_work */
609 static void nfs_direct_write_schedule_work(struct work_struct *work)
613 static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
615 nfs_inode_dio_write_done(inode);
616 nfs_direct_complete(dreq);
621 * NB: Return the value of the first error return code. Subsequent
622 * errors after the first one are ignored.
625 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
626 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
627 * bail and stop sending more writes. Write length accounting is
628 * handled automatically by nfs_direct_write_result(). Otherwise, if
629 * no requests have been sent, just return an error.
631 static ssize_t nfs_direct_write_schedule_segment(struct nfs_pageio_descriptor *desc,
632 const struct iovec *iov,
633 loff_t pos, bool uio)
635 struct nfs_direct_req *dreq = desc->pg_dreq;
636 struct nfs_open_context *ctx = dreq->ctx;
637 struct inode *inode = ctx->dentry->d_inode;
638 unsigned long user_addr = (unsigned long)iov->iov_base;
639 size_t count = iov->iov_len;
640 size_t wsize = NFS_SERVER(inode)->wsize;
644 struct page **pagevec = NULL;
651 pgbase = user_addr & ~PAGE_MASK;
652 bytes = min(max_t(size_t, wsize, PAGE_SIZE), count);
655 npages = nfs_page_array_len(pgbase, bytes);
657 pagevec = kmalloc(npages * sizeof(struct page *), GFP_KERNEL);
662 down_read(¤t->mm->mmap_sem);
663 result = get_user_pages(current, current->mm, user_addr,
664 npages, 0, 0, pagevec, NULL);
665 up_read(¤t->mm->mmap_sem);
669 WARN_ON(npages != 1);
670 result = get_kernel_page(user_addr, 0, pagevec);
671 if (WARN_ON(result != 1))
675 if ((unsigned)result < npages) {
676 bytes = result * PAGE_SIZE;
677 if (bytes <= pgbase) {
678 nfs_direct_release_pages(pagevec, result);
685 for (i = 0; i < npages; i++) {
686 struct nfs_page *req;
687 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
689 req = nfs_create_request(dreq->ctx, dreq->inode,
693 result = PTR_ERR(req);
696 nfs_lock_request(req);
697 req->wb_index = pos >> PAGE_SHIFT;
698 req->wb_offset = pos & ~PAGE_MASK;
699 if (!nfs_pageio_add_request(desc, req)) {
700 result = desc->pg_error;
701 nfs_unlock_and_release_request(req);
707 user_addr += req_len;
710 dreq->bytes_left -= req_len;
712 /* The nfs_page now hold references to these pages */
713 nfs_direct_release_pages(pagevec, npages);
714 } while (count != 0 && result >= 0);
720 return result < 0 ? (ssize_t) result : -EFAULT;
723 static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
725 struct nfs_direct_req *dreq = hdr->dreq;
726 struct nfs_commit_info cinfo;
728 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
730 if (test_bit(NFS_IOHDR_REDO, &hdr->flags))
733 nfs_init_cinfo_from_dreq(&cinfo, dreq);
735 spin_lock(&dreq->lock);
737 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
739 dreq->error = hdr->error;
741 if (dreq->error != 0)
742 bit = NFS_IOHDR_ERROR;
744 dreq->count += hdr->good_bytes;
745 if (test_bit(NFS_IOHDR_NEED_RESCHED, &hdr->flags)) {
746 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
747 bit = NFS_IOHDR_NEED_RESCHED;
748 } else if (test_bit(NFS_IOHDR_NEED_COMMIT, &hdr->flags)) {
749 if (dreq->flags == NFS_ODIRECT_RESCHED_WRITES)
750 bit = NFS_IOHDR_NEED_RESCHED;
751 else if (dreq->flags == 0) {
752 memcpy(&dreq->verf, hdr->verf,
754 bit = NFS_IOHDR_NEED_COMMIT;
755 dreq->flags = NFS_ODIRECT_DO_COMMIT;
756 } else if (dreq->flags == NFS_ODIRECT_DO_COMMIT) {
757 if (memcmp(&dreq->verf, hdr->verf, sizeof(dreq->verf))) {
758 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
759 bit = NFS_IOHDR_NEED_RESCHED;
761 bit = NFS_IOHDR_NEED_COMMIT;
765 spin_unlock(&dreq->lock);
767 while (!list_empty(&hdr->pages)) {
768 req = nfs_list_entry(hdr->pages.next);
769 nfs_list_remove_request(req);
771 case NFS_IOHDR_NEED_RESCHED:
772 case NFS_IOHDR_NEED_COMMIT:
773 kref_get(&req->wb_kref);
774 nfs_mark_request_commit(req, hdr->lseg, &cinfo);
776 nfs_unlock_and_release_request(req);
781 nfs_direct_write_complete(dreq, hdr->inode);
785 static void nfs_write_sync_pgio_error(struct list_head *head)
787 struct nfs_page *req;
789 while (!list_empty(head)) {
790 req = nfs_list_entry(head->next);
791 nfs_list_remove_request(req);
792 nfs_unlock_and_release_request(req);
796 static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
797 .error_cleanup = nfs_write_sync_pgio_error,
798 .init_hdr = nfs_direct_pgio_init,
799 .completion = nfs_direct_write_completion,
802 static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
803 const struct iovec *iov,
804 unsigned long nr_segs,
805 loff_t pos, bool uio)
807 struct nfs_pageio_descriptor desc;
808 struct inode *inode = dreq->inode;
810 size_t requested_bytes = 0;
813 NFS_PROTO(inode)->write_pageio_init(&desc, inode, FLUSH_COND_STABLE,
814 &nfs_direct_write_completion_ops);
817 atomic_inc(&inode->i_dio_count);
819 NFS_I(dreq->inode)->write_io += iov_length(iov, nr_segs);
820 for (seg = 0; seg < nr_segs; seg++) {
821 const struct iovec *vec = &iov[seg];
822 result = nfs_direct_write_schedule_segment(&desc, vec, pos, uio);
825 requested_bytes += result;
826 if ((size_t)result < vec->iov_len)
830 nfs_pageio_complete(&desc);
833 * If no bytes were started, return the error, and let the
834 * generic layer handle the completion.
836 if (requested_bytes == 0) {
837 inode_dio_done(inode);
838 nfs_direct_req_release(dreq);
839 return result < 0 ? result : -EIO;
843 nfs_direct_write_complete(dreq, dreq->inode);
847 static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
848 unsigned long nr_segs, loff_t pos,
849 size_t count, bool uio)
851 ssize_t result = -ENOMEM;
852 struct inode *inode = iocb->ki_filp->f_mapping->host;
853 struct nfs_direct_req *dreq;
854 struct nfs_lock_context *l_ctx;
856 dreq = nfs_direct_req_alloc();
861 dreq->bytes_left = count;
862 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
863 l_ctx = nfs_get_lock_context(dreq->ctx);
865 result = PTR_ERR(l_ctx);
869 if (!is_sync_kiocb(iocb))
872 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, uio);
874 result = nfs_direct_wait(dreq);
876 nfs_direct_req_release(dreq);
882 * nfs_file_direct_read - file direct read operation for NFS files
883 * @iocb: target I/O control block
884 * @iov: vector of user buffers into which to read data
885 * @nr_segs: size of iov vector
886 * @pos: byte offset in file where reading starts
888 * We use this function for direct reads instead of calling
889 * generic_file_aio_read() in order to avoid gfar's check to see if
890 * the request starts before the end of the file. For that check
891 * to work, we must generate a GETATTR before each direct read, and
892 * even then there is a window between the GETATTR and the subsequent
893 * READ where the file size could change. Our preference is simply
894 * to do all reads the application wants, and the server will take
895 * care of managing the end of file boundary.
897 * This function also eliminates unnecessarily updating the file's
898 * atime locally, as the NFS server sets the file's atime, and this
899 * client must read the updated atime from the server back into its
902 ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
903 unsigned long nr_segs, loff_t pos, bool uio)
905 ssize_t retval = -EINVAL;
906 struct file *file = iocb->ki_filp;
907 struct address_space *mapping = file->f_mapping;
910 count = iov_length(iov, nr_segs);
911 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
913 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
914 file->f_path.dentry->d_parent->d_name.name,
915 file->f_path.dentry->d_name.name,
916 count, (long long) pos);
922 retval = nfs_sync_mapping(mapping);
926 task_io_account_read(count);
928 retval = nfs_direct_read(iocb, iov, nr_segs, pos, uio);
930 iocb->ki_pos = pos + retval;
937 * nfs_file_direct_write - file direct write operation for NFS files
938 * @iocb: target I/O control block
939 * @iov: vector of user buffers from which to write data
940 * @nr_segs: size of iov vector
941 * @pos: byte offset in file where writing starts
943 * We use this function for direct writes instead of calling
944 * generic_file_aio_write() in order to avoid taking the inode
945 * semaphore and updating the i_size. The NFS server will set
946 * the new i_size and this client must read the updated size
947 * back into its cache. We let the server do generic write
948 * parameter checking and report problems.
950 * We eliminate local atime updates, see direct read above.
952 * We avoid unnecessary page cache invalidations for normal cached
953 * readers of this file.
955 * Note that O_APPEND is not supported for NFS direct writes, as there
956 * is no atomic O_APPEND write facility in the NFS protocol.
958 ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
959 unsigned long nr_segs, loff_t pos, bool uio)
961 ssize_t retval = -EINVAL;
962 struct file *file = iocb->ki_filp;
963 struct address_space *mapping = file->f_mapping;
966 count = iov_length(iov, nr_segs);
967 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
969 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
970 file->f_path.dentry->d_parent->d_name.name,
971 file->f_path.dentry->d_name.name,
972 count, (long long) pos);
974 retval = generic_write_checks(file, &pos, &count, 0);
979 if ((ssize_t) count < 0)
985 retval = nfs_sync_mapping(mapping);
989 task_io_account_write(count);
991 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count, uio);
993 struct inode *inode = mapping->host;
995 iocb->ki_pos = pos + retval;
996 spin_lock(&inode->i_lock);
997 if (i_size_read(inode) < iocb->ki_pos)
998 i_size_write(inode, iocb->ki_pos);
999 spin_unlock(&inode->i_lock);
1006 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1009 int __init nfs_init_directcache(void)
1011 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1012 sizeof(struct nfs_direct_req),
1013 0, (SLAB_RECLAIM_ACCOUNT|
1016 if (nfs_direct_cachep == NULL)
1023 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1026 void nfs_destroy_directcache(void)
1028 kmem_cache_destroy(nfs_direct_cachep);