4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
39 #include "delegation.h"
44 /* #define NFS_DEBUG_VERBOSE 1 */
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_readdir(struct file *, void *, filldir_t);
48 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
49 static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
50 static int nfs_mkdir(struct inode *, struct dentry *, int);
51 static int nfs_rmdir(struct inode *, struct dentry *);
52 static int nfs_unlink(struct inode *, struct dentry *);
53 static int nfs_symlink(struct inode *, struct dentry *, const char *);
54 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
55 static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
56 static int nfs_rename(struct inode *, struct dentry *,
57 struct inode *, struct dentry *);
58 static int nfs_fsync_dir(struct file *, int);
59 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
60 static void nfs_readdir_clear_array(struct page*);
62 const struct file_operations nfs_dir_operations = {
63 .llseek = nfs_llseek_dir,
64 .read = generic_read_dir,
65 .readdir = nfs_readdir,
67 .release = nfs_release,
68 .fsync = nfs_fsync_dir,
71 const struct inode_operations nfs_dir_inode_operations = {
76 .symlink = nfs_symlink,
81 .permission = nfs_permission,
82 .getattr = nfs_getattr,
83 .setattr = nfs_setattr,
86 const struct address_space_operations nfs_dir_aops = {
87 .freepage = nfs_readdir_clear_array,
91 const struct inode_operations nfs3_dir_inode_operations = {
96 .symlink = nfs_symlink,
100 .rename = nfs_rename,
101 .permission = nfs_permission,
102 .getattr = nfs_getattr,
103 .setattr = nfs_setattr,
104 .listxattr = nfs3_listxattr,
105 .getxattr = nfs3_getxattr,
106 .setxattr = nfs3_setxattr,
107 .removexattr = nfs3_removexattr,
109 #endif /* CONFIG_NFS_V3 */
113 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
114 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode, struct nameidata *nd);
115 const struct inode_operations nfs4_dir_inode_operations = {
116 .create = nfs_open_create,
117 .lookup = nfs_atomic_lookup,
119 .unlink = nfs_unlink,
120 .symlink = nfs_symlink,
124 .rename = nfs_rename,
125 .permission = nfs_permission,
126 .getattr = nfs_getattr,
127 .setattr = nfs_setattr,
128 .getxattr = generic_getxattr,
129 .setxattr = generic_setxattr,
130 .listxattr = generic_listxattr,
131 .removexattr = generic_removexattr,
134 #endif /* CONFIG_NFS_V4 */
140 nfs_opendir(struct inode *inode, struct file *filp)
144 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
145 filp->f_path.dentry->d_parent->d_name.name,
146 filp->f_path.dentry->d_name.name);
148 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
150 /* Call generic open code in order to cache credentials */
151 res = nfs_open(inode, filp);
152 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
153 /* This is a mountpoint, so d_revalidate will never
154 * have been called, so we need to refresh the
155 * inode (for close-open consistency) ourselves.
157 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
162 struct nfs_cache_array_entry {
166 unsigned char d_type;
169 struct nfs_cache_array {
173 struct nfs_cache_array_entry array[0];
176 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
180 unsigned long page_index;
183 loff_t current_index;
184 decode_dirent_t decode;
186 unsigned long timestamp;
187 unsigned long gencount;
188 unsigned int cache_entry_index;
191 } nfs_readdir_descriptor_t;
194 * The caller is responsible for calling nfs_readdir_release_array(page)
197 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
201 return ERR_PTR(-EIO);
204 return ERR_PTR(-ENOMEM);
209 void nfs_readdir_release_array(struct page *page)
215 * we are freeing strings created by nfs_add_to_readdir_array()
218 void nfs_readdir_clear_array(struct page *page)
220 struct nfs_cache_array *array;
223 array = kmap_atomic(page, KM_USER0);
224 for (i = 0; i < array->size; i++)
225 kfree(array->array[i].string.name);
226 kunmap_atomic(array, KM_USER0);
230 * the caller is responsible for freeing qstr.name
231 * when called by nfs_readdir_add_to_array, the strings will be freed in
232 * nfs_clear_readdir_array()
235 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
238 string->name = kmemdup(name, len, GFP_KERNEL);
239 if (string->name == NULL)
242 * Avoid a kmemleak false positive. The pointer to the name is stored
243 * in a page cache page which kmemleak does not scan.
245 kmemleak_not_leak(string->name);
246 string->hash = full_name_hash(name, len);
251 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
253 struct nfs_cache_array *array = nfs_readdir_get_array(page);
254 struct nfs_cache_array_entry *cache_entry;
258 return PTR_ERR(array);
260 cache_entry = &array->array[array->size];
262 /* Check that this entry lies within the page bounds */
264 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
267 cache_entry->cookie = entry->prev_cookie;
268 cache_entry->ino = entry->ino;
269 cache_entry->d_type = entry->d_type;
270 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
273 array->last_cookie = entry->cookie;
276 array->eof_index = array->size;
278 nfs_readdir_release_array(page);
283 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
285 loff_t diff = desc->file->f_pos - desc->current_index;
290 if (diff >= array->size) {
291 if (array->eof_index >= 0)
293 desc->current_index += array->size;
297 index = (unsigned int)diff;
298 *desc->dir_cookie = array->array[index].cookie;
299 desc->cache_entry_index = index;
307 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
310 int status = -EAGAIN;
312 for (i = 0; i < array->size; i++) {
313 if (array->array[i].cookie == *desc->dir_cookie) {
314 desc->cache_entry_index = i;
318 if (array->eof_index >= 0) {
319 status = -EBADCOOKIE;
320 if (*desc->dir_cookie == array->last_cookie)
327 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
329 struct nfs_cache_array *array;
332 array = nfs_readdir_get_array(desc->page);
334 status = PTR_ERR(array);
338 if (*desc->dir_cookie == 0)
339 status = nfs_readdir_search_for_pos(array, desc);
341 status = nfs_readdir_search_for_cookie(array, desc);
343 if (status == -EAGAIN) {
344 desc->last_cookie = array->last_cookie;
347 nfs_readdir_release_array(desc->page);
352 /* Fill a page with xdr information before transferring to the cache page */
354 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
355 struct nfs_entry *entry, struct file *file, struct inode *inode)
357 struct rpc_cred *cred = nfs_file_cred(file);
358 unsigned long timestamp, gencount;
363 gencount = nfs_inc_attr_generation_counter();
364 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
365 NFS_SERVER(inode)->dtsize, desc->plus);
367 /* We requested READDIRPLUS, but the server doesn't grok it */
368 if (error == -ENOTSUPP && desc->plus) {
369 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
370 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
376 desc->timestamp = timestamp;
377 desc->gencount = gencount;
382 static int xdr_decode(nfs_readdir_descriptor_t *desc,
383 struct nfs_entry *entry, struct xdr_stream *xdr)
387 error = desc->decode(xdr, entry, desc->plus);
390 entry->fattr->time_start = desc->timestamp;
391 entry->fattr->gencount = desc->gencount;
396 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
398 if (dentry->d_inode == NULL)
400 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
408 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
410 struct qstr filename = {
414 struct dentry *dentry;
415 struct dentry *alias;
416 struct inode *dir = parent->d_inode;
419 if (filename.name[0] == '.') {
420 if (filename.len == 1)
422 if (filename.len == 2 && filename.name[1] == '.')
425 filename.hash = full_name_hash(filename.name, filename.len);
427 dentry = d_lookup(parent, &filename);
428 if (dentry != NULL) {
429 if (nfs_same_file(dentry, entry)) {
430 nfs_refresh_inode(dentry->d_inode, entry->fattr);
438 dentry = d_alloc(parent, &filename);
442 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
443 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
447 alias = d_materialise_unique(dentry, inode);
451 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
454 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
460 /* Perform conversion from xdr to cache array */
462 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
463 struct page **xdr_pages, struct page *page, unsigned int buflen)
465 struct xdr_stream stream;
466 struct xdr_buf buf = {
472 struct page *scratch;
473 struct nfs_cache_array *array;
474 unsigned int count = 0;
477 scratch = alloc_page(GFP_KERNEL);
481 xdr_init_decode(&stream, &buf, NULL);
482 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
485 status = xdr_decode(desc, entry, &stream);
487 if (status == -EAGAIN)
495 nfs_prime_dcache(desc->file->f_path.dentry, entry);
497 status = nfs_readdir_add_to_array(entry, page);
500 } while (!entry->eof);
502 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
503 array = nfs_readdir_get_array(page);
504 if (!IS_ERR(array)) {
505 array->eof_index = array->size;
507 nfs_readdir_release_array(page);
509 status = PTR_ERR(array);
517 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
520 for (i = 0; i < npages; i++)
525 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
528 nfs_readdir_free_pagearray(pages, npages);
532 * nfs_readdir_large_page will allocate pages that must be freed with a call
533 * to nfs_readdir_free_large_page
536 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
540 for (i = 0; i < npages; i++) {
541 struct page *page = alloc_page(GFP_KERNEL);
549 nfs_readdir_free_pagearray(pages, i);
554 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
556 struct page *pages[NFS_MAX_READDIR_PAGES];
557 void *pages_ptr = NULL;
558 struct nfs_entry entry;
559 struct file *file = desc->file;
560 struct nfs_cache_array *array;
561 int status = -ENOMEM;
562 unsigned int array_size = ARRAY_SIZE(pages);
564 entry.prev_cookie = 0;
565 entry.cookie = desc->last_cookie;
567 entry.fh = nfs_alloc_fhandle();
568 entry.fattr = nfs_alloc_fattr();
569 entry.server = NFS_SERVER(inode);
570 if (entry.fh == NULL || entry.fattr == NULL)
573 array = nfs_readdir_get_array(page);
575 status = PTR_ERR(array);
578 memset(array, 0, sizeof(struct nfs_cache_array));
579 array->eof_index = -1;
581 status = nfs_readdir_large_page(pages, array_size);
583 goto out_release_array;
586 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
591 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
593 if (status == -ENOSPC)
597 } while (array->eof_index < 0);
599 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
601 nfs_readdir_release_array(page);
603 nfs_free_fattr(entry.fattr);
604 nfs_free_fhandle(entry.fh);
609 * Now we cache directories properly, by converting xdr information
610 * to an array that can be used for lookups later. This results in
611 * fewer cache pages, since we can store more information on each page.
612 * We only need to convert from xdr once so future lookups are much simpler
615 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
617 struct inode *inode = desc->file->f_path.dentry->d_inode;
620 ret = nfs_readdir_xdr_to_array(desc, page, inode);
623 SetPageUptodate(page);
625 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
626 /* Should never happen */
627 nfs_zap_mapping(inode, inode->i_mapping);
637 void cache_page_release(nfs_readdir_descriptor_t *desc)
639 if (!desc->page->mapping)
640 nfs_readdir_clear_array(desc->page);
641 page_cache_release(desc->page);
646 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
648 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
649 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
653 * Returns 0 if desc->dir_cookie was found on page desc->page_index
656 int find_cache_page(nfs_readdir_descriptor_t *desc)
660 desc->page = get_cache_page(desc);
661 if (IS_ERR(desc->page))
662 return PTR_ERR(desc->page);
664 res = nfs_readdir_search_array(desc);
666 cache_page_release(desc);
670 /* Search for desc->dir_cookie from the beginning of the page cache */
672 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
676 if (desc->page_index == 0) {
677 desc->current_index = 0;
678 desc->last_cookie = 0;
681 res = find_cache_page(desc);
682 } while (res == -EAGAIN);
687 * Once we've found the start of the dirent within a page: fill 'er up...
690 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
693 struct file *file = desc->file;
696 struct nfs_cache_array *array = NULL;
698 array = nfs_readdir_get_array(desc->page);
700 res = PTR_ERR(array);
704 for (i = desc->cache_entry_index; i < array->size; i++) {
705 struct nfs_cache_array_entry *ent;
707 ent = &array->array[i];
708 if (filldir(dirent, ent->string.name, ent->string.len,
709 file->f_pos, nfs_compat_user_ino64(ent->ino),
715 if (i < (array->size-1))
716 *desc->dir_cookie = array->array[i+1].cookie;
718 *desc->dir_cookie = array->last_cookie;
720 if (array->eof_index >= 0)
723 nfs_readdir_release_array(desc->page);
725 cache_page_release(desc);
726 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
727 (unsigned long long)*desc->dir_cookie, res);
732 * If we cannot find a cookie in our cache, we suspect that this is
733 * because it points to a deleted file, so we ask the server to return
734 * whatever it thinks is the next entry. We then feed this to filldir.
735 * If all goes well, we should then be able to find our way round the
736 * cache on the next call to readdir_search_pagecache();
738 * NOTE: we cannot add the anonymous page to the pagecache because
739 * the data it contains might not be page aligned. Besides,
740 * we should already have a complete representation of the
741 * directory in the page cache by the time we get here.
744 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
747 struct page *page = NULL;
749 struct inode *inode = desc->file->f_path.dentry->d_inode;
751 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
752 (unsigned long long)*desc->dir_cookie);
754 page = alloc_page(GFP_HIGHUSER);
760 desc->page_index = 0;
761 desc->last_cookie = *desc->dir_cookie;
764 status = nfs_readdir_xdr_to_array(desc, page, inode);
768 status = nfs_do_filldir(desc, dirent, filldir);
771 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
775 cache_page_release(desc);
779 /* The file offset position represents the dirent entry number. A
780 last cookie cache takes care of the common case of reading the
783 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
785 struct dentry *dentry = filp->f_path.dentry;
786 struct inode *inode = dentry->d_inode;
787 nfs_readdir_descriptor_t my_desc,
791 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
792 dentry->d_parent->d_name.name, dentry->d_name.name,
793 (long long)filp->f_pos);
794 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
797 * filp->f_pos points to the dirent entry number.
798 * *desc->dir_cookie has the cookie for the next entry. We have
799 * to either find the entry with the appropriate number or
800 * revalidate the cookie.
802 memset(desc, 0, sizeof(*desc));
805 desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
806 desc->decode = NFS_PROTO(inode)->decode_dirent;
807 desc->plus = NFS_USE_READDIRPLUS(inode);
809 nfs_block_sillyrename(dentry);
810 res = nfs_revalidate_mapping(inode, filp->f_mapping);
815 res = readdir_search_pagecache(desc);
817 if (res == -EBADCOOKIE) {
819 /* This means either end of directory */
820 if (*desc->dir_cookie && desc->eof == 0) {
821 /* Or that the server has 'lost' a cookie */
822 res = uncached_readdir(desc, dirent, filldir);
828 if (res == -ETOOSMALL && desc->plus) {
829 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
830 nfs_zap_caches(inode);
831 desc->page_index = 0;
839 res = nfs_do_filldir(desc, dirent, filldir);
842 } while (!desc->eof);
844 nfs_unblock_sillyrename(dentry);
847 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
848 dentry->d_parent->d_name.name, dentry->d_name.name,
853 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
855 struct dentry *dentry = filp->f_path.dentry;
856 struct inode *inode = dentry->d_inode;
858 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
859 dentry->d_parent->d_name.name,
863 mutex_lock(&inode->i_mutex);
866 offset += filp->f_pos;
874 if (offset != filp->f_pos) {
875 filp->f_pos = offset;
876 nfs_file_open_context(filp)->dir_cookie = 0;
879 mutex_unlock(&inode->i_mutex);
884 * All directory operations under NFS are synchronous, so fsync()
885 * is a dummy operation.
887 static int nfs_fsync_dir(struct file *filp, int datasync)
889 struct dentry *dentry = filp->f_path.dentry;
891 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
892 dentry->d_parent->d_name.name, dentry->d_name.name,
895 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
900 * nfs_force_lookup_revalidate - Mark the directory as having changed
901 * @dir - pointer to directory inode
903 * This forces the revalidation code in nfs_lookup_revalidate() to do a
904 * full lookup on all child dentries of 'dir' whenever a change occurs
905 * on the server that might have invalidated our dcache.
907 * The caller should be holding dir->i_lock
909 void nfs_force_lookup_revalidate(struct inode *dir)
911 NFS_I(dir)->cache_change_attribute++;
915 * A check for whether or not the parent directory has changed.
916 * In the case it has, we assume that the dentries are untrustworthy
917 * and may need to be looked up again.
919 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
923 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
925 if (!nfs_verify_change_attribute(dir, dentry->d_time))
927 /* Revalidate nfsi->cache_change_attribute before we declare a match */
928 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
930 if (!nfs_verify_change_attribute(dir, dentry->d_time))
936 * Return the intent data that applies to this particular path component
938 * Note that the current set of intents only apply to the very last
939 * component of the path.
940 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
942 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
944 if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
946 return nd->flags & mask;
950 * Use intent information to check whether or not we're going to do
951 * an O_EXCL create using this path component.
953 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
955 if (NFS_PROTO(dir)->version == 2)
957 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
961 * Inode and filehandle revalidation for lookups.
963 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
964 * or if the intent information indicates that we're about to open this
965 * particular file and the "nocto" mount flag is not set.
969 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
971 struct nfs_server *server = NFS_SERVER(inode);
973 if (test_bit(NFS_INO_MOUNTPOINT, &NFS_I(inode)->flags))
976 /* VFS wants an on-the-wire revalidation */
977 if (nd->flags & LOOKUP_REVAL)
979 /* This is an open(2) */
980 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
981 !(server->flags & NFS_MOUNT_NOCTO) &&
982 (S_ISREG(inode->i_mode) ||
983 S_ISDIR(inode->i_mode)))
987 return nfs_revalidate_inode(server, inode);
989 return __nfs_revalidate_inode(server, inode);
993 * We judge how long we want to trust negative
994 * dentries by looking at the parent inode mtime.
996 * If parent mtime has changed, we revalidate, else we wait for a
997 * period corresponding to the parent's attribute cache timeout value.
1000 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1001 struct nameidata *nd)
1003 /* Don't revalidate a negative dentry if we're creating a new file */
1004 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1006 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1008 return !nfs_check_verifier(dir, dentry);
1012 * This is called every time the dcache has a lookup hit,
1013 * and we should check whether we can really trust that
1016 * NOTE! The hit can be a negative hit too, don't assume
1019 * If the parent directory is seen to have changed, we throw out the
1020 * cached dentry and do a new lookup.
1022 static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
1025 struct inode *inode;
1026 struct dentry *parent;
1027 struct nfs_fh *fhandle = NULL;
1028 struct nfs_fattr *fattr = NULL;
1031 parent = dget_parent(dentry);
1032 dir = parent->d_inode;
1033 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1034 inode = dentry->d_inode;
1037 if (nfs_neg_need_reval(dir, dentry, nd))
1042 if (is_bad_inode(inode)) {
1043 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1044 __func__, dentry->d_parent->d_name.name,
1045 dentry->d_name.name);
1049 if (nfs_have_delegation(inode, FMODE_READ))
1050 goto out_set_verifier;
1052 /* Force a full look up iff the parent directory has changed */
1053 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1054 if (nfs_lookup_verify_inode(inode, nd))
1055 goto out_zap_parent;
1059 if (NFS_STALE(inode))
1063 fhandle = nfs_alloc_fhandle();
1064 fattr = nfs_alloc_fattr();
1065 if (fhandle == NULL || fattr == NULL)
1068 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1071 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1073 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1076 nfs_free_fattr(fattr);
1077 nfs_free_fhandle(fhandle);
1079 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1082 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1083 __func__, dentry->d_parent->d_name.name,
1084 dentry->d_name.name);
1087 nfs_zap_caches(dir);
1089 nfs_mark_for_revalidate(dir);
1090 if (inode && S_ISDIR(inode->i_mode)) {
1091 /* Purge readdir caches. */
1092 nfs_zap_caches(inode);
1093 /* If we have submounts, don't unhash ! */
1094 if (have_submounts(dentry))
1096 if (dentry->d_flags & DCACHE_DISCONNECTED)
1098 shrink_dcache_parent(dentry);
1101 nfs_free_fattr(fattr);
1102 nfs_free_fhandle(fhandle);
1104 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1105 __func__, dentry->d_parent->d_name.name,
1106 dentry->d_name.name);
1109 nfs_free_fattr(fattr);
1110 nfs_free_fhandle(fhandle);
1112 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1113 __func__, dentry->d_parent->d_name.name,
1114 dentry->d_name.name, error);
1119 * This is called from dput() when d_count is going to 0.
1121 static int nfs_dentry_delete(struct dentry *dentry)
1123 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1124 dentry->d_parent->d_name.name, dentry->d_name.name,
1127 /* Unhash any dentry with a stale inode */
1128 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1131 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1132 /* Unhash it, so that ->d_iput() would be called */
1135 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1136 /* Unhash it, so that ancestors of killed async unlink
1137 * files will be cleaned up during umount */
1144 static void nfs_drop_nlink(struct inode *inode)
1146 spin_lock(&inode->i_lock);
1147 if (inode->i_nlink > 0)
1149 spin_unlock(&inode->i_lock);
1153 * Called when the dentry loses inode.
1154 * We use it to clean up silly-renamed files.
1156 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1158 if (S_ISDIR(inode->i_mode))
1159 /* drop any readdir cache as it could easily be old */
1160 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1162 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1164 nfs_complete_unlink(dentry, inode);
1169 const struct dentry_operations nfs_dentry_operations = {
1170 .d_revalidate = nfs_lookup_revalidate,
1171 .d_delete = nfs_dentry_delete,
1172 .d_iput = nfs_dentry_iput,
1175 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1178 struct dentry *parent;
1179 struct inode *inode = NULL;
1180 struct nfs_fh *fhandle = NULL;
1181 struct nfs_fattr *fattr = NULL;
1184 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1185 dentry->d_parent->d_name.name, dentry->d_name.name);
1186 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1188 res = ERR_PTR(-ENAMETOOLONG);
1189 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1192 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1195 * If we're doing an exclusive create, optimize away the lookup
1196 * but don't hash the dentry.
1198 if (nfs_is_exclusive_create(dir, nd)) {
1199 d_instantiate(dentry, NULL);
1204 res = ERR_PTR(-ENOMEM);
1205 fhandle = nfs_alloc_fhandle();
1206 fattr = nfs_alloc_fattr();
1207 if (fhandle == NULL || fattr == NULL)
1210 parent = dentry->d_parent;
1211 /* Protect against concurrent sillydeletes */
1212 nfs_block_sillyrename(parent);
1213 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1214 if (error == -ENOENT)
1217 res = ERR_PTR(error);
1218 goto out_unblock_sillyrename;
1220 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1221 res = ERR_CAST(inode);
1223 goto out_unblock_sillyrename;
1226 res = d_materialise_unique(dentry, inode);
1229 goto out_unblock_sillyrename;
1232 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1233 out_unblock_sillyrename:
1234 nfs_unblock_sillyrename(parent);
1236 nfs_free_fattr(fattr);
1237 nfs_free_fhandle(fhandle);
1241 #ifdef CONFIG_NFS_V4
1242 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1244 const struct dentry_operations nfs4_dentry_operations = {
1245 .d_revalidate = nfs_open_revalidate,
1246 .d_delete = nfs_dentry_delete,
1247 .d_iput = nfs_dentry_iput,
1251 * Use intent information to determine whether we need to substitute
1252 * the NFSv4-style stateful OPEN for the LOOKUP call
1254 static int is_atomic_open(struct nameidata *nd)
1256 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1258 /* NFS does not (yet) have a stateful open for directories */
1259 if (nd->flags & LOOKUP_DIRECTORY)
1261 /* Are we trying to write to a read only partition? */
1262 if (__mnt_is_readonly(nd->path.mnt) &&
1263 (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
1268 static struct nfs_open_context *nameidata_to_nfs_open_context(struct dentry *dentry, struct nameidata *nd)
1270 struct path path = {
1271 .mnt = nd->path.mnt,
1274 struct nfs_open_context *ctx;
1275 struct rpc_cred *cred;
1276 fmode_t fmode = nd->intent.open.flags & (FMODE_READ | FMODE_WRITE | FMODE_EXEC);
1278 cred = rpc_lookup_cred();
1280 return ERR_CAST(cred);
1281 ctx = alloc_nfs_open_context(&path, cred, fmode);
1284 return ERR_PTR(-ENOMEM);
1288 static int do_open(struct inode *inode, struct file *filp)
1290 nfs_fscache_set_inode_cookie(inode, filp);
1294 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1299 /* If the open_intent is for execute, we have an extra check to make */
1300 if (ctx->mode & FMODE_EXEC) {
1301 ret = nfs_may_open(ctx->path.dentry->d_inode,
1303 nd->intent.open.flags);
1307 filp = lookup_instantiate_filp(nd, ctx->path.dentry, do_open);
1309 ret = PTR_ERR(filp);
1311 nfs_file_set_open_context(filp, ctx);
1313 put_nfs_open_context(ctx);
1317 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1319 struct nfs_open_context *ctx;
1321 struct dentry *res = NULL;
1322 struct inode *inode;
1326 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1327 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1329 /* Check that we are indeed trying to open this file */
1330 if (!is_atomic_open(nd))
1333 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1334 res = ERR_PTR(-ENAMETOOLONG);
1337 dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1339 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1341 if (nd->flags & LOOKUP_EXCL) {
1342 d_instantiate(dentry, NULL);
1346 ctx = nameidata_to_nfs_open_context(dentry, nd);
1347 res = ERR_CAST(ctx);
1351 open_flags = nd->intent.open.flags;
1352 if (nd->flags & LOOKUP_CREATE) {
1353 attr.ia_mode = nd->intent.open.create_mode;
1354 attr.ia_valid = ATTR_MODE;
1355 attr.ia_mode &= ~current_umask();
1357 open_flags &= ~(O_EXCL | O_CREAT);
1361 /* Open the file on the server */
1362 nfs_block_sillyrename(dentry->d_parent);
1363 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1364 if (IS_ERR(inode)) {
1365 nfs_unblock_sillyrename(dentry->d_parent);
1366 put_nfs_open_context(ctx);
1367 switch (PTR_ERR(inode)) {
1368 /* Make a negative dentry */
1370 d_add(dentry, NULL);
1373 /* This turned out not to be a regular file */
1377 if (!(nd->intent.open.flags & O_NOFOLLOW))
1382 res = ERR_CAST(inode);
1386 res = d_add_unique(dentry, inode);
1387 nfs_unblock_sillyrename(dentry->d_parent);
1389 dput(ctx->path.dentry);
1390 ctx->path.dentry = dget(res);
1393 err = nfs_intent_set_file(nd, ctx);
1397 return ERR_PTR(err);
1400 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1403 return nfs_lookup(dir, dentry, nd);
1406 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1408 struct dentry *parent = NULL;
1409 struct inode *inode = dentry->d_inode;
1411 struct nfs_open_context *ctx;
1412 int openflags, ret = 0;
1414 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1417 parent = dget_parent(dentry);
1418 dir = parent->d_inode;
1420 /* We can't create new files in nfs_open_revalidate(), so we
1421 * optimize away revalidation of negative dentries.
1423 if (inode == NULL) {
1424 if (!nfs_neg_need_reval(dir, dentry, nd))
1429 /* NFS only supports OPEN on regular files */
1430 if (!S_ISREG(inode->i_mode))
1432 openflags = nd->intent.open.flags;
1433 /* We cannot do exclusive creation on a positive dentry */
1434 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1436 /* We can't create new files, or truncate existing ones here */
1437 openflags &= ~(O_CREAT|O_EXCL|O_TRUNC);
1439 ctx = nameidata_to_nfs_open_context(dentry, nd);
1444 * Note: we're not holding inode->i_mutex and so may be racing with
1445 * operations that change the directory. We therefore save the
1446 * change attribute *before* we do the RPC call.
1448 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, NULL);
1449 if (IS_ERR(inode)) {
1450 ret = PTR_ERR(inode);
1463 if (inode != dentry->d_inode)
1466 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1467 ret = nfs_intent_set_file(nd, ctx);
1477 put_nfs_open_context(ctx);
1483 return nfs_lookup_revalidate(dentry, nd);
1486 static int nfs_open_create(struct inode *dir, struct dentry *dentry, int mode,
1487 struct nameidata *nd)
1489 struct nfs_open_context *ctx = NULL;
1494 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1495 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1497 attr.ia_mode = mode;
1498 attr.ia_valid = ATTR_MODE;
1500 if ((nd->flags & LOOKUP_CREATE) != 0) {
1501 open_flags = nd->intent.open.flags;
1503 ctx = nameidata_to_nfs_open_context(dentry, nd);
1504 error = PTR_ERR(ctx);
1509 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1513 error = nfs_intent_set_file(nd, ctx);
1520 put_nfs_open_context(ctx);
1527 #endif /* CONFIG_NFSV4 */
1530 * Code common to create, mkdir, and mknod.
1532 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1533 struct nfs_fattr *fattr)
1535 struct dentry *parent = dget_parent(dentry);
1536 struct inode *dir = parent->d_inode;
1537 struct inode *inode;
1538 int error = -EACCES;
1542 /* We may have been initialized further down */
1543 if (dentry->d_inode)
1545 if (fhandle->size == 0) {
1546 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1550 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1551 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1552 struct nfs_server *server = NFS_SB(dentry->d_sb);
1553 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1557 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1558 error = PTR_ERR(inode);
1561 d_add(dentry, inode);
1566 nfs_mark_for_revalidate(dir);
1572 * Following a failed create operation, we drop the dentry rather
1573 * than retain a negative dentry. This avoids a problem in the event
1574 * that the operation succeeded on the server, but an error in the
1575 * reply path made it appear to have failed.
1577 static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1578 struct nameidata *nd)
1583 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1584 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1586 attr.ia_mode = mode;
1587 attr.ia_valid = ATTR_MODE;
1589 error = NFS_PROTO(dir)->create(dir, dentry, &attr, 0, NULL);
1599 * See comments for nfs_proc_create regarding failed operations.
1602 nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1607 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1608 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1610 if (!new_valid_dev(rdev))
1613 attr.ia_mode = mode;
1614 attr.ia_valid = ATTR_MODE;
1616 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1626 * See comments for nfs_proc_create regarding failed operations.
1628 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1633 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1634 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1636 attr.ia_valid = ATTR_MODE;
1637 attr.ia_mode = mode | S_IFDIR;
1639 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1648 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1650 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1654 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1658 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1659 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1661 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1662 /* Ensure the VFS deletes this inode */
1663 if (error == 0 && dentry->d_inode != NULL)
1664 clear_nlink(dentry->d_inode);
1665 else if (error == -ENOENT)
1666 nfs_dentry_handle_enoent(dentry);
1672 * Remove a file after making sure there are no pending writes,
1673 * and after checking that the file has only one user.
1675 * We invalidate the attribute cache and free the inode prior to the operation
1676 * to avoid possible races if the server reuses the inode.
1678 static int nfs_safe_remove(struct dentry *dentry)
1680 struct inode *dir = dentry->d_parent->d_inode;
1681 struct inode *inode = dentry->d_inode;
1684 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1685 dentry->d_parent->d_name.name, dentry->d_name.name);
1687 /* If the dentry was sillyrenamed, we simply call d_delete() */
1688 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1693 if (inode != NULL) {
1694 nfs_inode_return_delegation(inode);
1695 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1696 /* The VFS may want to delete this inode */
1698 nfs_drop_nlink(inode);
1699 nfs_mark_for_revalidate(inode);
1701 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1702 if (error == -ENOENT)
1703 nfs_dentry_handle_enoent(dentry);
1708 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1709 * belongs to an active ".nfs..." file and we return -EBUSY.
1711 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1713 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1716 int need_rehash = 0;
1718 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1719 dir->i_ino, dentry->d_name.name);
1721 spin_lock(&dcache_lock);
1722 spin_lock(&dentry->d_lock);
1723 if (atomic_read(&dentry->d_count) > 1) {
1724 spin_unlock(&dentry->d_lock);
1725 spin_unlock(&dcache_lock);
1726 /* Start asynchronous writeout of the inode */
1727 write_inode_now(dentry->d_inode, 0);
1728 error = nfs_sillyrename(dir, dentry);
1731 if (!d_unhashed(dentry)) {
1735 spin_unlock(&dentry->d_lock);
1736 spin_unlock(&dcache_lock);
1737 error = nfs_safe_remove(dentry);
1738 if (!error || error == -ENOENT) {
1739 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1740 } else if (need_rehash)
1746 * To create a symbolic link, most file systems instantiate a new inode,
1747 * add a page to it containing the path, then write it out to the disk
1748 * using prepare_write/commit_write.
1750 * Unfortunately the NFS client can't create the in-core inode first
1751 * because it needs a file handle to create an in-core inode (see
1752 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1753 * symlink request has completed on the server.
1755 * So instead we allocate a raw page, copy the symname into it, then do
1756 * the SYMLINK request with the page as the buffer. If it succeeds, we
1757 * now have a new file handle and can instantiate an in-core NFS inode
1758 * and move the raw page into its mapping.
1760 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1762 struct pagevec lru_pvec;
1766 unsigned int pathlen = strlen(symname);
1769 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1770 dir->i_ino, dentry->d_name.name, symname);
1772 if (pathlen > PAGE_SIZE)
1773 return -ENAMETOOLONG;
1775 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1776 attr.ia_valid = ATTR_MODE;
1778 page = alloc_page(GFP_HIGHUSER);
1782 kaddr = kmap_atomic(page, KM_USER0);
1783 memcpy(kaddr, symname, pathlen);
1784 if (pathlen < PAGE_SIZE)
1785 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1786 kunmap_atomic(kaddr, KM_USER0);
1788 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1790 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1791 dir->i_sb->s_id, dir->i_ino,
1792 dentry->d_name.name, symname, error);
1799 * No big deal if we can't add this page to the page cache here.
1800 * READLINK will get the missing page from the server if needed.
1802 pagevec_init(&lru_pvec, 0);
1803 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1805 pagevec_add(&lru_pvec, page);
1806 pagevec_lru_add_file(&lru_pvec);
1807 SetPageUptodate(page);
1816 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1818 struct inode *inode = old_dentry->d_inode;
1821 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1822 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1823 dentry->d_parent->d_name.name, dentry->d_name.name);
1825 nfs_inode_return_delegation(inode);
1828 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1831 d_add(dentry, inode);
1838 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1839 * different file handle for the same inode after a rename (e.g. when
1840 * moving to a different directory). A fail-safe method to do so would
1841 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1842 * rename the old file using the sillyrename stuff. This way, the original
1843 * file in old_dir will go away when the last process iput()s the inode.
1847 * It actually works quite well. One needs to have the possibility for
1848 * at least one ".nfs..." file in each directory the file ever gets
1849 * moved or linked to which happens automagically with the new
1850 * implementation that only depends on the dcache stuff instead of
1851 * using the inode layer
1853 * Unfortunately, things are a little more complicated than indicated
1854 * above. For a cross-directory move, we want to make sure we can get
1855 * rid of the old inode after the operation. This means there must be
1856 * no pending writes (if it's a file), and the use count must be 1.
1857 * If these conditions are met, we can drop the dentries before doing
1860 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1861 struct inode *new_dir, struct dentry *new_dentry)
1863 struct inode *old_inode = old_dentry->d_inode;
1864 struct inode *new_inode = new_dentry->d_inode;
1865 struct dentry *dentry = NULL, *rehash = NULL;
1868 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1869 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1870 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1871 atomic_read(&new_dentry->d_count));
1874 * For non-directories, check whether the target is busy and if so,
1875 * make a copy of the dentry and then do a silly-rename. If the
1876 * silly-rename succeeds, the copied dentry is hashed and becomes
1879 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1881 * To prevent any new references to the target during the
1882 * rename, we unhash the dentry in advance.
1884 if (!d_unhashed(new_dentry)) {
1886 rehash = new_dentry;
1889 if (atomic_read(&new_dentry->d_count) > 2) {
1892 /* copy the target dentry's name */
1893 dentry = d_alloc(new_dentry->d_parent,
1894 &new_dentry->d_name);
1898 /* silly-rename the existing target ... */
1899 err = nfs_sillyrename(new_dir, new_dentry);
1903 new_dentry = dentry;
1909 nfs_inode_return_delegation(old_inode);
1910 if (new_inode != NULL)
1911 nfs_inode_return_delegation(new_inode);
1913 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1914 new_dir, &new_dentry->d_name);
1915 nfs_mark_for_revalidate(old_inode);
1920 if (new_inode != NULL)
1921 nfs_drop_nlink(new_inode);
1922 d_move(old_dentry, new_dentry);
1923 nfs_set_verifier(new_dentry,
1924 nfs_save_change_attribute(new_dir));
1925 } else if (error == -ENOENT)
1926 nfs_dentry_handle_enoent(old_dentry);
1928 /* new dentry created? */
1934 static DEFINE_SPINLOCK(nfs_access_lru_lock);
1935 static LIST_HEAD(nfs_access_lru_list);
1936 static atomic_long_t nfs_access_nr_entries;
1938 static void nfs_access_free_entry(struct nfs_access_entry *entry)
1940 put_rpccred(entry->cred);
1942 smp_mb__before_atomic_dec();
1943 atomic_long_dec(&nfs_access_nr_entries);
1944 smp_mb__after_atomic_dec();
1947 static void nfs_access_free_list(struct list_head *head)
1949 struct nfs_access_entry *cache;
1951 while (!list_empty(head)) {
1952 cache = list_entry(head->next, struct nfs_access_entry, lru);
1953 list_del(&cache->lru);
1954 nfs_access_free_entry(cache);
1958 int nfs_access_cache_shrinker(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
1961 struct nfs_inode *nfsi, *next;
1962 struct nfs_access_entry *cache;
1964 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
1965 return (nr_to_scan == 0) ? 0 : -1;
1967 spin_lock(&nfs_access_lru_lock);
1968 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
1969 struct inode *inode;
1971 if (nr_to_scan-- == 0)
1973 inode = &nfsi->vfs_inode;
1974 spin_lock(&inode->i_lock);
1975 if (list_empty(&nfsi->access_cache_entry_lru))
1976 goto remove_lru_entry;
1977 cache = list_entry(nfsi->access_cache_entry_lru.next,
1978 struct nfs_access_entry, lru);
1979 list_move(&cache->lru, &head);
1980 rb_erase(&cache->rb_node, &nfsi->access_cache);
1981 if (!list_empty(&nfsi->access_cache_entry_lru))
1982 list_move_tail(&nfsi->access_cache_inode_lru,
1983 &nfs_access_lru_list);
1986 list_del_init(&nfsi->access_cache_inode_lru);
1987 smp_mb__before_clear_bit();
1988 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1989 smp_mb__after_clear_bit();
1991 spin_unlock(&inode->i_lock);
1993 spin_unlock(&nfs_access_lru_lock);
1994 nfs_access_free_list(&head);
1995 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1998 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2000 struct rb_root *root_node = &nfsi->access_cache;
2002 struct nfs_access_entry *entry;
2004 /* Unhook entries from the cache */
2005 while ((n = rb_first(root_node)) != NULL) {
2006 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2007 rb_erase(n, root_node);
2008 list_move(&entry->lru, head);
2010 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2013 void nfs_access_zap_cache(struct inode *inode)
2017 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2019 /* Remove from global LRU init */
2020 spin_lock(&nfs_access_lru_lock);
2021 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2022 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2024 spin_lock(&inode->i_lock);
2025 __nfs_access_zap_cache(NFS_I(inode), &head);
2026 spin_unlock(&inode->i_lock);
2027 spin_unlock(&nfs_access_lru_lock);
2028 nfs_access_free_list(&head);
2031 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2033 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2034 struct nfs_access_entry *entry;
2037 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2039 if (cred < entry->cred)
2041 else if (cred > entry->cred)
2049 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2051 struct nfs_inode *nfsi = NFS_I(inode);
2052 struct nfs_access_entry *cache;
2055 spin_lock(&inode->i_lock);
2056 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2058 cache = nfs_access_search_rbtree(inode, cred);
2061 if (!nfs_have_delegated_attributes(inode) &&
2062 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2064 res->jiffies = cache->jiffies;
2065 res->cred = cache->cred;
2066 res->mask = cache->mask;
2067 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2070 spin_unlock(&inode->i_lock);
2073 rb_erase(&cache->rb_node, &nfsi->access_cache);
2074 list_del(&cache->lru);
2075 spin_unlock(&inode->i_lock);
2076 nfs_access_free_entry(cache);
2079 spin_unlock(&inode->i_lock);
2080 nfs_access_zap_cache(inode);
2084 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2086 struct nfs_inode *nfsi = NFS_I(inode);
2087 struct rb_root *root_node = &nfsi->access_cache;
2088 struct rb_node **p = &root_node->rb_node;
2089 struct rb_node *parent = NULL;
2090 struct nfs_access_entry *entry;
2092 spin_lock(&inode->i_lock);
2093 while (*p != NULL) {
2095 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2097 if (set->cred < entry->cred)
2098 p = &parent->rb_left;
2099 else if (set->cred > entry->cred)
2100 p = &parent->rb_right;
2104 rb_link_node(&set->rb_node, parent, p);
2105 rb_insert_color(&set->rb_node, root_node);
2106 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2107 spin_unlock(&inode->i_lock);
2110 rb_replace_node(parent, &set->rb_node, root_node);
2111 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2112 list_del(&entry->lru);
2113 spin_unlock(&inode->i_lock);
2114 nfs_access_free_entry(entry);
2117 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2119 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2122 RB_CLEAR_NODE(&cache->rb_node);
2123 cache->jiffies = set->jiffies;
2124 cache->cred = get_rpccred(set->cred);
2125 cache->mask = set->mask;
2127 nfs_access_add_rbtree(inode, cache);
2129 /* Update accounting */
2130 smp_mb__before_atomic_inc();
2131 atomic_long_inc(&nfs_access_nr_entries);
2132 smp_mb__after_atomic_inc();
2134 /* Add inode to global LRU list */
2135 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2136 spin_lock(&nfs_access_lru_lock);
2137 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2138 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2139 &nfs_access_lru_list);
2140 spin_unlock(&nfs_access_lru_lock);
2144 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2146 struct nfs_access_entry cache;
2149 status = nfs_access_get_cached(inode, cred, &cache);
2153 /* Be clever: ask server to check for all possible rights */
2154 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2156 cache.jiffies = jiffies;
2157 status = NFS_PROTO(inode)->access(inode, &cache);
2159 if (status == -ESTALE) {
2160 nfs_zap_caches(inode);
2161 if (!S_ISDIR(inode->i_mode))
2162 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2166 nfs_access_add_cache(inode, &cache);
2168 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2173 static int nfs_open_permission_mask(int openflags)
2177 if (openflags & FMODE_READ)
2179 if (openflags & FMODE_WRITE)
2181 if (openflags & FMODE_EXEC)
2186 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2188 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2191 int nfs_permission(struct inode *inode, int mask)
2193 struct rpc_cred *cred;
2196 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2198 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2200 /* Is this sys_access() ? */
2201 if (mask & (MAY_ACCESS | MAY_CHDIR))
2204 switch (inode->i_mode & S_IFMT) {
2208 /* NFSv4 has atomic_open... */
2209 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2210 && (mask & MAY_OPEN)
2211 && !(mask & MAY_EXEC))
2216 * Optimize away all write operations, since the server
2217 * will check permissions when we perform the op.
2219 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2224 if (!NFS_PROTO(inode)->access)
2227 cred = rpc_lookup_cred();
2228 if (!IS_ERR(cred)) {
2229 res = nfs_do_access(inode, cred, mask);
2232 res = PTR_ERR(cred);
2234 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2237 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2238 inode->i_sb->s_id, inode->i_ino, mask, res);
2241 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2243 res = generic_permission(inode, mask, NULL);
2249 * version-control: t
2250 * kept-new-versions: 5