1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
38 /* Maximum number of mounts in a mount namespace */
39 unsigned int sysctl_mount_max __read_mostly = 100000;
41 static unsigned int m_hash_mask __read_mostly;
42 static unsigned int m_hash_shift __read_mostly;
43 static unsigned int mp_hash_mask __read_mostly;
44 static unsigned int mp_hash_shift __read_mostly;
46 static __initdata unsigned long mhash_entries;
47 static int __init set_mhash_entries(char *str)
51 mhash_entries = simple_strtoul(str, &str, 0);
54 __setup("mhash_entries=", set_mhash_entries);
56 static __initdata unsigned long mphash_entries;
57 static int __init set_mphash_entries(char *str)
61 mphash_entries = simple_strtoul(str, &str, 0);
64 __setup("mphash_entries=", set_mphash_entries);
67 static DEFINE_IDA(mnt_id_ida);
68 static DEFINE_IDA(mnt_group_ida);
70 static struct hlist_head *mount_hashtable __read_mostly;
71 static struct hlist_head *mountpoint_hashtable __read_mostly;
72 static struct kmem_cache *mnt_cache __read_mostly;
73 static DECLARE_RWSEM(namespace_sem);
74 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
75 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
78 unsigned int attr_set;
79 unsigned int attr_clr;
80 unsigned int propagation;
81 unsigned int lookup_flags;
83 struct user_namespace *mnt_userns;
87 struct kobject *fs_kobj;
88 EXPORT_SYMBOL_GPL(fs_kobj);
91 * vfsmount lock may be taken for read to prevent changes to the
92 * vfsmount hash, ie. during mountpoint lookups or walking back
95 * It should be taken for write in all cases where the vfsmount
96 * tree or hash is modified or when a vfsmount structure is modified.
98 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
100 static inline void lock_mount_hash(void)
102 write_seqlock(&mount_lock);
105 static inline void unlock_mount_hash(void)
107 write_sequnlock(&mount_lock);
110 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
112 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
113 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
114 tmp = tmp + (tmp >> m_hash_shift);
115 return &mount_hashtable[tmp & m_hash_mask];
118 static inline struct hlist_head *mp_hash(struct dentry *dentry)
120 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
121 tmp = tmp + (tmp >> mp_hash_shift);
122 return &mountpoint_hashtable[tmp & mp_hash_mask];
125 static int mnt_alloc_id(struct mount *mnt)
127 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
135 static void mnt_free_id(struct mount *mnt)
137 ida_free(&mnt_id_ida, mnt->mnt_id);
141 * Allocate a new peer group ID
143 static int mnt_alloc_group_id(struct mount *mnt)
145 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
149 mnt->mnt_group_id = res;
154 * Release a peer group ID
156 void mnt_release_group_id(struct mount *mnt)
158 ida_free(&mnt_group_ida, mnt->mnt_group_id);
159 mnt->mnt_group_id = 0;
163 * vfsmount lock must be held for read
165 static inline void mnt_add_count(struct mount *mnt, int n)
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
177 * vfsmount lock must be held for write
179 int mnt_get_count(struct mount *mnt)
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 return mnt->mnt_count;
195 static struct mount *alloc_vfsmnt(const char *name)
197 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
201 err = mnt_alloc_id(mnt);
206 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
207 if (!mnt->mnt_devname)
212 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
214 goto out_free_devname;
216 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
219 mnt->mnt_writers = 0;
222 INIT_HLIST_NODE(&mnt->mnt_hash);
223 INIT_LIST_HEAD(&mnt->mnt_child);
224 INIT_LIST_HEAD(&mnt->mnt_mounts);
225 INIT_LIST_HEAD(&mnt->mnt_list);
226 INIT_LIST_HEAD(&mnt->mnt_expire);
227 INIT_LIST_HEAD(&mnt->mnt_share);
228 INIT_LIST_HEAD(&mnt->mnt_slave_list);
229 INIT_LIST_HEAD(&mnt->mnt_slave);
230 INIT_HLIST_NODE(&mnt->mnt_mp_list);
231 INIT_LIST_HEAD(&mnt->mnt_umounting);
232 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
233 mnt->mnt.mnt_userns = &init_user_ns;
239 kfree_const(mnt->mnt_devname);
244 kmem_cache_free(mnt_cache, mnt);
249 * Most r/o checks on a fs are for operations that take
250 * discrete amounts of time, like a write() or unlink().
251 * We must keep track of when those operations start
252 * (for permission checks) and when they end, so that
253 * we can determine when writes are able to occur to
257 * __mnt_is_readonly: check whether a mount is read-only
258 * @mnt: the mount to check for its write status
260 * This shouldn't be used directly ouside of the VFS.
261 * It does not guarantee that the filesystem will stay
262 * r/w, just that it is right *now*. This can not and
263 * should not be used in place of IS_RDONLY(inode).
264 * mnt_want/drop_write() will _keep_ the filesystem
267 bool __mnt_is_readonly(struct vfsmount *mnt)
269 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
271 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
273 static inline void mnt_inc_writers(struct mount *mnt)
276 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
282 static inline void mnt_dec_writers(struct mount *mnt)
285 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
291 static unsigned int mnt_get_writers(struct mount *mnt)
294 unsigned int count = 0;
297 for_each_possible_cpu(cpu) {
298 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
303 return mnt->mnt_writers;
307 static int mnt_is_readonly(struct vfsmount *mnt)
309 if (mnt->mnt_sb->s_readonly_remount)
311 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
313 return __mnt_is_readonly(mnt);
317 * Most r/o & frozen checks on a fs are for operations that take discrete
318 * amounts of time, like a write() or unlink(). We must keep track of when
319 * those operations start (for permission checks) and when they end, so that we
320 * can determine when writes are able to occur to a filesystem.
323 * __mnt_want_write - get write access to a mount without freeze protection
324 * @m: the mount on which to take a write
326 * This tells the low-level filesystem that a write is about to be performed to
327 * it, and makes sure that writes are allowed (mnt it read-write) before
328 * returning success. This operation does not protect against filesystem being
329 * frozen. When the write operation is finished, __mnt_drop_write() must be
330 * called. This is effectively a refcount.
332 int __mnt_want_write(struct vfsmount *m)
334 struct mount *mnt = real_mount(m);
338 mnt_inc_writers(mnt);
340 * The store to mnt_inc_writers must be visible before we pass
341 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
342 * incremented count after it has set MNT_WRITE_HOLD.
345 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
348 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
349 * be set to match its requirements. So we must not load that until
350 * MNT_WRITE_HOLD is cleared.
353 if (mnt_is_readonly(m)) {
354 mnt_dec_writers(mnt);
363 * mnt_want_write - get write access to a mount
364 * @m: the mount on which to take a write
366 * This tells the low-level filesystem that a write is about to be performed to
367 * it, and makes sure that writes are allowed (mount is read-write, filesystem
368 * is not frozen) before returning success. When the write operation is
369 * finished, mnt_drop_write() must be called. This is effectively a refcount.
371 int mnt_want_write(struct vfsmount *m)
375 sb_start_write(m->mnt_sb);
376 ret = __mnt_want_write(m);
378 sb_end_write(m->mnt_sb);
381 EXPORT_SYMBOL_GPL(mnt_want_write);
384 * mnt_clone_write - get write access to a mount
385 * @mnt: the mount on which to take a write
387 * This is effectively like mnt_want_write, except
388 * it must only be used to take an extra write reference
389 * on a mountpoint that we already know has a write reference
390 * on it. This allows some optimisation.
392 * After finished, mnt_drop_write must be called as usual to
393 * drop the reference.
395 int mnt_clone_write(struct vfsmount *mnt)
397 /* superblock may be r/o */
398 if (__mnt_is_readonly(mnt))
401 mnt_inc_writers(real_mount(mnt));
405 EXPORT_SYMBOL_GPL(mnt_clone_write);
408 * __mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
411 * This is like __mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
414 int __mnt_want_write_file(struct file *file)
416 if (!(file->f_mode & FMODE_WRITER))
417 return __mnt_want_write(file->f_path.mnt);
419 return mnt_clone_write(file->f_path.mnt);
423 * mnt_want_write_file - get write access to a file's mount
424 * @file: the file who's mount on which to take a write
426 * This is like mnt_want_write, but it takes a file and can
427 * do some optimisations if the file is open for write already
429 int mnt_want_write_file(struct file *file)
433 sb_start_write(file_inode(file)->i_sb);
434 ret = __mnt_want_write_file(file);
436 sb_end_write(file_inode(file)->i_sb);
439 EXPORT_SYMBOL_GPL(mnt_want_write_file);
442 * __mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
445 * Tells the low-level filesystem that we are done
446 * performing writes to it. Must be matched with
447 * __mnt_want_write() call above.
449 void __mnt_drop_write(struct vfsmount *mnt)
452 mnt_dec_writers(real_mount(mnt));
457 * mnt_drop_write - give up write access to a mount
458 * @mnt: the mount on which to give up write access
460 * Tells the low-level filesystem that we are done performing writes to it and
461 * also allows filesystem to be frozen again. Must be matched with
462 * mnt_want_write() call above.
464 void mnt_drop_write(struct vfsmount *mnt)
466 __mnt_drop_write(mnt);
467 sb_end_write(mnt->mnt_sb);
469 EXPORT_SYMBOL_GPL(mnt_drop_write);
471 void __mnt_drop_write_file(struct file *file)
473 __mnt_drop_write(file->f_path.mnt);
476 void mnt_drop_write_file(struct file *file)
478 __mnt_drop_write_file(file);
479 sb_end_write(file_inode(file)->i_sb);
481 EXPORT_SYMBOL(mnt_drop_write_file);
483 static inline int mnt_hold_writers(struct mount *mnt)
485 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
487 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
488 * should be visible before we do.
493 * With writers on hold, if this value is zero, then there are
494 * definitely no active writers (although held writers may subsequently
495 * increment the count, they'll have to wait, and decrement it after
496 * seeing MNT_READONLY).
498 * It is OK to have counter incremented on one CPU and decremented on
499 * another: the sum will add up correctly. The danger would be when we
500 * sum up each counter, if we read a counter before it is incremented,
501 * but then read another CPU's count which it has been subsequently
502 * decremented from -- we would see more decrements than we should.
503 * MNT_WRITE_HOLD protects against this scenario, because
504 * mnt_want_write first increments count, then smp_mb, then spins on
505 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
506 * we're counting up here.
508 if (mnt_get_writers(mnt) > 0)
514 static inline void mnt_unhold_writers(struct mount *mnt)
517 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
518 * that become unheld will see MNT_READONLY.
521 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
524 static int mnt_make_readonly(struct mount *mnt)
528 ret = mnt_hold_writers(mnt);
530 mnt->mnt.mnt_flags |= MNT_READONLY;
531 mnt_unhold_writers(mnt);
535 int sb_prepare_remount_readonly(struct super_block *sb)
540 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
541 if (atomic_long_read(&sb->s_remove_count))
545 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
546 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
547 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
549 if (mnt_get_writers(mnt) > 0) {
555 if (!err && atomic_long_read(&sb->s_remove_count))
559 sb->s_readonly_remount = 1;
562 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
563 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
564 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
571 static void free_vfsmnt(struct mount *mnt)
573 struct user_namespace *mnt_userns;
575 mnt_userns = mnt_user_ns(&mnt->mnt);
576 if (mnt_userns != &init_user_ns)
577 put_user_ns(mnt_userns);
578 kfree_const(mnt->mnt_devname);
580 free_percpu(mnt->mnt_pcp);
582 kmem_cache_free(mnt_cache, mnt);
585 static void delayed_free_vfsmnt(struct rcu_head *head)
587 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590 /* call under rcu_read_lock */
591 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594 if (read_seqretry(&mount_lock, seq))
598 mnt = real_mount(bastard);
599 mnt_add_count(mnt, 1);
600 smp_mb(); // see mntput_no_expire()
601 if (likely(!read_seqretry(&mount_lock, seq)))
603 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
604 mnt_add_count(mnt, -1);
608 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
609 mnt_add_count(mnt, -1);
614 /* caller will mntput() */
618 /* call under rcu_read_lock */
619 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
621 int res = __legitimize_mnt(bastard, seq);
624 if (unlikely(res < 0)) {
633 * find the first mount at @dentry on vfsmount @mnt.
634 * call under rcu_read_lock()
636 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
638 struct hlist_head *head = m_hash(mnt, dentry);
641 hlist_for_each_entry_rcu(p, head, mnt_hash)
642 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
648 * lookup_mnt - Return the first child mount mounted at path
650 * "First" means first mounted chronologically. If you create the
653 * mount /dev/sda1 /mnt
654 * mount /dev/sda2 /mnt
655 * mount /dev/sda3 /mnt
657 * Then lookup_mnt() on the base /mnt dentry in the root mount will
658 * return successively the root dentry and vfsmount of /dev/sda1, then
659 * /dev/sda2, then /dev/sda3, then NULL.
661 * lookup_mnt takes a reference to the found vfsmount.
663 struct vfsmount *lookup_mnt(const struct path *path)
665 struct mount *child_mnt;
671 seq = read_seqbegin(&mount_lock);
672 child_mnt = __lookup_mnt(path->mnt, path->dentry);
673 m = child_mnt ? &child_mnt->mnt : NULL;
674 } while (!legitimize_mnt(m, seq));
679 static inline void lock_ns_list(struct mnt_namespace *ns)
681 spin_lock(&ns->ns_lock);
684 static inline void unlock_ns_list(struct mnt_namespace *ns)
686 spin_unlock(&ns->ns_lock);
689 static inline bool mnt_is_cursor(struct mount *mnt)
691 return mnt->mnt.mnt_flags & MNT_CURSOR;
695 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
696 * current mount namespace.
698 * The common case is dentries are not mountpoints at all and that
699 * test is handled inline. For the slow case when we are actually
700 * dealing with a mountpoint of some kind, walk through all of the
701 * mounts in the current mount namespace and test to see if the dentry
704 * The mount_hashtable is not usable in the context because we
705 * need to identify all mounts that may be in the current mount
706 * namespace not just a mount that happens to have some specified
709 bool __is_local_mountpoint(struct dentry *dentry)
711 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
713 bool is_covered = false;
715 down_read(&namespace_sem);
717 list_for_each_entry(mnt, &ns->list, mnt_list) {
718 if (mnt_is_cursor(mnt))
720 is_covered = (mnt->mnt_mountpoint == dentry);
725 up_read(&namespace_sem);
730 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
732 struct hlist_head *chain = mp_hash(dentry);
733 struct mountpoint *mp;
735 hlist_for_each_entry(mp, chain, m_hash) {
736 if (mp->m_dentry == dentry) {
744 static struct mountpoint *get_mountpoint(struct dentry *dentry)
746 struct mountpoint *mp, *new = NULL;
749 if (d_mountpoint(dentry)) {
750 /* might be worth a WARN_ON() */
751 if (d_unlinked(dentry))
752 return ERR_PTR(-ENOENT);
754 read_seqlock_excl(&mount_lock);
755 mp = lookup_mountpoint(dentry);
756 read_sequnlock_excl(&mount_lock);
762 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
764 return ERR_PTR(-ENOMEM);
767 /* Exactly one processes may set d_mounted */
768 ret = d_set_mounted(dentry);
770 /* Someone else set d_mounted? */
774 /* The dentry is not available as a mountpoint? */
779 /* Add the new mountpoint to the hash table */
780 read_seqlock_excl(&mount_lock);
781 new->m_dentry = dget(dentry);
783 hlist_add_head(&new->m_hash, mp_hash(dentry));
784 INIT_HLIST_HEAD(&new->m_list);
785 read_sequnlock_excl(&mount_lock);
795 * vfsmount lock must be held. Additionally, the caller is responsible
796 * for serializing calls for given disposal list.
798 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
800 if (!--mp->m_count) {
801 struct dentry *dentry = mp->m_dentry;
802 BUG_ON(!hlist_empty(&mp->m_list));
803 spin_lock(&dentry->d_lock);
804 dentry->d_flags &= ~DCACHE_MOUNTED;
805 spin_unlock(&dentry->d_lock);
806 dput_to_list(dentry, list);
807 hlist_del(&mp->m_hash);
812 /* called with namespace_lock and vfsmount lock */
813 static void put_mountpoint(struct mountpoint *mp)
815 __put_mountpoint(mp, &ex_mountpoints);
818 static inline int check_mnt(struct mount *mnt)
820 return mnt->mnt_ns == current->nsproxy->mnt_ns;
824 * vfsmount lock must be held for write
826 static void touch_mnt_namespace(struct mnt_namespace *ns)
830 wake_up_interruptible(&ns->poll);
835 * vfsmount lock must be held for write
837 static void __touch_mnt_namespace(struct mnt_namespace *ns)
839 if (ns && ns->event != event) {
841 wake_up_interruptible(&ns->poll);
846 * vfsmount lock must be held for write
848 static struct mountpoint *unhash_mnt(struct mount *mnt)
850 struct mountpoint *mp;
851 mnt->mnt_parent = mnt;
852 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
853 list_del_init(&mnt->mnt_child);
854 hlist_del_init_rcu(&mnt->mnt_hash);
855 hlist_del_init(&mnt->mnt_mp_list);
862 * vfsmount lock must be held for write
864 static void umount_mnt(struct mount *mnt)
866 put_mountpoint(unhash_mnt(mnt));
870 * vfsmount lock must be held for write
872 void mnt_set_mountpoint(struct mount *mnt,
873 struct mountpoint *mp,
874 struct mount *child_mnt)
877 mnt_add_count(mnt, 1); /* essentially, that's mntget */
878 child_mnt->mnt_mountpoint = mp->m_dentry;
879 child_mnt->mnt_parent = mnt;
880 child_mnt->mnt_mp = mp;
881 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
884 static void __attach_mnt(struct mount *mnt, struct mount *parent)
886 hlist_add_head_rcu(&mnt->mnt_hash,
887 m_hash(&parent->mnt, mnt->mnt_mountpoint));
888 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
892 * vfsmount lock must be held for write
894 static void attach_mnt(struct mount *mnt,
895 struct mount *parent,
896 struct mountpoint *mp)
898 mnt_set_mountpoint(parent, mp, mnt);
899 __attach_mnt(mnt, parent);
902 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
904 struct mountpoint *old_mp = mnt->mnt_mp;
905 struct mount *old_parent = mnt->mnt_parent;
907 list_del_init(&mnt->mnt_child);
908 hlist_del_init(&mnt->mnt_mp_list);
909 hlist_del_init_rcu(&mnt->mnt_hash);
911 attach_mnt(mnt, parent, mp);
913 put_mountpoint(old_mp);
914 mnt_add_count(old_parent, -1);
918 * vfsmount lock must be held for write
920 static void commit_tree(struct mount *mnt)
922 struct mount *parent = mnt->mnt_parent;
925 struct mnt_namespace *n = parent->mnt_ns;
927 BUG_ON(parent == mnt);
929 list_add_tail(&head, &mnt->mnt_list);
930 list_for_each_entry(m, &head, mnt_list)
933 list_splice(&head, n->list.prev);
935 n->mounts += n->pending_mounts;
936 n->pending_mounts = 0;
938 __attach_mnt(mnt, parent);
939 touch_mnt_namespace(n);
942 static struct mount *next_mnt(struct mount *p, struct mount *root)
944 struct list_head *next = p->mnt_mounts.next;
945 if (next == &p->mnt_mounts) {
949 next = p->mnt_child.next;
950 if (next != &p->mnt_parent->mnt_mounts)
955 return list_entry(next, struct mount, mnt_child);
958 static struct mount *skip_mnt_tree(struct mount *p)
960 struct list_head *prev = p->mnt_mounts.prev;
961 while (prev != &p->mnt_mounts) {
962 p = list_entry(prev, struct mount, mnt_child);
963 prev = p->mnt_mounts.prev;
969 * vfs_create_mount - Create a mount for a configured superblock
970 * @fc: The configuration context with the superblock attached
972 * Create a mount to an already configured superblock. If necessary, the
973 * caller should invoke vfs_get_tree() before calling this.
975 * Note that this does not attach the mount to anything.
977 struct vfsmount *vfs_create_mount(struct fs_context *fc)
982 return ERR_PTR(-EINVAL);
984 mnt = alloc_vfsmnt(fc->source ?: "none");
986 return ERR_PTR(-ENOMEM);
988 if (fc->sb_flags & SB_KERNMOUNT)
989 mnt->mnt.mnt_flags = MNT_INTERNAL;
991 atomic_inc(&fc->root->d_sb->s_active);
992 mnt->mnt.mnt_sb = fc->root->d_sb;
993 mnt->mnt.mnt_root = dget(fc->root);
994 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
995 mnt->mnt_parent = mnt;
998 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1002 EXPORT_SYMBOL(vfs_create_mount);
1004 struct vfsmount *fc_mount(struct fs_context *fc)
1006 int err = vfs_get_tree(fc);
1008 up_write(&fc->root->d_sb->s_umount);
1009 return vfs_create_mount(fc);
1011 return ERR_PTR(err);
1013 EXPORT_SYMBOL(fc_mount);
1015 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1016 int flags, const char *name,
1019 struct fs_context *fc;
1020 struct vfsmount *mnt;
1024 return ERR_PTR(-EINVAL);
1026 fc = fs_context_for_mount(type, flags);
1028 return ERR_CAST(fc);
1031 ret = vfs_parse_fs_string(fc, "source",
1032 name, strlen(name));
1034 ret = parse_monolithic_mount_data(fc, data);
1043 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1046 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1047 const char *name, void *data)
1049 /* Until it is worked out how to pass the user namespace
1050 * through from the parent mount to the submount don't support
1051 * unprivileged mounts with submounts.
1053 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1054 return ERR_PTR(-EPERM);
1056 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1058 EXPORT_SYMBOL_GPL(vfs_submount);
1060 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1063 struct super_block *sb = old->mnt.mnt_sb;
1067 mnt = alloc_vfsmnt(old->mnt_devname);
1069 return ERR_PTR(-ENOMEM);
1071 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1072 mnt->mnt_group_id = 0; /* not a peer of original */
1074 mnt->mnt_group_id = old->mnt_group_id;
1076 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1077 err = mnt_alloc_group_id(mnt);
1082 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1083 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1085 atomic_inc(&sb->s_active);
1086 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1087 if (mnt->mnt.mnt_userns != &init_user_ns)
1088 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1089 mnt->mnt.mnt_sb = sb;
1090 mnt->mnt.mnt_root = dget(root);
1091 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1092 mnt->mnt_parent = mnt;
1094 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1095 unlock_mount_hash();
1097 if ((flag & CL_SLAVE) ||
1098 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1099 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1100 mnt->mnt_master = old;
1101 CLEAR_MNT_SHARED(mnt);
1102 } else if (!(flag & CL_PRIVATE)) {
1103 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1104 list_add(&mnt->mnt_share, &old->mnt_share);
1105 if (IS_MNT_SLAVE(old))
1106 list_add(&mnt->mnt_slave, &old->mnt_slave);
1107 mnt->mnt_master = old->mnt_master;
1109 CLEAR_MNT_SHARED(mnt);
1111 if (flag & CL_MAKE_SHARED)
1112 set_mnt_shared(mnt);
1114 /* stick the duplicate mount on the same expiry list
1115 * as the original if that was on one */
1116 if (flag & CL_EXPIRE) {
1117 if (!list_empty(&old->mnt_expire))
1118 list_add(&mnt->mnt_expire, &old->mnt_expire);
1126 return ERR_PTR(err);
1129 static void cleanup_mnt(struct mount *mnt)
1131 struct hlist_node *p;
1134 * The warning here probably indicates that somebody messed
1135 * up a mnt_want/drop_write() pair. If this happens, the
1136 * filesystem was probably unable to make r/w->r/o transitions.
1137 * The locking used to deal with mnt_count decrement provides barriers,
1138 * so mnt_get_writers() below is safe.
1140 WARN_ON(mnt_get_writers(mnt));
1141 if (unlikely(mnt->mnt_pins.first))
1143 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1144 hlist_del(&m->mnt_umount);
1147 fsnotify_vfsmount_delete(&mnt->mnt);
1148 dput(mnt->mnt.mnt_root);
1149 deactivate_super(mnt->mnt.mnt_sb);
1151 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1154 static void __cleanup_mnt(struct rcu_head *head)
1156 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1159 static LLIST_HEAD(delayed_mntput_list);
1160 static void delayed_mntput(struct work_struct *unused)
1162 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1163 struct mount *m, *t;
1165 llist_for_each_entry_safe(m, t, node, mnt_llist)
1168 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1170 static void mntput_no_expire(struct mount *mnt)
1176 if (likely(READ_ONCE(mnt->mnt_ns))) {
1178 * Since we don't do lock_mount_hash() here,
1179 * ->mnt_ns can change under us. However, if it's
1180 * non-NULL, then there's a reference that won't
1181 * be dropped until after an RCU delay done after
1182 * turning ->mnt_ns NULL. So if we observe it
1183 * non-NULL under rcu_read_lock(), the reference
1184 * we are dropping is not the final one.
1186 mnt_add_count(mnt, -1);
1192 * make sure that if __legitimize_mnt() has not seen us grab
1193 * mount_lock, we'll see their refcount increment here.
1196 mnt_add_count(mnt, -1);
1197 count = mnt_get_count(mnt);
1201 unlock_mount_hash();
1204 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1206 unlock_mount_hash();
1209 mnt->mnt.mnt_flags |= MNT_DOOMED;
1212 list_del(&mnt->mnt_instance);
1214 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1215 struct mount *p, *tmp;
1216 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1217 __put_mountpoint(unhash_mnt(p), &list);
1218 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1221 unlock_mount_hash();
1222 shrink_dentry_list(&list);
1224 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1225 struct task_struct *task = current;
1226 if (likely(!(task->flags & PF_KTHREAD))) {
1227 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1228 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1231 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1232 schedule_delayed_work(&delayed_mntput_work, 1);
1238 void mntput(struct vfsmount *mnt)
1241 struct mount *m = real_mount(mnt);
1242 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1243 if (unlikely(m->mnt_expiry_mark))
1244 m->mnt_expiry_mark = 0;
1245 mntput_no_expire(m);
1248 EXPORT_SYMBOL(mntput);
1250 struct vfsmount *mntget(struct vfsmount *mnt)
1253 mnt_add_count(real_mount(mnt), 1);
1256 EXPORT_SYMBOL(mntget);
1258 /* path_is_mountpoint() - Check if path is a mount in the current
1261 * d_mountpoint() can only be used reliably to establish if a dentry is
1262 * not mounted in any namespace and that common case is handled inline.
1263 * d_mountpoint() isn't aware of the possibility there may be multiple
1264 * mounts using a given dentry in a different namespace. This function
1265 * checks if the passed in path is a mountpoint rather than the dentry
1268 bool path_is_mountpoint(const struct path *path)
1273 if (!d_mountpoint(path->dentry))
1278 seq = read_seqbegin(&mount_lock);
1279 res = __path_is_mountpoint(path);
1280 } while (read_seqretry(&mount_lock, seq));
1285 EXPORT_SYMBOL(path_is_mountpoint);
1287 struct vfsmount *mnt_clone_internal(const struct path *path)
1290 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1293 p->mnt.mnt_flags |= MNT_INTERNAL;
1297 #ifdef CONFIG_PROC_FS
1298 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1299 struct list_head *p)
1301 struct mount *mnt, *ret = NULL;
1304 list_for_each_continue(p, &ns->list) {
1305 mnt = list_entry(p, typeof(*mnt), mnt_list);
1306 if (!mnt_is_cursor(mnt)) {
1316 /* iterator; we want it to have access to namespace_sem, thus here... */
1317 static void *m_start(struct seq_file *m, loff_t *pos)
1319 struct proc_mounts *p = m->private;
1320 struct list_head *prev;
1322 down_read(&namespace_sem);
1324 prev = &p->ns->list;
1326 prev = &p->cursor.mnt_list;
1328 /* Read after we'd reached the end? */
1329 if (list_empty(prev))
1333 return mnt_list_next(p->ns, prev);
1336 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1338 struct proc_mounts *p = m->private;
1339 struct mount *mnt = v;
1342 return mnt_list_next(p->ns, &mnt->mnt_list);
1345 static void m_stop(struct seq_file *m, void *v)
1347 struct proc_mounts *p = m->private;
1348 struct mount *mnt = v;
1350 lock_ns_list(p->ns);
1352 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1354 list_del_init(&p->cursor.mnt_list);
1355 unlock_ns_list(p->ns);
1356 up_read(&namespace_sem);
1359 static int m_show(struct seq_file *m, void *v)
1361 struct proc_mounts *p = m->private;
1362 struct mount *r = v;
1363 return p->show(m, &r->mnt);
1366 const struct seq_operations mounts_op = {
1373 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1375 down_read(&namespace_sem);
1377 list_del(&cursor->mnt_list);
1379 up_read(&namespace_sem);
1381 #endif /* CONFIG_PROC_FS */
1384 * may_umount_tree - check if a mount tree is busy
1385 * @mnt: root of mount tree
1387 * This is called to check if a tree of mounts has any
1388 * open files, pwds, chroots or sub mounts that are
1391 int may_umount_tree(struct vfsmount *m)
1393 struct mount *mnt = real_mount(m);
1394 int actual_refs = 0;
1395 int minimum_refs = 0;
1399 /* write lock needed for mnt_get_count */
1401 for (p = mnt; p; p = next_mnt(p, mnt)) {
1402 actual_refs += mnt_get_count(p);
1405 unlock_mount_hash();
1407 if (actual_refs > minimum_refs)
1413 EXPORT_SYMBOL(may_umount_tree);
1416 * may_umount - check if a mount point is busy
1417 * @mnt: root of mount
1419 * This is called to check if a mount point has any
1420 * open files, pwds, chroots or sub mounts. If the
1421 * mount has sub mounts this will return busy
1422 * regardless of whether the sub mounts are busy.
1424 * Doesn't take quota and stuff into account. IOW, in some cases it will
1425 * give false negatives. The main reason why it's here is that we need
1426 * a non-destructive way to look for easily umountable filesystems.
1428 int may_umount(struct vfsmount *mnt)
1431 down_read(&namespace_sem);
1433 if (propagate_mount_busy(real_mount(mnt), 2))
1435 unlock_mount_hash();
1436 up_read(&namespace_sem);
1440 EXPORT_SYMBOL(may_umount);
1442 static void namespace_unlock(void)
1444 struct hlist_head head;
1445 struct hlist_node *p;
1449 hlist_move_list(&unmounted, &head);
1450 list_splice_init(&ex_mountpoints, &list);
1452 up_write(&namespace_sem);
1454 shrink_dentry_list(&list);
1456 if (likely(hlist_empty(&head)))
1459 synchronize_rcu_expedited();
1461 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1462 hlist_del(&m->mnt_umount);
1467 static inline void namespace_lock(void)
1469 down_write(&namespace_sem);
1472 enum umount_tree_flags {
1474 UMOUNT_PROPAGATE = 2,
1475 UMOUNT_CONNECTED = 4,
1478 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1480 /* Leaving mounts connected is only valid for lazy umounts */
1481 if (how & UMOUNT_SYNC)
1484 /* A mount without a parent has nothing to be connected to */
1485 if (!mnt_has_parent(mnt))
1488 /* Because the reference counting rules change when mounts are
1489 * unmounted and connected, umounted mounts may not be
1490 * connected to mounted mounts.
1492 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1495 /* Has it been requested that the mount remain connected? */
1496 if (how & UMOUNT_CONNECTED)
1499 /* Is the mount locked such that it needs to remain connected? */
1500 if (IS_MNT_LOCKED(mnt))
1503 /* By default disconnect the mount */
1508 * mount_lock must be held
1509 * namespace_sem must be held for write
1511 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1513 LIST_HEAD(tmp_list);
1516 if (how & UMOUNT_PROPAGATE)
1517 propagate_mount_unlock(mnt);
1519 /* Gather the mounts to umount */
1520 for (p = mnt; p; p = next_mnt(p, mnt)) {
1521 p->mnt.mnt_flags |= MNT_UMOUNT;
1522 list_move(&p->mnt_list, &tmp_list);
1525 /* Hide the mounts from mnt_mounts */
1526 list_for_each_entry(p, &tmp_list, mnt_list) {
1527 list_del_init(&p->mnt_child);
1530 /* Add propogated mounts to the tmp_list */
1531 if (how & UMOUNT_PROPAGATE)
1532 propagate_umount(&tmp_list);
1534 while (!list_empty(&tmp_list)) {
1535 struct mnt_namespace *ns;
1537 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1538 list_del_init(&p->mnt_expire);
1539 list_del_init(&p->mnt_list);
1543 __touch_mnt_namespace(ns);
1546 if (how & UMOUNT_SYNC)
1547 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1549 disconnect = disconnect_mount(p, how);
1550 if (mnt_has_parent(p)) {
1551 mnt_add_count(p->mnt_parent, -1);
1553 /* Don't forget about p */
1554 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1559 change_mnt_propagation(p, MS_PRIVATE);
1561 hlist_add_head(&p->mnt_umount, &unmounted);
1565 static void shrink_submounts(struct mount *mnt);
1567 static int do_umount_root(struct super_block *sb)
1571 down_write(&sb->s_umount);
1572 if (!sb_rdonly(sb)) {
1573 struct fs_context *fc;
1575 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1580 ret = parse_monolithic_mount_data(fc, NULL);
1582 ret = reconfigure_super(fc);
1586 up_write(&sb->s_umount);
1590 static int do_umount(struct mount *mnt, int flags)
1592 struct super_block *sb = mnt->mnt.mnt_sb;
1595 retval = security_sb_umount(&mnt->mnt, flags);
1600 * Allow userspace to request a mountpoint be expired rather than
1601 * unmounting unconditionally. Unmount only happens if:
1602 * (1) the mark is already set (the mark is cleared by mntput())
1603 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1605 if (flags & MNT_EXPIRE) {
1606 if (&mnt->mnt == current->fs->root.mnt ||
1607 flags & (MNT_FORCE | MNT_DETACH))
1611 * probably don't strictly need the lock here if we examined
1612 * all race cases, but it's a slowpath.
1615 if (mnt_get_count(mnt) != 2) {
1616 unlock_mount_hash();
1619 unlock_mount_hash();
1621 if (!xchg(&mnt->mnt_expiry_mark, 1))
1626 * If we may have to abort operations to get out of this
1627 * mount, and they will themselves hold resources we must
1628 * allow the fs to do things. In the Unix tradition of
1629 * 'Gee thats tricky lets do it in userspace' the umount_begin
1630 * might fail to complete on the first run through as other tasks
1631 * must return, and the like. Thats for the mount program to worry
1632 * about for the moment.
1635 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1636 sb->s_op->umount_begin(sb);
1640 * No sense to grab the lock for this test, but test itself looks
1641 * somewhat bogus. Suggestions for better replacement?
1642 * Ho-hum... In principle, we might treat that as umount + switch
1643 * to rootfs. GC would eventually take care of the old vfsmount.
1644 * Actually it makes sense, especially if rootfs would contain a
1645 * /reboot - static binary that would close all descriptors and
1646 * call reboot(9). Then init(8) could umount root and exec /reboot.
1648 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1650 * Special case for "unmounting" root ...
1651 * we just try to remount it readonly.
1653 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1655 return do_umount_root(sb);
1661 /* Recheck MNT_LOCKED with the locks held */
1663 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1667 if (flags & MNT_DETACH) {
1668 if (!list_empty(&mnt->mnt_list))
1669 umount_tree(mnt, UMOUNT_PROPAGATE);
1672 shrink_submounts(mnt);
1674 if (!propagate_mount_busy(mnt, 2)) {
1675 if (!list_empty(&mnt->mnt_list))
1676 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1681 unlock_mount_hash();
1687 * __detach_mounts - lazily unmount all mounts on the specified dentry
1689 * During unlink, rmdir, and d_drop it is possible to loose the path
1690 * to an existing mountpoint, and wind up leaking the mount.
1691 * detach_mounts allows lazily unmounting those mounts instead of
1694 * The caller may hold dentry->d_inode->i_mutex.
1696 void __detach_mounts(struct dentry *dentry)
1698 struct mountpoint *mp;
1703 mp = lookup_mountpoint(dentry);
1708 while (!hlist_empty(&mp->m_list)) {
1709 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1710 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1712 hlist_add_head(&mnt->mnt_umount, &unmounted);
1714 else umount_tree(mnt, UMOUNT_CONNECTED);
1718 unlock_mount_hash();
1723 * Is the caller allowed to modify his namespace?
1725 static inline bool may_mount(void)
1727 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1730 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1731 static inline bool may_mandlock(void)
1733 return capable(CAP_SYS_ADMIN);
1736 static inline bool may_mandlock(void)
1738 pr_warn("VFS: \"mand\" mount option not supported");
1743 static int can_umount(const struct path *path, int flags)
1745 struct mount *mnt = real_mount(path->mnt);
1749 if (path->dentry != path->mnt->mnt_root)
1751 if (!check_mnt(mnt))
1753 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1755 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1760 // caller is responsible for flags being sane
1761 int path_umount(struct path *path, int flags)
1763 struct mount *mnt = real_mount(path->mnt);
1766 ret = can_umount(path, flags);
1768 ret = do_umount(mnt, flags);
1770 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1772 mntput_no_expire(mnt);
1776 static int ksys_umount(char __user *name, int flags)
1778 int lookup_flags = LOOKUP_MOUNTPOINT;
1782 // basic validity checks done first
1783 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1786 if (!(flags & UMOUNT_NOFOLLOW))
1787 lookup_flags |= LOOKUP_FOLLOW;
1788 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1791 return path_umount(&path, flags);
1794 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1796 return ksys_umount(name, flags);
1799 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1802 * The 2.0 compatible umount. No flags.
1804 SYSCALL_DEFINE1(oldumount, char __user *, name)
1806 return ksys_umount(name, 0);
1811 static bool is_mnt_ns_file(struct dentry *dentry)
1813 /* Is this a proxy for a mount namespace? */
1814 return dentry->d_op == &ns_dentry_operations &&
1815 dentry->d_fsdata == &mntns_operations;
1818 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1820 return container_of(ns, struct mnt_namespace, ns);
1823 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1828 static bool mnt_ns_loop(struct dentry *dentry)
1830 /* Could bind mounting the mount namespace inode cause a
1831 * mount namespace loop?
1833 struct mnt_namespace *mnt_ns;
1834 if (!is_mnt_ns_file(dentry))
1837 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1838 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1841 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1844 struct mount *res, *p, *q, *r, *parent;
1846 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1847 return ERR_PTR(-EINVAL);
1849 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1850 return ERR_PTR(-EINVAL);
1852 res = q = clone_mnt(mnt, dentry, flag);
1856 q->mnt_mountpoint = mnt->mnt_mountpoint;
1859 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1861 if (!is_subdir(r->mnt_mountpoint, dentry))
1864 for (s = r; s; s = next_mnt(s, r)) {
1865 if (!(flag & CL_COPY_UNBINDABLE) &&
1866 IS_MNT_UNBINDABLE(s)) {
1867 if (s->mnt.mnt_flags & MNT_LOCKED) {
1868 /* Both unbindable and locked. */
1869 q = ERR_PTR(-EPERM);
1872 s = skip_mnt_tree(s);
1876 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1877 is_mnt_ns_file(s->mnt.mnt_root)) {
1878 s = skip_mnt_tree(s);
1881 while (p != s->mnt_parent) {
1887 q = clone_mnt(p, p->mnt.mnt_root, flag);
1891 list_add_tail(&q->mnt_list, &res->mnt_list);
1892 attach_mnt(q, parent, p->mnt_mp);
1893 unlock_mount_hash();
1900 umount_tree(res, UMOUNT_SYNC);
1901 unlock_mount_hash();
1906 /* Caller should check returned pointer for errors */
1908 struct vfsmount *collect_mounts(const struct path *path)
1912 if (!check_mnt(real_mount(path->mnt)))
1913 tree = ERR_PTR(-EINVAL);
1915 tree = copy_tree(real_mount(path->mnt), path->dentry,
1916 CL_COPY_ALL | CL_PRIVATE);
1919 return ERR_CAST(tree);
1923 static void free_mnt_ns(struct mnt_namespace *);
1924 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1926 void dissolve_on_fput(struct vfsmount *mnt)
1928 struct mnt_namespace *ns;
1931 ns = real_mount(mnt)->mnt_ns;
1934 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1938 unlock_mount_hash();
1944 void drop_collected_mounts(struct vfsmount *mnt)
1948 umount_tree(real_mount(mnt), 0);
1949 unlock_mount_hash();
1954 * clone_private_mount - create a private clone of a path
1956 * This creates a new vfsmount, which will be the clone of @path. The new will
1957 * not be attached anywhere in the namespace and will be private (i.e. changes
1958 * to the originating mount won't be propagated into this).
1960 * Release with mntput().
1962 struct vfsmount *clone_private_mount(const struct path *path)
1964 struct mount *old_mnt = real_mount(path->mnt);
1965 struct mount *new_mnt;
1967 if (IS_MNT_UNBINDABLE(old_mnt))
1968 return ERR_PTR(-EINVAL);
1970 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1971 if (IS_ERR(new_mnt))
1972 return ERR_CAST(new_mnt);
1974 /* Longterm mount to be removed by kern_unmount*() */
1975 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1977 return &new_mnt->mnt;
1979 EXPORT_SYMBOL_GPL(clone_private_mount);
1981 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1982 struct vfsmount *root)
1985 int res = f(root, arg);
1988 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1989 res = f(&mnt->mnt, arg);
1996 static void lock_mnt_tree(struct mount *mnt)
2000 for (p = mnt; p; p = next_mnt(p, mnt)) {
2001 int flags = p->mnt.mnt_flags;
2002 /* Don't allow unprivileged users to change mount flags */
2003 flags |= MNT_LOCK_ATIME;
2005 if (flags & MNT_READONLY)
2006 flags |= MNT_LOCK_READONLY;
2008 if (flags & MNT_NODEV)
2009 flags |= MNT_LOCK_NODEV;
2011 if (flags & MNT_NOSUID)
2012 flags |= MNT_LOCK_NOSUID;
2014 if (flags & MNT_NOEXEC)
2015 flags |= MNT_LOCK_NOEXEC;
2016 /* Don't allow unprivileged users to reveal what is under a mount */
2017 if (list_empty(&p->mnt_expire))
2018 flags |= MNT_LOCKED;
2019 p->mnt.mnt_flags = flags;
2023 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2027 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2028 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2029 mnt_release_group_id(p);
2033 static int invent_group_ids(struct mount *mnt, bool recurse)
2037 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2038 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2039 int err = mnt_alloc_group_id(p);
2041 cleanup_group_ids(mnt, p);
2050 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2052 unsigned int max = READ_ONCE(sysctl_mount_max);
2053 unsigned int mounts = 0, old, pending, sum;
2056 for (p = mnt; p; p = next_mnt(p, mnt))
2060 pending = ns->pending_mounts;
2061 sum = old + pending;
2065 (mounts > (max - sum)))
2068 ns->pending_mounts = pending + mounts;
2073 * @source_mnt : mount tree to be attached
2074 * @nd : place the mount tree @source_mnt is attached
2075 * @parent_nd : if non-null, detach the source_mnt from its parent and
2076 * store the parent mount and mountpoint dentry.
2077 * (done when source_mnt is moved)
2079 * NOTE: in the table below explains the semantics when a source mount
2080 * of a given type is attached to a destination mount of a given type.
2081 * ---------------------------------------------------------------------------
2082 * | BIND MOUNT OPERATION |
2083 * |**************************************************************************
2084 * | source-->| shared | private | slave | unbindable |
2088 * |**************************************************************************
2089 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2091 * |non-shared| shared (+) | private | slave (*) | invalid |
2092 * ***************************************************************************
2093 * A bind operation clones the source mount and mounts the clone on the
2094 * destination mount.
2096 * (++) the cloned mount is propagated to all the mounts in the propagation
2097 * tree of the destination mount and the cloned mount is added to
2098 * the peer group of the source mount.
2099 * (+) the cloned mount is created under the destination mount and is marked
2100 * as shared. The cloned mount is added to the peer group of the source
2102 * (+++) the mount is propagated to all the mounts in the propagation tree
2103 * of the destination mount and the cloned mount is made slave
2104 * of the same master as that of the source mount. The cloned mount
2105 * is marked as 'shared and slave'.
2106 * (*) the cloned mount is made a slave of the same master as that of the
2109 * ---------------------------------------------------------------------------
2110 * | MOVE MOUNT OPERATION |
2111 * |**************************************************************************
2112 * | source-->| shared | private | slave | unbindable |
2116 * |**************************************************************************
2117 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2119 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2120 * ***************************************************************************
2122 * (+) the mount is moved to the destination. And is then propagated to
2123 * all the mounts in the propagation tree of the destination mount.
2124 * (+*) the mount is moved to the destination.
2125 * (+++) the mount is moved to the destination and is then propagated to
2126 * all the mounts belonging to the destination mount's propagation tree.
2127 * the mount is marked as 'shared and slave'.
2128 * (*) the mount continues to be a slave at the new location.
2130 * if the source mount is a tree, the operations explained above is
2131 * applied to each mount in the tree.
2132 * Must be called without spinlocks held, since this function can sleep
2135 static int attach_recursive_mnt(struct mount *source_mnt,
2136 struct mount *dest_mnt,
2137 struct mountpoint *dest_mp,
2140 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2141 HLIST_HEAD(tree_list);
2142 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2143 struct mountpoint *smp;
2144 struct mount *child, *p;
2145 struct hlist_node *n;
2148 /* Preallocate a mountpoint in case the new mounts need
2149 * to be tucked under other mounts.
2151 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2153 return PTR_ERR(smp);
2155 /* Is there space to add these mounts to the mount namespace? */
2157 err = count_mounts(ns, source_mnt);
2162 if (IS_MNT_SHARED(dest_mnt)) {
2163 err = invent_group_ids(source_mnt, true);
2166 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2169 goto out_cleanup_ids;
2170 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2176 unhash_mnt(source_mnt);
2177 attach_mnt(source_mnt, dest_mnt, dest_mp);
2178 touch_mnt_namespace(source_mnt->mnt_ns);
2180 if (source_mnt->mnt_ns) {
2181 /* move from anon - the caller will destroy */
2182 list_del_init(&source_mnt->mnt_ns->list);
2184 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2185 commit_tree(source_mnt);
2188 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2190 hlist_del_init(&child->mnt_hash);
2191 q = __lookup_mnt(&child->mnt_parent->mnt,
2192 child->mnt_mountpoint);
2194 mnt_change_mountpoint(child, smp, q);
2195 /* Notice when we are propagating across user namespaces */
2196 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2197 lock_mnt_tree(child);
2198 child->mnt.mnt_flags &= ~MNT_LOCKED;
2201 put_mountpoint(smp);
2202 unlock_mount_hash();
2207 while (!hlist_empty(&tree_list)) {
2208 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2209 child->mnt_parent->mnt_ns->pending_mounts = 0;
2210 umount_tree(child, UMOUNT_SYNC);
2212 unlock_mount_hash();
2213 cleanup_group_ids(source_mnt, NULL);
2215 ns->pending_mounts = 0;
2217 read_seqlock_excl(&mount_lock);
2218 put_mountpoint(smp);
2219 read_sequnlock_excl(&mount_lock);
2224 static struct mountpoint *lock_mount(struct path *path)
2226 struct vfsmount *mnt;
2227 struct dentry *dentry = path->dentry;
2229 inode_lock(dentry->d_inode);
2230 if (unlikely(cant_mount(dentry))) {
2231 inode_unlock(dentry->d_inode);
2232 return ERR_PTR(-ENOENT);
2235 mnt = lookup_mnt(path);
2237 struct mountpoint *mp = get_mountpoint(dentry);
2240 inode_unlock(dentry->d_inode);
2246 inode_unlock(path->dentry->d_inode);
2249 dentry = path->dentry = dget(mnt->mnt_root);
2253 static void unlock_mount(struct mountpoint *where)
2255 struct dentry *dentry = where->m_dentry;
2257 read_seqlock_excl(&mount_lock);
2258 put_mountpoint(where);
2259 read_sequnlock_excl(&mount_lock);
2262 inode_unlock(dentry->d_inode);
2265 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2267 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2270 if (d_is_dir(mp->m_dentry) !=
2271 d_is_dir(mnt->mnt.mnt_root))
2274 return attach_recursive_mnt(mnt, p, mp, false);
2278 * Sanity check the flags to change_mnt_propagation.
2281 static int flags_to_propagation_type(int ms_flags)
2283 int type = ms_flags & ~(MS_REC | MS_SILENT);
2285 /* Fail if any non-propagation flags are set */
2286 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2288 /* Only one propagation flag should be set */
2289 if (!is_power_of_2(type))
2295 * recursively change the type of the mountpoint.
2297 static int do_change_type(struct path *path, int ms_flags)
2300 struct mount *mnt = real_mount(path->mnt);
2301 int recurse = ms_flags & MS_REC;
2305 if (path->dentry != path->mnt->mnt_root)
2308 type = flags_to_propagation_type(ms_flags);
2313 if (type == MS_SHARED) {
2314 err = invent_group_ids(mnt, recurse);
2320 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2321 change_mnt_propagation(m, type);
2322 unlock_mount_hash();
2329 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2331 struct mount *child;
2332 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2333 if (!is_subdir(child->mnt_mountpoint, dentry))
2336 if (child->mnt.mnt_flags & MNT_LOCKED)
2342 static struct mount *__do_loopback(struct path *old_path, int recurse)
2344 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2346 if (IS_MNT_UNBINDABLE(old))
2349 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2352 if (!recurse && has_locked_children(old, old_path->dentry))
2356 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2358 mnt = clone_mnt(old, old_path->dentry, 0);
2361 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2367 * do loopback mount.
2369 static int do_loopback(struct path *path, const char *old_name,
2372 struct path old_path;
2373 struct mount *mnt = NULL, *parent;
2374 struct mountpoint *mp;
2376 if (!old_name || !*old_name)
2378 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2383 if (mnt_ns_loop(old_path.dentry))
2386 mp = lock_mount(path);
2392 parent = real_mount(path->mnt);
2393 if (!check_mnt(parent))
2396 mnt = __do_loopback(&old_path, recurse);
2402 err = graft_tree(mnt, parent, mp);
2405 umount_tree(mnt, UMOUNT_SYNC);
2406 unlock_mount_hash();
2411 path_put(&old_path);
2415 static struct file *open_detached_copy(struct path *path, bool recursive)
2417 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2418 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2419 struct mount *mnt, *p;
2423 return ERR_CAST(ns);
2426 mnt = __do_loopback(path, recursive);
2430 return ERR_CAST(mnt);
2434 for (p = mnt; p; p = next_mnt(p, mnt)) {
2439 list_add_tail(&ns->list, &mnt->mnt_list);
2441 unlock_mount_hash();
2445 path->mnt = &mnt->mnt;
2446 file = dentry_open(path, O_PATH, current_cred());
2448 dissolve_on_fput(path->mnt);
2450 file->f_mode |= FMODE_NEED_UNMOUNT;
2454 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2458 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2459 bool detached = flags & OPEN_TREE_CLONE;
2463 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2465 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2466 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2470 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2473 if (flags & AT_NO_AUTOMOUNT)
2474 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2475 if (flags & AT_SYMLINK_NOFOLLOW)
2476 lookup_flags &= ~LOOKUP_FOLLOW;
2477 if (flags & AT_EMPTY_PATH)
2478 lookup_flags |= LOOKUP_EMPTY;
2480 if (detached && !may_mount())
2483 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2487 error = user_path_at(dfd, filename, lookup_flags, &path);
2488 if (unlikely(error)) {
2489 file = ERR_PTR(error);
2492 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2494 file = dentry_open(&path, O_PATH, current_cred());
2499 return PTR_ERR(file);
2501 fd_install(fd, file);
2506 * Don't allow locked mount flags to be cleared.
2508 * No locks need to be held here while testing the various MNT_LOCK
2509 * flags because those flags can never be cleared once they are set.
2511 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2513 unsigned int fl = mnt->mnt.mnt_flags;
2515 if ((fl & MNT_LOCK_READONLY) &&
2516 !(mnt_flags & MNT_READONLY))
2519 if ((fl & MNT_LOCK_NODEV) &&
2520 !(mnt_flags & MNT_NODEV))
2523 if ((fl & MNT_LOCK_NOSUID) &&
2524 !(mnt_flags & MNT_NOSUID))
2527 if ((fl & MNT_LOCK_NOEXEC) &&
2528 !(mnt_flags & MNT_NOEXEC))
2531 if ((fl & MNT_LOCK_ATIME) &&
2532 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2538 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2540 bool readonly_request = (mnt_flags & MNT_READONLY);
2542 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2545 if (readonly_request)
2546 return mnt_make_readonly(mnt);
2548 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2552 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2554 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2555 mnt->mnt.mnt_flags = mnt_flags;
2556 touch_mnt_namespace(mnt->mnt_ns);
2559 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2561 struct super_block *sb = mnt->mnt_sb;
2563 if (!__mnt_is_readonly(mnt) &&
2564 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2565 char *buf = (char *)__get_free_page(GFP_KERNEL);
2566 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2569 time64_to_tm(sb->s_time_max, 0, &tm);
2571 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2573 is_mounted(mnt) ? "remounted" : "mounted",
2575 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2577 free_page((unsigned long)buf);
2582 * Handle reconfiguration of the mountpoint only without alteration of the
2583 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2586 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2588 struct super_block *sb = path->mnt->mnt_sb;
2589 struct mount *mnt = real_mount(path->mnt);
2592 if (!check_mnt(mnt))
2595 if (path->dentry != mnt->mnt.mnt_root)
2598 if (!can_change_locked_flags(mnt, mnt_flags))
2602 * We're only checking whether the superblock is read-only not
2603 * changing it, so only take down_read(&sb->s_umount).
2605 down_read(&sb->s_umount);
2607 ret = change_mount_ro_state(mnt, mnt_flags);
2609 set_mount_attributes(mnt, mnt_flags);
2610 unlock_mount_hash();
2611 up_read(&sb->s_umount);
2613 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2619 * change filesystem flags. dir should be a physical root of filesystem.
2620 * If you've mounted a non-root directory somewhere and want to do remount
2621 * on it - tough luck.
2623 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2624 int mnt_flags, void *data)
2627 struct super_block *sb = path->mnt->mnt_sb;
2628 struct mount *mnt = real_mount(path->mnt);
2629 struct fs_context *fc;
2631 if (!check_mnt(mnt))
2634 if (path->dentry != path->mnt->mnt_root)
2637 if (!can_change_locked_flags(mnt, mnt_flags))
2640 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2645 err = parse_monolithic_mount_data(fc, data);
2647 down_write(&sb->s_umount);
2649 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2650 err = reconfigure_super(fc);
2653 set_mount_attributes(mnt, mnt_flags);
2654 unlock_mount_hash();
2657 up_write(&sb->s_umount);
2660 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2666 static inline int tree_contains_unbindable(struct mount *mnt)
2669 for (p = mnt; p; p = next_mnt(p, mnt)) {
2670 if (IS_MNT_UNBINDABLE(p))
2677 * Check that there aren't references to earlier/same mount namespaces in the
2678 * specified subtree. Such references can act as pins for mount namespaces
2679 * that aren't checked by the mount-cycle checking code, thereby allowing
2680 * cycles to be made.
2682 static bool check_for_nsfs_mounts(struct mount *subtree)
2688 for (p = subtree; p; p = next_mnt(p, subtree))
2689 if (mnt_ns_loop(p->mnt.mnt_root))
2694 unlock_mount_hash();
2698 static int do_move_mount(struct path *old_path, struct path *new_path)
2700 struct mnt_namespace *ns;
2703 struct mount *parent;
2704 struct mountpoint *mp, *old_mp;
2708 mp = lock_mount(new_path);
2712 old = real_mount(old_path->mnt);
2713 p = real_mount(new_path->mnt);
2714 parent = old->mnt_parent;
2715 attached = mnt_has_parent(old);
2716 old_mp = old->mnt_mp;
2720 /* The mountpoint must be in our namespace. */
2724 /* The thing moved must be mounted... */
2725 if (!is_mounted(&old->mnt))
2728 /* ... and either ours or the root of anon namespace */
2729 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2732 if (old->mnt.mnt_flags & MNT_LOCKED)
2735 if (old_path->dentry != old_path->mnt->mnt_root)
2738 if (d_is_dir(new_path->dentry) !=
2739 d_is_dir(old_path->dentry))
2742 * Don't move a mount residing in a shared parent.
2744 if (attached && IS_MNT_SHARED(parent))
2747 * Don't move a mount tree containing unbindable mounts to a destination
2748 * mount which is shared.
2750 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2753 if (!check_for_nsfs_mounts(old))
2755 for (; mnt_has_parent(p); p = p->mnt_parent)
2759 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2764 /* if the mount is moved, it should no longer be expire
2766 list_del_init(&old->mnt_expire);
2768 put_mountpoint(old_mp);
2773 mntput_no_expire(parent);
2780 static int do_move_mount_old(struct path *path, const char *old_name)
2782 struct path old_path;
2785 if (!old_name || !*old_name)
2788 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2792 err = do_move_mount(&old_path, path);
2793 path_put(&old_path);
2798 * add a mount into a namespace's mount tree
2800 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2801 struct path *path, int mnt_flags)
2803 struct mount *parent = real_mount(path->mnt);
2805 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2807 if (unlikely(!check_mnt(parent))) {
2808 /* that's acceptable only for automounts done in private ns */
2809 if (!(mnt_flags & MNT_SHRINKABLE))
2811 /* ... and for those we'd better have mountpoint still alive */
2812 if (!parent->mnt_ns)
2816 /* Refuse the same filesystem on the same mount point */
2817 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2818 path->mnt->mnt_root == path->dentry)
2821 if (d_is_symlink(newmnt->mnt.mnt_root))
2824 newmnt->mnt.mnt_flags = mnt_flags;
2825 return graft_tree(newmnt, parent, mp);
2828 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2831 * Create a new mount using a superblock configuration and request it
2832 * be added to the namespace tree.
2834 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2835 unsigned int mnt_flags)
2837 struct vfsmount *mnt;
2838 struct mountpoint *mp;
2839 struct super_block *sb = fc->root->d_sb;
2842 error = security_sb_kern_mount(sb);
2843 if (!error && mount_too_revealing(sb, &mnt_flags))
2846 if (unlikely(error)) {
2851 up_write(&sb->s_umount);
2853 mnt = vfs_create_mount(fc);
2855 return PTR_ERR(mnt);
2857 mnt_warn_timestamp_expiry(mountpoint, mnt);
2859 mp = lock_mount(mountpoint);
2864 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2872 * create a new mount for userspace and request it to be added into the
2875 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2876 int mnt_flags, const char *name, void *data)
2878 struct file_system_type *type;
2879 struct fs_context *fc;
2880 const char *subtype = NULL;
2886 type = get_fs_type(fstype);
2890 if (type->fs_flags & FS_HAS_SUBTYPE) {
2891 subtype = strchr(fstype, '.');
2895 put_filesystem(type);
2901 fc = fs_context_for_mount(type, sb_flags);
2902 put_filesystem(type);
2907 err = vfs_parse_fs_string(fc, "subtype",
2908 subtype, strlen(subtype));
2910 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2912 err = parse_monolithic_mount_data(fc, data);
2913 if (!err && !mount_capable(fc))
2916 err = vfs_get_tree(fc);
2918 err = do_new_mount_fc(fc, path, mnt_flags);
2924 int finish_automount(struct vfsmount *m, struct path *path)
2926 struct dentry *dentry = path->dentry;
2927 struct mountpoint *mp;
2936 mnt = real_mount(m);
2937 /* The new mount record should have at least 2 refs to prevent it being
2938 * expired before we get a chance to add it
2940 BUG_ON(mnt_get_count(mnt) < 2);
2942 if (m->mnt_sb == path->mnt->mnt_sb &&
2943 m->mnt_root == dentry) {
2949 * we don't want to use lock_mount() - in this case finding something
2950 * that overmounts our mountpoint to be means "quitely drop what we've
2951 * got", not "try to mount it on top".
2953 inode_lock(dentry->d_inode);
2955 if (unlikely(cant_mount(dentry))) {
2957 goto discard_locked;
2960 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2963 goto discard_locked;
2966 mp = get_mountpoint(dentry);
2969 goto discard_locked;
2972 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2981 inode_unlock(dentry->d_inode);
2983 /* remove m from any expiration list it may be on */
2984 if (!list_empty(&mnt->mnt_expire)) {
2986 list_del_init(&mnt->mnt_expire);
2995 * mnt_set_expiry - Put a mount on an expiration list
2996 * @mnt: The mount to list.
2997 * @expiry_list: The list to add the mount to.
2999 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3003 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3007 EXPORT_SYMBOL(mnt_set_expiry);
3010 * process a list of expirable mountpoints with the intent of discarding any
3011 * mountpoints that aren't in use and haven't been touched since last we came
3014 void mark_mounts_for_expiry(struct list_head *mounts)
3016 struct mount *mnt, *next;
3017 LIST_HEAD(graveyard);
3019 if (list_empty(mounts))
3025 /* extract from the expiration list every vfsmount that matches the
3026 * following criteria:
3027 * - only referenced by its parent vfsmount
3028 * - still marked for expiry (marked on the last call here; marks are
3029 * cleared by mntput())
3031 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3032 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3033 propagate_mount_busy(mnt, 1))
3035 list_move(&mnt->mnt_expire, &graveyard);
3037 while (!list_empty(&graveyard)) {
3038 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3039 touch_mnt_namespace(mnt->mnt_ns);
3040 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3042 unlock_mount_hash();
3046 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3049 * Ripoff of 'select_parent()'
3051 * search the list of submounts for a given mountpoint, and move any
3052 * shrinkable submounts to the 'graveyard' list.
3054 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3056 struct mount *this_parent = parent;
3057 struct list_head *next;
3061 next = this_parent->mnt_mounts.next;
3063 while (next != &this_parent->mnt_mounts) {
3064 struct list_head *tmp = next;
3065 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3068 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3071 * Descend a level if the d_mounts list is non-empty.
3073 if (!list_empty(&mnt->mnt_mounts)) {
3078 if (!propagate_mount_busy(mnt, 1)) {
3079 list_move_tail(&mnt->mnt_expire, graveyard);
3084 * All done at this level ... ascend and resume the search
3086 if (this_parent != parent) {
3087 next = this_parent->mnt_child.next;
3088 this_parent = this_parent->mnt_parent;
3095 * process a list of expirable mountpoints with the intent of discarding any
3096 * submounts of a specific parent mountpoint
3098 * mount_lock must be held for write
3100 static void shrink_submounts(struct mount *mnt)
3102 LIST_HEAD(graveyard);
3105 /* extract submounts of 'mountpoint' from the expiration list */
3106 while (select_submounts(mnt, &graveyard)) {
3107 while (!list_empty(&graveyard)) {
3108 m = list_first_entry(&graveyard, struct mount,
3110 touch_mnt_namespace(m->mnt_ns);
3111 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3116 static void *copy_mount_options(const void __user * data)
3119 unsigned left, offset;
3124 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3126 return ERR_PTR(-ENOMEM);
3128 left = copy_from_user(copy, data, PAGE_SIZE);
3131 * Not all architectures have an exact copy_from_user(). Resort to
3134 offset = PAGE_SIZE - left;
3137 if (get_user(c, (const char __user *)data + offset))
3144 if (left == PAGE_SIZE) {
3146 return ERR_PTR(-EFAULT);
3152 static char *copy_mount_string(const void __user *data)
3154 return data ? strndup_user(data, PATH_MAX) : NULL;
3158 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3159 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3161 * data is a (void *) that can point to any structure up to
3162 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3163 * information (or be NULL).
3165 * Pre-0.97 versions of mount() didn't have a flags word.
3166 * When the flags word was introduced its top half was required
3167 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3168 * Therefore, if this magic number is present, it carries no information
3169 * and must be discarded.
3171 int path_mount(const char *dev_name, struct path *path,
3172 const char *type_page, unsigned long flags, void *data_page)
3174 unsigned int mnt_flags = 0, sb_flags;
3178 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3179 flags &= ~MS_MGC_MSK;
3181 /* Basic sanity checks */
3183 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3185 if (flags & MS_NOUSER)
3188 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3193 if ((flags & SB_MANDLOCK) && !may_mandlock())
3196 /* Default to relatime unless overriden */
3197 if (!(flags & MS_NOATIME))
3198 mnt_flags |= MNT_RELATIME;
3200 /* Separate the per-mountpoint flags */
3201 if (flags & MS_NOSUID)
3202 mnt_flags |= MNT_NOSUID;
3203 if (flags & MS_NODEV)
3204 mnt_flags |= MNT_NODEV;
3205 if (flags & MS_NOEXEC)
3206 mnt_flags |= MNT_NOEXEC;
3207 if (flags & MS_NOATIME)
3208 mnt_flags |= MNT_NOATIME;
3209 if (flags & MS_NODIRATIME)
3210 mnt_flags |= MNT_NODIRATIME;
3211 if (flags & MS_STRICTATIME)
3212 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3213 if (flags & MS_RDONLY)
3214 mnt_flags |= MNT_READONLY;
3215 if (flags & MS_NOSYMFOLLOW)
3216 mnt_flags |= MNT_NOSYMFOLLOW;
3218 /* The default atime for remount is preservation */
3219 if ((flags & MS_REMOUNT) &&
3220 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3221 MS_STRICTATIME)) == 0)) {
3222 mnt_flags &= ~MNT_ATIME_MASK;
3223 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3226 sb_flags = flags & (SB_RDONLY |
3235 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3236 return do_reconfigure_mnt(path, mnt_flags);
3237 if (flags & MS_REMOUNT)
3238 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3239 if (flags & MS_BIND)
3240 return do_loopback(path, dev_name, flags & MS_REC);
3241 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3242 return do_change_type(path, flags);
3243 if (flags & MS_MOVE)
3244 return do_move_mount_old(path, dev_name);
3246 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3250 long do_mount(const char *dev_name, const char __user *dir_name,
3251 const char *type_page, unsigned long flags, void *data_page)
3256 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3259 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3264 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3266 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3269 static void dec_mnt_namespaces(struct ucounts *ucounts)
3271 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3274 static void free_mnt_ns(struct mnt_namespace *ns)
3276 if (!is_anon_ns(ns))
3277 ns_free_inum(&ns->ns);
3278 dec_mnt_namespaces(ns->ucounts);
3279 put_user_ns(ns->user_ns);
3284 * Assign a sequence number so we can detect when we attempt to bind
3285 * mount a reference to an older mount namespace into the current
3286 * mount namespace, preventing reference counting loops. A 64bit
3287 * number incrementing at 10Ghz will take 12,427 years to wrap which
3288 * is effectively never, so we can ignore the possibility.
3290 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3292 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3294 struct mnt_namespace *new_ns;
3295 struct ucounts *ucounts;
3298 ucounts = inc_mnt_namespaces(user_ns);
3300 return ERR_PTR(-ENOSPC);
3302 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3304 dec_mnt_namespaces(ucounts);
3305 return ERR_PTR(-ENOMEM);
3308 ret = ns_alloc_inum(&new_ns->ns);
3311 dec_mnt_namespaces(ucounts);
3312 return ERR_PTR(ret);
3315 new_ns->ns.ops = &mntns_operations;
3317 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3318 refcount_set(&new_ns->ns.count, 1);
3319 INIT_LIST_HEAD(&new_ns->list);
3320 init_waitqueue_head(&new_ns->poll);
3321 spin_lock_init(&new_ns->ns_lock);
3322 new_ns->user_ns = get_user_ns(user_ns);
3323 new_ns->ucounts = ucounts;
3328 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3329 struct user_namespace *user_ns, struct fs_struct *new_fs)
3331 struct mnt_namespace *new_ns;
3332 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3333 struct mount *p, *q;
3340 if (likely(!(flags & CLONE_NEWNS))) {
3347 new_ns = alloc_mnt_ns(user_ns, false);
3352 /* First pass: copy the tree topology */
3353 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3354 if (user_ns != ns->user_ns)
3355 copy_flags |= CL_SHARED_TO_SLAVE;
3356 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3359 free_mnt_ns(new_ns);
3360 return ERR_CAST(new);
3362 if (user_ns != ns->user_ns) {
3365 unlock_mount_hash();
3368 list_add_tail(&new_ns->list, &new->mnt_list);
3371 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3372 * as belonging to new namespace. We have already acquired a private
3373 * fs_struct, so tsk->fs->lock is not needed.
3381 if (&p->mnt == new_fs->root.mnt) {
3382 new_fs->root.mnt = mntget(&q->mnt);
3385 if (&p->mnt == new_fs->pwd.mnt) {
3386 new_fs->pwd.mnt = mntget(&q->mnt);
3390 p = next_mnt(p, old);
3391 q = next_mnt(q, new);
3394 while (p->mnt.mnt_root != q->mnt.mnt_root)
3395 p = next_mnt(p, old);
3407 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3409 struct mount *mnt = real_mount(m);
3410 struct mnt_namespace *ns;
3411 struct super_block *s;
3415 ns = alloc_mnt_ns(&init_user_ns, true);
3418 return ERR_CAST(ns);
3423 list_add(&mnt->mnt_list, &ns->list);
3425 err = vfs_path_lookup(m->mnt_root, m,
3426 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3431 return ERR_PTR(err);
3433 /* trade a vfsmount reference for active sb one */
3434 s = path.mnt->mnt_sb;
3435 atomic_inc(&s->s_active);
3437 /* lock the sucker */
3438 down_write(&s->s_umount);
3439 /* ... and return the root of (sub)tree on it */
3442 EXPORT_SYMBOL(mount_subtree);
3444 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3445 char __user *, type, unsigned long, flags, void __user *, data)
3452 kernel_type = copy_mount_string(type);
3453 ret = PTR_ERR(kernel_type);
3454 if (IS_ERR(kernel_type))
3457 kernel_dev = copy_mount_string(dev_name);
3458 ret = PTR_ERR(kernel_dev);
3459 if (IS_ERR(kernel_dev))
3462 options = copy_mount_options(data);
3463 ret = PTR_ERR(options);
3464 if (IS_ERR(options))
3467 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3478 #define FSMOUNT_VALID_FLAGS \
3479 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3480 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME)
3482 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3484 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3485 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3487 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3489 unsigned int mnt_flags = 0;
3491 if (attr_flags & MOUNT_ATTR_RDONLY)
3492 mnt_flags |= MNT_READONLY;
3493 if (attr_flags & MOUNT_ATTR_NOSUID)
3494 mnt_flags |= MNT_NOSUID;
3495 if (attr_flags & MOUNT_ATTR_NODEV)
3496 mnt_flags |= MNT_NODEV;
3497 if (attr_flags & MOUNT_ATTR_NOEXEC)
3498 mnt_flags |= MNT_NOEXEC;
3499 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3500 mnt_flags |= MNT_NODIRATIME;
3506 * Create a kernel mount representation for a new, prepared superblock
3507 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3509 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3510 unsigned int, attr_flags)
3512 struct mnt_namespace *ns;
3513 struct fs_context *fc;
3515 struct path newmount;
3518 unsigned int mnt_flags = 0;
3524 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3527 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3530 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3532 switch (attr_flags & MOUNT_ATTR__ATIME) {
3533 case MOUNT_ATTR_STRICTATIME:
3535 case MOUNT_ATTR_NOATIME:
3536 mnt_flags |= MNT_NOATIME;
3538 case MOUNT_ATTR_RELATIME:
3539 mnt_flags |= MNT_RELATIME;
3550 if (f.file->f_op != &fscontext_fops)
3553 fc = f.file->private_data;
3555 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3559 /* There must be a valid superblock or we can't mount it */
3565 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3566 pr_warn("VFS: Mount too revealing\n");
3571 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3575 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3578 newmount.mnt = vfs_create_mount(fc);
3579 if (IS_ERR(newmount.mnt)) {
3580 ret = PTR_ERR(newmount.mnt);
3583 newmount.dentry = dget(fc->root);
3584 newmount.mnt->mnt_flags = mnt_flags;
3586 /* We've done the mount bit - now move the file context into more or
3587 * less the same state as if we'd done an fspick(). We don't want to
3588 * do any memory allocation or anything like that at this point as we
3589 * don't want to have to handle any errors incurred.
3591 vfs_clean_context(fc);
3593 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3598 mnt = real_mount(newmount.mnt);
3602 list_add(&mnt->mnt_list, &ns->list);
3603 mntget(newmount.mnt);
3605 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3606 * it, not just simply put it.
3608 file = dentry_open(&newmount, O_PATH, fc->cred);
3610 dissolve_on_fput(newmount.mnt);
3611 ret = PTR_ERR(file);
3614 file->f_mode |= FMODE_NEED_UNMOUNT;
3616 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3618 fd_install(ret, file);
3623 path_put(&newmount);
3625 mutex_unlock(&fc->uapi_mutex);
3632 * Move a mount from one place to another. In combination with
3633 * fsopen()/fsmount() this is used to install a new mount and in combination
3634 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3637 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3639 SYSCALL_DEFINE5(move_mount,
3640 int, from_dfd, const char __user *, from_pathname,
3641 int, to_dfd, const char __user *, to_pathname,
3642 unsigned int, flags)
3644 struct path from_path, to_path;
3645 unsigned int lflags;
3651 if (flags & ~MOVE_MOUNT__MASK)
3654 /* If someone gives a pathname, they aren't permitted to move
3655 * from an fd that requires unmount as we can't get at the flag
3656 * to clear it afterwards.
3659 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3660 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3661 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3663 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3668 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3669 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3670 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3672 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3676 ret = security_move_mount(&from_path, &to_path);
3680 ret = do_move_mount(&from_path, &to_path);
3685 path_put(&from_path);
3690 * Return true if path is reachable from root
3692 * namespace_sem or mount_lock is held
3694 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3695 const struct path *root)
3697 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3698 dentry = mnt->mnt_mountpoint;
3699 mnt = mnt->mnt_parent;
3701 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3704 bool path_is_under(const struct path *path1, const struct path *path2)
3707 read_seqlock_excl(&mount_lock);
3708 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3709 read_sequnlock_excl(&mount_lock);
3712 EXPORT_SYMBOL(path_is_under);
3715 * pivot_root Semantics:
3716 * Moves the root file system of the current process to the directory put_old,
3717 * makes new_root as the new root file system of the current process, and sets
3718 * root/cwd of all processes which had them on the current root to new_root.
3721 * The new_root and put_old must be directories, and must not be on the
3722 * same file system as the current process root. The put_old must be
3723 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3724 * pointed to by put_old must yield the same directory as new_root. No other
3725 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3727 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3728 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3729 * in this situation.
3732 * - we don't move root/cwd if they are not at the root (reason: if something
3733 * cared enough to change them, it's probably wrong to force them elsewhere)
3734 * - it's okay to pick a root that isn't the root of a file system, e.g.
3735 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3736 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3739 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3740 const char __user *, put_old)
3742 struct path new, old, root;
3743 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3744 struct mountpoint *old_mp, *root_mp;
3750 error = user_path_at(AT_FDCWD, new_root,
3751 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3755 error = user_path_at(AT_FDCWD, put_old,
3756 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3760 error = security_sb_pivotroot(&old, &new);
3764 get_fs_root(current->fs, &root);
3765 old_mp = lock_mount(&old);
3766 error = PTR_ERR(old_mp);
3771 new_mnt = real_mount(new.mnt);
3772 root_mnt = real_mount(root.mnt);
3773 old_mnt = real_mount(old.mnt);
3774 ex_parent = new_mnt->mnt_parent;
3775 root_parent = root_mnt->mnt_parent;
3776 if (IS_MNT_SHARED(old_mnt) ||
3777 IS_MNT_SHARED(ex_parent) ||
3778 IS_MNT_SHARED(root_parent))
3780 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3782 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3785 if (d_unlinked(new.dentry))
3788 if (new_mnt == root_mnt || old_mnt == root_mnt)
3789 goto out4; /* loop, on the same file system */
3791 if (root.mnt->mnt_root != root.dentry)
3792 goto out4; /* not a mountpoint */
3793 if (!mnt_has_parent(root_mnt))
3794 goto out4; /* not attached */
3795 if (new.mnt->mnt_root != new.dentry)
3796 goto out4; /* not a mountpoint */
3797 if (!mnt_has_parent(new_mnt))
3798 goto out4; /* not attached */
3799 /* make sure we can reach put_old from new_root */
3800 if (!is_path_reachable(old_mnt, old.dentry, &new))
3802 /* make certain new is below the root */
3803 if (!is_path_reachable(new_mnt, new.dentry, &root))
3806 umount_mnt(new_mnt);
3807 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3808 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3809 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3810 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3812 /* mount old root on put_old */
3813 attach_mnt(root_mnt, old_mnt, old_mp);
3814 /* mount new_root on / */
3815 attach_mnt(new_mnt, root_parent, root_mp);
3816 mnt_add_count(root_parent, -1);
3817 touch_mnt_namespace(current->nsproxy->mnt_ns);
3818 /* A moved mount should not expire automatically */
3819 list_del_init(&new_mnt->mnt_expire);
3820 put_mountpoint(root_mp);
3821 unlock_mount_hash();
3822 chroot_fs_refs(&root, &new);
3825 unlock_mount(old_mp);
3827 mntput_no_expire(ex_parent);
3838 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3840 unsigned int flags = mnt->mnt.mnt_flags;
3842 /* flags to clear */
3843 flags &= ~kattr->attr_clr;
3844 /* flags to raise */
3845 flags |= kattr->attr_set;
3850 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3852 struct vfsmount *m = &mnt->mnt;
3854 if (!kattr->mnt_userns)
3858 * Once a mount has been idmapped we don't allow it to change its
3859 * mapping. It makes things simpler and callers can just create
3860 * another bind-mount they can idmap if they want to.
3862 if (mnt_user_ns(m) != &init_user_ns)
3865 /* The underlying filesystem doesn't support idmapped mounts yet. */
3866 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3869 /* We're not controlling the superblock. */
3870 if (!ns_capable(m->mnt_sb->s_user_ns, CAP_SYS_ADMIN))
3873 /* Mount has already been visible in the filesystem hierarchy. */
3874 if (!is_anon_ns(mnt->mnt_ns))
3880 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
3881 struct mount *mnt, int *err)
3883 struct mount *m = mnt, *last = NULL;
3885 if (!is_mounted(&m->mnt)) {
3890 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
3898 flags = recalc_flags(kattr, m);
3899 if (!can_change_locked_flags(m, flags)) {
3904 *err = can_idmap_mount(kattr, m);
3910 if ((kattr->attr_set & MNT_READONLY) &&
3911 !(m->mnt.mnt_flags & MNT_READONLY)) {
3912 *err = mnt_hold_writers(m);
3916 } while (kattr->recurse && (m = next_mnt(m, mnt)));
3922 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3924 struct user_namespace *mnt_userns;
3926 if (!kattr->mnt_userns)
3929 mnt_userns = get_user_ns(kattr->mnt_userns);
3930 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
3931 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
3934 static void mount_setattr_commit(struct mount_kattr *kattr,
3935 struct mount *mnt, struct mount *last,
3938 struct mount *m = mnt;
3944 do_idmap_mount(kattr, m);
3945 flags = recalc_flags(kattr, m);
3946 WRITE_ONCE(m->mnt.mnt_flags, flags);
3950 * We either set MNT_READONLY above so make it visible
3951 * before ~MNT_WRITE_HOLD or we failed to recursively
3952 * apply mount options.
3954 if ((kattr->attr_set & MNT_READONLY) &&
3955 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
3956 mnt_unhold_writers(m);
3958 if (!err && kattr->propagation)
3959 change_mnt_propagation(m, kattr->propagation);
3962 * On failure, only cleanup until we found the first mount
3963 * we failed to handle.
3965 if (err && m == last)
3967 } while (kattr->recurse && (m = next_mnt(m, mnt)));
3970 touch_mnt_namespace(mnt->mnt_ns);
3973 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
3975 struct mount *mnt = real_mount(path->mnt), *last = NULL;
3978 if (path->dentry != mnt->mnt.mnt_root)
3981 if (kattr->propagation) {
3983 * Only take namespace_lock() if we're actually changing
3987 if (kattr->propagation == MS_SHARED) {
3988 err = invent_group_ids(mnt, kattr->recurse);
3999 * Get the mount tree in a shape where we can change mount
4000 * properties without failure.
4002 last = mount_setattr_prepare(kattr, mnt, &err);
4003 if (last) /* Commit all changes or revert to the old state. */
4004 mount_setattr_commit(kattr, mnt, last, err);
4006 unlock_mount_hash();
4008 if (kattr->propagation) {
4011 cleanup_group_ids(mnt, NULL);
4017 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4018 struct mount_kattr *kattr, unsigned int flags)
4021 struct ns_common *ns;
4022 struct user_namespace *mnt_userns;
4025 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4029 * We currently do not support clearing an idmapped mount. If this ever
4030 * is a use-case we can revisit this but for now let's keep it simple
4033 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4036 if (attr->userns_fd > INT_MAX)
4039 file = fget(attr->userns_fd);
4043 if (!proc_ns_file(file)) {
4048 ns = get_proc_ns(file_inode(file));
4049 if (ns->ops->type != CLONE_NEWUSER) {
4055 * The init_user_ns is used to indicate that a vfsmount is not idmapped.
4056 * This is simpler than just having to treat NULL as unmapped. Users
4057 * wanting to idmap a mount to init_user_ns can just use a namespace
4058 * with an identity mapping.
4060 mnt_userns = container_of(ns, struct user_namespace, ns);
4061 if (mnt_userns == &init_user_ns) {
4065 kattr->mnt_userns = get_user_ns(mnt_userns);
4072 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4073 struct mount_kattr *kattr, unsigned int flags)
4075 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4077 if (flags & AT_NO_AUTOMOUNT)
4078 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4079 if (flags & AT_SYMLINK_NOFOLLOW)
4080 lookup_flags &= ~LOOKUP_FOLLOW;
4081 if (flags & AT_EMPTY_PATH)
4082 lookup_flags |= LOOKUP_EMPTY;
4084 *kattr = (struct mount_kattr) {
4085 .lookup_flags = lookup_flags,
4086 .recurse = !!(flags & AT_RECURSIVE),
4089 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4091 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4093 kattr->propagation = attr->propagation;
4095 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4098 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4099 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4102 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4103 * users wanting to transition to a different atime setting cannot
4104 * simply specify the atime setting in @attr_set, but must also
4105 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4106 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4107 * @attr_clr and that @attr_set can't have any atime bits set if
4108 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4110 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4111 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4115 * Clear all previous time settings as they are mutually
4118 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4119 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4120 case MOUNT_ATTR_RELATIME:
4121 kattr->attr_set |= MNT_RELATIME;
4123 case MOUNT_ATTR_NOATIME:
4124 kattr->attr_set |= MNT_NOATIME;
4126 case MOUNT_ATTR_STRICTATIME:
4132 if (attr->attr_set & MOUNT_ATTR__ATIME)
4136 return build_mount_idmapped(attr, usize, kattr, flags);
4139 static void finish_mount_kattr(struct mount_kattr *kattr)
4141 put_user_ns(kattr->mnt_userns);
4142 kattr->mnt_userns = NULL;
4145 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4146 unsigned int, flags, struct mount_attr __user *, uattr,
4151 struct mount_attr attr;
4152 struct mount_kattr kattr;
4154 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4156 if (flags & ~(AT_EMPTY_PATH |
4158 AT_SYMLINK_NOFOLLOW |
4162 if (unlikely(usize > PAGE_SIZE))
4164 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4170 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4174 /* Don't bother walking through the mounts if this is a nop. */
4175 if (attr.attr_set == 0 &&
4176 attr.attr_clr == 0 &&
4177 attr.propagation == 0)
4180 err = build_mount_kattr(&attr, usize, &kattr, flags);
4184 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4188 err = do_mount_setattr(&target, &kattr);
4189 finish_mount_kattr(&kattr);
4194 static void __init init_mount_tree(void)
4196 struct vfsmount *mnt;
4198 struct mnt_namespace *ns;
4201 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4203 panic("Can't create rootfs");
4205 ns = alloc_mnt_ns(&init_user_ns, false);
4207 panic("Can't allocate initial namespace");
4208 m = real_mount(mnt);
4212 list_add(&m->mnt_list, &ns->list);
4213 init_task.nsproxy->mnt_ns = ns;
4217 root.dentry = mnt->mnt_root;
4218 mnt->mnt_flags |= MNT_LOCKED;
4220 set_fs_pwd(current->fs, &root);
4221 set_fs_root(current->fs, &root);
4224 void __init mnt_init(void)
4228 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4229 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
4231 mount_hashtable = alloc_large_system_hash("Mount-cache",
4232 sizeof(struct hlist_head),
4235 &m_hash_shift, &m_hash_mask, 0, 0);
4236 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4237 sizeof(struct hlist_head),
4240 &mp_hash_shift, &mp_hash_mask, 0, 0);
4242 if (!mount_hashtable || !mountpoint_hashtable)
4243 panic("Failed to allocate mount hash table\n");
4249 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4251 fs_kobj = kobject_create_and_add("fs", NULL);
4253 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4259 void put_mnt_ns(struct mnt_namespace *ns)
4261 if (!refcount_dec_and_test(&ns->ns.count))
4263 drop_collected_mounts(&ns->root->mnt);
4267 struct vfsmount *kern_mount(struct file_system_type *type)
4269 struct vfsmount *mnt;
4270 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4273 * it is a longterm mount, don't release mnt until
4274 * we unmount before file sys is unregistered
4276 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4280 EXPORT_SYMBOL_GPL(kern_mount);
4282 void kern_unmount(struct vfsmount *mnt)
4284 /* release long term mount so mount point can be released */
4285 if (!IS_ERR_OR_NULL(mnt)) {
4286 real_mount(mnt)->mnt_ns = NULL;
4287 synchronize_rcu(); /* yecchhh... */
4291 EXPORT_SYMBOL(kern_unmount);
4293 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4297 for (i = 0; i < num; i++)
4299 real_mount(mnt[i])->mnt_ns = NULL;
4300 synchronize_rcu_expedited();
4301 for (i = 0; i < num; i++)
4304 EXPORT_SYMBOL(kern_unmount_array);
4306 bool our_mnt(struct vfsmount *mnt)
4308 return check_mnt(real_mount(mnt));
4311 bool current_chrooted(void)
4313 /* Does the current process have a non-standard root */
4314 struct path ns_root;
4315 struct path fs_root;
4318 /* Find the namespace root */
4319 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4320 ns_root.dentry = ns_root.mnt->mnt_root;
4322 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4325 get_fs_root(current->fs, &fs_root);
4327 chrooted = !path_equal(&fs_root, &ns_root);
4335 static bool mnt_already_visible(struct mnt_namespace *ns,
4336 const struct super_block *sb,
4339 int new_flags = *new_mnt_flags;
4341 bool visible = false;
4343 down_read(&namespace_sem);
4345 list_for_each_entry(mnt, &ns->list, mnt_list) {
4346 struct mount *child;
4349 if (mnt_is_cursor(mnt))
4352 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4355 /* This mount is not fully visible if it's root directory
4356 * is not the root directory of the filesystem.
4358 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4361 /* A local view of the mount flags */
4362 mnt_flags = mnt->mnt.mnt_flags;
4364 /* Don't miss readonly hidden in the superblock flags */
4365 if (sb_rdonly(mnt->mnt.mnt_sb))
4366 mnt_flags |= MNT_LOCK_READONLY;
4368 /* Verify the mount flags are equal to or more permissive
4369 * than the proposed new mount.
4371 if ((mnt_flags & MNT_LOCK_READONLY) &&
4372 !(new_flags & MNT_READONLY))
4374 if ((mnt_flags & MNT_LOCK_ATIME) &&
4375 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4378 /* This mount is not fully visible if there are any
4379 * locked child mounts that cover anything except for
4380 * empty directories.
4382 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4383 struct inode *inode = child->mnt_mountpoint->d_inode;
4384 /* Only worry about locked mounts */
4385 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4387 /* Is the directory permanetly empty? */
4388 if (!is_empty_dir_inode(inode))
4391 /* Preserve the locked attributes */
4392 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4400 up_read(&namespace_sem);
4404 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4406 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4407 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4408 unsigned long s_iflags;
4410 if (ns->user_ns == &init_user_ns)
4413 /* Can this filesystem be too revealing? */
4414 s_iflags = sb->s_iflags;
4415 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4418 if ((s_iflags & required_iflags) != required_iflags) {
4419 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4424 return !mnt_already_visible(ns, sb, new_mnt_flags);
4427 bool mnt_may_suid(struct vfsmount *mnt)
4430 * Foreign mounts (accessed via fchdir or through /proc
4431 * symlinks) are always treated as if they are nosuid. This
4432 * prevents namespaces from trusting potentially unsafe
4433 * suid/sgid bits, file caps, or security labels that originate
4434 * in other namespaces.
4436 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4437 current_in_userns(mnt->mnt_sb->s_user_ns);
4440 static struct ns_common *mntns_get(struct task_struct *task)
4442 struct ns_common *ns = NULL;
4443 struct nsproxy *nsproxy;
4446 nsproxy = task->nsproxy;
4448 ns = &nsproxy->mnt_ns->ns;
4449 get_mnt_ns(to_mnt_ns(ns));
4456 static void mntns_put(struct ns_common *ns)
4458 put_mnt_ns(to_mnt_ns(ns));
4461 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4463 struct nsproxy *nsproxy = nsset->nsproxy;
4464 struct fs_struct *fs = nsset->fs;
4465 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4466 struct user_namespace *user_ns = nsset->cred->user_ns;
4470 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4471 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4472 !ns_capable(user_ns, CAP_SYS_ADMIN))
4475 if (is_anon_ns(mnt_ns))
4482 old_mnt_ns = nsproxy->mnt_ns;
4483 nsproxy->mnt_ns = mnt_ns;
4486 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4487 "/", LOOKUP_DOWN, &root);
4489 /* revert to old namespace */
4490 nsproxy->mnt_ns = old_mnt_ns;
4495 put_mnt_ns(old_mnt_ns);
4497 /* Update the pwd and root */
4498 set_fs_pwd(fs, &root);
4499 set_fs_root(fs, &root);
4505 static struct user_namespace *mntns_owner(struct ns_common *ns)
4507 return to_mnt_ns(ns)->user_ns;
4510 const struct proc_ns_operations mntns_operations = {
4512 .type = CLONE_NEWNS,
4515 .install = mntns_install,
4516 .owner = mntns_owner,