4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/namei.h>
16 #include <linux/security.h>
17 #include <linux/idr.h>
18 #include <linux/acct.h> /* acct_auto_close_mnt */
19 #include <linux/ramfs.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
26 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
27 #define HASH_SIZE (1UL << HASH_SHIFT)
30 static DEFINE_IDA(mnt_id_ida);
31 static DEFINE_IDA(mnt_group_ida);
32 static DEFINE_SPINLOCK(mnt_id_lock);
33 static int mnt_id_start = 0;
34 static int mnt_group_start = 1;
36 static struct list_head *mount_hashtable __read_mostly;
37 static struct kmem_cache *mnt_cache __read_mostly;
38 static struct rw_semaphore namespace_sem;
41 struct kobject *fs_kobj;
42 EXPORT_SYMBOL_GPL(fs_kobj);
45 * vfsmount lock may be taken for read to prevent changes to the
46 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * It should be taken for write in all cases where the vfsmount
50 * tree or hash is modified or when a vfsmount structure is modified.
52 DEFINE_BRLOCK(vfsmount_lock);
54 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
56 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
57 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
58 tmp = tmp + (tmp >> HASH_SHIFT);
59 return tmp & (HASH_SIZE - 1);
62 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65 * allocation is serialized by namespace_sem, but we need the spinlock to
66 * serialize with freeing.
68 static int mnt_alloc_id(struct mount *mnt)
73 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
74 spin_lock(&mnt_id_lock);
75 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
77 mnt_id_start = mnt->mnt_id + 1;
78 spin_unlock(&mnt_id_lock);
85 static void mnt_free_id(struct mount *mnt)
88 spin_lock(&mnt_id_lock);
89 ida_remove(&mnt_id_ida, id);
90 if (mnt_id_start > id)
92 spin_unlock(&mnt_id_lock);
96 * Allocate a new peer group ID
98 * mnt_group_ida is protected by namespace_sem
100 static int mnt_alloc_group_id(struct mount *mnt)
104 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 res = ida_get_new_above(&mnt_group_ida,
111 mnt_group_start = mnt->mnt_group_id + 1;
117 * Release a peer group ID
119 void mnt_release_group_id(struct mount *mnt)
121 int id = mnt->mnt_group_id;
122 ida_remove(&mnt_group_ida, id);
123 if (mnt_group_start > id)
124 mnt_group_start = id;
125 mnt->mnt_group_id = 0;
129 * vfsmount lock must be held for read
131 static inline void mnt_add_count(struct mount *mnt, int n)
134 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
143 * vfsmount lock must be held for write
145 unsigned int mnt_get_count(struct mount *mnt)
148 unsigned int count = 0;
151 for_each_possible_cpu(cpu) {
152 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
157 return mnt->mnt_count;
161 static struct mount *alloc_vfsmnt(const char *name)
163 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
167 err = mnt_alloc_id(mnt);
172 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
173 if (!mnt->mnt_devname)
178 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
180 goto out_free_devname;
182 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
185 mnt->mnt_writers = 0;
188 INIT_LIST_HEAD(&mnt->mnt_hash);
189 INIT_LIST_HEAD(&mnt->mnt_child);
190 INIT_LIST_HEAD(&mnt->mnt_mounts);
191 INIT_LIST_HEAD(&mnt->mnt_list);
192 INIT_LIST_HEAD(&mnt->mnt_expire);
193 INIT_LIST_HEAD(&mnt->mnt_share);
194 INIT_LIST_HEAD(&mnt->mnt_slave_list);
195 INIT_LIST_HEAD(&mnt->mnt_slave);
196 #ifdef CONFIG_FSNOTIFY
197 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
204 kfree(mnt->mnt_devname);
209 kmem_cache_free(mnt_cache, mnt);
214 * Most r/o checks on a fs are for operations that take
215 * discrete amounts of time, like a write() or unlink().
216 * We must keep track of when those operations start
217 * (for permission checks) and when they end, so that
218 * we can determine when writes are able to occur to
222 * __mnt_is_readonly: check whether a mount is read-only
223 * @mnt: the mount to check for its write status
225 * This shouldn't be used directly ouside of the VFS.
226 * It does not guarantee that the filesystem will stay
227 * r/w, just that it is right *now*. This can not and
228 * should not be used in place of IS_RDONLY(inode).
229 * mnt_want/drop_write() will _keep_ the filesystem
232 int __mnt_is_readonly(struct vfsmount *mnt)
234 if (mnt->mnt_flags & MNT_READONLY)
236 if (mnt->mnt_sb->s_flags & MS_RDONLY)
240 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
242 static inline void mnt_inc_writers(struct mount *mnt)
245 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
251 static inline void mnt_dec_writers(struct mount *mnt)
254 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
260 static unsigned int mnt_get_writers(struct mount *mnt)
263 unsigned int count = 0;
266 for_each_possible_cpu(cpu) {
267 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
272 return mnt->mnt_writers;
276 static int mnt_is_readonly(struct vfsmount *mnt)
278 if (mnt->mnt_sb->s_readonly_remount)
280 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
282 return __mnt_is_readonly(mnt);
286 * Most r/o checks on a fs are for operations that take
287 * discrete amounts of time, like a write() or unlink().
288 * We must keep track of when those operations start
289 * (for permission checks) and when they end, so that
290 * we can determine when writes are able to occur to
294 * mnt_want_write - get write access to a mount
295 * @m: the mount on which to take a write
297 * This tells the low-level filesystem that a write is
298 * about to be performed to it, and makes sure that
299 * writes are allowed before returning success. When
300 * the write operation is finished, mnt_drop_write()
301 * must be called. This is effectively a refcount.
303 int mnt_want_write(struct vfsmount *m)
305 struct mount *mnt = real_mount(m);
309 mnt_inc_writers(mnt);
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
331 EXPORT_SYMBOL_GPL(mnt_want_write);
334 * mnt_clone_write - get write access to a mount
335 * @mnt: the mount on which to take a write
337 * This is effectively like mnt_want_write, except
338 * it must only be used to take an extra write reference
339 * on a mountpoint that we already know has a write reference
340 * on it. This allows some optimisation.
342 * After finished, mnt_drop_write must be called as usual to
343 * drop the reference.
345 int mnt_clone_write(struct vfsmount *mnt)
347 /* superblock may be r/o */
348 if (__mnt_is_readonly(mnt))
351 mnt_inc_writers(real_mount(mnt));
355 EXPORT_SYMBOL_GPL(mnt_clone_write);
358 * mnt_want_write_file - get write access to a file's mount
359 * @file: the file who's mount on which to take a write
361 * This is like mnt_want_write, but it takes a file and can
362 * do some optimisations if the file is open for write already
364 int mnt_want_write_file(struct file *file)
366 struct inode *inode = file->f_dentry->d_inode;
367 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
368 return mnt_want_write(file->f_path.mnt);
370 return mnt_clone_write(file->f_path.mnt);
372 EXPORT_SYMBOL_GPL(mnt_want_write_file);
375 * mnt_drop_write - give up write access to a mount
376 * @mnt: the mount on which to give up write access
378 * Tells the low-level filesystem that we are done
379 * performing writes to it. Must be matched with
380 * mnt_want_write() call above.
382 void mnt_drop_write(struct vfsmount *mnt)
385 mnt_dec_writers(real_mount(mnt));
388 EXPORT_SYMBOL_GPL(mnt_drop_write);
390 void mnt_drop_write_file(struct file *file)
392 mnt_drop_write(file->f_path.mnt);
394 EXPORT_SYMBOL(mnt_drop_write_file);
396 static int mnt_make_readonly(struct mount *mnt)
400 br_write_lock(&vfsmount_lock);
401 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
403 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
404 * should be visible before we do.
409 * With writers on hold, if this value is zero, then there are
410 * definitely no active writers (although held writers may subsequently
411 * increment the count, they'll have to wait, and decrement it after
412 * seeing MNT_READONLY).
414 * It is OK to have counter incremented on one CPU and decremented on
415 * another: the sum will add up correctly. The danger would be when we
416 * sum up each counter, if we read a counter before it is incremented,
417 * but then read another CPU's count which it has been subsequently
418 * decremented from -- we would see more decrements than we should.
419 * MNT_WRITE_HOLD protects against this scenario, because
420 * mnt_want_write first increments count, then smp_mb, then spins on
421 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
422 * we're counting up here.
424 if (mnt_get_writers(mnt) > 0)
427 mnt->mnt.mnt_flags |= MNT_READONLY;
429 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
430 * that become unheld will see MNT_READONLY.
433 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
434 br_write_unlock(&vfsmount_lock);
438 static void __mnt_unmake_readonly(struct mount *mnt)
440 br_write_lock(&vfsmount_lock);
441 mnt->mnt.mnt_flags &= ~MNT_READONLY;
442 br_write_unlock(&vfsmount_lock);
445 int sb_prepare_remount_readonly(struct super_block *sb)
450 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
451 if (atomic_long_read(&sb->s_remove_count))
454 br_write_lock(&vfsmount_lock);
455 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
456 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
457 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
459 if (mnt_get_writers(mnt) > 0) {
465 if (!err && atomic_long_read(&sb->s_remove_count))
469 sb->s_readonly_remount = 1;
472 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
473 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
474 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
476 br_write_unlock(&vfsmount_lock);
481 static void free_vfsmnt(struct mount *mnt)
483 kfree(mnt->mnt_devname);
486 free_percpu(mnt->mnt_pcp);
488 kmem_cache_free(mnt_cache, mnt);
492 * find the first or last mount at @dentry on vfsmount @mnt depending on
493 * @dir. If @dir is set return the first mount else return the last mount.
494 * vfsmount_lock must be held for read or write.
496 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
499 struct list_head *head = mount_hashtable + hash(mnt, dentry);
500 struct list_head *tmp = head;
501 struct mount *p, *found = NULL;
504 tmp = dir ? tmp->next : tmp->prev;
508 p = list_entry(tmp, struct mount, mnt_hash);
509 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
518 * lookup_mnt - Return the first child mount mounted at path
520 * "First" means first mounted chronologically. If you create the
523 * mount /dev/sda1 /mnt
524 * mount /dev/sda2 /mnt
525 * mount /dev/sda3 /mnt
527 * Then lookup_mnt() on the base /mnt dentry in the root mount will
528 * return successively the root dentry and vfsmount of /dev/sda1, then
529 * /dev/sda2, then /dev/sda3, then NULL.
531 * lookup_mnt takes a reference to the found vfsmount.
533 struct vfsmount *lookup_mnt(struct path *path)
535 struct mount *child_mnt;
537 br_read_lock(&vfsmount_lock);
538 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
540 mnt_add_count(child_mnt, 1);
541 br_read_unlock(&vfsmount_lock);
542 return &child_mnt->mnt;
544 br_read_unlock(&vfsmount_lock);
549 static inline int check_mnt(struct mount *mnt)
551 return mnt->mnt_ns == current->nsproxy->mnt_ns;
555 * vfsmount lock must be held for write
557 static void touch_mnt_namespace(struct mnt_namespace *ns)
561 wake_up_interruptible(&ns->poll);
566 * vfsmount lock must be held for write
568 static void __touch_mnt_namespace(struct mnt_namespace *ns)
570 if (ns && ns->event != event) {
572 wake_up_interruptible(&ns->poll);
577 * Clear dentry's mounted state if it has no remaining mounts.
578 * vfsmount_lock must be held for write.
580 static void dentry_reset_mounted(struct dentry *dentry)
584 for (u = 0; u < HASH_SIZE; u++) {
587 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
588 if (p->mnt_mountpoint == dentry)
592 spin_lock(&dentry->d_lock);
593 dentry->d_flags &= ~DCACHE_MOUNTED;
594 spin_unlock(&dentry->d_lock);
598 * vfsmount lock must be held for write
600 static void detach_mnt(struct mount *mnt, struct path *old_path)
602 old_path->dentry = mnt->mnt_mountpoint;
603 old_path->mnt = &mnt->mnt_parent->mnt;
604 mnt->mnt_parent = mnt;
605 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
606 list_del_init(&mnt->mnt_child);
607 list_del_init(&mnt->mnt_hash);
608 dentry_reset_mounted(old_path->dentry);
612 * vfsmount lock must be held for write
614 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
615 struct mount *child_mnt)
617 mnt_add_count(mnt, 1); /* essentially, that's mntget */
618 child_mnt->mnt_mountpoint = dget(dentry);
619 child_mnt->mnt_parent = mnt;
620 spin_lock(&dentry->d_lock);
621 dentry->d_flags |= DCACHE_MOUNTED;
622 spin_unlock(&dentry->d_lock);
626 * vfsmount lock must be held for write
628 static void attach_mnt(struct mount *mnt, struct path *path)
630 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
631 list_add_tail(&mnt->mnt_hash, mount_hashtable +
632 hash(path->mnt, path->dentry));
633 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
637 * vfsmount lock must be held for write
639 static void commit_tree(struct mount *mnt)
641 struct mount *parent = mnt->mnt_parent;
644 struct mnt_namespace *n = parent->mnt_ns;
646 BUG_ON(parent == mnt);
648 list_add_tail(&head, &mnt->mnt_list);
649 list_for_each_entry(m, &head, mnt_list)
652 list_splice(&head, n->list.prev);
654 list_add_tail(&mnt->mnt_hash, mount_hashtable +
655 hash(&parent->mnt, mnt->mnt_mountpoint));
656 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
657 touch_mnt_namespace(n);
660 static struct mount *next_mnt(struct mount *p, struct mount *root)
662 struct list_head *next = p->mnt_mounts.next;
663 if (next == &p->mnt_mounts) {
667 next = p->mnt_child.next;
668 if (next != &p->mnt_parent->mnt_mounts)
673 return list_entry(next, struct mount, mnt_child);
676 static struct mount *skip_mnt_tree(struct mount *p)
678 struct list_head *prev = p->mnt_mounts.prev;
679 while (prev != &p->mnt_mounts) {
680 p = list_entry(prev, struct mount, mnt_child);
681 prev = p->mnt_mounts.prev;
687 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
693 return ERR_PTR(-ENODEV);
695 mnt = alloc_vfsmnt(name);
697 return ERR_PTR(-ENOMEM);
699 if (flags & MS_KERNMOUNT)
700 mnt->mnt.mnt_flags = MNT_INTERNAL;
702 root = mount_fs(type, flags, name, data);
705 return ERR_CAST(root);
708 mnt->mnt.mnt_root = root;
709 mnt->mnt.mnt_sb = root->d_sb;
710 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
711 mnt->mnt_parent = mnt;
712 br_write_lock(&vfsmount_lock);
713 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
714 br_write_unlock(&vfsmount_lock);
717 EXPORT_SYMBOL_GPL(vfs_kern_mount);
719 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
722 struct super_block *sb = old->mnt.mnt_sb;
726 mnt = alloc_vfsmnt(old->mnt_devname);
728 return ERR_PTR(-ENOMEM);
730 if (flag & (CL_SLAVE | CL_PRIVATE))
731 mnt->mnt_group_id = 0; /* not a peer of original */
733 mnt->mnt_group_id = old->mnt_group_id;
735 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
736 err = mnt_alloc_group_id(mnt);
741 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
742 atomic_inc(&sb->s_active);
743 mnt->mnt.mnt_sb = sb;
744 mnt->mnt.mnt_root = dget(root);
745 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
746 mnt->mnt_parent = mnt;
747 br_write_lock(&vfsmount_lock);
748 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
749 br_write_unlock(&vfsmount_lock);
751 if (flag & CL_SLAVE) {
752 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
753 mnt->mnt_master = old;
754 CLEAR_MNT_SHARED(mnt);
755 } else if (!(flag & CL_PRIVATE)) {
756 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
757 list_add(&mnt->mnt_share, &old->mnt_share);
758 if (IS_MNT_SLAVE(old))
759 list_add(&mnt->mnt_slave, &old->mnt_slave);
760 mnt->mnt_master = old->mnt_master;
762 if (flag & CL_MAKE_SHARED)
765 /* stick the duplicate mount on the same expiry list
766 * as the original if that was on one */
767 if (flag & CL_EXPIRE) {
768 if (!list_empty(&old->mnt_expire))
769 list_add(&mnt->mnt_expire, &old->mnt_expire);
779 static inline void mntfree(struct mount *mnt)
781 struct vfsmount *m = &mnt->mnt;
782 struct super_block *sb = m->mnt_sb;
785 * This probably indicates that somebody messed
786 * up a mnt_want/drop_write() pair. If this
787 * happens, the filesystem was probably unable
788 * to make r/w->r/o transitions.
791 * The locking used to deal with mnt_count decrement provides barriers,
792 * so mnt_get_writers() below is safe.
794 WARN_ON(mnt_get_writers(mnt));
795 fsnotify_vfsmount_delete(m);
798 deactivate_super(sb);
801 static void mntput_no_expire(struct mount *mnt)
805 br_read_lock(&vfsmount_lock);
806 if (likely(mnt->mnt_ns)) {
807 /* shouldn't be the last one */
808 mnt_add_count(mnt, -1);
809 br_read_unlock(&vfsmount_lock);
812 br_read_unlock(&vfsmount_lock);
814 br_write_lock(&vfsmount_lock);
815 mnt_add_count(mnt, -1);
816 if (mnt_get_count(mnt)) {
817 br_write_unlock(&vfsmount_lock);
821 mnt_add_count(mnt, -1);
822 if (likely(mnt_get_count(mnt)))
824 br_write_lock(&vfsmount_lock);
826 if (unlikely(mnt->mnt_pinned)) {
827 mnt_add_count(mnt, mnt->mnt_pinned + 1);
829 br_write_unlock(&vfsmount_lock);
830 acct_auto_close_mnt(&mnt->mnt);
834 list_del(&mnt->mnt_instance);
835 br_write_unlock(&vfsmount_lock);
839 void mntput(struct vfsmount *mnt)
842 struct mount *m = real_mount(mnt);
843 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
844 if (unlikely(m->mnt_expiry_mark))
845 m->mnt_expiry_mark = 0;
849 EXPORT_SYMBOL(mntput);
851 struct vfsmount *mntget(struct vfsmount *mnt)
854 mnt_add_count(real_mount(mnt), 1);
857 EXPORT_SYMBOL(mntget);
859 void mnt_pin(struct vfsmount *mnt)
861 br_write_lock(&vfsmount_lock);
862 real_mount(mnt)->mnt_pinned++;
863 br_write_unlock(&vfsmount_lock);
865 EXPORT_SYMBOL(mnt_pin);
867 void mnt_unpin(struct vfsmount *m)
869 struct mount *mnt = real_mount(m);
870 br_write_lock(&vfsmount_lock);
871 if (mnt->mnt_pinned) {
872 mnt_add_count(mnt, 1);
875 br_write_unlock(&vfsmount_lock);
877 EXPORT_SYMBOL(mnt_unpin);
879 static inline void mangle(struct seq_file *m, const char *s)
881 seq_escape(m, s, " \t\n\\");
885 * Simple .show_options callback for filesystems which don't want to
886 * implement more complex mount option showing.
888 * See also save_mount_options().
890 int generic_show_options(struct seq_file *m, struct dentry *root)
895 options = rcu_dereference(root->d_sb->s_options);
897 if (options != NULL && options[0]) {
905 EXPORT_SYMBOL(generic_show_options);
908 * If filesystem uses generic_show_options(), this function should be
909 * called from the fill_super() callback.
911 * The .remount_fs callback usually needs to be handled in a special
912 * way, to make sure, that previous options are not overwritten if the
915 * Also note, that if the filesystem's .remount_fs function doesn't
916 * reset all options to their default value, but changes only newly
917 * given options, then the displayed options will not reflect reality
920 void save_mount_options(struct super_block *sb, char *options)
922 BUG_ON(sb->s_options);
923 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
925 EXPORT_SYMBOL(save_mount_options);
927 void replace_mount_options(struct super_block *sb, char *options)
929 char *old = sb->s_options;
930 rcu_assign_pointer(sb->s_options, options);
936 EXPORT_SYMBOL(replace_mount_options);
938 #ifdef CONFIG_PROC_FS
939 /* iterator; we want it to have access to namespace_sem, thus here... */
940 static void *m_start(struct seq_file *m, loff_t *pos)
942 struct proc_mounts *p = proc_mounts(m);
944 down_read(&namespace_sem);
945 return seq_list_start(&p->ns->list, *pos);
948 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
950 struct proc_mounts *p = proc_mounts(m);
952 return seq_list_next(v, &p->ns->list, pos);
955 static void m_stop(struct seq_file *m, void *v)
957 up_read(&namespace_sem);
960 static int m_show(struct seq_file *m, void *v)
962 struct proc_mounts *p = proc_mounts(m);
963 struct mount *r = list_entry(v, struct mount, mnt_list);
964 return p->show(m, &r->mnt);
967 const struct seq_operations mounts_op = {
973 #endif /* CONFIG_PROC_FS */
976 * may_umount_tree - check if a mount tree is busy
977 * @mnt: root of mount tree
979 * This is called to check if a tree of mounts has any
980 * open files, pwds, chroots or sub mounts that are
983 int may_umount_tree(struct vfsmount *m)
985 struct mount *mnt = real_mount(m);
987 int minimum_refs = 0;
991 /* write lock needed for mnt_get_count */
992 br_write_lock(&vfsmount_lock);
993 for (p = mnt; p; p = next_mnt(p, mnt)) {
994 actual_refs += mnt_get_count(p);
997 br_write_unlock(&vfsmount_lock);
999 if (actual_refs > minimum_refs)
1005 EXPORT_SYMBOL(may_umount_tree);
1008 * may_umount - check if a mount point is busy
1009 * @mnt: root of mount
1011 * This is called to check if a mount point has any
1012 * open files, pwds, chroots or sub mounts. If the
1013 * mount has sub mounts this will return busy
1014 * regardless of whether the sub mounts are busy.
1016 * Doesn't take quota and stuff into account. IOW, in some cases it will
1017 * give false negatives. The main reason why it's here is that we need
1018 * a non-destructive way to look for easily umountable filesystems.
1020 int may_umount(struct vfsmount *mnt)
1023 down_read(&namespace_sem);
1024 br_write_lock(&vfsmount_lock);
1025 if (propagate_mount_busy(real_mount(mnt), 2))
1027 br_write_unlock(&vfsmount_lock);
1028 up_read(&namespace_sem);
1032 EXPORT_SYMBOL(may_umount);
1034 void release_mounts(struct list_head *head)
1037 while (!list_empty(head)) {
1038 mnt = list_first_entry(head, struct mount, mnt_hash);
1039 list_del_init(&mnt->mnt_hash);
1040 if (mnt_has_parent(mnt)) {
1041 struct dentry *dentry;
1044 br_write_lock(&vfsmount_lock);
1045 dentry = mnt->mnt_mountpoint;
1046 m = mnt->mnt_parent;
1047 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1048 mnt->mnt_parent = mnt;
1050 br_write_unlock(&vfsmount_lock);
1059 * vfsmount lock must be held for write
1060 * namespace_sem must be held for write
1062 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1064 LIST_HEAD(tmp_list);
1067 for (p = mnt; p; p = next_mnt(p, mnt))
1068 list_move(&p->mnt_hash, &tmp_list);
1071 propagate_umount(&tmp_list);
1073 list_for_each_entry(p, &tmp_list, mnt_hash) {
1074 list_del_init(&p->mnt_expire);
1075 list_del_init(&p->mnt_list);
1076 __touch_mnt_namespace(p->mnt_ns);
1078 list_del_init(&p->mnt_child);
1079 if (mnt_has_parent(p)) {
1080 p->mnt_parent->mnt_ghosts++;
1081 dentry_reset_mounted(p->mnt_mountpoint);
1083 change_mnt_propagation(p, MS_PRIVATE);
1085 list_splice(&tmp_list, kill);
1088 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1090 static int do_umount(struct mount *mnt, int flags)
1092 struct super_block *sb = mnt->mnt.mnt_sb;
1094 LIST_HEAD(umount_list);
1096 retval = security_sb_umount(&mnt->mnt, flags);
1101 * Allow userspace to request a mountpoint be expired rather than
1102 * unmounting unconditionally. Unmount only happens if:
1103 * (1) the mark is already set (the mark is cleared by mntput())
1104 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1106 if (flags & MNT_EXPIRE) {
1107 if (&mnt->mnt == current->fs->root.mnt ||
1108 flags & (MNT_FORCE | MNT_DETACH))
1112 * probably don't strictly need the lock here if we examined
1113 * all race cases, but it's a slowpath.
1115 br_write_lock(&vfsmount_lock);
1116 if (mnt_get_count(mnt) != 2) {
1117 br_write_unlock(&vfsmount_lock);
1120 br_write_unlock(&vfsmount_lock);
1122 if (!xchg(&mnt->mnt_expiry_mark, 1))
1127 * If we may have to abort operations to get out of this
1128 * mount, and they will themselves hold resources we must
1129 * allow the fs to do things. In the Unix tradition of
1130 * 'Gee thats tricky lets do it in userspace' the umount_begin
1131 * might fail to complete on the first run through as other tasks
1132 * must return, and the like. Thats for the mount program to worry
1133 * about for the moment.
1136 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1137 sb->s_op->umount_begin(sb);
1141 * No sense to grab the lock for this test, but test itself looks
1142 * somewhat bogus. Suggestions for better replacement?
1143 * Ho-hum... In principle, we might treat that as umount + switch
1144 * to rootfs. GC would eventually take care of the old vfsmount.
1145 * Actually it makes sense, especially if rootfs would contain a
1146 * /reboot - static binary that would close all descriptors and
1147 * call reboot(9). Then init(8) could umount root and exec /reboot.
1149 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1151 * Special case for "unmounting" root ...
1152 * we just try to remount it readonly.
1154 down_write(&sb->s_umount);
1155 if (!(sb->s_flags & MS_RDONLY))
1156 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1157 up_write(&sb->s_umount);
1161 down_write(&namespace_sem);
1162 br_write_lock(&vfsmount_lock);
1165 if (!(flags & MNT_DETACH))
1166 shrink_submounts(mnt, &umount_list);
1169 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1170 if (!list_empty(&mnt->mnt_list))
1171 umount_tree(mnt, 1, &umount_list);
1174 br_write_unlock(&vfsmount_lock);
1175 up_write(&namespace_sem);
1176 release_mounts(&umount_list);
1181 * Now umount can handle mount points as well as block devices.
1182 * This is important for filesystems which use unnamed block devices.
1184 * We now support a flag for forced unmount like the other 'big iron'
1185 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1188 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1193 int lookup_flags = 0;
1195 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1198 if (!(flags & UMOUNT_NOFOLLOW))
1199 lookup_flags |= LOOKUP_FOLLOW;
1201 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1204 mnt = real_mount(path.mnt);
1206 if (path.dentry != path.mnt->mnt_root)
1208 if (!check_mnt(mnt))
1212 if (!capable(CAP_SYS_ADMIN))
1215 retval = do_umount(mnt, flags);
1217 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1219 mntput_no_expire(mnt);
1224 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1227 * The 2.0 compatible umount. No flags.
1229 SYSCALL_DEFINE1(oldumount, char __user *, name)
1231 return sys_umount(name, 0);
1236 static int mount_is_safe(struct path *path)
1238 if (capable(CAP_SYS_ADMIN))
1242 if (S_ISLNK(path->dentry->d_inode->i_mode))
1244 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1245 if (current_uid() != path->dentry->d_inode->i_uid)
1248 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1254 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1257 struct mount *res, *p, *q, *r;
1260 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1261 return ERR_PTR(-EINVAL);
1263 res = q = clone_mnt(mnt, dentry, flag);
1267 q->mnt_mountpoint = mnt->mnt_mountpoint;
1270 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1272 if (!is_subdir(r->mnt_mountpoint, dentry))
1275 for (s = r; s; s = next_mnt(s, r)) {
1276 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1277 s = skip_mnt_tree(s);
1280 while (p != s->mnt_parent) {
1286 path.dentry = p->mnt_mountpoint;
1287 q = clone_mnt(p, p->mnt.mnt_root, flag);
1290 br_write_lock(&vfsmount_lock);
1291 list_add_tail(&q->mnt_list, &res->mnt_list);
1292 attach_mnt(q, &path);
1293 br_write_unlock(&vfsmount_lock);
1299 LIST_HEAD(umount_list);
1300 br_write_lock(&vfsmount_lock);
1301 umount_tree(res, 0, &umount_list);
1302 br_write_unlock(&vfsmount_lock);
1303 release_mounts(&umount_list);
1308 /* Caller should check returned pointer for errors */
1310 struct vfsmount *collect_mounts(struct path *path)
1313 down_write(&namespace_sem);
1314 tree = copy_tree(real_mount(path->mnt), path->dentry,
1315 CL_COPY_ALL | CL_PRIVATE);
1316 up_write(&namespace_sem);
1322 void drop_collected_mounts(struct vfsmount *mnt)
1324 LIST_HEAD(umount_list);
1325 down_write(&namespace_sem);
1326 br_write_lock(&vfsmount_lock);
1327 umount_tree(real_mount(mnt), 0, &umount_list);
1328 br_write_unlock(&vfsmount_lock);
1329 up_write(&namespace_sem);
1330 release_mounts(&umount_list);
1333 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1334 struct vfsmount *root)
1337 int res = f(root, arg);
1340 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1341 res = f(&mnt->mnt, arg);
1348 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1352 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1353 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1354 mnt_release_group_id(p);
1358 static int invent_group_ids(struct mount *mnt, bool recurse)
1362 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1363 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1364 int err = mnt_alloc_group_id(p);
1366 cleanup_group_ids(mnt, p);
1376 * @source_mnt : mount tree to be attached
1377 * @nd : place the mount tree @source_mnt is attached
1378 * @parent_nd : if non-null, detach the source_mnt from its parent and
1379 * store the parent mount and mountpoint dentry.
1380 * (done when source_mnt is moved)
1382 * NOTE: in the table below explains the semantics when a source mount
1383 * of a given type is attached to a destination mount of a given type.
1384 * ---------------------------------------------------------------------------
1385 * | BIND MOUNT OPERATION |
1386 * |**************************************************************************
1387 * | source-->| shared | private | slave | unbindable |
1391 * |**************************************************************************
1392 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1394 * |non-shared| shared (+) | private | slave (*) | invalid |
1395 * ***************************************************************************
1396 * A bind operation clones the source mount and mounts the clone on the
1397 * destination mount.
1399 * (++) the cloned mount is propagated to all the mounts in the propagation
1400 * tree of the destination mount and the cloned mount is added to
1401 * the peer group of the source mount.
1402 * (+) the cloned mount is created under the destination mount and is marked
1403 * as shared. The cloned mount is added to the peer group of the source
1405 * (+++) the mount is propagated to all the mounts in the propagation tree
1406 * of the destination mount and the cloned mount is made slave
1407 * of the same master as that of the source mount. The cloned mount
1408 * is marked as 'shared and slave'.
1409 * (*) the cloned mount is made a slave of the same master as that of the
1412 * ---------------------------------------------------------------------------
1413 * | MOVE MOUNT OPERATION |
1414 * |**************************************************************************
1415 * | source-->| shared | private | slave | unbindable |
1419 * |**************************************************************************
1420 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1422 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1423 * ***************************************************************************
1425 * (+) the mount is moved to the destination. And is then propagated to
1426 * all the mounts in the propagation tree of the destination mount.
1427 * (+*) the mount is moved to the destination.
1428 * (+++) the mount is moved to the destination and is then propagated to
1429 * all the mounts belonging to the destination mount's propagation tree.
1430 * the mount is marked as 'shared and slave'.
1431 * (*) the mount continues to be a slave at the new location.
1433 * if the source mount is a tree, the operations explained above is
1434 * applied to each mount in the tree.
1435 * Must be called without spinlocks held, since this function can sleep
1438 static int attach_recursive_mnt(struct mount *source_mnt,
1439 struct path *path, struct path *parent_path)
1441 LIST_HEAD(tree_list);
1442 struct mount *dest_mnt = real_mount(path->mnt);
1443 struct dentry *dest_dentry = path->dentry;
1444 struct mount *child, *p;
1447 if (IS_MNT_SHARED(dest_mnt)) {
1448 err = invent_group_ids(source_mnt, true);
1452 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1454 goto out_cleanup_ids;
1456 br_write_lock(&vfsmount_lock);
1458 if (IS_MNT_SHARED(dest_mnt)) {
1459 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1463 detach_mnt(source_mnt, parent_path);
1464 attach_mnt(source_mnt, path);
1465 touch_mnt_namespace(source_mnt->mnt_ns);
1467 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1468 commit_tree(source_mnt);
1471 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1472 list_del_init(&child->mnt_hash);
1475 br_write_unlock(&vfsmount_lock);
1480 if (IS_MNT_SHARED(dest_mnt))
1481 cleanup_group_ids(source_mnt, NULL);
1486 static int lock_mount(struct path *path)
1488 struct vfsmount *mnt;
1490 mutex_lock(&path->dentry->d_inode->i_mutex);
1491 if (unlikely(cant_mount(path->dentry))) {
1492 mutex_unlock(&path->dentry->d_inode->i_mutex);
1495 down_write(&namespace_sem);
1496 mnt = lookup_mnt(path);
1499 up_write(&namespace_sem);
1500 mutex_unlock(&path->dentry->d_inode->i_mutex);
1503 path->dentry = dget(mnt->mnt_root);
1507 static void unlock_mount(struct path *path)
1509 up_write(&namespace_sem);
1510 mutex_unlock(&path->dentry->d_inode->i_mutex);
1513 static int graft_tree(struct mount *mnt, struct path *path)
1515 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1518 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1519 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1522 if (d_unlinked(path->dentry))
1525 return attach_recursive_mnt(mnt, path, NULL);
1529 * Sanity check the flags to change_mnt_propagation.
1532 static int flags_to_propagation_type(int flags)
1534 int type = flags & ~(MS_REC | MS_SILENT);
1536 /* Fail if any non-propagation flags are set */
1537 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1539 /* Only one propagation flag should be set */
1540 if (!is_power_of_2(type))
1546 * recursively change the type of the mountpoint.
1548 static int do_change_type(struct path *path, int flag)
1551 struct mount *mnt = real_mount(path->mnt);
1552 int recurse = flag & MS_REC;
1556 if (!capable(CAP_SYS_ADMIN))
1559 if (path->dentry != path->mnt->mnt_root)
1562 type = flags_to_propagation_type(flag);
1566 down_write(&namespace_sem);
1567 if (type == MS_SHARED) {
1568 err = invent_group_ids(mnt, recurse);
1573 br_write_lock(&vfsmount_lock);
1574 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1575 change_mnt_propagation(m, type);
1576 br_write_unlock(&vfsmount_lock);
1579 up_write(&namespace_sem);
1584 * do loopback mount.
1586 static int do_loopback(struct path *path, char *old_name,
1589 LIST_HEAD(umount_list);
1590 struct path old_path;
1591 struct mount *mnt = NULL, *old;
1592 int err = mount_is_safe(path);
1595 if (!old_name || !*old_name)
1597 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1601 err = lock_mount(path);
1605 old = real_mount(old_path.mnt);
1608 if (IS_MNT_UNBINDABLE(old))
1611 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1615 mnt = copy_tree(old, old_path.dentry, 0);
1617 mnt = clone_mnt(old, old_path.dentry, 0);
1624 err = graft_tree(mnt, path);
1626 br_write_lock(&vfsmount_lock);
1627 umount_tree(mnt, 0, &umount_list);
1628 br_write_unlock(&vfsmount_lock);
1632 release_mounts(&umount_list);
1634 path_put(&old_path);
1638 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1641 int readonly_request = 0;
1643 if (ms_flags & MS_RDONLY)
1644 readonly_request = 1;
1645 if (readonly_request == __mnt_is_readonly(mnt))
1648 if (readonly_request)
1649 error = mnt_make_readonly(real_mount(mnt));
1651 __mnt_unmake_readonly(real_mount(mnt));
1656 * change filesystem flags. dir should be a physical root of filesystem.
1657 * If you've mounted a non-root directory somewhere and want to do remount
1658 * on it - tough luck.
1660 static int do_remount(struct path *path, int flags, int mnt_flags,
1664 struct super_block *sb = path->mnt->mnt_sb;
1665 struct mount *mnt = real_mount(path->mnt);
1667 if (!capable(CAP_SYS_ADMIN))
1670 if (!check_mnt(mnt))
1673 if (path->dentry != path->mnt->mnt_root)
1676 err = security_sb_remount(sb, data);
1680 down_write(&sb->s_umount);
1681 if (flags & MS_BIND)
1682 err = change_mount_flags(path->mnt, flags);
1684 err = do_remount_sb(sb, flags, data, 0);
1686 br_write_lock(&vfsmount_lock);
1687 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1688 mnt->mnt.mnt_flags = mnt_flags;
1689 br_write_unlock(&vfsmount_lock);
1691 up_write(&sb->s_umount);
1693 br_write_lock(&vfsmount_lock);
1694 touch_mnt_namespace(mnt->mnt_ns);
1695 br_write_unlock(&vfsmount_lock);
1700 static inline int tree_contains_unbindable(struct mount *mnt)
1703 for (p = mnt; p; p = next_mnt(p, mnt)) {
1704 if (IS_MNT_UNBINDABLE(p))
1710 static int do_move_mount(struct path *path, char *old_name)
1712 struct path old_path, parent_path;
1716 if (!capable(CAP_SYS_ADMIN))
1718 if (!old_name || !*old_name)
1720 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1724 err = lock_mount(path);
1728 old = real_mount(old_path.mnt);
1729 p = real_mount(path->mnt);
1732 if (!check_mnt(p) || !check_mnt(old))
1735 if (d_unlinked(path->dentry))
1739 if (old_path.dentry != old_path.mnt->mnt_root)
1742 if (!mnt_has_parent(old))
1745 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1746 S_ISDIR(old_path.dentry->d_inode->i_mode))
1749 * Don't move a mount residing in a shared parent.
1751 if (IS_MNT_SHARED(old->mnt_parent))
1754 * Don't move a mount tree containing unbindable mounts to a destination
1755 * mount which is shared.
1757 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1760 for (; mnt_has_parent(p); p = p->mnt_parent)
1764 err = attach_recursive_mnt(old, path, &parent_path);
1768 /* if the mount is moved, it should no longer be expire
1770 list_del_init(&old->mnt_expire);
1775 path_put(&parent_path);
1776 path_put(&old_path);
1780 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1783 const char *subtype = strchr(fstype, '.');
1792 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1794 if (!mnt->mnt_sb->s_subtype)
1800 return ERR_PTR(err);
1803 static struct vfsmount *
1804 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1806 struct file_system_type *type = get_fs_type(fstype);
1807 struct vfsmount *mnt;
1809 return ERR_PTR(-ENODEV);
1810 mnt = vfs_kern_mount(type, flags, name, data);
1811 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1812 !mnt->mnt_sb->s_subtype)
1813 mnt = fs_set_subtype(mnt, fstype);
1814 put_filesystem(type);
1819 * add a mount into a namespace's mount tree
1821 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1825 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1827 err = lock_mount(path);
1832 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(real_mount(path->mnt)))
1835 /* Refuse the same filesystem on the same mount point */
1837 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1838 path->mnt->mnt_root == path->dentry)
1842 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1845 newmnt->mnt.mnt_flags = mnt_flags;
1846 err = graft_tree(newmnt, path);
1854 * create a new mount for userspace and request it to be added into the
1857 static int do_new_mount(struct path *path, char *type, int flags,
1858 int mnt_flags, char *name, void *data)
1860 struct vfsmount *mnt;
1866 /* we need capabilities... */
1867 if (!capable(CAP_SYS_ADMIN))
1870 mnt = do_kern_mount(type, flags, name, data);
1872 return PTR_ERR(mnt);
1874 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1880 int finish_automount(struct vfsmount *m, struct path *path)
1882 struct mount *mnt = real_mount(m);
1884 /* The new mount record should have at least 2 refs to prevent it being
1885 * expired before we get a chance to add it
1887 BUG_ON(mnt_get_count(mnt) < 2);
1889 if (m->mnt_sb == path->mnt->mnt_sb &&
1890 m->mnt_root == path->dentry) {
1895 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1899 /* remove m from any expiration list it may be on */
1900 if (!list_empty(&mnt->mnt_expire)) {
1901 down_write(&namespace_sem);
1902 br_write_lock(&vfsmount_lock);
1903 list_del_init(&mnt->mnt_expire);
1904 br_write_unlock(&vfsmount_lock);
1905 up_write(&namespace_sem);
1913 * mnt_set_expiry - Put a mount on an expiration list
1914 * @mnt: The mount to list.
1915 * @expiry_list: The list to add the mount to.
1917 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1919 down_write(&namespace_sem);
1920 br_write_lock(&vfsmount_lock);
1922 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
1924 br_write_unlock(&vfsmount_lock);
1925 up_write(&namespace_sem);
1927 EXPORT_SYMBOL(mnt_set_expiry);
1930 * process a list of expirable mountpoints with the intent of discarding any
1931 * mountpoints that aren't in use and haven't been touched since last we came
1934 void mark_mounts_for_expiry(struct list_head *mounts)
1936 struct mount *mnt, *next;
1937 LIST_HEAD(graveyard);
1940 if (list_empty(mounts))
1943 down_write(&namespace_sem);
1944 br_write_lock(&vfsmount_lock);
1946 /* extract from the expiration list every vfsmount that matches the
1947 * following criteria:
1948 * - only referenced by its parent vfsmount
1949 * - still marked for expiry (marked on the last call here; marks are
1950 * cleared by mntput())
1952 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1953 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1954 propagate_mount_busy(mnt, 1))
1956 list_move(&mnt->mnt_expire, &graveyard);
1958 while (!list_empty(&graveyard)) {
1959 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
1960 touch_mnt_namespace(mnt->mnt_ns);
1961 umount_tree(mnt, 1, &umounts);
1963 br_write_unlock(&vfsmount_lock);
1964 up_write(&namespace_sem);
1966 release_mounts(&umounts);
1969 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1972 * Ripoff of 'select_parent()'
1974 * search the list of submounts for a given mountpoint, and move any
1975 * shrinkable submounts to the 'graveyard' list.
1977 static int select_submounts(struct mount *parent, struct list_head *graveyard)
1979 struct mount *this_parent = parent;
1980 struct list_head *next;
1984 next = this_parent->mnt_mounts.next;
1986 while (next != &this_parent->mnt_mounts) {
1987 struct list_head *tmp = next;
1988 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
1991 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1994 * Descend a level if the d_mounts list is non-empty.
1996 if (!list_empty(&mnt->mnt_mounts)) {
2001 if (!propagate_mount_busy(mnt, 1)) {
2002 list_move_tail(&mnt->mnt_expire, graveyard);
2007 * All done at this level ... ascend and resume the search
2009 if (this_parent != parent) {
2010 next = this_parent->mnt_child.next;
2011 this_parent = this_parent->mnt_parent;
2018 * process a list of expirable mountpoints with the intent of discarding any
2019 * submounts of a specific parent mountpoint
2021 * vfsmount_lock must be held for write
2023 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2025 LIST_HEAD(graveyard);
2028 /* extract submounts of 'mountpoint' from the expiration list */
2029 while (select_submounts(mnt, &graveyard)) {
2030 while (!list_empty(&graveyard)) {
2031 m = list_first_entry(&graveyard, struct mount,
2033 touch_mnt_namespace(m->mnt_ns);
2034 umount_tree(m, 1, umounts);
2040 * Some copy_from_user() implementations do not return the exact number of
2041 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2042 * Note that this function differs from copy_from_user() in that it will oops
2043 * on bad values of `to', rather than returning a short copy.
2045 static long exact_copy_from_user(void *to, const void __user * from,
2049 const char __user *f = from;
2052 if (!access_ok(VERIFY_READ, from, n))
2056 if (__get_user(c, f)) {
2067 int copy_mount_options(const void __user * data, unsigned long *where)
2077 if (!(page = __get_free_page(GFP_KERNEL)))
2080 /* We only care that *some* data at the address the user
2081 * gave us is valid. Just in case, we'll zero
2082 * the remainder of the page.
2084 /* copy_from_user cannot cross TASK_SIZE ! */
2085 size = TASK_SIZE - (unsigned long)data;
2086 if (size > PAGE_SIZE)
2089 i = size - exact_copy_from_user((void *)page, data, size);
2095 memset((char *)page + i, 0, PAGE_SIZE - i);
2100 int copy_mount_string(const void __user *data, char **where)
2109 tmp = strndup_user(data, PAGE_SIZE);
2111 return PTR_ERR(tmp);
2118 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2119 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2121 * data is a (void *) that can point to any structure up to
2122 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2123 * information (or be NULL).
2125 * Pre-0.97 versions of mount() didn't have a flags word.
2126 * When the flags word was introduced its top half was required
2127 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2128 * Therefore, if this magic number is present, it carries no information
2129 * and must be discarded.
2131 long do_mount(char *dev_name, char *dir_name, char *type_page,
2132 unsigned long flags, void *data_page)
2139 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2140 flags &= ~MS_MGC_MSK;
2142 /* Basic sanity checks */
2144 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2148 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2150 /* ... and get the mountpoint */
2151 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2155 retval = security_sb_mount(dev_name, &path,
2156 type_page, flags, data_page);
2160 /* Default to relatime unless overriden */
2161 if (!(flags & MS_NOATIME))
2162 mnt_flags |= MNT_RELATIME;
2164 /* Separate the per-mountpoint flags */
2165 if (flags & MS_NOSUID)
2166 mnt_flags |= MNT_NOSUID;
2167 if (flags & MS_NODEV)
2168 mnt_flags |= MNT_NODEV;
2169 if (flags & MS_NOEXEC)
2170 mnt_flags |= MNT_NOEXEC;
2171 if (flags & MS_NOATIME)
2172 mnt_flags |= MNT_NOATIME;
2173 if (flags & MS_NODIRATIME)
2174 mnt_flags |= MNT_NODIRATIME;
2175 if (flags & MS_STRICTATIME)
2176 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2177 if (flags & MS_RDONLY)
2178 mnt_flags |= MNT_READONLY;
2180 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2181 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2184 if (flags & MS_REMOUNT)
2185 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2187 else if (flags & MS_BIND)
2188 retval = do_loopback(&path, dev_name, flags & MS_REC);
2189 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2190 retval = do_change_type(&path, flags);
2191 else if (flags & MS_MOVE)
2192 retval = do_move_mount(&path, dev_name);
2194 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2195 dev_name, data_page);
2201 static struct mnt_namespace *alloc_mnt_ns(void)
2203 struct mnt_namespace *new_ns;
2205 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2207 return ERR_PTR(-ENOMEM);
2208 atomic_set(&new_ns->count, 1);
2209 new_ns->root = NULL;
2210 INIT_LIST_HEAD(&new_ns->list);
2211 init_waitqueue_head(&new_ns->poll);
2217 * Allocate a new namespace structure and populate it with contents
2218 * copied from the namespace of the passed in task structure.
2220 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2221 struct fs_struct *fs)
2223 struct mnt_namespace *new_ns;
2224 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2225 struct mount *p, *q;
2226 struct mount *old = mnt_ns->root;
2229 new_ns = alloc_mnt_ns();
2233 down_write(&namespace_sem);
2234 /* First pass: copy the tree topology */
2235 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2237 up_write(&namespace_sem);
2239 return ERR_CAST(new);
2242 br_write_lock(&vfsmount_lock);
2243 list_add_tail(&new_ns->list, &new->mnt_list);
2244 br_write_unlock(&vfsmount_lock);
2247 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2248 * as belonging to new namespace. We have already acquired a private
2249 * fs_struct, so tsk->fs->lock is not needed.
2256 if (&p->mnt == fs->root.mnt) {
2257 fs->root.mnt = mntget(&q->mnt);
2260 if (&p->mnt == fs->pwd.mnt) {
2261 fs->pwd.mnt = mntget(&q->mnt);
2265 p = next_mnt(p, old);
2266 q = next_mnt(q, new);
2268 up_write(&namespace_sem);
2278 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2279 struct fs_struct *new_fs)
2281 struct mnt_namespace *new_ns;
2286 if (!(flags & CLONE_NEWNS))
2289 new_ns = dup_mnt_ns(ns, new_fs);
2296 * create_mnt_ns - creates a private namespace and adds a root filesystem
2297 * @mnt: pointer to the new root filesystem mountpoint
2299 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2301 struct mnt_namespace *new_ns = alloc_mnt_ns();
2302 if (!IS_ERR(new_ns)) {
2303 struct mount *mnt = real_mount(m);
2304 mnt->mnt_ns = new_ns;
2306 list_add(&new_ns->list, &mnt->mnt_list);
2313 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2315 struct mnt_namespace *ns;
2316 struct super_block *s;
2320 ns = create_mnt_ns(mnt);
2322 return ERR_CAST(ns);
2324 err = vfs_path_lookup(mnt->mnt_root, mnt,
2325 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2330 return ERR_PTR(err);
2332 /* trade a vfsmount reference for active sb one */
2333 s = path.mnt->mnt_sb;
2334 atomic_inc(&s->s_active);
2336 /* lock the sucker */
2337 down_write(&s->s_umount);
2338 /* ... and return the root of (sub)tree on it */
2341 EXPORT_SYMBOL(mount_subtree);
2343 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2344 char __user *, type, unsigned long, flags, void __user *, data)
2350 unsigned long data_page;
2352 ret = copy_mount_string(type, &kernel_type);
2356 kernel_dir = getname(dir_name);
2357 if (IS_ERR(kernel_dir)) {
2358 ret = PTR_ERR(kernel_dir);
2362 ret = copy_mount_string(dev_name, &kernel_dev);
2366 ret = copy_mount_options(data, &data_page);
2370 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2371 (void *) data_page);
2373 free_page(data_page);
2377 putname(kernel_dir);
2385 * Return true if path is reachable from root
2387 * namespace_sem or vfsmount_lock is held
2389 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2390 const struct path *root)
2392 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2393 dentry = mnt->mnt_mountpoint;
2394 mnt = mnt->mnt_parent;
2396 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2399 int path_is_under(struct path *path1, struct path *path2)
2402 br_read_lock(&vfsmount_lock);
2403 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2404 br_read_unlock(&vfsmount_lock);
2407 EXPORT_SYMBOL(path_is_under);
2410 * pivot_root Semantics:
2411 * Moves the root file system of the current process to the directory put_old,
2412 * makes new_root as the new root file system of the current process, and sets
2413 * root/cwd of all processes which had them on the current root to new_root.
2416 * The new_root and put_old must be directories, and must not be on the
2417 * same file system as the current process root. The put_old must be
2418 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2419 * pointed to by put_old must yield the same directory as new_root. No other
2420 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2422 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2423 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2424 * in this situation.
2427 * - we don't move root/cwd if they are not at the root (reason: if something
2428 * cared enough to change them, it's probably wrong to force them elsewhere)
2429 * - it's okay to pick a root that isn't the root of a file system, e.g.
2430 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2431 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2434 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2435 const char __user *, put_old)
2437 struct path new, old, parent_path, root_parent, root;
2438 struct mount *new_mnt, *root_mnt;
2441 if (!capable(CAP_SYS_ADMIN))
2444 error = user_path_dir(new_root, &new);
2448 error = user_path_dir(put_old, &old);
2452 error = security_sb_pivotroot(&old, &new);
2456 get_fs_root(current->fs, &root);
2457 error = lock_mount(&old);
2462 new_mnt = real_mount(new.mnt);
2463 root_mnt = real_mount(root.mnt);
2464 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2465 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2466 IS_MNT_SHARED(root_mnt->mnt_parent))
2468 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2471 if (d_unlinked(new.dentry))
2473 if (d_unlinked(old.dentry))
2476 if (new.mnt == root.mnt ||
2477 old.mnt == root.mnt)
2478 goto out4; /* loop, on the same file system */
2480 if (root.mnt->mnt_root != root.dentry)
2481 goto out4; /* not a mountpoint */
2482 if (!mnt_has_parent(root_mnt))
2483 goto out4; /* not attached */
2484 if (new.mnt->mnt_root != new.dentry)
2485 goto out4; /* not a mountpoint */
2486 if (!mnt_has_parent(new_mnt))
2487 goto out4; /* not attached */
2488 /* make sure we can reach put_old from new_root */
2489 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2491 br_write_lock(&vfsmount_lock);
2492 detach_mnt(new_mnt, &parent_path);
2493 detach_mnt(root_mnt, &root_parent);
2494 /* mount old root on put_old */
2495 attach_mnt(root_mnt, &old);
2496 /* mount new_root on / */
2497 attach_mnt(new_mnt, &root_parent);
2498 touch_mnt_namespace(current->nsproxy->mnt_ns);
2499 br_write_unlock(&vfsmount_lock);
2500 chroot_fs_refs(&root, &new);
2505 path_put(&root_parent);
2506 path_put(&parent_path);
2518 static void __init init_mount_tree(void)
2520 struct vfsmount *mnt;
2521 struct mnt_namespace *ns;
2524 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2526 panic("Can't create rootfs");
2528 ns = create_mnt_ns(mnt);
2530 panic("Can't allocate initial namespace");
2532 init_task.nsproxy->mnt_ns = ns;
2536 root.dentry = mnt->mnt_root;
2538 set_fs_pwd(current->fs, &root);
2539 set_fs_root(current->fs, &root);
2542 void __init mnt_init(void)
2547 init_rwsem(&namespace_sem);
2549 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2550 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2552 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2554 if (!mount_hashtable)
2555 panic("Failed to allocate mount hash table\n");
2557 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2559 for (u = 0; u < HASH_SIZE; u++)
2560 INIT_LIST_HEAD(&mount_hashtable[u]);
2562 br_lock_init(&vfsmount_lock);
2566 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2568 fs_kobj = kobject_create_and_add("fs", NULL);
2570 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2575 void put_mnt_ns(struct mnt_namespace *ns)
2577 LIST_HEAD(umount_list);
2579 if (!atomic_dec_and_test(&ns->count))
2581 down_write(&namespace_sem);
2582 br_write_lock(&vfsmount_lock);
2583 umount_tree(ns->root, 0, &umount_list);
2584 br_write_unlock(&vfsmount_lock);
2585 up_write(&namespace_sem);
2586 release_mounts(&umount_list);
2590 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2592 struct vfsmount *mnt;
2593 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2596 * it is a longterm mount, don't release mnt until
2597 * we unmount before file sys is unregistered
2599 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2603 EXPORT_SYMBOL_GPL(kern_mount_data);
2605 void kern_unmount(struct vfsmount *mnt)
2607 /* release long term mount so mount point can be released */
2608 if (!IS_ERR_OR_NULL(mnt)) {
2609 br_write_lock(&vfsmount_lock);
2610 real_mount(mnt)->mnt_ns = NULL;
2611 br_write_unlock(&vfsmount_lock);
2615 EXPORT_SYMBOL(kern_unmount);
2617 bool our_mnt(struct vfsmount *mnt)
2619 return check_mnt(real_mount(mnt));