4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/acct.h> /* acct_auto_close_mnt */
20 #include <linux/ramfs.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_fs.h>
28 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29 #define HASH_SIZE (1UL << HASH_SHIFT)
32 static DEFINE_IDA(mnt_id_ida);
33 static DEFINE_IDA(mnt_group_ida);
34 static DEFINE_SPINLOCK(mnt_id_lock);
35 static int mnt_id_start = 0;
36 static int mnt_group_start = 1;
38 static struct list_head *mount_hashtable __read_mostly;
39 static struct kmem_cache *mnt_cache __read_mostly;
40 static struct rw_semaphore namespace_sem;
43 struct kobject *fs_kobj;
44 EXPORT_SYMBOL_GPL(fs_kobj);
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
54 DEFINE_BRLOCK(vfsmount_lock);
56 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
64 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
70 static int mnt_alloc_id(struct mount *mnt)
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
76 spin_lock(&mnt_id_lock);
77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
79 mnt_id_start = mnt->mnt_id + 1;
80 spin_unlock(&mnt_id_lock);
87 static void mnt_free_id(struct mount *mnt)
90 spin_lock(&mnt_id_lock);
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
94 spin_unlock(&mnt_id_lock);
98 * Allocate a new peer group ID
100 * mnt_group_ida is protected by namespace_sem
102 static int mnt_alloc_group_id(struct mount *mnt)
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 res = ida_get_new_above(&mnt_group_ida,
113 mnt_group_start = mnt->mnt_group_id + 1;
119 * Release a peer group ID
121 void mnt_release_group_id(struct mount *mnt)
123 int id = mnt->mnt_group_id;
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
127 mnt->mnt_group_id = 0;
131 * vfsmount lock must be held for read
133 static inline void mnt_add_count(struct mount *mnt, int n)
136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
145 * vfsmount lock must be held for write
147 unsigned int mnt_get_count(struct mount *mnt)
150 unsigned int count = 0;
153 for_each_possible_cpu(cpu) {
154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
159 return mnt->mnt_count;
163 static struct mount *alloc_vfsmnt(const char *name)
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
169 err = mnt_alloc_id(mnt);
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
182 goto out_free_devname;
184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
187 mnt->mnt_writers = 0;
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
198 #ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
206 kfree(mnt->mnt_devname);
211 kmem_cache_free(mnt_cache, mnt);
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
234 int __mnt_is_readonly(struct vfsmount *mnt)
236 if (mnt->mnt_flags & MNT_READONLY)
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
242 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
244 static inline void mnt_inc_writers(struct mount *mnt)
247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
253 static inline void mnt_dec_writers(struct mount *mnt)
256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
262 static unsigned int mnt_get_writers(struct mount *mnt)
265 unsigned int count = 0;
268 for_each_possible_cpu(cpu) {
269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
274 return mnt->mnt_writers;
278 static int mnt_is_readonly(struct vfsmount *mnt)
280 if (mnt->mnt_sb->s_readonly_remount)
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
284 return __mnt_is_readonly(mnt);
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
294 * __mnt_want_write - get write access to a mount without freeze protection
295 * @m: the mount on which to take a write
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
303 int __mnt_want_write(struct vfsmount *m)
305 struct mount *mnt = real_mount(m);
309 mnt_inc_writers(mnt);
311 * The store to mnt_inc_writers must be visible before we pass
312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
316 while (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
324 if (mnt_is_readonly(m)) {
325 mnt_dec_writers(mnt);
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
342 int mnt_want_write(struct vfsmount *m)
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
349 sb_end_write(m->mnt_sb);
352 EXPORT_SYMBOL_GPL(mnt_want_write);
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
366 int mnt_clone_write(struct vfsmount *mnt)
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
372 mnt_inc_writers(real_mount(mnt));
376 EXPORT_SYMBOL_GPL(mnt_clone_write);
379 * __mnt_want_write_file - get write access to a file's mount
380 * @file: the file who's mount on which to take a write
382 * This is like __mnt_want_write, but it takes a file and can
383 * do some optimisations if the file is open for write already
385 int __mnt_want_write_file(struct file *file)
387 struct inode *inode = file->f_dentry->d_inode;
389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
390 return __mnt_want_write(file->f_path.mnt);
392 return mnt_clone_write(file->f_path.mnt);
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
402 int mnt_want_write_file(struct file *file)
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
409 sb_end_write(file->f_path.mnt->mnt_sb);
412 EXPORT_SYMBOL_GPL(mnt_want_write_file);
415 * __mnt_drop_write - give up write access to a mount
416 * @mnt: the mount on which to give up write access
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
420 * __mnt_want_write() call above.
422 void __mnt_drop_write(struct vfsmount *mnt)
425 mnt_dec_writers(real_mount(mnt));
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
437 void mnt_drop_write(struct vfsmount *mnt)
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
442 EXPORT_SYMBOL_GPL(mnt_drop_write);
444 void __mnt_drop_write_file(struct file *file)
446 __mnt_drop_write(file->f_path.mnt);
449 void mnt_drop_write_file(struct file *file)
451 mnt_drop_write(file->f_path.mnt);
453 EXPORT_SYMBOL(mnt_drop_write_file);
455 static int mnt_make_readonly(struct mount *mnt)
459 br_write_lock(&vfsmount_lock);
460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
483 if (mnt_get_writers(mnt) > 0)
486 mnt->mnt.mnt_flags |= MNT_READONLY;
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
493 br_write_unlock(&vfsmount_lock);
497 static void __mnt_unmake_readonly(struct mount *mnt)
499 br_write_lock(&vfsmount_lock);
500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
501 br_write_unlock(&vfsmount_lock);
504 int sb_prepare_remount_readonly(struct super_block *sb)
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
513 br_write_lock(&vfsmount_lock);
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
518 if (mnt_get_writers(mnt) > 0) {
524 if (!err && atomic_long_read(&sb->s_remove_count))
528 sb->s_readonly_remount = 1;
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 br_write_unlock(&vfsmount_lock);
540 static void free_vfsmnt(struct mount *mnt)
542 kfree(mnt->mnt_devname);
545 free_percpu(mnt->mnt_pcp);
547 kmem_cache_free(mnt_cache, mnt);
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
553 * vfsmount_lock must be held for read or write.
555 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
560 struct mount *p, *found = NULL;
563 tmp = dir ? tmp->next : tmp->prev;
567 p = list_entry(tmp, struct mount, mnt_hash);
568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
577 * lookup_mnt - Return the first child mount mounted at path
579 * "First" means first mounted chronologically. If you create the
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
590 * lookup_mnt takes a reference to the found vfsmount.
592 struct vfsmount *lookup_mnt(struct path *path)
594 struct mount *child_mnt;
596 br_read_lock(&vfsmount_lock);
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
599 mnt_add_count(child_mnt, 1);
600 br_read_unlock(&vfsmount_lock);
601 return &child_mnt->mnt;
603 br_read_unlock(&vfsmount_lock);
608 static inline int check_mnt(struct mount *mnt)
610 return mnt->mnt_ns == current->nsproxy->mnt_ns;
614 * vfsmount lock must be held for write
616 static void touch_mnt_namespace(struct mnt_namespace *ns)
620 wake_up_interruptible(&ns->poll);
625 * vfsmount lock must be held for write
627 static void __touch_mnt_namespace(struct mnt_namespace *ns)
629 if (ns && ns->event != event) {
631 wake_up_interruptible(&ns->poll);
636 * Clear dentry's mounted state if it has no remaining mounts.
637 * vfsmount_lock must be held for write.
639 static void dentry_reset_mounted(struct dentry *dentry)
643 for (u = 0; u < HASH_SIZE; u++) {
646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
647 if (p->mnt_mountpoint == dentry)
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
657 * vfsmount lock must be held for write
659 static void detach_mnt(struct mount *mnt, struct path *old_path)
661 old_path->dentry = mnt->mnt_mountpoint;
662 old_path->mnt = &mnt->mnt_parent->mnt;
663 mnt->mnt_parent = mnt;
664 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
665 list_del_init(&mnt->mnt_child);
666 list_del_init(&mnt->mnt_hash);
667 dentry_reset_mounted(old_path->dentry);
671 * vfsmount lock must be held for write
673 void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
674 struct mount *child_mnt)
676 mnt_add_count(mnt, 1); /* essentially, that's mntget */
677 child_mnt->mnt_mountpoint = dget(dentry);
678 child_mnt->mnt_parent = mnt;
679 spin_lock(&dentry->d_lock);
680 dentry->d_flags |= DCACHE_MOUNTED;
681 spin_unlock(&dentry->d_lock);
685 * vfsmount lock must be held for write
687 static void attach_mnt(struct mount *mnt, struct path *path)
689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
690 list_add_tail(&mnt->mnt_hash, mount_hashtable +
691 hash(path->mnt, path->dentry));
692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
696 * vfsmount lock must be held for write
698 static void commit_tree(struct mount *mnt)
700 struct mount *parent = mnt->mnt_parent;
703 struct mnt_namespace *n = parent->mnt_ns;
705 BUG_ON(parent == mnt);
707 list_add_tail(&head, &mnt->mnt_list);
708 list_for_each_entry(m, &head, mnt_list)
711 list_splice(&head, n->list.prev);
713 list_add_tail(&mnt->mnt_hash, mount_hashtable +
714 hash(&parent->mnt, mnt->mnt_mountpoint));
715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
716 touch_mnt_namespace(n);
719 static struct mount *next_mnt(struct mount *p, struct mount *root)
721 struct list_head *next = p->mnt_mounts.next;
722 if (next == &p->mnt_mounts) {
726 next = p->mnt_child.next;
727 if (next != &p->mnt_parent->mnt_mounts)
732 return list_entry(next, struct mount, mnt_child);
735 static struct mount *skip_mnt_tree(struct mount *p)
737 struct list_head *prev = p->mnt_mounts.prev;
738 while (prev != &p->mnt_mounts) {
739 p = list_entry(prev, struct mount, mnt_child);
740 prev = p->mnt_mounts.prev;
746 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
752 return ERR_PTR(-ENODEV);
754 mnt = alloc_vfsmnt(name);
756 return ERR_PTR(-ENOMEM);
758 if (flags & MS_KERNMOUNT)
759 mnt->mnt.mnt_flags = MNT_INTERNAL;
761 root = mount_fs(type, flags, name, data);
764 return ERR_CAST(root);
767 mnt->mnt.mnt_root = root;
768 mnt->mnt.mnt_sb = root->d_sb;
769 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
770 mnt->mnt_parent = mnt;
771 br_write_lock(&vfsmount_lock);
772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
773 br_write_unlock(&vfsmount_lock);
776 EXPORT_SYMBOL_GPL(vfs_kern_mount);
778 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
781 struct super_block *sb = old->mnt.mnt_sb;
785 mnt = alloc_vfsmnt(old->mnt_devname);
787 return ERR_PTR(-ENOMEM);
789 if (flag & (CL_SLAVE | CL_PRIVATE))
790 mnt->mnt_group_id = 0; /* not a peer of original */
792 mnt->mnt_group_id = old->mnt_group_id;
794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 err = mnt_alloc_group_id(mnt);
800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 atomic_inc(&sb->s_active);
802 mnt->mnt.mnt_sb = sb;
803 mnt->mnt.mnt_root = dget(root);
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 mnt->mnt_parent = mnt;
806 br_write_lock(&vfsmount_lock);
807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 br_write_unlock(&vfsmount_lock);
810 if (flag & CL_SLAVE) {
811 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
812 mnt->mnt_master = old;
813 CLEAR_MNT_SHARED(mnt);
814 } else if (!(flag & CL_PRIVATE)) {
815 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
816 list_add(&mnt->mnt_share, &old->mnt_share);
817 if (IS_MNT_SLAVE(old))
818 list_add(&mnt->mnt_slave, &old->mnt_slave);
819 mnt->mnt_master = old->mnt_master;
821 if (flag & CL_MAKE_SHARED)
824 /* stick the duplicate mount on the same expiry list
825 * as the original if that was on one */
826 if (flag & CL_EXPIRE) {
827 if (!list_empty(&old->mnt_expire))
828 list_add(&mnt->mnt_expire, &old->mnt_expire);
838 static inline void mntfree(struct mount *mnt)
840 struct vfsmount *m = &mnt->mnt;
841 struct super_block *sb = m->mnt_sb;
844 * This probably indicates that somebody messed
845 * up a mnt_want/drop_write() pair. If this
846 * happens, the filesystem was probably unable
847 * to make r/w->r/o transitions.
850 * The locking used to deal with mnt_count decrement provides barriers,
851 * so mnt_get_writers() below is safe.
853 WARN_ON(mnt_get_writers(mnt));
854 fsnotify_vfsmount_delete(m);
857 deactivate_super(sb);
860 static void mntput_no_expire(struct mount *mnt)
864 br_read_lock(&vfsmount_lock);
865 if (likely(mnt->mnt_ns)) {
866 /* shouldn't be the last one */
867 mnt_add_count(mnt, -1);
868 br_read_unlock(&vfsmount_lock);
871 br_read_unlock(&vfsmount_lock);
873 br_write_lock(&vfsmount_lock);
874 mnt_add_count(mnt, -1);
875 if (mnt_get_count(mnt)) {
876 br_write_unlock(&vfsmount_lock);
880 mnt_add_count(mnt, -1);
881 if (likely(mnt_get_count(mnt)))
883 br_write_lock(&vfsmount_lock);
885 if (unlikely(mnt->mnt_pinned)) {
886 mnt_add_count(mnt, mnt->mnt_pinned + 1);
888 br_write_unlock(&vfsmount_lock);
889 acct_auto_close_mnt(&mnt->mnt);
893 list_del(&mnt->mnt_instance);
894 br_write_unlock(&vfsmount_lock);
898 void mntput(struct vfsmount *mnt)
901 struct mount *m = real_mount(mnt);
902 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
903 if (unlikely(m->mnt_expiry_mark))
904 m->mnt_expiry_mark = 0;
908 EXPORT_SYMBOL(mntput);
910 struct vfsmount *mntget(struct vfsmount *mnt)
913 mnt_add_count(real_mount(mnt), 1);
916 EXPORT_SYMBOL(mntget);
918 void mnt_pin(struct vfsmount *mnt)
920 br_write_lock(&vfsmount_lock);
921 real_mount(mnt)->mnt_pinned++;
922 br_write_unlock(&vfsmount_lock);
924 EXPORT_SYMBOL(mnt_pin);
926 void mnt_unpin(struct vfsmount *m)
928 struct mount *mnt = real_mount(m);
929 br_write_lock(&vfsmount_lock);
930 if (mnt->mnt_pinned) {
931 mnt_add_count(mnt, 1);
934 br_write_unlock(&vfsmount_lock);
936 EXPORT_SYMBOL(mnt_unpin);
938 static inline void mangle(struct seq_file *m, const char *s)
940 seq_escape(m, s, " \t\n\\");
944 * Simple .show_options callback for filesystems which don't want to
945 * implement more complex mount option showing.
947 * See also save_mount_options().
949 int generic_show_options(struct seq_file *m, struct dentry *root)
954 options = rcu_dereference(root->d_sb->s_options);
956 if (options != NULL && options[0]) {
964 EXPORT_SYMBOL(generic_show_options);
967 * If filesystem uses generic_show_options(), this function should be
968 * called from the fill_super() callback.
970 * The .remount_fs callback usually needs to be handled in a special
971 * way, to make sure, that previous options are not overwritten if the
974 * Also note, that if the filesystem's .remount_fs function doesn't
975 * reset all options to their default value, but changes only newly
976 * given options, then the displayed options will not reflect reality
979 void save_mount_options(struct super_block *sb, char *options)
981 BUG_ON(sb->s_options);
982 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
984 EXPORT_SYMBOL(save_mount_options);
986 void replace_mount_options(struct super_block *sb, char *options)
988 char *old = sb->s_options;
989 rcu_assign_pointer(sb->s_options, options);
995 EXPORT_SYMBOL(replace_mount_options);
997 #ifdef CONFIG_PROC_FS
998 /* iterator; we want it to have access to namespace_sem, thus here... */
999 static void *m_start(struct seq_file *m, loff_t *pos)
1001 struct proc_mounts *p = proc_mounts(m);
1003 down_read(&namespace_sem);
1004 return seq_list_start(&p->ns->list, *pos);
1007 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1009 struct proc_mounts *p = proc_mounts(m);
1011 return seq_list_next(v, &p->ns->list, pos);
1014 static void m_stop(struct seq_file *m, void *v)
1016 up_read(&namespace_sem);
1019 static int m_show(struct seq_file *m, void *v)
1021 struct proc_mounts *p = proc_mounts(m);
1022 struct mount *r = list_entry(v, struct mount, mnt_list);
1023 return p->show(m, &r->mnt);
1026 const struct seq_operations mounts_op = {
1032 #endif /* CONFIG_PROC_FS */
1035 * may_umount_tree - check if a mount tree is busy
1036 * @mnt: root of mount tree
1038 * This is called to check if a tree of mounts has any
1039 * open files, pwds, chroots or sub mounts that are
1042 int may_umount_tree(struct vfsmount *m)
1044 struct mount *mnt = real_mount(m);
1045 int actual_refs = 0;
1046 int minimum_refs = 0;
1050 /* write lock needed for mnt_get_count */
1051 br_write_lock(&vfsmount_lock);
1052 for (p = mnt; p; p = next_mnt(p, mnt)) {
1053 actual_refs += mnt_get_count(p);
1056 br_write_unlock(&vfsmount_lock);
1058 if (actual_refs > minimum_refs)
1064 EXPORT_SYMBOL(may_umount_tree);
1067 * may_umount - check if a mount point is busy
1068 * @mnt: root of mount
1070 * This is called to check if a mount point has any
1071 * open files, pwds, chroots or sub mounts. If the
1072 * mount has sub mounts this will return busy
1073 * regardless of whether the sub mounts are busy.
1075 * Doesn't take quota and stuff into account. IOW, in some cases it will
1076 * give false negatives. The main reason why it's here is that we need
1077 * a non-destructive way to look for easily umountable filesystems.
1079 int may_umount(struct vfsmount *mnt)
1082 down_read(&namespace_sem);
1083 br_write_lock(&vfsmount_lock);
1084 if (propagate_mount_busy(real_mount(mnt), 2))
1086 br_write_unlock(&vfsmount_lock);
1087 up_read(&namespace_sem);
1091 EXPORT_SYMBOL(may_umount);
1093 void release_mounts(struct list_head *head)
1096 while (!list_empty(head)) {
1097 mnt = list_first_entry(head, struct mount, mnt_hash);
1098 list_del_init(&mnt->mnt_hash);
1099 if (mnt_has_parent(mnt)) {
1100 struct dentry *dentry;
1103 br_write_lock(&vfsmount_lock);
1104 dentry = mnt->mnt_mountpoint;
1105 m = mnt->mnt_parent;
1106 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1107 mnt->mnt_parent = mnt;
1109 br_write_unlock(&vfsmount_lock);
1118 * vfsmount lock must be held for write
1119 * namespace_sem must be held for write
1121 void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1123 LIST_HEAD(tmp_list);
1126 for (p = mnt; p; p = next_mnt(p, mnt))
1127 list_move(&p->mnt_hash, &tmp_list);
1130 propagate_umount(&tmp_list);
1132 list_for_each_entry(p, &tmp_list, mnt_hash) {
1133 list_del_init(&p->mnt_expire);
1134 list_del_init(&p->mnt_list);
1135 __touch_mnt_namespace(p->mnt_ns);
1137 list_del_init(&p->mnt_child);
1138 if (mnt_has_parent(p)) {
1139 p->mnt_parent->mnt_ghosts++;
1140 dentry_reset_mounted(p->mnt_mountpoint);
1142 change_mnt_propagation(p, MS_PRIVATE);
1144 list_splice(&tmp_list, kill);
1147 static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
1149 static int do_umount(struct mount *mnt, int flags)
1151 struct super_block *sb = mnt->mnt.mnt_sb;
1153 LIST_HEAD(umount_list);
1155 retval = security_sb_umount(&mnt->mnt, flags);
1160 * Allow userspace to request a mountpoint be expired rather than
1161 * unmounting unconditionally. Unmount only happens if:
1162 * (1) the mark is already set (the mark is cleared by mntput())
1163 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1165 if (flags & MNT_EXPIRE) {
1166 if (&mnt->mnt == current->fs->root.mnt ||
1167 flags & (MNT_FORCE | MNT_DETACH))
1171 * probably don't strictly need the lock here if we examined
1172 * all race cases, but it's a slowpath.
1174 br_write_lock(&vfsmount_lock);
1175 if (mnt_get_count(mnt) != 2) {
1176 br_write_unlock(&vfsmount_lock);
1179 br_write_unlock(&vfsmount_lock);
1181 if (!xchg(&mnt->mnt_expiry_mark, 1))
1186 * If we may have to abort operations to get out of this
1187 * mount, and they will themselves hold resources we must
1188 * allow the fs to do things. In the Unix tradition of
1189 * 'Gee thats tricky lets do it in userspace' the umount_begin
1190 * might fail to complete on the first run through as other tasks
1191 * must return, and the like. Thats for the mount program to worry
1192 * about for the moment.
1195 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1196 sb->s_op->umount_begin(sb);
1200 * No sense to grab the lock for this test, but test itself looks
1201 * somewhat bogus. Suggestions for better replacement?
1202 * Ho-hum... In principle, we might treat that as umount + switch
1203 * to rootfs. GC would eventually take care of the old vfsmount.
1204 * Actually it makes sense, especially if rootfs would contain a
1205 * /reboot - static binary that would close all descriptors and
1206 * call reboot(9). Then init(8) could umount root and exec /reboot.
1208 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1210 * Special case for "unmounting" root ...
1211 * we just try to remount it readonly.
1213 down_write(&sb->s_umount);
1214 if (!(sb->s_flags & MS_RDONLY))
1215 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1216 up_write(&sb->s_umount);
1220 down_write(&namespace_sem);
1221 br_write_lock(&vfsmount_lock);
1224 if (!(flags & MNT_DETACH))
1225 shrink_submounts(mnt, &umount_list);
1228 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1229 if (!list_empty(&mnt->mnt_list))
1230 umount_tree(mnt, 1, &umount_list);
1233 br_write_unlock(&vfsmount_lock);
1234 up_write(&namespace_sem);
1235 release_mounts(&umount_list);
1240 * Now umount can handle mount points as well as block devices.
1241 * This is important for filesystems which use unnamed block devices.
1243 * We now support a flag for forced unmount like the other 'big iron'
1244 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1247 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1252 int lookup_flags = 0;
1254 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1257 if (!(flags & UMOUNT_NOFOLLOW))
1258 lookup_flags |= LOOKUP_FOLLOW;
1260 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1263 mnt = real_mount(path.mnt);
1265 if (path.dentry != path.mnt->mnt_root)
1267 if (!check_mnt(mnt))
1271 if (!capable(CAP_SYS_ADMIN))
1274 retval = do_umount(mnt, flags);
1276 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1278 mntput_no_expire(mnt);
1283 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1286 * The 2.0 compatible umount. No flags.
1288 SYSCALL_DEFINE1(oldumount, char __user *, name)
1290 return sys_umount(name, 0);
1295 static int mount_is_safe(struct path *path)
1297 if (capable(CAP_SYS_ADMIN))
1301 if (S_ISLNK(path->dentry->d_inode->i_mode))
1303 if (path->dentry->d_inode->i_mode & S_ISVTX) {
1304 if (current_uid() != path->dentry->d_inode->i_uid)
1307 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1313 static bool mnt_ns_loop(struct path *path)
1315 /* Could bind mounting the mount namespace inode cause a
1316 * mount namespace loop?
1318 struct inode *inode = path->dentry->d_inode;
1319 struct proc_inode *ei;
1320 struct mnt_namespace *mnt_ns;
1322 if (!proc_ns_inode(inode))
1326 if (ei->ns_ops != &mntns_operations)
1330 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1333 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1336 struct mount *res, *p, *q, *r;
1339 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1340 return ERR_PTR(-EINVAL);
1342 res = q = clone_mnt(mnt, dentry, flag);
1346 q->mnt_mountpoint = mnt->mnt_mountpoint;
1349 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1351 if (!is_subdir(r->mnt_mountpoint, dentry))
1354 for (s = r; s; s = next_mnt(s, r)) {
1355 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1356 s = skip_mnt_tree(s);
1359 while (p != s->mnt_parent) {
1365 path.dentry = p->mnt_mountpoint;
1366 q = clone_mnt(p, p->mnt.mnt_root, flag);
1369 br_write_lock(&vfsmount_lock);
1370 list_add_tail(&q->mnt_list, &res->mnt_list);
1371 attach_mnt(q, &path);
1372 br_write_unlock(&vfsmount_lock);
1378 LIST_HEAD(umount_list);
1379 br_write_lock(&vfsmount_lock);
1380 umount_tree(res, 0, &umount_list);
1381 br_write_unlock(&vfsmount_lock);
1382 release_mounts(&umount_list);
1387 /* Caller should check returned pointer for errors */
1389 struct vfsmount *collect_mounts(struct path *path)
1392 down_write(&namespace_sem);
1393 tree = copy_tree(real_mount(path->mnt), path->dentry,
1394 CL_COPY_ALL | CL_PRIVATE);
1395 up_write(&namespace_sem);
1401 void drop_collected_mounts(struct vfsmount *mnt)
1403 LIST_HEAD(umount_list);
1404 down_write(&namespace_sem);
1405 br_write_lock(&vfsmount_lock);
1406 umount_tree(real_mount(mnt), 0, &umount_list);
1407 br_write_unlock(&vfsmount_lock);
1408 up_write(&namespace_sem);
1409 release_mounts(&umount_list);
1412 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1413 struct vfsmount *root)
1416 int res = f(root, arg);
1419 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1420 res = f(&mnt->mnt, arg);
1427 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1431 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1432 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1433 mnt_release_group_id(p);
1437 static int invent_group_ids(struct mount *mnt, bool recurse)
1441 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1442 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1443 int err = mnt_alloc_group_id(p);
1445 cleanup_group_ids(mnt, p);
1455 * @source_mnt : mount tree to be attached
1456 * @nd : place the mount tree @source_mnt is attached
1457 * @parent_nd : if non-null, detach the source_mnt from its parent and
1458 * store the parent mount and mountpoint dentry.
1459 * (done when source_mnt is moved)
1461 * NOTE: in the table below explains the semantics when a source mount
1462 * of a given type is attached to a destination mount of a given type.
1463 * ---------------------------------------------------------------------------
1464 * | BIND MOUNT OPERATION |
1465 * |**************************************************************************
1466 * | source-->| shared | private | slave | unbindable |
1470 * |**************************************************************************
1471 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1473 * |non-shared| shared (+) | private | slave (*) | invalid |
1474 * ***************************************************************************
1475 * A bind operation clones the source mount and mounts the clone on the
1476 * destination mount.
1478 * (++) the cloned mount is propagated to all the mounts in the propagation
1479 * tree of the destination mount and the cloned mount is added to
1480 * the peer group of the source mount.
1481 * (+) the cloned mount is created under the destination mount and is marked
1482 * as shared. The cloned mount is added to the peer group of the source
1484 * (+++) the mount is propagated to all the mounts in the propagation tree
1485 * of the destination mount and the cloned mount is made slave
1486 * of the same master as that of the source mount. The cloned mount
1487 * is marked as 'shared and slave'.
1488 * (*) the cloned mount is made a slave of the same master as that of the
1491 * ---------------------------------------------------------------------------
1492 * | MOVE MOUNT OPERATION |
1493 * |**************************************************************************
1494 * | source-->| shared | private | slave | unbindable |
1498 * |**************************************************************************
1499 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1501 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1502 * ***************************************************************************
1504 * (+) the mount is moved to the destination. And is then propagated to
1505 * all the mounts in the propagation tree of the destination mount.
1506 * (+*) the mount is moved to the destination.
1507 * (+++) the mount is moved to the destination and is then propagated to
1508 * all the mounts belonging to the destination mount's propagation tree.
1509 * the mount is marked as 'shared and slave'.
1510 * (*) the mount continues to be a slave at the new location.
1512 * if the source mount is a tree, the operations explained above is
1513 * applied to each mount in the tree.
1514 * Must be called without spinlocks held, since this function can sleep
1517 static int attach_recursive_mnt(struct mount *source_mnt,
1518 struct path *path, struct path *parent_path)
1520 LIST_HEAD(tree_list);
1521 struct mount *dest_mnt = real_mount(path->mnt);
1522 struct dentry *dest_dentry = path->dentry;
1523 struct mount *child, *p;
1526 if (IS_MNT_SHARED(dest_mnt)) {
1527 err = invent_group_ids(source_mnt, true);
1531 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1533 goto out_cleanup_ids;
1535 br_write_lock(&vfsmount_lock);
1537 if (IS_MNT_SHARED(dest_mnt)) {
1538 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1542 detach_mnt(source_mnt, parent_path);
1543 attach_mnt(source_mnt, path);
1544 touch_mnt_namespace(source_mnt->mnt_ns);
1546 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1547 commit_tree(source_mnt);
1550 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1551 list_del_init(&child->mnt_hash);
1554 br_write_unlock(&vfsmount_lock);
1559 if (IS_MNT_SHARED(dest_mnt))
1560 cleanup_group_ids(source_mnt, NULL);
1565 static int lock_mount(struct path *path)
1567 struct vfsmount *mnt;
1569 mutex_lock(&path->dentry->d_inode->i_mutex);
1570 if (unlikely(cant_mount(path->dentry))) {
1571 mutex_unlock(&path->dentry->d_inode->i_mutex);
1574 down_write(&namespace_sem);
1575 mnt = lookup_mnt(path);
1578 up_write(&namespace_sem);
1579 mutex_unlock(&path->dentry->d_inode->i_mutex);
1582 path->dentry = dget(mnt->mnt_root);
1586 static void unlock_mount(struct path *path)
1588 up_write(&namespace_sem);
1589 mutex_unlock(&path->dentry->d_inode->i_mutex);
1592 static int graft_tree(struct mount *mnt, struct path *path)
1594 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1597 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1598 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1601 if (d_unlinked(path->dentry))
1604 return attach_recursive_mnt(mnt, path, NULL);
1608 * Sanity check the flags to change_mnt_propagation.
1611 static int flags_to_propagation_type(int flags)
1613 int type = flags & ~(MS_REC | MS_SILENT);
1615 /* Fail if any non-propagation flags are set */
1616 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1618 /* Only one propagation flag should be set */
1619 if (!is_power_of_2(type))
1625 * recursively change the type of the mountpoint.
1627 static int do_change_type(struct path *path, int flag)
1630 struct mount *mnt = real_mount(path->mnt);
1631 int recurse = flag & MS_REC;
1635 if (!capable(CAP_SYS_ADMIN))
1638 if (path->dentry != path->mnt->mnt_root)
1641 type = flags_to_propagation_type(flag);
1645 down_write(&namespace_sem);
1646 if (type == MS_SHARED) {
1647 err = invent_group_ids(mnt, recurse);
1652 br_write_lock(&vfsmount_lock);
1653 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1654 change_mnt_propagation(m, type);
1655 br_write_unlock(&vfsmount_lock);
1658 up_write(&namespace_sem);
1663 * do loopback mount.
1665 static int do_loopback(struct path *path, const char *old_name,
1668 LIST_HEAD(umount_list);
1669 struct path old_path;
1670 struct mount *mnt = NULL, *old;
1671 int err = mount_is_safe(path);
1674 if (!old_name || !*old_name)
1676 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1681 if (mnt_ns_loop(&old_path))
1684 err = lock_mount(path);
1688 old = real_mount(old_path.mnt);
1691 if (IS_MNT_UNBINDABLE(old))
1694 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
1698 mnt = copy_tree(old, old_path.dentry, 0);
1700 mnt = clone_mnt(old, old_path.dentry, 0);
1707 err = graft_tree(mnt, path);
1709 br_write_lock(&vfsmount_lock);
1710 umount_tree(mnt, 0, &umount_list);
1711 br_write_unlock(&vfsmount_lock);
1715 release_mounts(&umount_list);
1717 path_put(&old_path);
1721 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1724 int readonly_request = 0;
1726 if (ms_flags & MS_RDONLY)
1727 readonly_request = 1;
1728 if (readonly_request == __mnt_is_readonly(mnt))
1731 if (readonly_request)
1732 error = mnt_make_readonly(real_mount(mnt));
1734 __mnt_unmake_readonly(real_mount(mnt));
1739 * change filesystem flags. dir should be a physical root of filesystem.
1740 * If you've mounted a non-root directory somewhere and want to do remount
1741 * on it - tough luck.
1743 static int do_remount(struct path *path, int flags, int mnt_flags,
1747 struct super_block *sb = path->mnt->mnt_sb;
1748 struct mount *mnt = real_mount(path->mnt);
1750 if (!capable(CAP_SYS_ADMIN))
1753 if (!check_mnt(mnt))
1756 if (path->dentry != path->mnt->mnt_root)
1759 err = security_sb_remount(sb, data);
1763 down_write(&sb->s_umount);
1764 if (flags & MS_BIND)
1765 err = change_mount_flags(path->mnt, flags);
1767 err = do_remount_sb(sb, flags, data, 0);
1769 br_write_lock(&vfsmount_lock);
1770 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1771 mnt->mnt.mnt_flags = mnt_flags;
1772 br_write_unlock(&vfsmount_lock);
1774 up_write(&sb->s_umount);
1776 br_write_lock(&vfsmount_lock);
1777 touch_mnt_namespace(mnt->mnt_ns);
1778 br_write_unlock(&vfsmount_lock);
1783 static inline int tree_contains_unbindable(struct mount *mnt)
1786 for (p = mnt; p; p = next_mnt(p, mnt)) {
1787 if (IS_MNT_UNBINDABLE(p))
1793 static int do_move_mount(struct path *path, const char *old_name)
1795 struct path old_path, parent_path;
1799 if (!capable(CAP_SYS_ADMIN))
1801 if (!old_name || !*old_name)
1803 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1807 err = lock_mount(path);
1811 old = real_mount(old_path.mnt);
1812 p = real_mount(path->mnt);
1815 if (!check_mnt(p) || !check_mnt(old))
1818 if (d_unlinked(path->dentry))
1822 if (old_path.dentry != old_path.mnt->mnt_root)
1825 if (!mnt_has_parent(old))
1828 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1829 S_ISDIR(old_path.dentry->d_inode->i_mode))
1832 * Don't move a mount residing in a shared parent.
1834 if (IS_MNT_SHARED(old->mnt_parent))
1837 * Don't move a mount tree containing unbindable mounts to a destination
1838 * mount which is shared.
1840 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
1843 for (; mnt_has_parent(p); p = p->mnt_parent)
1847 err = attach_recursive_mnt(old, path, &parent_path);
1851 /* if the mount is moved, it should no longer be expire
1853 list_del_init(&old->mnt_expire);
1858 path_put(&parent_path);
1859 path_put(&old_path);
1863 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1866 const char *subtype = strchr(fstype, '.');
1875 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1877 if (!mnt->mnt_sb->s_subtype)
1883 return ERR_PTR(err);
1886 static struct vfsmount *
1887 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1889 struct file_system_type *type = get_fs_type(fstype);
1890 struct vfsmount *mnt;
1892 return ERR_PTR(-ENODEV);
1893 mnt = vfs_kern_mount(type, flags, name, data);
1894 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1895 !mnt->mnt_sb->s_subtype)
1896 mnt = fs_set_subtype(mnt, fstype);
1897 put_filesystem(type);
1902 * add a mount into a namespace's mount tree
1904 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
1908 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1910 err = lock_mount(path);
1915 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1916 /* that's acceptable only for automounts done in private ns */
1917 if (!(mnt_flags & MNT_SHRINKABLE))
1919 /* ... and for those we'd better have mountpoint still alive */
1920 if (!real_mount(path->mnt)->mnt_ns)
1924 /* Refuse the same filesystem on the same mount point */
1926 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
1927 path->mnt->mnt_root == path->dentry)
1931 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
1934 newmnt->mnt.mnt_flags = mnt_flags;
1935 err = graft_tree(newmnt, path);
1943 * create a new mount for userspace and request it to be added into the
1946 static int do_new_mount(struct path *path, const char *type, int flags,
1947 int mnt_flags, const char *name, void *data)
1949 struct vfsmount *mnt;
1955 /* we need capabilities... */
1956 if (!capable(CAP_SYS_ADMIN))
1959 mnt = do_kern_mount(type, flags, name, data);
1961 return PTR_ERR(mnt);
1963 err = do_add_mount(real_mount(mnt), path, mnt_flags);
1969 int finish_automount(struct vfsmount *m, struct path *path)
1971 struct mount *mnt = real_mount(m);
1973 /* The new mount record should have at least 2 refs to prevent it being
1974 * expired before we get a chance to add it
1976 BUG_ON(mnt_get_count(mnt) < 2);
1978 if (m->mnt_sb == path->mnt->mnt_sb &&
1979 m->mnt_root == path->dentry) {
1984 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
1988 /* remove m from any expiration list it may be on */
1989 if (!list_empty(&mnt->mnt_expire)) {
1990 down_write(&namespace_sem);
1991 br_write_lock(&vfsmount_lock);
1992 list_del_init(&mnt->mnt_expire);
1993 br_write_unlock(&vfsmount_lock);
1994 up_write(&namespace_sem);
2002 * mnt_set_expiry - Put a mount on an expiration list
2003 * @mnt: The mount to list.
2004 * @expiry_list: The list to add the mount to.
2006 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2008 down_write(&namespace_sem);
2009 br_write_lock(&vfsmount_lock);
2011 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2013 br_write_unlock(&vfsmount_lock);
2014 up_write(&namespace_sem);
2016 EXPORT_SYMBOL(mnt_set_expiry);
2019 * process a list of expirable mountpoints with the intent of discarding any
2020 * mountpoints that aren't in use and haven't been touched since last we came
2023 void mark_mounts_for_expiry(struct list_head *mounts)
2025 struct mount *mnt, *next;
2026 LIST_HEAD(graveyard);
2029 if (list_empty(mounts))
2032 down_write(&namespace_sem);
2033 br_write_lock(&vfsmount_lock);
2035 /* extract from the expiration list every vfsmount that matches the
2036 * following criteria:
2037 * - only referenced by its parent vfsmount
2038 * - still marked for expiry (marked on the last call here; marks are
2039 * cleared by mntput())
2041 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2042 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2043 propagate_mount_busy(mnt, 1))
2045 list_move(&mnt->mnt_expire, &graveyard);
2047 while (!list_empty(&graveyard)) {
2048 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2049 touch_mnt_namespace(mnt->mnt_ns);
2050 umount_tree(mnt, 1, &umounts);
2052 br_write_unlock(&vfsmount_lock);
2053 up_write(&namespace_sem);
2055 release_mounts(&umounts);
2058 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2061 * Ripoff of 'select_parent()'
2063 * search the list of submounts for a given mountpoint, and move any
2064 * shrinkable submounts to the 'graveyard' list.
2066 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2068 struct mount *this_parent = parent;
2069 struct list_head *next;
2073 next = this_parent->mnt_mounts.next;
2075 while (next != &this_parent->mnt_mounts) {
2076 struct list_head *tmp = next;
2077 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2080 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2083 * Descend a level if the d_mounts list is non-empty.
2085 if (!list_empty(&mnt->mnt_mounts)) {
2090 if (!propagate_mount_busy(mnt, 1)) {
2091 list_move_tail(&mnt->mnt_expire, graveyard);
2096 * All done at this level ... ascend and resume the search
2098 if (this_parent != parent) {
2099 next = this_parent->mnt_child.next;
2100 this_parent = this_parent->mnt_parent;
2107 * process a list of expirable mountpoints with the intent of discarding any
2108 * submounts of a specific parent mountpoint
2110 * vfsmount_lock must be held for write
2112 static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
2114 LIST_HEAD(graveyard);
2117 /* extract submounts of 'mountpoint' from the expiration list */
2118 while (select_submounts(mnt, &graveyard)) {
2119 while (!list_empty(&graveyard)) {
2120 m = list_first_entry(&graveyard, struct mount,
2122 touch_mnt_namespace(m->mnt_ns);
2123 umount_tree(m, 1, umounts);
2129 * Some copy_from_user() implementations do not return the exact number of
2130 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2131 * Note that this function differs from copy_from_user() in that it will oops
2132 * on bad values of `to', rather than returning a short copy.
2134 static long exact_copy_from_user(void *to, const void __user * from,
2138 const char __user *f = from;
2141 if (!access_ok(VERIFY_READ, from, n))
2145 if (__get_user(c, f)) {
2156 int copy_mount_options(const void __user * data, unsigned long *where)
2166 if (!(page = __get_free_page(GFP_KERNEL)))
2169 /* We only care that *some* data at the address the user
2170 * gave us is valid. Just in case, we'll zero
2171 * the remainder of the page.
2173 /* copy_from_user cannot cross TASK_SIZE ! */
2174 size = TASK_SIZE - (unsigned long)data;
2175 if (size > PAGE_SIZE)
2178 i = size - exact_copy_from_user((void *)page, data, size);
2184 memset((char *)page + i, 0, PAGE_SIZE - i);
2189 int copy_mount_string(const void __user *data, char **where)
2198 tmp = strndup_user(data, PAGE_SIZE);
2200 return PTR_ERR(tmp);
2207 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2208 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2210 * data is a (void *) that can point to any structure up to
2211 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2212 * information (or be NULL).
2214 * Pre-0.97 versions of mount() didn't have a flags word.
2215 * When the flags word was introduced its top half was required
2216 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2217 * Therefore, if this magic number is present, it carries no information
2218 * and must be discarded.
2220 long do_mount(const char *dev_name, const char *dir_name,
2221 const char *type_page, unsigned long flags, void *data_page)
2228 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2229 flags &= ~MS_MGC_MSK;
2231 /* Basic sanity checks */
2233 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2237 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2239 /* ... and get the mountpoint */
2240 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2244 retval = security_sb_mount(dev_name, &path,
2245 type_page, flags, data_page);
2249 /* Default to relatime unless overriden */
2250 if (!(flags & MS_NOATIME))
2251 mnt_flags |= MNT_RELATIME;
2253 /* Separate the per-mountpoint flags */
2254 if (flags & MS_NOSUID)
2255 mnt_flags |= MNT_NOSUID;
2256 if (flags & MS_NODEV)
2257 mnt_flags |= MNT_NODEV;
2258 if (flags & MS_NOEXEC)
2259 mnt_flags |= MNT_NOEXEC;
2260 if (flags & MS_NOATIME)
2261 mnt_flags |= MNT_NOATIME;
2262 if (flags & MS_NODIRATIME)
2263 mnt_flags |= MNT_NODIRATIME;
2264 if (flags & MS_STRICTATIME)
2265 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2266 if (flags & MS_RDONLY)
2267 mnt_flags |= MNT_READONLY;
2269 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2270 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2273 if (flags & MS_REMOUNT)
2274 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2276 else if (flags & MS_BIND)
2277 retval = do_loopback(&path, dev_name, flags & MS_REC);
2278 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2279 retval = do_change_type(&path, flags);
2280 else if (flags & MS_MOVE)
2281 retval = do_move_mount(&path, dev_name);
2283 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2284 dev_name, data_page);
2290 static void free_mnt_ns(struct mnt_namespace *ns)
2292 put_user_ns(ns->user_ns);
2297 * Assign a sequence number so we can detect when we attempt to bind
2298 * mount a reference to an older mount namespace into the current
2299 * mount namespace, preventing reference counting loops. A 64bit
2300 * number incrementing at 10Ghz will take 12,427 years to wrap which
2301 * is effectively never, so we can ignore the possibility.
2303 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2305 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2307 struct mnt_namespace *new_ns;
2309 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2311 return ERR_PTR(-ENOMEM);
2312 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2313 atomic_set(&new_ns->count, 1);
2314 new_ns->root = NULL;
2315 INIT_LIST_HEAD(&new_ns->list);
2316 init_waitqueue_head(&new_ns->poll);
2318 new_ns->user_ns = get_user_ns(user_ns);
2323 * Allocate a new namespace structure and populate it with contents
2324 * copied from the namespace of the passed in task structure.
2326 static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
2327 struct user_namespace *user_ns, struct fs_struct *fs)
2329 struct mnt_namespace *new_ns;
2330 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2331 struct mount *p, *q;
2332 struct mount *old = mnt_ns->root;
2335 new_ns = alloc_mnt_ns(user_ns);
2339 down_write(&namespace_sem);
2340 /* First pass: copy the tree topology */
2341 new = copy_tree(old, old->mnt.mnt_root, CL_COPY_ALL | CL_EXPIRE);
2343 up_write(&namespace_sem);
2344 free_mnt_ns(new_ns);
2345 return ERR_CAST(new);
2348 br_write_lock(&vfsmount_lock);
2349 list_add_tail(&new_ns->list, &new->mnt_list);
2350 br_write_unlock(&vfsmount_lock);
2353 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2354 * as belonging to new namespace. We have already acquired a private
2355 * fs_struct, so tsk->fs->lock is not needed.
2362 if (&p->mnt == fs->root.mnt) {
2363 fs->root.mnt = mntget(&q->mnt);
2366 if (&p->mnt == fs->pwd.mnt) {
2367 fs->pwd.mnt = mntget(&q->mnt);
2371 p = next_mnt(p, old);
2372 q = next_mnt(q, new);
2374 up_write(&namespace_sem);
2384 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2385 struct user_namespace *user_ns, struct fs_struct *new_fs)
2387 struct mnt_namespace *new_ns;
2392 if (!(flags & CLONE_NEWNS))
2395 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
2402 * create_mnt_ns - creates a private namespace and adds a root filesystem
2403 * @mnt: pointer to the new root filesystem mountpoint
2405 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2407 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2408 if (!IS_ERR(new_ns)) {
2409 struct mount *mnt = real_mount(m);
2410 mnt->mnt_ns = new_ns;
2412 list_add(&new_ns->list, &mnt->mnt_list);
2419 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2421 struct mnt_namespace *ns;
2422 struct super_block *s;
2426 ns = create_mnt_ns(mnt);
2428 return ERR_CAST(ns);
2430 err = vfs_path_lookup(mnt->mnt_root, mnt,
2431 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2436 return ERR_PTR(err);
2438 /* trade a vfsmount reference for active sb one */
2439 s = path.mnt->mnt_sb;
2440 atomic_inc(&s->s_active);
2442 /* lock the sucker */
2443 down_write(&s->s_umount);
2444 /* ... and return the root of (sub)tree on it */
2447 EXPORT_SYMBOL(mount_subtree);
2449 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2450 char __user *, type, unsigned long, flags, void __user *, data)
2454 struct filename *kernel_dir;
2456 unsigned long data_page;
2458 ret = copy_mount_string(type, &kernel_type);
2462 kernel_dir = getname(dir_name);
2463 if (IS_ERR(kernel_dir)) {
2464 ret = PTR_ERR(kernel_dir);
2468 ret = copy_mount_string(dev_name, &kernel_dev);
2472 ret = copy_mount_options(data, &data_page);
2476 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
2477 (void *) data_page);
2479 free_page(data_page);
2483 putname(kernel_dir);
2491 * Return true if path is reachable from root
2493 * namespace_sem or vfsmount_lock is held
2495 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2496 const struct path *root)
2498 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2499 dentry = mnt->mnt_mountpoint;
2500 mnt = mnt->mnt_parent;
2502 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2505 int path_is_under(struct path *path1, struct path *path2)
2508 br_read_lock(&vfsmount_lock);
2509 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2510 br_read_unlock(&vfsmount_lock);
2513 EXPORT_SYMBOL(path_is_under);
2516 * pivot_root Semantics:
2517 * Moves the root file system of the current process to the directory put_old,
2518 * makes new_root as the new root file system of the current process, and sets
2519 * root/cwd of all processes which had them on the current root to new_root.
2522 * The new_root and put_old must be directories, and must not be on the
2523 * same file system as the current process root. The put_old must be
2524 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2525 * pointed to by put_old must yield the same directory as new_root. No other
2526 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2528 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2529 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2530 * in this situation.
2533 * - we don't move root/cwd if they are not at the root (reason: if something
2534 * cared enough to change them, it's probably wrong to force them elsewhere)
2535 * - it's okay to pick a root that isn't the root of a file system, e.g.
2536 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2537 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2540 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2541 const char __user *, put_old)
2543 struct path new, old, parent_path, root_parent, root;
2544 struct mount *new_mnt, *root_mnt;
2547 if (!capable(CAP_SYS_ADMIN))
2550 error = user_path_dir(new_root, &new);
2554 error = user_path_dir(put_old, &old);
2558 error = security_sb_pivotroot(&old, &new);
2562 get_fs_root(current->fs, &root);
2563 error = lock_mount(&old);
2568 new_mnt = real_mount(new.mnt);
2569 root_mnt = real_mount(root.mnt);
2570 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2571 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2572 IS_MNT_SHARED(root_mnt->mnt_parent))
2574 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2577 if (d_unlinked(new.dentry))
2579 if (d_unlinked(old.dentry))
2582 if (new.mnt == root.mnt ||
2583 old.mnt == root.mnt)
2584 goto out4; /* loop, on the same file system */
2586 if (root.mnt->mnt_root != root.dentry)
2587 goto out4; /* not a mountpoint */
2588 if (!mnt_has_parent(root_mnt))
2589 goto out4; /* not attached */
2590 if (new.mnt->mnt_root != new.dentry)
2591 goto out4; /* not a mountpoint */
2592 if (!mnt_has_parent(new_mnt))
2593 goto out4; /* not attached */
2594 /* make sure we can reach put_old from new_root */
2595 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
2597 br_write_lock(&vfsmount_lock);
2598 detach_mnt(new_mnt, &parent_path);
2599 detach_mnt(root_mnt, &root_parent);
2600 /* mount old root on put_old */
2601 attach_mnt(root_mnt, &old);
2602 /* mount new_root on / */
2603 attach_mnt(new_mnt, &root_parent);
2604 touch_mnt_namespace(current->nsproxy->mnt_ns);
2605 br_write_unlock(&vfsmount_lock);
2606 chroot_fs_refs(&root, &new);
2611 path_put(&root_parent);
2612 path_put(&parent_path);
2624 static void __init init_mount_tree(void)
2626 struct vfsmount *mnt;
2627 struct mnt_namespace *ns;
2630 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2632 panic("Can't create rootfs");
2634 ns = create_mnt_ns(mnt);
2636 panic("Can't allocate initial namespace");
2638 init_task.nsproxy->mnt_ns = ns;
2642 root.dentry = mnt->mnt_root;
2644 set_fs_pwd(current->fs, &root);
2645 set_fs_root(current->fs, &root);
2648 void __init mnt_init(void)
2653 init_rwsem(&namespace_sem);
2655 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
2656 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2658 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
2660 if (!mount_hashtable)
2661 panic("Failed to allocate mount hash table\n");
2663 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
2665 for (u = 0; u < HASH_SIZE; u++)
2666 INIT_LIST_HEAD(&mount_hashtable[u]);
2668 br_lock_init(&vfsmount_lock);
2672 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
2674 fs_kobj = kobject_create_and_add("fs", NULL);
2676 printk(KERN_WARNING "%s: kobj create error\n", __func__);
2681 void put_mnt_ns(struct mnt_namespace *ns)
2683 LIST_HEAD(umount_list);
2685 if (!atomic_dec_and_test(&ns->count))
2687 down_write(&namespace_sem);
2688 br_write_lock(&vfsmount_lock);
2689 umount_tree(ns->root, 0, &umount_list);
2690 br_write_unlock(&vfsmount_lock);
2691 up_write(&namespace_sem);
2692 release_mounts(&umount_list);
2696 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2698 struct vfsmount *mnt;
2699 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2702 * it is a longterm mount, don't release mnt until
2703 * we unmount before file sys is unregistered
2705 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
2709 EXPORT_SYMBOL_GPL(kern_mount_data);
2711 void kern_unmount(struct vfsmount *mnt)
2713 /* release long term mount so mount point can be released */
2714 if (!IS_ERR_OR_NULL(mnt)) {
2715 br_write_lock(&vfsmount_lock);
2716 real_mount(mnt)->mnt_ns = NULL;
2717 br_write_unlock(&vfsmount_lock);
2721 EXPORT_SYMBOL(kern_unmount);
2723 bool our_mnt(struct vfsmount *mnt)
2725 return check_mnt(real_mount(mnt));
2728 static void *mntns_get(struct task_struct *task)
2730 struct mnt_namespace *ns = NULL;
2731 struct nsproxy *nsproxy;
2734 nsproxy = task_nsproxy(task);
2736 ns = nsproxy->mnt_ns;
2744 static void mntns_put(void *ns)
2749 static int mntns_install(struct nsproxy *nsproxy, void *ns)
2751 struct fs_struct *fs = current->fs;
2752 struct mnt_namespace *mnt_ns = ns;
2755 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_CHROOT))
2762 put_mnt_ns(nsproxy->mnt_ns);
2763 nsproxy->mnt_ns = mnt_ns;
2766 root.mnt = &mnt_ns->root->mnt;
2767 root.dentry = mnt_ns->root->mnt.mnt_root;
2769 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2772 /* Update the pwd and root */
2773 set_fs_pwd(fs, &root);
2774 set_fs_root(fs, &root);
2780 const struct proc_ns_operations mntns_operations = {
2782 .type = CLONE_NEWNS,
2785 .install = mntns_install,