1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
50 mhash_entries = simple_strtoul(str, &str, 0);
53 __setup("mhash_entries=", set_mhash_entries);
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
60 mphash_entries = simple_strtoul(str, &str, 0);
63 __setup("mphash_entries=", set_mphash_entries);
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
105 static int mnt_alloc_id(struct mount *mnt)
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
115 static void mnt_free_id(struct mount *mnt)
117 ida_free(&mnt_id_ida, mnt->mnt_id);
121 * Allocate a new peer group ID
123 static int mnt_alloc_group_id(struct mount *mnt)
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
129 mnt->mnt_group_id = res;
134 * Release a peer group ID
136 void mnt_release_group_id(struct mount *mnt)
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
143 * vfsmount lock must be held for read
145 static inline void mnt_add_count(struct mount *mnt, int n)
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
157 * vfsmount lock must be held for write
159 int mnt_get_count(struct mount *mnt)
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
171 return mnt->mnt_count;
175 static struct mount *alloc_vfsmnt(const char *name)
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
181 err = mnt_alloc_id(mnt);
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
194 goto out_free_devname;
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
199 mnt->mnt_writers = 0;
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
218 kfree_const(mnt->mnt_devname);
223 kmem_cache_free(mnt_cache, mnt);
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
246 bool __mnt_is_readonly(struct vfsmount *mnt)
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
252 static inline void mnt_inc_writers(struct mount *mnt)
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
261 static inline void mnt_dec_writers(struct mount *mnt)
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
270 static unsigned int mnt_get_writers(struct mount *mnt)
273 unsigned int count = 0;
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
282 return mnt->mnt_writers;
286 static int mnt_is_readonly(struct vfsmount *mnt)
288 if (mnt->mnt_sb->s_readonly_remount)
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
292 return __mnt_is_readonly(mnt);
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
311 int __mnt_want_write(struct vfsmount *m)
313 struct mount *mnt = real_mount(m);
317 mnt_inc_writers(mnt);
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
350 int mnt_want_write(struct vfsmount *m)
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
357 sb_end_write(m->mnt_sb);
360 EXPORT_SYMBOL_GPL(mnt_want_write);
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
374 int mnt_clone_write(struct vfsmount *mnt)
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
380 mnt_inc_writers(real_mount(mnt));
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
393 int __mnt_want_write_file(struct file *file)
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
398 return mnt_clone_write(file->f_path.mnt);
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
408 int mnt_want_write_file(struct file *file)
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
415 sb_end_write(file_inode(file)->i_sb);
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
428 void __mnt_drop_write(struct vfsmount *mnt)
431 mnt_dec_writers(real_mount(mnt));
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
443 void mnt_drop_write(struct vfsmount *mnt)
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
450 void __mnt_drop_write_file(struct file *file)
452 __mnt_drop_write(file->f_path.mnt);
455 void mnt_drop_write_file(struct file *file)
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
460 EXPORT_SYMBOL(mnt_drop_write_file);
462 static int mnt_make_readonly(struct mount *mnt)
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
490 if (mnt_get_writers(mnt) > 0)
493 mnt->mnt.mnt_flags |= MNT_READONLY;
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
504 static int __mnt_unmake_readonly(struct mount *mnt)
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
512 int sb_prepare_remount_readonly(struct super_block *sb)
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 if (mnt_get_writers(mnt) > 0) {
532 if (!err && atomic_long_read(&sb->s_remove_count))
536 sb->s_readonly_remount = 1;
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
548 static void free_vfsmnt(struct mount *mnt)
550 kfree_const(mnt->mnt_devname);
552 free_percpu(mnt->mnt_pcp);
554 kmem_cache_free(mnt_cache, mnt);
557 static void delayed_free_vfsmnt(struct rcu_head *head)
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
566 if (read_seqretry(&mount_lock, seq))
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
586 /* caller will mntput() */
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 int res = __legitimize_mnt(bastard, seq);
596 if (unlikely(res < 0)) {
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 struct hlist_head *head = m_hash(mnt, dentry);
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 * lookup_mnt - Return the first child mount mounted at path
622 * "First" means first mounted chronologically. If you create the
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
633 * lookup_mnt takes a reference to the found vfsmount.
635 struct vfsmount *lookup_mnt(const struct path *path)
637 struct mount *child_mnt;
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
651 static inline void lock_ns_list(struct mnt_namespace *ns)
653 spin_lock(&ns->ns_lock);
656 static inline void unlock_ns_list(struct mnt_namespace *ns)
658 spin_unlock(&ns->ns_lock);
661 static inline bool mnt_is_cursor(struct mount *mnt)
663 return mnt->mnt.mnt_flags & MNT_CURSOR;
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
681 bool __is_local_mountpoint(struct dentry *dentry)
683 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
685 bool is_covered = false;
687 down_read(&namespace_sem);
689 list_for_each_entry(mnt, &ns->list, mnt_list) {
690 if (mnt_is_cursor(mnt))
692 is_covered = (mnt->mnt_mountpoint == dentry);
697 up_read(&namespace_sem);
702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
704 struct hlist_head *chain = mp_hash(dentry);
705 struct mountpoint *mp;
707 hlist_for_each_entry(mp, chain, m_hash) {
708 if (mp->m_dentry == dentry) {
716 static struct mountpoint *get_mountpoint(struct dentry *dentry)
718 struct mountpoint *mp, *new = NULL;
721 if (d_mountpoint(dentry)) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
726 read_seqlock_excl(&mount_lock);
727 mp = lookup_mountpoint(dentry);
728 read_sequnlock_excl(&mount_lock);
734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
736 return ERR_PTR(-ENOMEM);
739 /* Exactly one processes may set d_mounted */
740 ret = d_set_mounted(dentry);
742 /* Someone else set d_mounted? */
746 /* The dentry is not available as a mountpoint? */
751 /* Add the new mountpoint to the hash table */
752 read_seqlock_excl(&mount_lock);
753 new->m_dentry = dget(dentry);
755 hlist_add_head(&new->m_hash, mp_hash(dentry));
756 INIT_HLIST_HEAD(&new->m_list);
757 read_sequnlock_excl(&mount_lock);
767 * vfsmount lock must be held. Additionally, the caller is responsible
768 * for serializing calls for given disposal list.
770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
772 if (!--mp->m_count) {
773 struct dentry *dentry = mp->m_dentry;
774 BUG_ON(!hlist_empty(&mp->m_list));
775 spin_lock(&dentry->d_lock);
776 dentry->d_flags &= ~DCACHE_MOUNTED;
777 spin_unlock(&dentry->d_lock);
778 dput_to_list(dentry, list);
779 hlist_del(&mp->m_hash);
784 /* called with namespace_lock and vfsmount lock */
785 static void put_mountpoint(struct mountpoint *mp)
787 __put_mountpoint(mp, &ex_mountpoints);
790 static inline int check_mnt(struct mount *mnt)
792 return mnt->mnt_ns == current->nsproxy->mnt_ns;
796 * vfsmount lock must be held for write
798 static void touch_mnt_namespace(struct mnt_namespace *ns)
802 wake_up_interruptible(&ns->poll);
807 * vfsmount lock must be held for write
809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
811 if (ns && ns->event != event) {
813 wake_up_interruptible(&ns->poll);
818 * vfsmount lock must be held for write
820 static struct mountpoint *unhash_mnt(struct mount *mnt)
822 struct mountpoint *mp;
823 mnt->mnt_parent = mnt;
824 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
825 list_del_init(&mnt->mnt_child);
826 hlist_del_init_rcu(&mnt->mnt_hash);
827 hlist_del_init(&mnt->mnt_mp_list);
834 * vfsmount lock must be held for write
836 static void umount_mnt(struct mount *mnt)
838 put_mountpoint(unhash_mnt(mnt));
842 * vfsmount lock must be held for write
844 void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
846 struct mount *child_mnt)
849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
850 child_mnt->mnt_mountpoint = mp->m_dentry;
851 child_mnt->mnt_parent = mnt;
852 child_mnt->mnt_mp = mp;
853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
856 static void __attach_mnt(struct mount *mnt, struct mount *parent)
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
864 * vfsmount lock must be held for write
866 static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
870 mnt_set_mountpoint(parent, mp, mnt);
871 __attach_mnt(mnt, parent);
874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
876 struct mountpoint *old_mp = mnt->mnt_mp;
877 struct mount *old_parent = mnt->mnt_parent;
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
883 attach_mnt(mnt, parent, mp);
885 put_mountpoint(old_mp);
886 mnt_add_count(old_parent, -1);
890 * vfsmount lock must be held for write
892 static void commit_tree(struct mount *mnt)
894 struct mount *parent = mnt->mnt_parent;
897 struct mnt_namespace *n = parent->mnt_ns;
899 BUG_ON(parent == mnt);
901 list_add_tail(&head, &mnt->mnt_list);
902 list_for_each_entry(m, &head, mnt_list)
905 list_splice(&head, n->list.prev);
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
910 __attach_mnt(mnt, parent);
911 touch_mnt_namespace(n);
914 static struct mount *next_mnt(struct mount *p, struct mount *root)
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
927 return list_entry(next, struct mount, mnt_child);
930 static struct mount *skip_mnt_tree(struct mount *p)
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
947 * Note that this does not attach the mount to anything.
949 struct vfsmount *vfs_create_mount(struct fs_context *fc)
954 return ERR_PTR(-EINVAL);
956 mnt = alloc_vfsmnt(fc->source ?: "none");
958 return ERR_PTR(-ENOMEM);
960 if (fc->sb_flags & SB_KERNMOUNT)
961 mnt->mnt.mnt_flags = MNT_INTERNAL;
963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
974 EXPORT_SYMBOL(vfs_create_mount);
976 struct vfsmount *fc_mount(struct fs_context *fc)
978 int err = vfs_get_tree(fc);
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
985 EXPORT_SYMBOL(fc_mount);
987 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
991 struct fs_context *fc;
992 struct vfsmount *mnt;
996 return ERR_PTR(-EINVAL);
998 fc = fs_context_for_mount(type, flags);
1000 return ERR_CAST(fc);
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
1006 ret = parse_monolithic_mount_data(fc, data);
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1030 EXPORT_SYMBOL_GPL(vfs_submount);
1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1035 struct super_block *sb = old->mnt.mnt_sb;
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1041 return ERR_PTR(-ENOMEM);
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1046 mnt->mnt_group_id = old->mnt_group_id;
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 unlock_mount_hash();
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1078 CLEAR_MNT_SHARED(mnt);
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1095 return ERR_PTR(err);
1098 static void cleanup_mnt(struct mount *mnt)
1100 struct hlist_node *p;
1103 * The warning here probably indicates that somebody messed
1104 * up a mnt_want/drop_write() pair. If this happens, the
1105 * filesystem was probably unable to make r/w->r/o transitions.
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113 hlist_del(&m->mnt_umount);
1116 fsnotify_vfsmount_delete(&mnt->mnt);
1117 dput(mnt->mnt.mnt_root);
1118 deactivate_super(mnt->mnt.mnt_sb);
1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1123 static void __cleanup_mnt(struct rcu_head *head)
1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1128 static LLIST_HEAD(delayed_mntput_list);
1129 static void delayed_mntput(struct work_struct *unused)
1131 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132 struct mount *m, *t;
1134 llist_for_each_entry_safe(m, t, node, mnt_llist)
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1139 static void mntput_no_expire(struct mount *mnt)
1145 if (likely(READ_ONCE(mnt->mnt_ns))) {
1147 * Since we don't do lock_mount_hash() here,
1148 * ->mnt_ns can change under us. However, if it's
1149 * non-NULL, then there's a reference that won't
1150 * be dropped until after an RCU delay done after
1151 * turning ->mnt_ns NULL. So if we observe it
1152 * non-NULL under rcu_read_lock(), the reference
1153 * we are dropping is not the final one.
1155 mnt_add_count(mnt, -1);
1161 * make sure that if __legitimize_mnt() has not seen us grab
1162 * mount_lock, we'll see their refcount increment here.
1165 mnt_add_count(mnt, -1);
1166 count = mnt_get_count(mnt);
1170 unlock_mount_hash();
1173 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1175 unlock_mount_hash();
1178 mnt->mnt.mnt_flags |= MNT_DOOMED;
1181 list_del(&mnt->mnt_instance);
1183 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1184 struct mount *p, *tmp;
1185 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1186 __put_mountpoint(unhash_mnt(p), &list);
1187 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1190 unlock_mount_hash();
1191 shrink_dentry_list(&list);
1193 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1194 struct task_struct *task = current;
1195 if (likely(!(task->flags & PF_KTHREAD))) {
1196 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1197 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1200 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1201 schedule_delayed_work(&delayed_mntput_work, 1);
1207 void mntput(struct vfsmount *mnt)
1210 struct mount *m = real_mount(mnt);
1211 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1212 if (unlikely(m->mnt_expiry_mark))
1213 m->mnt_expiry_mark = 0;
1214 mntput_no_expire(m);
1217 EXPORT_SYMBOL(mntput);
1219 struct vfsmount *mntget(struct vfsmount *mnt)
1222 mnt_add_count(real_mount(mnt), 1);
1225 EXPORT_SYMBOL(mntget);
1227 /* path_is_mountpoint() - Check if path is a mount in the current
1230 * d_mountpoint() can only be used reliably to establish if a dentry is
1231 * not mounted in any namespace and that common case is handled inline.
1232 * d_mountpoint() isn't aware of the possibility there may be multiple
1233 * mounts using a given dentry in a different namespace. This function
1234 * checks if the passed in path is a mountpoint rather than the dentry
1237 bool path_is_mountpoint(const struct path *path)
1242 if (!d_mountpoint(path->dentry))
1247 seq = read_seqbegin(&mount_lock);
1248 res = __path_is_mountpoint(path);
1249 } while (read_seqretry(&mount_lock, seq));
1254 EXPORT_SYMBOL(path_is_mountpoint);
1256 struct vfsmount *mnt_clone_internal(const struct path *path)
1259 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1262 p->mnt.mnt_flags |= MNT_INTERNAL;
1266 #ifdef CONFIG_PROC_FS
1267 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1268 struct list_head *p)
1270 struct mount *mnt, *ret = NULL;
1273 list_for_each_continue(p, &ns->list) {
1274 mnt = list_entry(p, typeof(*mnt), mnt_list);
1275 if (!mnt_is_cursor(mnt)) {
1285 /* iterator; we want it to have access to namespace_sem, thus here... */
1286 static void *m_start(struct seq_file *m, loff_t *pos)
1288 struct proc_mounts *p = m->private;
1289 struct list_head *prev;
1291 down_read(&namespace_sem);
1293 prev = &p->ns->list;
1295 prev = &p->cursor.mnt_list;
1297 /* Read after we'd reached the end? */
1298 if (list_empty(prev))
1302 return mnt_list_next(p->ns, prev);
1305 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1307 struct proc_mounts *p = m->private;
1308 struct mount *mnt = v;
1311 return mnt_list_next(p->ns, &mnt->mnt_list);
1314 static void m_stop(struct seq_file *m, void *v)
1316 struct proc_mounts *p = m->private;
1317 struct mount *mnt = v;
1319 lock_ns_list(p->ns);
1321 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1323 list_del_init(&p->cursor.mnt_list);
1324 unlock_ns_list(p->ns);
1325 up_read(&namespace_sem);
1328 static int m_show(struct seq_file *m, void *v)
1330 struct proc_mounts *p = m->private;
1331 struct mount *r = v;
1332 return p->show(m, &r->mnt);
1335 const struct seq_operations mounts_op = {
1342 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1344 down_read(&namespace_sem);
1346 list_del(&cursor->mnt_list);
1348 up_read(&namespace_sem);
1350 #endif /* CONFIG_PROC_FS */
1353 * may_umount_tree - check if a mount tree is busy
1354 * @mnt: root of mount tree
1356 * This is called to check if a tree of mounts has any
1357 * open files, pwds, chroots or sub mounts that are
1360 int may_umount_tree(struct vfsmount *m)
1362 struct mount *mnt = real_mount(m);
1363 int actual_refs = 0;
1364 int minimum_refs = 0;
1368 /* write lock needed for mnt_get_count */
1370 for (p = mnt; p; p = next_mnt(p, mnt)) {
1371 actual_refs += mnt_get_count(p);
1374 unlock_mount_hash();
1376 if (actual_refs > minimum_refs)
1382 EXPORT_SYMBOL(may_umount_tree);
1385 * may_umount - check if a mount point is busy
1386 * @mnt: root of mount
1388 * This is called to check if a mount point has any
1389 * open files, pwds, chroots or sub mounts. If the
1390 * mount has sub mounts this will return busy
1391 * regardless of whether the sub mounts are busy.
1393 * Doesn't take quota and stuff into account. IOW, in some cases it will
1394 * give false negatives. The main reason why it's here is that we need
1395 * a non-destructive way to look for easily umountable filesystems.
1397 int may_umount(struct vfsmount *mnt)
1400 down_read(&namespace_sem);
1402 if (propagate_mount_busy(real_mount(mnt), 2))
1404 unlock_mount_hash();
1405 up_read(&namespace_sem);
1409 EXPORT_SYMBOL(may_umount);
1411 static void namespace_unlock(void)
1413 struct hlist_head head;
1414 struct hlist_node *p;
1418 hlist_move_list(&unmounted, &head);
1419 list_splice_init(&ex_mountpoints, &list);
1421 up_write(&namespace_sem);
1423 shrink_dentry_list(&list);
1425 if (likely(hlist_empty(&head)))
1428 synchronize_rcu_expedited();
1430 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1431 hlist_del(&m->mnt_umount);
1436 static inline void namespace_lock(void)
1438 down_write(&namespace_sem);
1441 enum umount_tree_flags {
1443 UMOUNT_PROPAGATE = 2,
1444 UMOUNT_CONNECTED = 4,
1447 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1449 /* Leaving mounts connected is only valid for lazy umounts */
1450 if (how & UMOUNT_SYNC)
1453 /* A mount without a parent has nothing to be connected to */
1454 if (!mnt_has_parent(mnt))
1457 /* Because the reference counting rules change when mounts are
1458 * unmounted and connected, umounted mounts may not be
1459 * connected to mounted mounts.
1461 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1464 /* Has it been requested that the mount remain connected? */
1465 if (how & UMOUNT_CONNECTED)
1468 /* Is the mount locked such that it needs to remain connected? */
1469 if (IS_MNT_LOCKED(mnt))
1472 /* By default disconnect the mount */
1477 * mount_lock must be held
1478 * namespace_sem must be held for write
1480 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1482 LIST_HEAD(tmp_list);
1485 if (how & UMOUNT_PROPAGATE)
1486 propagate_mount_unlock(mnt);
1488 /* Gather the mounts to umount */
1489 for (p = mnt; p; p = next_mnt(p, mnt)) {
1490 p->mnt.mnt_flags |= MNT_UMOUNT;
1491 list_move(&p->mnt_list, &tmp_list);
1494 /* Hide the mounts from mnt_mounts */
1495 list_for_each_entry(p, &tmp_list, mnt_list) {
1496 list_del_init(&p->mnt_child);
1499 /* Add propogated mounts to the tmp_list */
1500 if (how & UMOUNT_PROPAGATE)
1501 propagate_umount(&tmp_list);
1503 while (!list_empty(&tmp_list)) {
1504 struct mnt_namespace *ns;
1506 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1507 list_del_init(&p->mnt_expire);
1508 list_del_init(&p->mnt_list);
1512 __touch_mnt_namespace(ns);
1515 if (how & UMOUNT_SYNC)
1516 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1518 disconnect = disconnect_mount(p, how);
1519 if (mnt_has_parent(p)) {
1520 mnt_add_count(p->mnt_parent, -1);
1522 /* Don't forget about p */
1523 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1528 change_mnt_propagation(p, MS_PRIVATE);
1530 hlist_add_head(&p->mnt_umount, &unmounted);
1534 static void shrink_submounts(struct mount *mnt);
1536 static int do_umount_root(struct super_block *sb)
1540 down_write(&sb->s_umount);
1541 if (!sb_rdonly(sb)) {
1542 struct fs_context *fc;
1544 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1549 ret = parse_monolithic_mount_data(fc, NULL);
1551 ret = reconfigure_super(fc);
1555 up_write(&sb->s_umount);
1559 static int do_umount(struct mount *mnt, int flags)
1561 struct super_block *sb = mnt->mnt.mnt_sb;
1564 retval = security_sb_umount(&mnt->mnt, flags);
1569 * Allow userspace to request a mountpoint be expired rather than
1570 * unmounting unconditionally. Unmount only happens if:
1571 * (1) the mark is already set (the mark is cleared by mntput())
1572 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1574 if (flags & MNT_EXPIRE) {
1575 if (&mnt->mnt == current->fs->root.mnt ||
1576 flags & (MNT_FORCE | MNT_DETACH))
1580 * probably don't strictly need the lock here if we examined
1581 * all race cases, but it's a slowpath.
1584 if (mnt_get_count(mnt) != 2) {
1585 unlock_mount_hash();
1588 unlock_mount_hash();
1590 if (!xchg(&mnt->mnt_expiry_mark, 1))
1595 * If we may have to abort operations to get out of this
1596 * mount, and they will themselves hold resources we must
1597 * allow the fs to do things. In the Unix tradition of
1598 * 'Gee thats tricky lets do it in userspace' the umount_begin
1599 * might fail to complete on the first run through as other tasks
1600 * must return, and the like. Thats for the mount program to worry
1601 * about for the moment.
1604 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1605 sb->s_op->umount_begin(sb);
1609 * No sense to grab the lock for this test, but test itself looks
1610 * somewhat bogus. Suggestions for better replacement?
1611 * Ho-hum... In principle, we might treat that as umount + switch
1612 * to rootfs. GC would eventually take care of the old vfsmount.
1613 * Actually it makes sense, especially if rootfs would contain a
1614 * /reboot - static binary that would close all descriptors and
1615 * call reboot(9). Then init(8) could umount root and exec /reboot.
1617 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1619 * Special case for "unmounting" root ...
1620 * we just try to remount it readonly.
1622 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1624 return do_umount_root(sb);
1630 /* Recheck MNT_LOCKED with the locks held */
1632 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1636 if (flags & MNT_DETACH) {
1637 if (!list_empty(&mnt->mnt_list))
1638 umount_tree(mnt, UMOUNT_PROPAGATE);
1641 shrink_submounts(mnt);
1643 if (!propagate_mount_busy(mnt, 2)) {
1644 if (!list_empty(&mnt->mnt_list))
1645 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1650 unlock_mount_hash();
1656 * __detach_mounts - lazily unmount all mounts on the specified dentry
1658 * During unlink, rmdir, and d_drop it is possible to loose the path
1659 * to an existing mountpoint, and wind up leaking the mount.
1660 * detach_mounts allows lazily unmounting those mounts instead of
1663 * The caller may hold dentry->d_inode->i_mutex.
1665 void __detach_mounts(struct dentry *dentry)
1667 struct mountpoint *mp;
1672 mp = lookup_mountpoint(dentry);
1677 while (!hlist_empty(&mp->m_list)) {
1678 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1679 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1681 hlist_add_head(&mnt->mnt_umount, &unmounted);
1683 else umount_tree(mnt, UMOUNT_CONNECTED);
1687 unlock_mount_hash();
1692 * Is the caller allowed to modify his namespace?
1694 static inline bool may_mount(void)
1696 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1699 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1700 static inline bool may_mandlock(void)
1702 return capable(CAP_SYS_ADMIN);
1705 static inline bool may_mandlock(void)
1707 pr_warn("VFS: \"mand\" mount option not supported");
1712 static int can_umount(const struct path *path, int flags)
1714 struct mount *mnt = real_mount(path->mnt);
1718 if (path->dentry != path->mnt->mnt_root)
1720 if (!check_mnt(mnt))
1722 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1724 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1729 // caller is responsible for flags being sane
1730 int path_umount(struct path *path, int flags)
1732 struct mount *mnt = real_mount(path->mnt);
1735 ret = can_umount(path, flags);
1737 ret = do_umount(mnt, flags);
1739 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1741 mntput_no_expire(mnt);
1745 static int ksys_umount(char __user *name, int flags)
1747 int lookup_flags = LOOKUP_MOUNTPOINT;
1751 // basic validity checks done first
1752 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1755 if (!(flags & UMOUNT_NOFOLLOW))
1756 lookup_flags |= LOOKUP_FOLLOW;
1757 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1760 return path_umount(&path, flags);
1763 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1765 return ksys_umount(name, flags);
1768 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1771 * The 2.0 compatible umount. No flags.
1773 SYSCALL_DEFINE1(oldumount, char __user *, name)
1775 return ksys_umount(name, 0);
1780 static bool is_mnt_ns_file(struct dentry *dentry)
1782 /* Is this a proxy for a mount namespace? */
1783 return dentry->d_op == &ns_dentry_operations &&
1784 dentry->d_fsdata == &mntns_operations;
1787 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1789 return container_of(ns, struct mnt_namespace, ns);
1792 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1797 static bool mnt_ns_loop(struct dentry *dentry)
1799 /* Could bind mounting the mount namespace inode cause a
1800 * mount namespace loop?
1802 struct mnt_namespace *mnt_ns;
1803 if (!is_mnt_ns_file(dentry))
1806 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1807 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1810 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1813 struct mount *res, *p, *q, *r, *parent;
1815 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1816 return ERR_PTR(-EINVAL);
1818 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1819 return ERR_PTR(-EINVAL);
1821 res = q = clone_mnt(mnt, dentry, flag);
1825 q->mnt_mountpoint = mnt->mnt_mountpoint;
1828 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1830 if (!is_subdir(r->mnt_mountpoint, dentry))
1833 for (s = r; s; s = next_mnt(s, r)) {
1834 if (!(flag & CL_COPY_UNBINDABLE) &&
1835 IS_MNT_UNBINDABLE(s)) {
1836 if (s->mnt.mnt_flags & MNT_LOCKED) {
1837 /* Both unbindable and locked. */
1838 q = ERR_PTR(-EPERM);
1841 s = skip_mnt_tree(s);
1845 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1846 is_mnt_ns_file(s->mnt.mnt_root)) {
1847 s = skip_mnt_tree(s);
1850 while (p != s->mnt_parent) {
1856 q = clone_mnt(p, p->mnt.mnt_root, flag);
1860 list_add_tail(&q->mnt_list, &res->mnt_list);
1861 attach_mnt(q, parent, p->mnt_mp);
1862 unlock_mount_hash();
1869 umount_tree(res, UMOUNT_SYNC);
1870 unlock_mount_hash();
1875 /* Caller should check returned pointer for errors */
1877 struct vfsmount *collect_mounts(const struct path *path)
1881 if (!check_mnt(real_mount(path->mnt)))
1882 tree = ERR_PTR(-EINVAL);
1884 tree = copy_tree(real_mount(path->mnt), path->dentry,
1885 CL_COPY_ALL | CL_PRIVATE);
1888 return ERR_CAST(tree);
1892 static void free_mnt_ns(struct mnt_namespace *);
1893 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1895 void dissolve_on_fput(struct vfsmount *mnt)
1897 struct mnt_namespace *ns;
1900 ns = real_mount(mnt)->mnt_ns;
1903 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1907 unlock_mount_hash();
1913 void drop_collected_mounts(struct vfsmount *mnt)
1917 umount_tree(real_mount(mnt), 0);
1918 unlock_mount_hash();
1923 * clone_private_mount - create a private clone of a path
1925 * This creates a new vfsmount, which will be the clone of @path. The new will
1926 * not be attached anywhere in the namespace and will be private (i.e. changes
1927 * to the originating mount won't be propagated into this).
1929 * Release with mntput().
1931 struct vfsmount *clone_private_mount(const struct path *path)
1933 struct mount *old_mnt = real_mount(path->mnt);
1934 struct mount *new_mnt;
1936 if (IS_MNT_UNBINDABLE(old_mnt))
1937 return ERR_PTR(-EINVAL);
1939 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1940 if (IS_ERR(new_mnt))
1941 return ERR_CAST(new_mnt);
1943 /* Longterm mount to be removed by kern_unmount*() */
1944 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1946 return &new_mnt->mnt;
1948 EXPORT_SYMBOL_GPL(clone_private_mount);
1950 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1951 struct vfsmount *root)
1954 int res = f(root, arg);
1957 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1958 res = f(&mnt->mnt, arg);
1965 static void lock_mnt_tree(struct mount *mnt)
1969 for (p = mnt; p; p = next_mnt(p, mnt)) {
1970 int flags = p->mnt.mnt_flags;
1971 /* Don't allow unprivileged users to change mount flags */
1972 flags |= MNT_LOCK_ATIME;
1974 if (flags & MNT_READONLY)
1975 flags |= MNT_LOCK_READONLY;
1977 if (flags & MNT_NODEV)
1978 flags |= MNT_LOCK_NODEV;
1980 if (flags & MNT_NOSUID)
1981 flags |= MNT_LOCK_NOSUID;
1983 if (flags & MNT_NOEXEC)
1984 flags |= MNT_LOCK_NOEXEC;
1985 /* Don't allow unprivileged users to reveal what is under a mount */
1986 if (list_empty(&p->mnt_expire))
1987 flags |= MNT_LOCKED;
1988 p->mnt.mnt_flags = flags;
1992 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1996 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1997 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1998 mnt_release_group_id(p);
2002 static int invent_group_ids(struct mount *mnt, bool recurse)
2006 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2007 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2008 int err = mnt_alloc_group_id(p);
2010 cleanup_group_ids(mnt, p);
2019 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2021 unsigned int max = READ_ONCE(sysctl_mount_max);
2022 unsigned int mounts = 0, old, pending, sum;
2025 for (p = mnt; p; p = next_mnt(p, mnt))
2029 pending = ns->pending_mounts;
2030 sum = old + pending;
2034 (mounts > (max - sum)))
2037 ns->pending_mounts = pending + mounts;
2042 * @source_mnt : mount tree to be attached
2043 * @nd : place the mount tree @source_mnt is attached
2044 * @parent_nd : if non-null, detach the source_mnt from its parent and
2045 * store the parent mount and mountpoint dentry.
2046 * (done when source_mnt is moved)
2048 * NOTE: in the table below explains the semantics when a source mount
2049 * of a given type is attached to a destination mount of a given type.
2050 * ---------------------------------------------------------------------------
2051 * | BIND MOUNT OPERATION |
2052 * |**************************************************************************
2053 * | source-->| shared | private | slave | unbindable |
2057 * |**************************************************************************
2058 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2060 * |non-shared| shared (+) | private | slave (*) | invalid |
2061 * ***************************************************************************
2062 * A bind operation clones the source mount and mounts the clone on the
2063 * destination mount.
2065 * (++) the cloned mount is propagated to all the mounts in the propagation
2066 * tree of the destination mount and the cloned mount is added to
2067 * the peer group of the source mount.
2068 * (+) the cloned mount is created under the destination mount and is marked
2069 * as shared. The cloned mount is added to the peer group of the source
2071 * (+++) the mount is propagated to all the mounts in the propagation tree
2072 * of the destination mount and the cloned mount is made slave
2073 * of the same master as that of the source mount. The cloned mount
2074 * is marked as 'shared and slave'.
2075 * (*) the cloned mount is made a slave of the same master as that of the
2078 * ---------------------------------------------------------------------------
2079 * | MOVE MOUNT OPERATION |
2080 * |**************************************************************************
2081 * | source-->| shared | private | slave | unbindable |
2085 * |**************************************************************************
2086 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2088 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2089 * ***************************************************************************
2091 * (+) the mount is moved to the destination. And is then propagated to
2092 * all the mounts in the propagation tree of the destination mount.
2093 * (+*) the mount is moved to the destination.
2094 * (+++) the mount is moved to the destination and is then propagated to
2095 * all the mounts belonging to the destination mount's propagation tree.
2096 * the mount is marked as 'shared and slave'.
2097 * (*) the mount continues to be a slave at the new location.
2099 * if the source mount is a tree, the operations explained above is
2100 * applied to each mount in the tree.
2101 * Must be called without spinlocks held, since this function can sleep
2104 static int attach_recursive_mnt(struct mount *source_mnt,
2105 struct mount *dest_mnt,
2106 struct mountpoint *dest_mp,
2109 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2110 HLIST_HEAD(tree_list);
2111 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2112 struct mountpoint *smp;
2113 struct mount *child, *p;
2114 struct hlist_node *n;
2117 /* Preallocate a mountpoint in case the new mounts need
2118 * to be tucked under other mounts.
2120 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2122 return PTR_ERR(smp);
2124 /* Is there space to add these mounts to the mount namespace? */
2126 err = count_mounts(ns, source_mnt);
2131 if (IS_MNT_SHARED(dest_mnt)) {
2132 err = invent_group_ids(source_mnt, true);
2135 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2138 goto out_cleanup_ids;
2139 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2145 unhash_mnt(source_mnt);
2146 attach_mnt(source_mnt, dest_mnt, dest_mp);
2147 touch_mnt_namespace(source_mnt->mnt_ns);
2149 if (source_mnt->mnt_ns) {
2150 /* move from anon - the caller will destroy */
2151 list_del_init(&source_mnt->mnt_ns->list);
2153 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2154 commit_tree(source_mnt);
2157 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2159 hlist_del_init(&child->mnt_hash);
2160 q = __lookup_mnt(&child->mnt_parent->mnt,
2161 child->mnt_mountpoint);
2163 mnt_change_mountpoint(child, smp, q);
2164 /* Notice when we are propagating across user namespaces */
2165 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2166 lock_mnt_tree(child);
2167 child->mnt.mnt_flags &= ~MNT_LOCKED;
2170 put_mountpoint(smp);
2171 unlock_mount_hash();
2176 while (!hlist_empty(&tree_list)) {
2177 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2178 child->mnt_parent->mnt_ns->pending_mounts = 0;
2179 umount_tree(child, UMOUNT_SYNC);
2181 unlock_mount_hash();
2182 cleanup_group_ids(source_mnt, NULL);
2184 ns->pending_mounts = 0;
2186 read_seqlock_excl(&mount_lock);
2187 put_mountpoint(smp);
2188 read_sequnlock_excl(&mount_lock);
2193 static struct mountpoint *lock_mount(struct path *path)
2195 struct vfsmount *mnt;
2196 struct dentry *dentry = path->dentry;
2198 inode_lock(dentry->d_inode);
2199 if (unlikely(cant_mount(dentry))) {
2200 inode_unlock(dentry->d_inode);
2201 return ERR_PTR(-ENOENT);
2204 mnt = lookup_mnt(path);
2206 struct mountpoint *mp = get_mountpoint(dentry);
2209 inode_unlock(dentry->d_inode);
2215 inode_unlock(path->dentry->d_inode);
2218 dentry = path->dentry = dget(mnt->mnt_root);
2222 static void unlock_mount(struct mountpoint *where)
2224 struct dentry *dentry = where->m_dentry;
2226 read_seqlock_excl(&mount_lock);
2227 put_mountpoint(where);
2228 read_sequnlock_excl(&mount_lock);
2231 inode_unlock(dentry->d_inode);
2234 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2236 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2239 if (d_is_dir(mp->m_dentry) !=
2240 d_is_dir(mnt->mnt.mnt_root))
2243 return attach_recursive_mnt(mnt, p, mp, false);
2247 * Sanity check the flags to change_mnt_propagation.
2250 static int flags_to_propagation_type(int ms_flags)
2252 int type = ms_flags & ~(MS_REC | MS_SILENT);
2254 /* Fail if any non-propagation flags are set */
2255 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2257 /* Only one propagation flag should be set */
2258 if (!is_power_of_2(type))
2264 * recursively change the type of the mountpoint.
2266 static int do_change_type(struct path *path, int ms_flags)
2269 struct mount *mnt = real_mount(path->mnt);
2270 int recurse = ms_flags & MS_REC;
2274 if (path->dentry != path->mnt->mnt_root)
2277 type = flags_to_propagation_type(ms_flags);
2282 if (type == MS_SHARED) {
2283 err = invent_group_ids(mnt, recurse);
2289 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2290 change_mnt_propagation(m, type);
2291 unlock_mount_hash();
2298 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2300 struct mount *child;
2301 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2302 if (!is_subdir(child->mnt_mountpoint, dentry))
2305 if (child->mnt.mnt_flags & MNT_LOCKED)
2311 static struct mount *__do_loopback(struct path *old_path, int recurse)
2313 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2315 if (IS_MNT_UNBINDABLE(old))
2318 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2321 if (!recurse && has_locked_children(old, old_path->dentry))
2325 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2327 mnt = clone_mnt(old, old_path->dentry, 0);
2330 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2336 * do loopback mount.
2338 static int do_loopback(struct path *path, const char *old_name,
2341 struct path old_path;
2342 struct mount *mnt = NULL, *parent;
2343 struct mountpoint *mp;
2345 if (!old_name || !*old_name)
2347 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2352 if (mnt_ns_loop(old_path.dentry))
2355 mp = lock_mount(path);
2361 parent = real_mount(path->mnt);
2362 if (!check_mnt(parent))
2365 mnt = __do_loopback(&old_path, recurse);
2371 err = graft_tree(mnt, parent, mp);
2374 umount_tree(mnt, UMOUNT_SYNC);
2375 unlock_mount_hash();
2380 path_put(&old_path);
2384 static struct file *open_detached_copy(struct path *path, bool recursive)
2386 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2387 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2388 struct mount *mnt, *p;
2392 return ERR_CAST(ns);
2395 mnt = __do_loopback(path, recursive);
2399 return ERR_CAST(mnt);
2403 for (p = mnt; p; p = next_mnt(p, mnt)) {
2408 list_add_tail(&ns->list, &mnt->mnt_list);
2410 unlock_mount_hash();
2414 path->mnt = &mnt->mnt;
2415 file = dentry_open(path, O_PATH, current_cred());
2417 dissolve_on_fput(path->mnt);
2419 file->f_mode |= FMODE_NEED_UNMOUNT;
2423 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2427 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2428 bool detached = flags & OPEN_TREE_CLONE;
2432 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2434 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2435 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2439 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2442 if (flags & AT_NO_AUTOMOUNT)
2443 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2444 if (flags & AT_SYMLINK_NOFOLLOW)
2445 lookup_flags &= ~LOOKUP_FOLLOW;
2446 if (flags & AT_EMPTY_PATH)
2447 lookup_flags |= LOOKUP_EMPTY;
2449 if (detached && !may_mount())
2452 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2456 error = user_path_at(dfd, filename, lookup_flags, &path);
2457 if (unlikely(error)) {
2458 file = ERR_PTR(error);
2461 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2463 file = dentry_open(&path, O_PATH, current_cred());
2468 return PTR_ERR(file);
2470 fd_install(fd, file);
2475 * Don't allow locked mount flags to be cleared.
2477 * No locks need to be held here while testing the various MNT_LOCK
2478 * flags because those flags can never be cleared once they are set.
2480 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2482 unsigned int fl = mnt->mnt.mnt_flags;
2484 if ((fl & MNT_LOCK_READONLY) &&
2485 !(mnt_flags & MNT_READONLY))
2488 if ((fl & MNT_LOCK_NODEV) &&
2489 !(mnt_flags & MNT_NODEV))
2492 if ((fl & MNT_LOCK_NOSUID) &&
2493 !(mnt_flags & MNT_NOSUID))
2496 if ((fl & MNT_LOCK_NOEXEC) &&
2497 !(mnt_flags & MNT_NOEXEC))
2500 if ((fl & MNT_LOCK_ATIME) &&
2501 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2507 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2509 bool readonly_request = (mnt_flags & MNT_READONLY);
2511 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2514 if (readonly_request)
2515 return mnt_make_readonly(mnt);
2517 return __mnt_unmake_readonly(mnt);
2521 * Update the user-settable attributes on a mount. The caller must hold
2522 * sb->s_umount for writing.
2524 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2527 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2528 mnt->mnt.mnt_flags = mnt_flags;
2529 touch_mnt_namespace(mnt->mnt_ns);
2530 unlock_mount_hash();
2533 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2535 struct super_block *sb = mnt->mnt_sb;
2537 if (!__mnt_is_readonly(mnt) &&
2538 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2539 char *buf = (char *)__get_free_page(GFP_KERNEL);
2540 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2543 time64_to_tm(sb->s_time_max, 0, &tm);
2545 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2547 is_mounted(mnt) ? "remounted" : "mounted",
2549 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2551 free_page((unsigned long)buf);
2556 * Handle reconfiguration of the mountpoint only without alteration of the
2557 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2560 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2562 struct super_block *sb = path->mnt->mnt_sb;
2563 struct mount *mnt = real_mount(path->mnt);
2566 if (!check_mnt(mnt))
2569 if (path->dentry != mnt->mnt.mnt_root)
2572 if (!can_change_locked_flags(mnt, mnt_flags))
2575 down_write(&sb->s_umount);
2576 ret = change_mount_ro_state(mnt, mnt_flags);
2578 set_mount_attributes(mnt, mnt_flags);
2579 up_write(&sb->s_umount);
2581 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2587 * change filesystem flags. dir should be a physical root of filesystem.
2588 * If you've mounted a non-root directory somewhere and want to do remount
2589 * on it - tough luck.
2591 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2592 int mnt_flags, void *data)
2595 struct super_block *sb = path->mnt->mnt_sb;
2596 struct mount *mnt = real_mount(path->mnt);
2597 struct fs_context *fc;
2599 if (!check_mnt(mnt))
2602 if (path->dentry != path->mnt->mnt_root)
2605 if (!can_change_locked_flags(mnt, mnt_flags))
2608 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2613 err = parse_monolithic_mount_data(fc, data);
2615 down_write(&sb->s_umount);
2617 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2618 err = reconfigure_super(fc);
2620 set_mount_attributes(mnt, mnt_flags);
2622 up_write(&sb->s_umount);
2625 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2631 static inline int tree_contains_unbindable(struct mount *mnt)
2634 for (p = mnt; p; p = next_mnt(p, mnt)) {
2635 if (IS_MNT_UNBINDABLE(p))
2642 * Check that there aren't references to earlier/same mount namespaces in the
2643 * specified subtree. Such references can act as pins for mount namespaces
2644 * that aren't checked by the mount-cycle checking code, thereby allowing
2645 * cycles to be made.
2647 static bool check_for_nsfs_mounts(struct mount *subtree)
2653 for (p = subtree; p; p = next_mnt(p, subtree))
2654 if (mnt_ns_loop(p->mnt.mnt_root))
2659 unlock_mount_hash();
2663 static int do_move_mount(struct path *old_path, struct path *new_path)
2665 struct mnt_namespace *ns;
2668 struct mount *parent;
2669 struct mountpoint *mp, *old_mp;
2673 mp = lock_mount(new_path);
2677 old = real_mount(old_path->mnt);
2678 p = real_mount(new_path->mnt);
2679 parent = old->mnt_parent;
2680 attached = mnt_has_parent(old);
2681 old_mp = old->mnt_mp;
2685 /* The mountpoint must be in our namespace. */
2689 /* The thing moved must be mounted... */
2690 if (!is_mounted(&old->mnt))
2693 /* ... and either ours or the root of anon namespace */
2694 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2697 if (old->mnt.mnt_flags & MNT_LOCKED)
2700 if (old_path->dentry != old_path->mnt->mnt_root)
2703 if (d_is_dir(new_path->dentry) !=
2704 d_is_dir(old_path->dentry))
2707 * Don't move a mount residing in a shared parent.
2709 if (attached && IS_MNT_SHARED(parent))
2712 * Don't move a mount tree containing unbindable mounts to a destination
2713 * mount which is shared.
2715 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2718 if (!check_for_nsfs_mounts(old))
2720 for (; mnt_has_parent(p); p = p->mnt_parent)
2724 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2729 /* if the mount is moved, it should no longer be expire
2731 list_del_init(&old->mnt_expire);
2733 put_mountpoint(old_mp);
2738 mntput_no_expire(parent);
2745 static int do_move_mount_old(struct path *path, const char *old_name)
2747 struct path old_path;
2750 if (!old_name || !*old_name)
2753 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2757 err = do_move_mount(&old_path, path);
2758 path_put(&old_path);
2763 * add a mount into a namespace's mount tree
2765 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2766 struct path *path, int mnt_flags)
2768 struct mount *parent = real_mount(path->mnt);
2770 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2772 if (unlikely(!check_mnt(parent))) {
2773 /* that's acceptable only for automounts done in private ns */
2774 if (!(mnt_flags & MNT_SHRINKABLE))
2776 /* ... and for those we'd better have mountpoint still alive */
2777 if (!parent->mnt_ns)
2781 /* Refuse the same filesystem on the same mount point */
2782 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2783 path->mnt->mnt_root == path->dentry)
2786 if (d_is_symlink(newmnt->mnt.mnt_root))
2789 newmnt->mnt.mnt_flags = mnt_flags;
2790 return graft_tree(newmnt, parent, mp);
2793 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2796 * Create a new mount using a superblock configuration and request it
2797 * be added to the namespace tree.
2799 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2800 unsigned int mnt_flags)
2802 struct vfsmount *mnt;
2803 struct mountpoint *mp;
2804 struct super_block *sb = fc->root->d_sb;
2807 error = security_sb_kern_mount(sb);
2808 if (!error && mount_too_revealing(sb, &mnt_flags))
2811 if (unlikely(error)) {
2816 up_write(&sb->s_umount);
2818 mnt = vfs_create_mount(fc);
2820 return PTR_ERR(mnt);
2822 mnt_warn_timestamp_expiry(mountpoint, mnt);
2824 mp = lock_mount(mountpoint);
2829 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2837 * create a new mount for userspace and request it to be added into the
2840 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2841 int mnt_flags, const char *name, void *data)
2843 struct file_system_type *type;
2844 struct fs_context *fc;
2845 const char *subtype = NULL;
2851 type = get_fs_type(fstype);
2855 if (type->fs_flags & FS_HAS_SUBTYPE) {
2856 subtype = strchr(fstype, '.');
2860 put_filesystem(type);
2866 fc = fs_context_for_mount(type, sb_flags);
2867 put_filesystem(type);
2872 err = vfs_parse_fs_string(fc, "subtype",
2873 subtype, strlen(subtype));
2875 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2877 err = parse_monolithic_mount_data(fc, data);
2878 if (!err && !mount_capable(fc))
2881 err = vfs_get_tree(fc);
2883 err = do_new_mount_fc(fc, path, mnt_flags);
2889 int finish_automount(struct vfsmount *m, struct path *path)
2891 struct dentry *dentry = path->dentry;
2892 struct mountpoint *mp;
2901 mnt = real_mount(m);
2902 /* The new mount record should have at least 2 refs to prevent it being
2903 * expired before we get a chance to add it
2905 BUG_ON(mnt_get_count(mnt) < 2);
2907 if (m->mnt_sb == path->mnt->mnt_sb &&
2908 m->mnt_root == dentry) {
2914 * we don't want to use lock_mount() - in this case finding something
2915 * that overmounts our mountpoint to be means "quitely drop what we've
2916 * got", not "try to mount it on top".
2918 inode_lock(dentry->d_inode);
2920 if (unlikely(cant_mount(dentry))) {
2922 goto discard_locked;
2925 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2928 goto discard_locked;
2931 mp = get_mountpoint(dentry);
2934 goto discard_locked;
2937 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2946 inode_unlock(dentry->d_inode);
2948 /* remove m from any expiration list it may be on */
2949 if (!list_empty(&mnt->mnt_expire)) {
2951 list_del_init(&mnt->mnt_expire);
2960 * mnt_set_expiry - Put a mount on an expiration list
2961 * @mnt: The mount to list.
2962 * @expiry_list: The list to add the mount to.
2964 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2968 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2972 EXPORT_SYMBOL(mnt_set_expiry);
2975 * process a list of expirable mountpoints with the intent of discarding any
2976 * mountpoints that aren't in use and haven't been touched since last we came
2979 void mark_mounts_for_expiry(struct list_head *mounts)
2981 struct mount *mnt, *next;
2982 LIST_HEAD(graveyard);
2984 if (list_empty(mounts))
2990 /* extract from the expiration list every vfsmount that matches the
2991 * following criteria:
2992 * - only referenced by its parent vfsmount
2993 * - still marked for expiry (marked on the last call here; marks are
2994 * cleared by mntput())
2996 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2997 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2998 propagate_mount_busy(mnt, 1))
3000 list_move(&mnt->mnt_expire, &graveyard);
3002 while (!list_empty(&graveyard)) {
3003 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3004 touch_mnt_namespace(mnt->mnt_ns);
3005 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3007 unlock_mount_hash();
3011 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3014 * Ripoff of 'select_parent()'
3016 * search the list of submounts for a given mountpoint, and move any
3017 * shrinkable submounts to the 'graveyard' list.
3019 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3021 struct mount *this_parent = parent;
3022 struct list_head *next;
3026 next = this_parent->mnt_mounts.next;
3028 while (next != &this_parent->mnt_mounts) {
3029 struct list_head *tmp = next;
3030 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3033 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3036 * Descend a level if the d_mounts list is non-empty.
3038 if (!list_empty(&mnt->mnt_mounts)) {
3043 if (!propagate_mount_busy(mnt, 1)) {
3044 list_move_tail(&mnt->mnt_expire, graveyard);
3049 * All done at this level ... ascend and resume the search
3051 if (this_parent != parent) {
3052 next = this_parent->mnt_child.next;
3053 this_parent = this_parent->mnt_parent;
3060 * process a list of expirable mountpoints with the intent of discarding any
3061 * submounts of a specific parent mountpoint
3063 * mount_lock must be held for write
3065 static void shrink_submounts(struct mount *mnt)
3067 LIST_HEAD(graveyard);
3070 /* extract submounts of 'mountpoint' from the expiration list */
3071 while (select_submounts(mnt, &graveyard)) {
3072 while (!list_empty(&graveyard)) {
3073 m = list_first_entry(&graveyard, struct mount,
3075 touch_mnt_namespace(m->mnt_ns);
3076 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3081 static void *copy_mount_options(const void __user * data)
3084 unsigned left, offset;
3089 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3091 return ERR_PTR(-ENOMEM);
3093 left = copy_from_user(copy, data, PAGE_SIZE);
3096 * Not all architectures have an exact copy_from_user(). Resort to
3099 offset = PAGE_SIZE - left;
3102 if (get_user(c, (const char __user *)data + offset))
3109 if (left == PAGE_SIZE) {
3111 return ERR_PTR(-EFAULT);
3117 static char *copy_mount_string(const void __user *data)
3119 return data ? strndup_user(data, PATH_MAX) : NULL;
3123 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3124 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3126 * data is a (void *) that can point to any structure up to
3127 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3128 * information (or be NULL).
3130 * Pre-0.97 versions of mount() didn't have a flags word.
3131 * When the flags word was introduced its top half was required
3132 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3133 * Therefore, if this magic number is present, it carries no information
3134 * and must be discarded.
3136 int path_mount(const char *dev_name, struct path *path,
3137 const char *type_page, unsigned long flags, void *data_page)
3139 unsigned int mnt_flags = 0, sb_flags;
3143 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3144 flags &= ~MS_MGC_MSK;
3146 /* Basic sanity checks */
3148 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3150 if (flags & MS_NOUSER)
3153 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3158 if ((flags & SB_MANDLOCK) && !may_mandlock())
3161 /* Default to relatime unless overriden */
3162 if (!(flags & MS_NOATIME))
3163 mnt_flags |= MNT_RELATIME;
3165 /* Separate the per-mountpoint flags */
3166 if (flags & MS_NOSUID)
3167 mnt_flags |= MNT_NOSUID;
3168 if (flags & MS_NODEV)
3169 mnt_flags |= MNT_NODEV;
3170 if (flags & MS_NOEXEC)
3171 mnt_flags |= MNT_NOEXEC;
3172 if (flags & MS_NOATIME)
3173 mnt_flags |= MNT_NOATIME;
3174 if (flags & MS_NODIRATIME)
3175 mnt_flags |= MNT_NODIRATIME;
3176 if (flags & MS_STRICTATIME)
3177 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3178 if (flags & MS_RDONLY)
3179 mnt_flags |= MNT_READONLY;
3180 if (flags & MS_NOSYMFOLLOW)
3181 mnt_flags |= MNT_NOSYMFOLLOW;
3183 /* The default atime for remount is preservation */
3184 if ((flags & MS_REMOUNT) &&
3185 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3186 MS_STRICTATIME)) == 0)) {
3187 mnt_flags &= ~MNT_ATIME_MASK;
3188 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3191 sb_flags = flags & (SB_RDONLY |
3200 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3201 return do_reconfigure_mnt(path, mnt_flags);
3202 if (flags & MS_REMOUNT)
3203 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3204 if (flags & MS_BIND)
3205 return do_loopback(path, dev_name, flags & MS_REC);
3206 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3207 return do_change_type(path, flags);
3208 if (flags & MS_MOVE)
3209 return do_move_mount_old(path, dev_name);
3211 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3215 long do_mount(const char *dev_name, const char __user *dir_name,
3216 const char *type_page, unsigned long flags, void *data_page)
3221 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3224 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3229 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3231 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3234 static void dec_mnt_namespaces(struct ucounts *ucounts)
3236 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3239 static void free_mnt_ns(struct mnt_namespace *ns)
3241 if (!is_anon_ns(ns))
3242 ns_free_inum(&ns->ns);
3243 dec_mnt_namespaces(ns->ucounts);
3244 put_user_ns(ns->user_ns);
3249 * Assign a sequence number so we can detect when we attempt to bind
3250 * mount a reference to an older mount namespace into the current
3251 * mount namespace, preventing reference counting loops. A 64bit
3252 * number incrementing at 10Ghz will take 12,427 years to wrap which
3253 * is effectively never, so we can ignore the possibility.
3255 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3257 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3259 struct mnt_namespace *new_ns;
3260 struct ucounts *ucounts;
3263 ucounts = inc_mnt_namespaces(user_ns);
3265 return ERR_PTR(-ENOSPC);
3267 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3269 dec_mnt_namespaces(ucounts);
3270 return ERR_PTR(-ENOMEM);
3273 ret = ns_alloc_inum(&new_ns->ns);
3276 dec_mnt_namespaces(ucounts);
3277 return ERR_PTR(ret);
3280 new_ns->ns.ops = &mntns_operations;
3282 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3283 refcount_set(&new_ns->ns.count, 1);
3284 INIT_LIST_HEAD(&new_ns->list);
3285 init_waitqueue_head(&new_ns->poll);
3286 spin_lock_init(&new_ns->ns_lock);
3287 new_ns->user_ns = get_user_ns(user_ns);
3288 new_ns->ucounts = ucounts;
3293 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3294 struct user_namespace *user_ns, struct fs_struct *new_fs)
3296 struct mnt_namespace *new_ns;
3297 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3298 struct mount *p, *q;
3305 if (likely(!(flags & CLONE_NEWNS))) {
3312 new_ns = alloc_mnt_ns(user_ns, false);
3317 /* First pass: copy the tree topology */
3318 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3319 if (user_ns != ns->user_ns)
3320 copy_flags |= CL_SHARED_TO_SLAVE;
3321 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3324 free_mnt_ns(new_ns);
3325 return ERR_CAST(new);
3327 if (user_ns != ns->user_ns) {
3330 unlock_mount_hash();
3333 list_add_tail(&new_ns->list, &new->mnt_list);
3336 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3337 * as belonging to new namespace. We have already acquired a private
3338 * fs_struct, so tsk->fs->lock is not needed.
3346 if (&p->mnt == new_fs->root.mnt) {
3347 new_fs->root.mnt = mntget(&q->mnt);
3350 if (&p->mnt == new_fs->pwd.mnt) {
3351 new_fs->pwd.mnt = mntget(&q->mnt);
3355 p = next_mnt(p, old);
3356 q = next_mnt(q, new);
3359 while (p->mnt.mnt_root != q->mnt.mnt_root)
3360 p = next_mnt(p, old);
3372 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3374 struct mount *mnt = real_mount(m);
3375 struct mnt_namespace *ns;
3376 struct super_block *s;
3380 ns = alloc_mnt_ns(&init_user_ns, true);
3383 return ERR_CAST(ns);
3388 list_add(&mnt->mnt_list, &ns->list);
3390 err = vfs_path_lookup(m->mnt_root, m,
3391 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3396 return ERR_PTR(err);
3398 /* trade a vfsmount reference for active sb one */
3399 s = path.mnt->mnt_sb;
3400 atomic_inc(&s->s_active);
3402 /* lock the sucker */
3403 down_write(&s->s_umount);
3404 /* ... and return the root of (sub)tree on it */
3407 EXPORT_SYMBOL(mount_subtree);
3409 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3410 char __user *, type, unsigned long, flags, void __user *, data)
3417 kernel_type = copy_mount_string(type);
3418 ret = PTR_ERR(kernel_type);
3419 if (IS_ERR(kernel_type))
3422 kernel_dev = copy_mount_string(dev_name);
3423 ret = PTR_ERR(kernel_dev);
3424 if (IS_ERR(kernel_dev))
3427 options = copy_mount_options(data);
3428 ret = PTR_ERR(options);
3429 if (IS_ERR(options))
3432 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3444 * Create a kernel mount representation for a new, prepared superblock
3445 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3447 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3448 unsigned int, attr_flags)
3450 struct mnt_namespace *ns;
3451 struct fs_context *fc;
3453 struct path newmount;
3456 unsigned int mnt_flags = 0;
3462 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3465 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3470 MOUNT_ATTR_NODIRATIME))
3473 if (attr_flags & MOUNT_ATTR_RDONLY)
3474 mnt_flags |= MNT_READONLY;
3475 if (attr_flags & MOUNT_ATTR_NOSUID)
3476 mnt_flags |= MNT_NOSUID;
3477 if (attr_flags & MOUNT_ATTR_NODEV)
3478 mnt_flags |= MNT_NODEV;
3479 if (attr_flags & MOUNT_ATTR_NOEXEC)
3480 mnt_flags |= MNT_NOEXEC;
3481 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3482 mnt_flags |= MNT_NODIRATIME;
3484 switch (attr_flags & MOUNT_ATTR__ATIME) {
3485 case MOUNT_ATTR_STRICTATIME:
3487 case MOUNT_ATTR_NOATIME:
3488 mnt_flags |= MNT_NOATIME;
3490 case MOUNT_ATTR_RELATIME:
3491 mnt_flags |= MNT_RELATIME;
3502 if (f.file->f_op != &fscontext_fops)
3505 fc = f.file->private_data;
3507 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3511 /* There must be a valid superblock or we can't mount it */
3517 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3518 pr_warn("VFS: Mount too revealing\n");
3523 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3527 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3530 newmount.mnt = vfs_create_mount(fc);
3531 if (IS_ERR(newmount.mnt)) {
3532 ret = PTR_ERR(newmount.mnt);
3535 newmount.dentry = dget(fc->root);
3536 newmount.mnt->mnt_flags = mnt_flags;
3538 /* We've done the mount bit - now move the file context into more or
3539 * less the same state as if we'd done an fspick(). We don't want to
3540 * do any memory allocation or anything like that at this point as we
3541 * don't want to have to handle any errors incurred.
3543 vfs_clean_context(fc);
3545 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3550 mnt = real_mount(newmount.mnt);
3554 list_add(&mnt->mnt_list, &ns->list);
3555 mntget(newmount.mnt);
3557 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3558 * it, not just simply put it.
3560 file = dentry_open(&newmount, O_PATH, fc->cred);
3562 dissolve_on_fput(newmount.mnt);
3563 ret = PTR_ERR(file);
3566 file->f_mode |= FMODE_NEED_UNMOUNT;
3568 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3570 fd_install(ret, file);
3575 path_put(&newmount);
3577 mutex_unlock(&fc->uapi_mutex);
3584 * Move a mount from one place to another. In combination with
3585 * fsopen()/fsmount() this is used to install a new mount and in combination
3586 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3589 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3591 SYSCALL_DEFINE5(move_mount,
3592 int, from_dfd, const char __user *, from_pathname,
3593 int, to_dfd, const char __user *, to_pathname,
3594 unsigned int, flags)
3596 struct path from_path, to_path;
3597 unsigned int lflags;
3603 if (flags & ~MOVE_MOUNT__MASK)
3606 /* If someone gives a pathname, they aren't permitted to move
3607 * from an fd that requires unmount as we can't get at the flag
3608 * to clear it afterwards.
3611 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3612 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3613 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3615 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3620 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3621 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3622 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3624 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3628 ret = security_move_mount(&from_path, &to_path);
3632 ret = do_move_mount(&from_path, &to_path);
3637 path_put(&from_path);
3642 * Return true if path is reachable from root
3644 * namespace_sem or mount_lock is held
3646 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3647 const struct path *root)
3649 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3650 dentry = mnt->mnt_mountpoint;
3651 mnt = mnt->mnt_parent;
3653 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3656 bool path_is_under(const struct path *path1, const struct path *path2)
3659 read_seqlock_excl(&mount_lock);
3660 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3661 read_sequnlock_excl(&mount_lock);
3664 EXPORT_SYMBOL(path_is_under);
3667 * pivot_root Semantics:
3668 * Moves the root file system of the current process to the directory put_old,
3669 * makes new_root as the new root file system of the current process, and sets
3670 * root/cwd of all processes which had them on the current root to new_root.
3673 * The new_root and put_old must be directories, and must not be on the
3674 * same file system as the current process root. The put_old must be
3675 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3676 * pointed to by put_old must yield the same directory as new_root. No other
3677 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3679 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3680 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3681 * in this situation.
3684 * - we don't move root/cwd if they are not at the root (reason: if something
3685 * cared enough to change them, it's probably wrong to force them elsewhere)
3686 * - it's okay to pick a root that isn't the root of a file system, e.g.
3687 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3688 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3691 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3692 const char __user *, put_old)
3694 struct path new, old, root;
3695 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3696 struct mountpoint *old_mp, *root_mp;
3702 error = user_path_at(AT_FDCWD, new_root,
3703 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3707 error = user_path_at(AT_FDCWD, put_old,
3708 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3712 error = security_sb_pivotroot(&old, &new);
3716 get_fs_root(current->fs, &root);
3717 old_mp = lock_mount(&old);
3718 error = PTR_ERR(old_mp);
3723 new_mnt = real_mount(new.mnt);
3724 root_mnt = real_mount(root.mnt);
3725 old_mnt = real_mount(old.mnt);
3726 ex_parent = new_mnt->mnt_parent;
3727 root_parent = root_mnt->mnt_parent;
3728 if (IS_MNT_SHARED(old_mnt) ||
3729 IS_MNT_SHARED(ex_parent) ||
3730 IS_MNT_SHARED(root_parent))
3732 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3734 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3737 if (d_unlinked(new.dentry))
3740 if (new_mnt == root_mnt || old_mnt == root_mnt)
3741 goto out4; /* loop, on the same file system */
3743 if (root.mnt->mnt_root != root.dentry)
3744 goto out4; /* not a mountpoint */
3745 if (!mnt_has_parent(root_mnt))
3746 goto out4; /* not attached */
3747 if (new.mnt->mnt_root != new.dentry)
3748 goto out4; /* not a mountpoint */
3749 if (!mnt_has_parent(new_mnt))
3750 goto out4; /* not attached */
3751 /* make sure we can reach put_old from new_root */
3752 if (!is_path_reachable(old_mnt, old.dentry, &new))
3754 /* make certain new is below the root */
3755 if (!is_path_reachable(new_mnt, new.dentry, &root))
3758 umount_mnt(new_mnt);
3759 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3760 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3761 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3762 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3764 /* mount old root on put_old */
3765 attach_mnt(root_mnt, old_mnt, old_mp);
3766 /* mount new_root on / */
3767 attach_mnt(new_mnt, root_parent, root_mp);
3768 mnt_add_count(root_parent, -1);
3769 touch_mnt_namespace(current->nsproxy->mnt_ns);
3770 /* A moved mount should not expire automatically */
3771 list_del_init(&new_mnt->mnt_expire);
3772 put_mountpoint(root_mp);
3773 unlock_mount_hash();
3774 chroot_fs_refs(&root, &new);
3777 unlock_mount(old_mp);
3779 mntput_no_expire(ex_parent);
3790 static void __init init_mount_tree(void)
3792 struct vfsmount *mnt;
3794 struct mnt_namespace *ns;
3797 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3799 panic("Can't create rootfs");
3801 ns = alloc_mnt_ns(&init_user_ns, false);
3803 panic("Can't allocate initial namespace");
3804 m = real_mount(mnt);
3808 list_add(&m->mnt_list, &ns->list);
3809 init_task.nsproxy->mnt_ns = ns;
3813 root.dentry = mnt->mnt_root;
3814 mnt->mnt_flags |= MNT_LOCKED;
3816 set_fs_pwd(current->fs, &root);
3817 set_fs_root(current->fs, &root);
3820 void __init mnt_init(void)
3824 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3825 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3827 mount_hashtable = alloc_large_system_hash("Mount-cache",
3828 sizeof(struct hlist_head),
3831 &m_hash_shift, &m_hash_mask, 0, 0);
3832 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3833 sizeof(struct hlist_head),
3836 &mp_hash_shift, &mp_hash_mask, 0, 0);
3838 if (!mount_hashtable || !mountpoint_hashtable)
3839 panic("Failed to allocate mount hash table\n");
3845 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3847 fs_kobj = kobject_create_and_add("fs", NULL);
3849 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3855 void put_mnt_ns(struct mnt_namespace *ns)
3857 if (!refcount_dec_and_test(&ns->ns.count))
3859 drop_collected_mounts(&ns->root->mnt);
3863 struct vfsmount *kern_mount(struct file_system_type *type)
3865 struct vfsmount *mnt;
3866 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3869 * it is a longterm mount, don't release mnt until
3870 * we unmount before file sys is unregistered
3872 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3876 EXPORT_SYMBOL_GPL(kern_mount);
3878 void kern_unmount(struct vfsmount *mnt)
3880 /* release long term mount so mount point can be released */
3881 if (!IS_ERR_OR_NULL(mnt)) {
3882 real_mount(mnt)->mnt_ns = NULL;
3883 synchronize_rcu(); /* yecchhh... */
3887 EXPORT_SYMBOL(kern_unmount);
3889 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3893 for (i = 0; i < num; i++)
3895 real_mount(mnt[i])->mnt_ns = NULL;
3896 synchronize_rcu_expedited();
3897 for (i = 0; i < num; i++)
3900 EXPORT_SYMBOL(kern_unmount_array);
3902 bool our_mnt(struct vfsmount *mnt)
3904 return check_mnt(real_mount(mnt));
3907 bool current_chrooted(void)
3909 /* Does the current process have a non-standard root */
3910 struct path ns_root;
3911 struct path fs_root;
3914 /* Find the namespace root */
3915 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3916 ns_root.dentry = ns_root.mnt->mnt_root;
3918 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3921 get_fs_root(current->fs, &fs_root);
3923 chrooted = !path_equal(&fs_root, &ns_root);
3931 static bool mnt_already_visible(struct mnt_namespace *ns,
3932 const struct super_block *sb,
3935 int new_flags = *new_mnt_flags;
3937 bool visible = false;
3939 down_read(&namespace_sem);
3941 list_for_each_entry(mnt, &ns->list, mnt_list) {
3942 struct mount *child;
3945 if (mnt_is_cursor(mnt))
3948 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3951 /* This mount is not fully visible if it's root directory
3952 * is not the root directory of the filesystem.
3954 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3957 /* A local view of the mount flags */
3958 mnt_flags = mnt->mnt.mnt_flags;
3960 /* Don't miss readonly hidden in the superblock flags */
3961 if (sb_rdonly(mnt->mnt.mnt_sb))
3962 mnt_flags |= MNT_LOCK_READONLY;
3964 /* Verify the mount flags are equal to or more permissive
3965 * than the proposed new mount.
3967 if ((mnt_flags & MNT_LOCK_READONLY) &&
3968 !(new_flags & MNT_READONLY))
3970 if ((mnt_flags & MNT_LOCK_ATIME) &&
3971 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3974 /* This mount is not fully visible if there are any
3975 * locked child mounts that cover anything except for
3976 * empty directories.
3978 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3979 struct inode *inode = child->mnt_mountpoint->d_inode;
3980 /* Only worry about locked mounts */
3981 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3983 /* Is the directory permanetly empty? */
3984 if (!is_empty_dir_inode(inode))
3987 /* Preserve the locked attributes */
3988 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3996 up_read(&namespace_sem);
4000 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4002 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4003 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4004 unsigned long s_iflags;
4006 if (ns->user_ns == &init_user_ns)
4009 /* Can this filesystem be too revealing? */
4010 s_iflags = sb->s_iflags;
4011 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4014 if ((s_iflags & required_iflags) != required_iflags) {
4015 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4020 return !mnt_already_visible(ns, sb, new_mnt_flags);
4023 bool mnt_may_suid(struct vfsmount *mnt)
4026 * Foreign mounts (accessed via fchdir or through /proc
4027 * symlinks) are always treated as if they are nosuid. This
4028 * prevents namespaces from trusting potentially unsafe
4029 * suid/sgid bits, file caps, or security labels that originate
4030 * in other namespaces.
4032 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4033 current_in_userns(mnt->mnt_sb->s_user_ns);
4036 static struct ns_common *mntns_get(struct task_struct *task)
4038 struct ns_common *ns = NULL;
4039 struct nsproxy *nsproxy;
4042 nsproxy = task->nsproxy;
4044 ns = &nsproxy->mnt_ns->ns;
4045 get_mnt_ns(to_mnt_ns(ns));
4052 static void mntns_put(struct ns_common *ns)
4054 put_mnt_ns(to_mnt_ns(ns));
4057 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4059 struct nsproxy *nsproxy = nsset->nsproxy;
4060 struct fs_struct *fs = nsset->fs;
4061 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4062 struct user_namespace *user_ns = nsset->cred->user_ns;
4066 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4067 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4068 !ns_capable(user_ns, CAP_SYS_ADMIN))
4071 if (is_anon_ns(mnt_ns))
4078 old_mnt_ns = nsproxy->mnt_ns;
4079 nsproxy->mnt_ns = mnt_ns;
4082 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4083 "/", LOOKUP_DOWN, &root);
4085 /* revert to old namespace */
4086 nsproxy->mnt_ns = old_mnt_ns;
4091 put_mnt_ns(old_mnt_ns);
4093 /* Update the pwd and root */
4094 set_fs_pwd(fs, &root);
4095 set_fs_root(fs, &root);
4101 static struct user_namespace *mntns_owner(struct ns_common *ns)
4103 return to_mnt_ns(ns)->user_ns;
4106 const struct proc_ns_operations mntns_operations = {
4108 .type = CLONE_NEWNS,
4111 .install = mntns_install,
4112 .owner = mntns_owner,