4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly = 100000;
36 static unsigned int m_hash_mask __read_mostly;
37 static unsigned int m_hash_shift __read_mostly;
38 static unsigned int mp_hash_mask __read_mostly;
39 static unsigned int mp_hash_shift __read_mostly;
41 static __initdata unsigned long mhash_entries;
42 static int __init set_mhash_entries(char *str)
46 mhash_entries = simple_strtoul(str, &str, 0);
49 __setup("mhash_entries=", set_mhash_entries);
51 static __initdata unsigned long mphash_entries;
52 static int __init set_mphash_entries(char *str)
56 mphash_entries = simple_strtoul(str, &str, 0);
59 __setup("mphash_entries=", set_mphash_entries);
62 static DEFINE_IDA(mnt_id_ida);
63 static DEFINE_IDA(mnt_group_ida);
64 static DEFINE_SPINLOCK(mnt_id_lock);
65 static int mnt_id_start = 0;
66 static int mnt_group_start = 1;
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
102 static int mnt_alloc_id(struct mount *mnt)
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
108 spin_lock(&mnt_id_lock);
109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 mnt_id_start = mnt->mnt_id + 1;
112 spin_unlock(&mnt_id_lock);
119 static void mnt_free_id(struct mount *mnt)
121 int id = mnt->mnt_id;
122 spin_lock(&mnt_id_lock);
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
126 spin_unlock(&mnt_id_lock);
130 * Allocate a new peer group ID
132 * mnt_group_ida is protected by namespace_sem
134 static int mnt_alloc_group_id(struct mount *mnt)
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
141 res = ida_get_new_above(&mnt_group_ida,
145 mnt_group_start = mnt->mnt_group_id + 1;
151 * Release a peer group ID
153 void mnt_release_group_id(struct mount *mnt)
155 int id = mnt->mnt_group_id;
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
159 mnt->mnt_group_id = 0;
163 * vfsmount lock must be held for read
165 static inline void mnt_add_count(struct mount *mnt, int n)
168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
177 * vfsmount lock must be held for write
179 unsigned int mnt_get_count(struct mount *mnt)
182 unsigned int count = 0;
185 for_each_possible_cpu(cpu) {
186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 return mnt->mnt_count;
195 static void drop_mountpoint(struct fs_pin *p)
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
203 static struct mount *alloc_vfsmnt(const char *name)
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
209 err = mnt_alloc_id(mnt);
214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
215 if (!mnt->mnt_devname)
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 goto out_free_devname;
224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
227 mnt->mnt_writers = 0;
230 INIT_HLIST_NODE(&mnt->mnt_hash);
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
239 INIT_LIST_HEAD(&mnt->mnt_umounting);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 kfree_const(mnt->mnt_devname);
251 kmem_cache_free(mnt_cache, mnt);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount *mnt)
276 if (mnt->mnt_flags & MNT_READONLY)
278 if (sb_rdonly(mnt->mnt_sb))
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
284 static inline void mnt_inc_writers(struct mount *mnt)
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293 static inline void mnt_dec_writers(struct mount *mnt)
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302 static unsigned int mnt_get_writers(struct mount *mnt)
305 unsigned int count = 0;
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
314 return mnt->mnt_writers;
318 static int mnt_is_readonly(struct vfsmount *mnt)
320 if (mnt->mnt_sb->s_readonly_remount)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount *m)
345 struct mount *mnt = real_mount(m);
349 mnt_inc_writers(mnt);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount *m)
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
389 sb_end_write(m->mnt_sb);
392 EXPORT_SYMBOL_GPL(mnt_want_write);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount *mnt)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
412 mnt_inc_writers(real_mount(mnt));
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file *file)
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
430 return mnt_clone_write(file->f_path.mnt);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file *file)
444 sb_start_write(file_inode(file)->i_sb);
445 ret = __mnt_want_write_file(file);
447 sb_end_write(file_inode(file)->i_sb);
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount *mnt)
463 mnt_dec_writers(real_mount(mnt));
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount *mnt)
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
482 void __mnt_drop_write_file(struct file *file)
484 __mnt_drop_write(file->f_path.mnt);
487 void mnt_drop_write_file(struct file *file)
489 __mnt_drop_write_file(file);
490 sb_end_write(file_inode(file)->i_sb);
492 EXPORT_SYMBOL(mnt_drop_write_file);
494 static int mnt_make_readonly(struct mount *mnt)
499 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
501 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
502 * should be visible before we do.
507 * With writers on hold, if this value is zero, then there are
508 * definitely no active writers (although held writers may subsequently
509 * increment the count, they'll have to wait, and decrement it after
510 * seeing MNT_READONLY).
512 * It is OK to have counter incremented on one CPU and decremented on
513 * another: the sum will add up correctly. The danger would be when we
514 * sum up each counter, if we read a counter before it is incremented,
515 * but then read another CPU's count which it has been subsequently
516 * decremented from -- we would see more decrements than we should.
517 * MNT_WRITE_HOLD protects against this scenario, because
518 * mnt_want_write first increments count, then smp_mb, then spins on
519 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
520 * we're counting up here.
522 if (mnt_get_writers(mnt) > 0)
525 mnt->mnt.mnt_flags |= MNT_READONLY;
527 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
528 * that become unheld will see MNT_READONLY.
531 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 static void __mnt_unmake_readonly(struct mount *mnt)
539 mnt->mnt.mnt_flags &= ~MNT_READONLY;
543 int sb_prepare_remount_readonly(struct super_block *sb)
548 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
549 if (atomic_long_read(&sb->s_remove_count))
553 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
554 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
555 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
557 if (mnt_get_writers(mnt) > 0) {
563 if (!err && atomic_long_read(&sb->s_remove_count))
567 sb->s_readonly_remount = 1;
570 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
571 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
572 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
579 static void free_vfsmnt(struct mount *mnt)
581 kfree_const(mnt->mnt_devname);
583 free_percpu(mnt->mnt_pcp);
585 kmem_cache_free(mnt_cache, mnt);
588 static void delayed_free_vfsmnt(struct rcu_head *head)
590 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
593 /* call under rcu_read_lock */
594 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 if (read_seqretry(&mount_lock, seq))
601 mnt = real_mount(bastard);
602 mnt_add_count(mnt, 1);
603 smp_mb(); // see mntput_no_expire()
604 if (likely(!read_seqretry(&mount_lock, seq)))
606 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
607 mnt_add_count(mnt, -1);
611 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
612 mnt_add_count(mnt, -1);
617 /* caller will mntput() */
621 /* call under rcu_read_lock */
622 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
624 int res = __legitimize_mnt(bastard, seq);
627 if (unlikely(res < 0)) {
636 * find the first mount at @dentry on vfsmount @mnt.
637 * call under rcu_read_lock()
639 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
641 struct hlist_head *head = m_hash(mnt, dentry);
644 hlist_for_each_entry_rcu(p, head, mnt_hash)
645 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
651 * lookup_mnt - Return the first child mount mounted at path
653 * "First" means first mounted chronologically. If you create the
656 * mount /dev/sda1 /mnt
657 * mount /dev/sda2 /mnt
658 * mount /dev/sda3 /mnt
660 * Then lookup_mnt() on the base /mnt dentry in the root mount will
661 * return successively the root dentry and vfsmount of /dev/sda1, then
662 * /dev/sda2, then /dev/sda3, then NULL.
664 * lookup_mnt takes a reference to the found vfsmount.
666 struct vfsmount *lookup_mnt(const struct path *path)
668 struct mount *child_mnt;
674 seq = read_seqbegin(&mount_lock);
675 child_mnt = __lookup_mnt(path->mnt, path->dentry);
676 m = child_mnt ? &child_mnt->mnt : NULL;
677 } while (!legitimize_mnt(m, seq));
683 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
684 * current mount namespace.
686 * The common case is dentries are not mountpoints at all and that
687 * test is handled inline. For the slow case when we are actually
688 * dealing with a mountpoint of some kind, walk through all of the
689 * mounts in the current mount namespace and test to see if the dentry
692 * The mount_hashtable is not usable in the context because we
693 * need to identify all mounts that may be in the current mount
694 * namespace not just a mount that happens to have some specified
697 bool __is_local_mountpoint(struct dentry *dentry)
699 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 bool is_covered = false;
703 if (!d_mountpoint(dentry))
706 down_read(&namespace_sem);
707 list_for_each_entry(mnt, &ns->list, mnt_list) {
708 is_covered = (mnt->mnt_mountpoint == dentry);
712 up_read(&namespace_sem);
717 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719 struct hlist_head *chain = mp_hash(dentry);
720 struct mountpoint *mp;
722 hlist_for_each_entry(mp, chain, m_hash) {
723 if (mp->m_dentry == dentry) {
724 /* might be worth a WARN_ON() */
725 if (d_unlinked(dentry))
726 return ERR_PTR(-ENOENT);
734 static struct mountpoint *get_mountpoint(struct dentry *dentry)
736 struct mountpoint *mp, *new = NULL;
739 if (d_mountpoint(dentry)) {
741 read_seqlock_excl(&mount_lock);
742 mp = lookup_mountpoint(dentry);
743 read_sequnlock_excl(&mount_lock);
749 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
751 return ERR_PTR(-ENOMEM);
754 /* Exactly one processes may set d_mounted */
755 ret = d_set_mounted(dentry);
757 /* Someone else set d_mounted? */
761 /* The dentry is not available as a mountpoint? */
766 /* Add the new mountpoint to the hash table */
767 read_seqlock_excl(&mount_lock);
768 new->m_dentry = dentry;
770 hlist_add_head(&new->m_hash, mp_hash(dentry));
771 INIT_HLIST_HEAD(&new->m_list);
772 read_sequnlock_excl(&mount_lock);
781 static void put_mountpoint(struct mountpoint *mp)
783 if (!--mp->m_count) {
784 struct dentry *dentry = mp->m_dentry;
785 BUG_ON(!hlist_empty(&mp->m_list));
786 spin_lock(&dentry->d_lock);
787 dentry->d_flags &= ~DCACHE_MOUNTED;
788 spin_unlock(&dentry->d_lock);
789 hlist_del(&mp->m_hash);
794 static inline int check_mnt(struct mount *mnt)
796 return mnt->mnt_ns == current->nsproxy->mnt_ns;
800 * vfsmount lock must be held for write
802 static void touch_mnt_namespace(struct mnt_namespace *ns)
806 wake_up_interruptible(&ns->poll);
811 * vfsmount lock must be held for write
813 static void __touch_mnt_namespace(struct mnt_namespace *ns)
815 if (ns && ns->event != event) {
817 wake_up_interruptible(&ns->poll);
822 * vfsmount lock must be held for write
824 static void unhash_mnt(struct mount *mnt)
826 mnt->mnt_parent = mnt;
827 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
828 list_del_init(&mnt->mnt_child);
829 hlist_del_init_rcu(&mnt->mnt_hash);
830 hlist_del_init(&mnt->mnt_mp_list);
831 put_mountpoint(mnt->mnt_mp);
836 * vfsmount lock must be held for write
838 static void detach_mnt(struct mount *mnt, struct path *old_path)
840 old_path->dentry = mnt->mnt_mountpoint;
841 old_path->mnt = &mnt->mnt_parent->mnt;
846 * vfsmount lock must be held for write
848 static void umount_mnt(struct mount *mnt)
850 /* old mountpoint will be dropped when we can do that */
851 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
856 * vfsmount lock must be held for write
858 void mnt_set_mountpoint(struct mount *mnt,
859 struct mountpoint *mp,
860 struct mount *child_mnt)
863 mnt_add_count(mnt, 1); /* essentially, that's mntget */
864 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
865 child_mnt->mnt_parent = mnt;
866 child_mnt->mnt_mp = mp;
867 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
870 static void __attach_mnt(struct mount *mnt, struct mount *parent)
872 hlist_add_head_rcu(&mnt->mnt_hash,
873 m_hash(&parent->mnt, mnt->mnt_mountpoint));
874 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
878 * vfsmount lock must be held for write
880 static void attach_mnt(struct mount *mnt,
881 struct mount *parent,
882 struct mountpoint *mp)
884 mnt_set_mountpoint(parent, mp, mnt);
885 __attach_mnt(mnt, parent);
888 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
890 struct mountpoint *old_mp = mnt->mnt_mp;
891 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
892 struct mount *old_parent = mnt->mnt_parent;
894 list_del_init(&mnt->mnt_child);
895 hlist_del_init(&mnt->mnt_mp_list);
896 hlist_del_init_rcu(&mnt->mnt_hash);
898 attach_mnt(mnt, parent, mp);
900 put_mountpoint(old_mp);
903 * Safely avoid even the suggestion this code might sleep or
904 * lock the mount hash by taking advantage of the knowledge that
905 * mnt_change_mountpoint will not release the final reference
908 * During mounting, the mount passed in as the parent mount will
909 * continue to use the old mountpoint and during unmounting, the
910 * old mountpoint will continue to exist until namespace_unlock,
911 * which happens well after mnt_change_mountpoint.
913 spin_lock(&old_mountpoint->d_lock);
914 old_mountpoint->d_lockref.count--;
915 spin_unlock(&old_mountpoint->d_lock);
917 mnt_add_count(old_parent, -1);
921 * vfsmount lock must be held for write
923 static void commit_tree(struct mount *mnt)
925 struct mount *parent = mnt->mnt_parent;
928 struct mnt_namespace *n = parent->mnt_ns;
930 BUG_ON(parent == mnt);
932 list_add_tail(&head, &mnt->mnt_list);
933 list_for_each_entry(m, &head, mnt_list)
936 list_splice(&head, n->list.prev);
938 n->mounts += n->pending_mounts;
939 n->pending_mounts = 0;
941 __attach_mnt(mnt, parent);
942 touch_mnt_namespace(n);
945 static struct mount *next_mnt(struct mount *p, struct mount *root)
947 struct list_head *next = p->mnt_mounts.next;
948 if (next == &p->mnt_mounts) {
952 next = p->mnt_child.next;
953 if (next != &p->mnt_parent->mnt_mounts)
958 return list_entry(next, struct mount, mnt_child);
961 static struct mount *skip_mnt_tree(struct mount *p)
963 struct list_head *prev = p->mnt_mounts.prev;
964 while (prev != &p->mnt_mounts) {
965 p = list_entry(prev, struct mount, mnt_child);
966 prev = p->mnt_mounts.prev;
972 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
978 return ERR_PTR(-ENODEV);
980 mnt = alloc_vfsmnt(name);
982 return ERR_PTR(-ENOMEM);
984 if (flags & SB_KERNMOUNT)
985 mnt->mnt.mnt_flags = MNT_INTERNAL;
987 root = mount_fs(type, flags, name, data);
991 return ERR_CAST(root);
994 mnt->mnt.mnt_root = root;
995 mnt->mnt.mnt_sb = root->d_sb;
996 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
997 mnt->mnt_parent = mnt;
999 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
1000 unlock_mount_hash();
1003 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1006 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1007 const char *name, void *data)
1009 /* Until it is worked out how to pass the user namespace
1010 * through from the parent mount to the submount don't support
1011 * unprivileged mounts with submounts.
1013 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1014 return ERR_PTR(-EPERM);
1016 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1018 EXPORT_SYMBOL_GPL(vfs_submount);
1020 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1023 struct super_block *sb = old->mnt.mnt_sb;
1027 mnt = alloc_vfsmnt(old->mnt_devname);
1029 return ERR_PTR(-ENOMEM);
1031 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1032 mnt->mnt_group_id = 0; /* not a peer of original */
1034 mnt->mnt_group_id = old->mnt_group_id;
1036 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1037 err = mnt_alloc_group_id(mnt);
1042 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1043 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1044 /* Don't allow unprivileged users to change mount flags */
1045 if (flag & CL_UNPRIVILEGED) {
1046 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1048 if (mnt->mnt.mnt_flags & MNT_READONLY)
1049 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1051 if (mnt->mnt.mnt_flags & MNT_NODEV)
1052 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1054 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1055 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1057 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1058 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1061 /* Don't allow unprivileged users to reveal what is under a mount */
1062 if ((flag & CL_UNPRIVILEGED) &&
1063 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1064 mnt->mnt.mnt_flags |= MNT_LOCKED;
1066 atomic_inc(&sb->s_active);
1067 mnt->mnt.mnt_sb = sb;
1068 mnt->mnt.mnt_root = dget(root);
1069 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1070 mnt->mnt_parent = mnt;
1072 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1073 unlock_mount_hash();
1075 if ((flag & CL_SLAVE) ||
1076 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1077 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1078 mnt->mnt_master = old;
1079 CLEAR_MNT_SHARED(mnt);
1080 } else if (!(flag & CL_PRIVATE)) {
1081 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1082 list_add(&mnt->mnt_share, &old->mnt_share);
1083 if (IS_MNT_SLAVE(old))
1084 list_add(&mnt->mnt_slave, &old->mnt_slave);
1085 mnt->mnt_master = old->mnt_master;
1087 CLEAR_MNT_SHARED(mnt);
1089 if (flag & CL_MAKE_SHARED)
1090 set_mnt_shared(mnt);
1092 /* stick the duplicate mount on the same expiry list
1093 * as the original if that was on one */
1094 if (flag & CL_EXPIRE) {
1095 if (!list_empty(&old->mnt_expire))
1096 list_add(&mnt->mnt_expire, &old->mnt_expire);
1104 return ERR_PTR(err);
1107 static void cleanup_mnt(struct mount *mnt)
1110 * This probably indicates that somebody messed
1111 * up a mnt_want/drop_write() pair. If this
1112 * happens, the filesystem was probably unable
1113 * to make r/w->r/o transitions.
1116 * The locking used to deal with mnt_count decrement provides barriers,
1117 * so mnt_get_writers() below is safe.
1119 WARN_ON(mnt_get_writers(mnt));
1120 if (unlikely(mnt->mnt_pins.first))
1122 fsnotify_vfsmount_delete(&mnt->mnt);
1123 dput(mnt->mnt.mnt_root);
1124 deactivate_super(mnt->mnt.mnt_sb);
1126 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1129 static void __cleanup_mnt(struct rcu_head *head)
1131 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1134 static LLIST_HEAD(delayed_mntput_list);
1135 static void delayed_mntput(struct work_struct *unused)
1137 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1138 struct mount *m, *t;
1140 llist_for_each_entry_safe(m, t, node, mnt_llist)
1143 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1145 static void mntput_no_expire(struct mount *mnt)
1148 if (likely(READ_ONCE(mnt->mnt_ns))) {
1150 * Since we don't do lock_mount_hash() here,
1151 * ->mnt_ns can change under us. However, if it's
1152 * non-NULL, then there's a reference that won't
1153 * be dropped until after an RCU delay done after
1154 * turning ->mnt_ns NULL. So if we observe it
1155 * non-NULL under rcu_read_lock(), the reference
1156 * we are dropping is not the final one.
1158 mnt_add_count(mnt, -1);
1164 * make sure that if __legitimize_mnt() has not seen us grab
1165 * mount_lock, we'll see their refcount increment here.
1168 mnt_add_count(mnt, -1);
1169 if (mnt_get_count(mnt)) {
1171 unlock_mount_hash();
1174 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1176 unlock_mount_hash();
1179 mnt->mnt.mnt_flags |= MNT_DOOMED;
1182 list_del(&mnt->mnt_instance);
1184 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1185 struct mount *p, *tmp;
1186 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1190 unlock_mount_hash();
1192 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1193 struct task_struct *task = current;
1194 if (likely(!(task->flags & PF_KTHREAD))) {
1195 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1196 if (!task_work_add(task, &mnt->mnt_rcu, true))
1199 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1200 schedule_delayed_work(&delayed_mntput_work, 1);
1206 void mntput(struct vfsmount *mnt)
1209 struct mount *m = real_mount(mnt);
1210 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1211 if (unlikely(m->mnt_expiry_mark))
1212 m->mnt_expiry_mark = 0;
1213 mntput_no_expire(m);
1216 EXPORT_SYMBOL(mntput);
1218 struct vfsmount *mntget(struct vfsmount *mnt)
1221 mnt_add_count(real_mount(mnt), 1);
1224 EXPORT_SYMBOL(mntget);
1226 /* path_is_mountpoint() - Check if path is a mount in the current
1229 * d_mountpoint() can only be used reliably to establish if a dentry is
1230 * not mounted in any namespace and that common case is handled inline.
1231 * d_mountpoint() isn't aware of the possibility there may be multiple
1232 * mounts using a given dentry in a different namespace. This function
1233 * checks if the passed in path is a mountpoint rather than the dentry
1236 bool path_is_mountpoint(const struct path *path)
1241 if (!d_mountpoint(path->dentry))
1246 seq = read_seqbegin(&mount_lock);
1247 res = __path_is_mountpoint(path);
1248 } while (read_seqretry(&mount_lock, seq));
1253 EXPORT_SYMBOL(path_is_mountpoint);
1255 struct vfsmount *mnt_clone_internal(const struct path *path)
1258 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1261 p->mnt.mnt_flags |= MNT_INTERNAL;
1265 #ifdef CONFIG_PROC_FS
1266 /* iterator; we want it to have access to namespace_sem, thus here... */
1267 static void *m_start(struct seq_file *m, loff_t *pos)
1269 struct proc_mounts *p = m->private;
1271 down_read(&namespace_sem);
1272 if (p->cached_event == p->ns->event) {
1273 void *v = p->cached_mount;
1274 if (*pos == p->cached_index)
1276 if (*pos == p->cached_index + 1) {
1277 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1278 return p->cached_mount = v;
1282 p->cached_event = p->ns->event;
1283 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1284 p->cached_index = *pos;
1285 return p->cached_mount;
1288 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1290 struct proc_mounts *p = m->private;
1292 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1293 p->cached_index = *pos;
1294 return p->cached_mount;
1297 static void m_stop(struct seq_file *m, void *v)
1299 up_read(&namespace_sem);
1302 static int m_show(struct seq_file *m, void *v)
1304 struct proc_mounts *p = m->private;
1305 struct mount *r = list_entry(v, struct mount, mnt_list);
1306 return p->show(m, &r->mnt);
1309 const struct seq_operations mounts_op = {
1315 #endif /* CONFIG_PROC_FS */
1318 * may_umount_tree - check if a mount tree is busy
1319 * @mnt: root of mount tree
1321 * This is called to check if a tree of mounts has any
1322 * open files, pwds, chroots or sub mounts that are
1325 int may_umount_tree(struct vfsmount *m)
1327 struct mount *mnt = real_mount(m);
1328 int actual_refs = 0;
1329 int minimum_refs = 0;
1333 /* write lock needed for mnt_get_count */
1335 for (p = mnt; p; p = next_mnt(p, mnt)) {
1336 actual_refs += mnt_get_count(p);
1339 unlock_mount_hash();
1341 if (actual_refs > minimum_refs)
1347 EXPORT_SYMBOL(may_umount_tree);
1350 * may_umount - check if a mount point is busy
1351 * @mnt: root of mount
1353 * This is called to check if a mount point has any
1354 * open files, pwds, chroots or sub mounts. If the
1355 * mount has sub mounts this will return busy
1356 * regardless of whether the sub mounts are busy.
1358 * Doesn't take quota and stuff into account. IOW, in some cases it will
1359 * give false negatives. The main reason why it's here is that we need
1360 * a non-destructive way to look for easily umountable filesystems.
1362 int may_umount(struct vfsmount *mnt)
1365 down_read(&namespace_sem);
1367 if (propagate_mount_busy(real_mount(mnt), 2))
1369 unlock_mount_hash();
1370 up_read(&namespace_sem);
1374 EXPORT_SYMBOL(may_umount);
1376 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1378 static void namespace_unlock(void)
1380 struct hlist_head head;
1382 hlist_move_list(&unmounted, &head);
1384 up_write(&namespace_sem);
1386 if (likely(hlist_empty(&head)))
1391 group_pin_kill(&head);
1394 static inline void namespace_lock(void)
1396 down_write(&namespace_sem);
1399 enum umount_tree_flags {
1401 UMOUNT_PROPAGATE = 2,
1402 UMOUNT_CONNECTED = 4,
1405 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1407 /* Leaving mounts connected is only valid for lazy umounts */
1408 if (how & UMOUNT_SYNC)
1411 /* A mount without a parent has nothing to be connected to */
1412 if (!mnt_has_parent(mnt))
1415 /* Because the reference counting rules change when mounts are
1416 * unmounted and connected, umounted mounts may not be
1417 * connected to mounted mounts.
1419 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1422 /* Has it been requested that the mount remain connected? */
1423 if (how & UMOUNT_CONNECTED)
1426 /* Is the mount locked such that it needs to remain connected? */
1427 if (IS_MNT_LOCKED(mnt))
1430 /* By default disconnect the mount */
1435 * mount_lock must be held
1436 * namespace_sem must be held for write
1438 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1440 LIST_HEAD(tmp_list);
1443 if (how & UMOUNT_PROPAGATE)
1444 propagate_mount_unlock(mnt);
1446 /* Gather the mounts to umount */
1447 for (p = mnt; p; p = next_mnt(p, mnt)) {
1448 p->mnt.mnt_flags |= MNT_UMOUNT;
1449 list_move(&p->mnt_list, &tmp_list);
1452 /* Hide the mounts from mnt_mounts */
1453 list_for_each_entry(p, &tmp_list, mnt_list) {
1454 list_del_init(&p->mnt_child);
1457 /* Add propogated mounts to the tmp_list */
1458 if (how & UMOUNT_PROPAGATE)
1459 propagate_umount(&tmp_list);
1461 while (!list_empty(&tmp_list)) {
1462 struct mnt_namespace *ns;
1464 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1465 list_del_init(&p->mnt_expire);
1466 list_del_init(&p->mnt_list);
1470 __touch_mnt_namespace(ns);
1473 if (how & UMOUNT_SYNC)
1474 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1476 disconnect = disconnect_mount(p, how);
1478 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1479 disconnect ? &unmounted : NULL);
1480 if (mnt_has_parent(p)) {
1481 mnt_add_count(p->mnt_parent, -1);
1483 /* Don't forget about p */
1484 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1489 change_mnt_propagation(p, MS_PRIVATE);
1493 static void shrink_submounts(struct mount *mnt);
1495 static int do_umount(struct mount *mnt, int flags)
1497 struct super_block *sb = mnt->mnt.mnt_sb;
1500 retval = security_sb_umount(&mnt->mnt, flags);
1505 * Allow userspace to request a mountpoint be expired rather than
1506 * unmounting unconditionally. Unmount only happens if:
1507 * (1) the mark is already set (the mark is cleared by mntput())
1508 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1510 if (flags & MNT_EXPIRE) {
1511 if (&mnt->mnt == current->fs->root.mnt ||
1512 flags & (MNT_FORCE | MNT_DETACH))
1516 * probably don't strictly need the lock here if we examined
1517 * all race cases, but it's a slowpath.
1520 if (mnt_get_count(mnt) != 2) {
1521 unlock_mount_hash();
1524 unlock_mount_hash();
1526 if (!xchg(&mnt->mnt_expiry_mark, 1))
1531 * If we may have to abort operations to get out of this
1532 * mount, and they will themselves hold resources we must
1533 * allow the fs to do things. In the Unix tradition of
1534 * 'Gee thats tricky lets do it in userspace' the umount_begin
1535 * might fail to complete on the first run through as other tasks
1536 * must return, and the like. Thats for the mount program to worry
1537 * about for the moment.
1540 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1541 sb->s_op->umount_begin(sb);
1545 * No sense to grab the lock for this test, but test itself looks
1546 * somewhat bogus. Suggestions for better replacement?
1547 * Ho-hum... In principle, we might treat that as umount + switch
1548 * to rootfs. GC would eventually take care of the old vfsmount.
1549 * Actually it makes sense, especially if rootfs would contain a
1550 * /reboot - static binary that would close all descriptors and
1551 * call reboot(9). Then init(8) could umount root and exec /reboot.
1553 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1555 * Special case for "unmounting" root ...
1556 * we just try to remount it readonly.
1558 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1560 down_write(&sb->s_umount);
1562 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1563 up_write(&sb->s_umount);
1571 if (flags & MNT_DETACH) {
1572 if (!list_empty(&mnt->mnt_list))
1573 umount_tree(mnt, UMOUNT_PROPAGATE);
1576 shrink_submounts(mnt);
1578 if (!propagate_mount_busy(mnt, 2)) {
1579 if (!list_empty(&mnt->mnt_list))
1580 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1584 unlock_mount_hash();
1590 * __detach_mounts - lazily unmount all mounts on the specified dentry
1592 * During unlink, rmdir, and d_drop it is possible to loose the path
1593 * to an existing mountpoint, and wind up leaking the mount.
1594 * detach_mounts allows lazily unmounting those mounts instead of
1597 * The caller may hold dentry->d_inode->i_mutex.
1599 void __detach_mounts(struct dentry *dentry)
1601 struct mountpoint *mp;
1606 mp = lookup_mountpoint(dentry);
1607 if (IS_ERR_OR_NULL(mp))
1611 while (!hlist_empty(&mp->m_list)) {
1612 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1613 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1614 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1617 else umount_tree(mnt, UMOUNT_CONNECTED);
1621 unlock_mount_hash();
1626 * Is the caller allowed to modify his namespace?
1628 static inline bool may_mount(void)
1630 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1633 static inline bool may_mandlock(void)
1635 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1638 return capable(CAP_SYS_ADMIN);
1642 * Now umount can handle mount points as well as block devices.
1643 * This is important for filesystems which use unnamed block devices.
1645 * We now support a flag for forced unmount like the other 'big iron'
1646 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1649 int ksys_umount(char __user *name, int flags)
1654 int lookup_flags = 0;
1656 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1662 if (!(flags & UMOUNT_NOFOLLOW))
1663 lookup_flags |= LOOKUP_FOLLOW;
1665 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1668 mnt = real_mount(path.mnt);
1670 if (path.dentry != path.mnt->mnt_root)
1672 if (!check_mnt(mnt))
1674 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1677 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1680 retval = do_umount(mnt, flags);
1682 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1684 mntput_no_expire(mnt);
1689 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1691 return ksys_umount(name, flags);
1694 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1697 * The 2.0 compatible umount. No flags.
1699 SYSCALL_DEFINE1(oldumount, char __user *, name)
1701 return ksys_umount(name, 0);
1706 static bool is_mnt_ns_file(struct dentry *dentry)
1708 /* Is this a proxy for a mount namespace? */
1709 return dentry->d_op == &ns_dentry_operations &&
1710 dentry->d_fsdata == &mntns_operations;
1713 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1715 return container_of(ns, struct mnt_namespace, ns);
1718 static bool mnt_ns_loop(struct dentry *dentry)
1720 /* Could bind mounting the mount namespace inode cause a
1721 * mount namespace loop?
1723 struct mnt_namespace *mnt_ns;
1724 if (!is_mnt_ns_file(dentry))
1727 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1728 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1731 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1734 struct mount *res, *p, *q, *r, *parent;
1736 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1737 return ERR_PTR(-EINVAL);
1739 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1740 return ERR_PTR(-EINVAL);
1742 res = q = clone_mnt(mnt, dentry, flag);
1746 q->mnt_mountpoint = mnt->mnt_mountpoint;
1749 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1751 if (!is_subdir(r->mnt_mountpoint, dentry))
1754 for (s = r; s; s = next_mnt(s, r)) {
1755 if (!(flag & CL_COPY_UNBINDABLE) &&
1756 IS_MNT_UNBINDABLE(s)) {
1757 s = skip_mnt_tree(s);
1760 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1761 is_mnt_ns_file(s->mnt.mnt_root)) {
1762 s = skip_mnt_tree(s);
1765 while (p != s->mnt_parent) {
1771 q = clone_mnt(p, p->mnt.mnt_root, flag);
1775 list_add_tail(&q->mnt_list, &res->mnt_list);
1776 attach_mnt(q, parent, p->mnt_mp);
1777 unlock_mount_hash();
1784 umount_tree(res, UMOUNT_SYNC);
1785 unlock_mount_hash();
1790 /* Caller should check returned pointer for errors */
1792 struct vfsmount *collect_mounts(const struct path *path)
1796 if (!check_mnt(real_mount(path->mnt)))
1797 tree = ERR_PTR(-EINVAL);
1799 tree = copy_tree(real_mount(path->mnt), path->dentry,
1800 CL_COPY_ALL | CL_PRIVATE);
1803 return ERR_CAST(tree);
1807 void drop_collected_mounts(struct vfsmount *mnt)
1811 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1812 unlock_mount_hash();
1817 * clone_private_mount - create a private clone of a path
1819 * This creates a new vfsmount, which will be the clone of @path. The new will
1820 * not be attached anywhere in the namespace and will be private (i.e. changes
1821 * to the originating mount won't be propagated into this).
1823 * Release with mntput().
1825 struct vfsmount *clone_private_mount(const struct path *path)
1827 struct mount *old_mnt = real_mount(path->mnt);
1828 struct mount *new_mnt;
1830 if (IS_MNT_UNBINDABLE(old_mnt))
1831 return ERR_PTR(-EINVAL);
1833 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1834 if (IS_ERR(new_mnt))
1835 return ERR_CAST(new_mnt);
1837 return &new_mnt->mnt;
1839 EXPORT_SYMBOL_GPL(clone_private_mount);
1841 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1842 struct vfsmount *root)
1845 int res = f(root, arg);
1848 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1849 res = f(&mnt->mnt, arg);
1856 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1860 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1861 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1862 mnt_release_group_id(p);
1866 static int invent_group_ids(struct mount *mnt, bool recurse)
1870 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1871 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1872 int err = mnt_alloc_group_id(p);
1874 cleanup_group_ids(mnt, p);
1883 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1885 unsigned int max = READ_ONCE(sysctl_mount_max);
1886 unsigned int mounts = 0, old, pending, sum;
1889 for (p = mnt; p; p = next_mnt(p, mnt))
1893 pending = ns->pending_mounts;
1894 sum = old + pending;
1898 (mounts > (max - sum)))
1901 ns->pending_mounts = pending + mounts;
1906 * @source_mnt : mount tree to be attached
1907 * @nd : place the mount tree @source_mnt is attached
1908 * @parent_nd : if non-null, detach the source_mnt from its parent and
1909 * store the parent mount and mountpoint dentry.
1910 * (done when source_mnt is moved)
1912 * NOTE: in the table below explains the semantics when a source mount
1913 * of a given type is attached to a destination mount of a given type.
1914 * ---------------------------------------------------------------------------
1915 * | BIND MOUNT OPERATION |
1916 * |**************************************************************************
1917 * | source-->| shared | private | slave | unbindable |
1921 * |**************************************************************************
1922 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1924 * |non-shared| shared (+) | private | slave (*) | invalid |
1925 * ***************************************************************************
1926 * A bind operation clones the source mount and mounts the clone on the
1927 * destination mount.
1929 * (++) the cloned mount is propagated to all the mounts in the propagation
1930 * tree of the destination mount and the cloned mount is added to
1931 * the peer group of the source mount.
1932 * (+) the cloned mount is created under the destination mount and is marked
1933 * as shared. The cloned mount is added to the peer group of the source
1935 * (+++) the mount is propagated to all the mounts in the propagation tree
1936 * of the destination mount and the cloned mount is made slave
1937 * of the same master as that of the source mount. The cloned mount
1938 * is marked as 'shared and slave'.
1939 * (*) the cloned mount is made a slave of the same master as that of the
1942 * ---------------------------------------------------------------------------
1943 * | MOVE MOUNT OPERATION |
1944 * |**************************************************************************
1945 * | source-->| shared | private | slave | unbindable |
1949 * |**************************************************************************
1950 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1952 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1953 * ***************************************************************************
1955 * (+) the mount is moved to the destination. And is then propagated to
1956 * all the mounts in the propagation tree of the destination mount.
1957 * (+*) the mount is moved to the destination.
1958 * (+++) the mount is moved to the destination and is then propagated to
1959 * all the mounts belonging to the destination mount's propagation tree.
1960 * the mount is marked as 'shared and slave'.
1961 * (*) the mount continues to be a slave at the new location.
1963 * if the source mount is a tree, the operations explained above is
1964 * applied to each mount in the tree.
1965 * Must be called without spinlocks held, since this function can sleep
1968 static int attach_recursive_mnt(struct mount *source_mnt,
1969 struct mount *dest_mnt,
1970 struct mountpoint *dest_mp,
1971 struct path *parent_path)
1973 HLIST_HEAD(tree_list);
1974 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1975 struct mountpoint *smp;
1976 struct mount *child, *p;
1977 struct hlist_node *n;
1980 /* Preallocate a mountpoint in case the new mounts need
1981 * to be tucked under other mounts.
1983 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1985 return PTR_ERR(smp);
1987 /* Is there space to add these mounts to the mount namespace? */
1989 err = count_mounts(ns, source_mnt);
1994 if (IS_MNT_SHARED(dest_mnt)) {
1995 err = invent_group_ids(source_mnt, true);
1998 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2001 goto out_cleanup_ids;
2002 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2008 detach_mnt(source_mnt, parent_path);
2009 attach_mnt(source_mnt, dest_mnt, dest_mp);
2010 touch_mnt_namespace(source_mnt->mnt_ns);
2012 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2013 commit_tree(source_mnt);
2016 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2018 hlist_del_init(&child->mnt_hash);
2019 q = __lookup_mnt(&child->mnt_parent->mnt,
2020 child->mnt_mountpoint);
2022 mnt_change_mountpoint(child, smp, q);
2025 put_mountpoint(smp);
2026 unlock_mount_hash();
2031 while (!hlist_empty(&tree_list)) {
2032 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2033 child->mnt_parent->mnt_ns->pending_mounts = 0;
2034 umount_tree(child, UMOUNT_SYNC);
2036 unlock_mount_hash();
2037 cleanup_group_ids(source_mnt, NULL);
2039 ns->pending_mounts = 0;
2041 read_seqlock_excl(&mount_lock);
2042 put_mountpoint(smp);
2043 read_sequnlock_excl(&mount_lock);
2048 static struct mountpoint *lock_mount(struct path *path)
2050 struct vfsmount *mnt;
2051 struct dentry *dentry = path->dentry;
2053 inode_lock(dentry->d_inode);
2054 if (unlikely(cant_mount(dentry))) {
2055 inode_unlock(dentry->d_inode);
2056 return ERR_PTR(-ENOENT);
2059 mnt = lookup_mnt(path);
2061 struct mountpoint *mp = get_mountpoint(dentry);
2064 inode_unlock(dentry->d_inode);
2070 inode_unlock(path->dentry->d_inode);
2073 dentry = path->dentry = dget(mnt->mnt_root);
2077 static void unlock_mount(struct mountpoint *where)
2079 struct dentry *dentry = where->m_dentry;
2081 read_seqlock_excl(&mount_lock);
2082 put_mountpoint(where);
2083 read_sequnlock_excl(&mount_lock);
2086 inode_unlock(dentry->d_inode);
2089 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2091 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2094 if (d_is_dir(mp->m_dentry) !=
2095 d_is_dir(mnt->mnt.mnt_root))
2098 return attach_recursive_mnt(mnt, p, mp, NULL);
2102 * Sanity check the flags to change_mnt_propagation.
2105 static int flags_to_propagation_type(int ms_flags)
2107 int type = ms_flags & ~(MS_REC | MS_SILENT);
2109 /* Fail if any non-propagation flags are set */
2110 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2112 /* Only one propagation flag should be set */
2113 if (!is_power_of_2(type))
2119 * recursively change the type of the mountpoint.
2121 static int do_change_type(struct path *path, int ms_flags)
2124 struct mount *mnt = real_mount(path->mnt);
2125 int recurse = ms_flags & MS_REC;
2129 if (path->dentry != path->mnt->mnt_root)
2132 type = flags_to_propagation_type(ms_flags);
2137 if (type == MS_SHARED) {
2138 err = invent_group_ids(mnt, recurse);
2144 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2145 change_mnt_propagation(m, type);
2146 unlock_mount_hash();
2153 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2155 struct mount *child;
2156 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2157 if (!is_subdir(child->mnt_mountpoint, dentry))
2160 if (child->mnt.mnt_flags & MNT_LOCKED)
2167 * do loopback mount.
2169 static int do_loopback(struct path *path, const char *old_name,
2172 struct path old_path;
2173 struct mount *mnt = NULL, *old, *parent;
2174 struct mountpoint *mp;
2176 if (!old_name || !*old_name)
2178 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2183 if (mnt_ns_loop(old_path.dentry))
2186 mp = lock_mount(path);
2191 old = real_mount(old_path.mnt);
2192 parent = real_mount(path->mnt);
2195 if (IS_MNT_UNBINDABLE(old))
2198 if (!check_mnt(parent))
2201 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2204 if (!recurse && has_locked_children(old, old_path.dentry))
2208 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2210 mnt = clone_mnt(old, old_path.dentry, 0);
2217 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2219 err = graft_tree(mnt, parent, mp);
2222 umount_tree(mnt, UMOUNT_SYNC);
2223 unlock_mount_hash();
2228 path_put(&old_path);
2232 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2235 int readonly_request = 0;
2237 if (ms_flags & MS_RDONLY)
2238 readonly_request = 1;
2239 if (readonly_request == __mnt_is_readonly(mnt))
2242 if (readonly_request)
2243 error = mnt_make_readonly(real_mount(mnt));
2245 __mnt_unmake_readonly(real_mount(mnt));
2250 * change filesystem flags. dir should be a physical root of filesystem.
2251 * If you've mounted a non-root directory somewhere and want to do remount
2252 * on it - tough luck.
2254 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2255 int mnt_flags, void *data)
2258 struct super_block *sb = path->mnt->mnt_sb;
2259 struct mount *mnt = real_mount(path->mnt);
2261 if (!check_mnt(mnt))
2264 if (path->dentry != path->mnt->mnt_root)
2267 /* Don't allow changing of locked mnt flags.
2269 * No locks need to be held here while testing the various
2270 * MNT_LOCK flags because those flags can never be cleared
2271 * once they are set.
2273 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2274 !(mnt_flags & MNT_READONLY)) {
2277 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2278 !(mnt_flags & MNT_NODEV)) {
2281 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2282 !(mnt_flags & MNT_NOSUID)) {
2285 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2286 !(mnt_flags & MNT_NOEXEC)) {
2289 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2290 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2294 err = security_sb_remount(sb, data);
2298 down_write(&sb->s_umount);
2299 if (ms_flags & MS_BIND)
2300 err = change_mount_flags(path->mnt, ms_flags);
2301 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2304 err = do_remount_sb(sb, sb_flags, data, 0);
2307 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2308 mnt->mnt.mnt_flags = mnt_flags;
2309 touch_mnt_namespace(mnt->mnt_ns);
2310 unlock_mount_hash();
2312 up_write(&sb->s_umount);
2316 static inline int tree_contains_unbindable(struct mount *mnt)
2319 for (p = mnt; p; p = next_mnt(p, mnt)) {
2320 if (IS_MNT_UNBINDABLE(p))
2326 static int do_move_mount(struct path *path, const char *old_name)
2328 struct path old_path, parent_path;
2331 struct mountpoint *mp;
2333 if (!old_name || !*old_name)
2335 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2339 mp = lock_mount(path);
2344 old = real_mount(old_path.mnt);
2345 p = real_mount(path->mnt);
2348 if (!check_mnt(p) || !check_mnt(old))
2351 if (old->mnt.mnt_flags & MNT_LOCKED)
2355 if (old_path.dentry != old_path.mnt->mnt_root)
2358 if (!mnt_has_parent(old))
2361 if (d_is_dir(path->dentry) !=
2362 d_is_dir(old_path.dentry))
2365 * Don't move a mount residing in a shared parent.
2367 if (IS_MNT_SHARED(old->mnt_parent))
2370 * Don't move a mount tree containing unbindable mounts to a destination
2371 * mount which is shared.
2373 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2376 for (; mnt_has_parent(p); p = p->mnt_parent)
2380 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2384 /* if the mount is moved, it should no longer be expire
2386 list_del_init(&old->mnt_expire);
2391 path_put(&parent_path);
2392 path_put(&old_path);
2396 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2399 const char *subtype = strchr(fstype, '.');
2408 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2410 if (!mnt->mnt_sb->s_subtype)
2416 return ERR_PTR(err);
2420 * add a mount into a namespace's mount tree
2422 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2424 struct mountpoint *mp;
2425 struct mount *parent;
2428 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2430 mp = lock_mount(path);
2434 parent = real_mount(path->mnt);
2436 if (unlikely(!check_mnt(parent))) {
2437 /* that's acceptable only for automounts done in private ns */
2438 if (!(mnt_flags & MNT_SHRINKABLE))
2440 /* ... and for those we'd better have mountpoint still alive */
2441 if (!parent->mnt_ns)
2445 /* Refuse the same filesystem on the same mount point */
2447 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2448 path->mnt->mnt_root == path->dentry)
2452 if (d_is_symlink(newmnt->mnt.mnt_root))
2455 newmnt->mnt.mnt_flags = mnt_flags;
2456 err = graft_tree(newmnt, parent, mp);
2463 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2466 * create a new mount for userspace and request it to be added into the
2469 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2470 int mnt_flags, const char *name, void *data)
2472 struct file_system_type *type;
2473 struct vfsmount *mnt;
2479 type = get_fs_type(fstype);
2483 mnt = vfs_kern_mount(type, sb_flags, name, data);
2484 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2485 !mnt->mnt_sb->s_subtype)
2486 mnt = fs_set_subtype(mnt, fstype);
2488 put_filesystem(type);
2490 return PTR_ERR(mnt);
2492 if (mount_too_revealing(mnt, &mnt_flags)) {
2497 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2503 int finish_automount(struct vfsmount *m, struct path *path)
2505 struct mount *mnt = real_mount(m);
2507 /* The new mount record should have at least 2 refs to prevent it being
2508 * expired before we get a chance to add it
2510 BUG_ON(mnt_get_count(mnt) < 2);
2512 if (m->mnt_sb == path->mnt->mnt_sb &&
2513 m->mnt_root == path->dentry) {
2518 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2522 /* remove m from any expiration list it may be on */
2523 if (!list_empty(&mnt->mnt_expire)) {
2525 list_del_init(&mnt->mnt_expire);
2534 * mnt_set_expiry - Put a mount on an expiration list
2535 * @mnt: The mount to list.
2536 * @expiry_list: The list to add the mount to.
2538 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2542 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2546 EXPORT_SYMBOL(mnt_set_expiry);
2549 * process a list of expirable mountpoints with the intent of discarding any
2550 * mountpoints that aren't in use and haven't been touched since last we came
2553 void mark_mounts_for_expiry(struct list_head *mounts)
2555 struct mount *mnt, *next;
2556 LIST_HEAD(graveyard);
2558 if (list_empty(mounts))
2564 /* extract from the expiration list every vfsmount that matches the
2565 * following criteria:
2566 * - only referenced by its parent vfsmount
2567 * - still marked for expiry (marked on the last call here; marks are
2568 * cleared by mntput())
2570 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2571 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2572 propagate_mount_busy(mnt, 1))
2574 list_move(&mnt->mnt_expire, &graveyard);
2576 while (!list_empty(&graveyard)) {
2577 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2578 touch_mnt_namespace(mnt->mnt_ns);
2579 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2581 unlock_mount_hash();
2585 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2588 * Ripoff of 'select_parent()'
2590 * search the list of submounts for a given mountpoint, and move any
2591 * shrinkable submounts to the 'graveyard' list.
2593 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2595 struct mount *this_parent = parent;
2596 struct list_head *next;
2600 next = this_parent->mnt_mounts.next;
2602 while (next != &this_parent->mnt_mounts) {
2603 struct list_head *tmp = next;
2604 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2607 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2610 * Descend a level if the d_mounts list is non-empty.
2612 if (!list_empty(&mnt->mnt_mounts)) {
2617 if (!propagate_mount_busy(mnt, 1)) {
2618 list_move_tail(&mnt->mnt_expire, graveyard);
2623 * All done at this level ... ascend and resume the search
2625 if (this_parent != parent) {
2626 next = this_parent->mnt_child.next;
2627 this_parent = this_parent->mnt_parent;
2634 * process a list of expirable mountpoints with the intent of discarding any
2635 * submounts of a specific parent mountpoint
2637 * mount_lock must be held for write
2639 static void shrink_submounts(struct mount *mnt)
2641 LIST_HEAD(graveyard);
2644 /* extract submounts of 'mountpoint' from the expiration list */
2645 while (select_submounts(mnt, &graveyard)) {
2646 while (!list_empty(&graveyard)) {
2647 m = list_first_entry(&graveyard, struct mount,
2649 touch_mnt_namespace(m->mnt_ns);
2650 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2656 * Some copy_from_user() implementations do not return the exact number of
2657 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2658 * Note that this function differs from copy_from_user() in that it will oops
2659 * on bad values of `to', rather than returning a short copy.
2661 static long exact_copy_from_user(void *to, const void __user * from,
2665 const char __user *f = from;
2668 if (!access_ok(VERIFY_READ, from, n))
2672 if (__get_user(c, f)) {
2683 void *copy_mount_options(const void __user * data)
2692 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2694 return ERR_PTR(-ENOMEM);
2696 /* We only care that *some* data at the address the user
2697 * gave us is valid. Just in case, we'll zero
2698 * the remainder of the page.
2700 /* copy_from_user cannot cross TASK_SIZE ! */
2701 size = TASK_SIZE - (unsigned long)data;
2702 if (size > PAGE_SIZE)
2705 i = size - exact_copy_from_user(copy, data, size);
2708 return ERR_PTR(-EFAULT);
2711 memset(copy + i, 0, PAGE_SIZE - i);
2715 char *copy_mount_string(const void __user *data)
2717 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2721 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2722 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2724 * data is a (void *) that can point to any structure up to
2725 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2726 * information (or be NULL).
2728 * Pre-0.97 versions of mount() didn't have a flags word.
2729 * When the flags word was introduced its top half was required
2730 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2731 * Therefore, if this magic number is present, it carries no information
2732 * and must be discarded.
2734 long do_mount(const char *dev_name, const char __user *dir_name,
2735 const char *type_page, unsigned long flags, void *data_page)
2738 unsigned int mnt_flags = 0, sb_flags;
2742 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2743 flags &= ~MS_MGC_MSK;
2745 /* Basic sanity checks */
2747 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2749 if (flags & MS_NOUSER)
2752 /* ... and get the mountpoint */
2753 retval = user_path(dir_name, &path);
2757 retval = security_sb_mount(dev_name, &path,
2758 type_page, flags, data_page);
2759 if (!retval && !may_mount())
2761 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
2766 /* Default to relatime unless overriden */
2767 if (!(flags & MS_NOATIME))
2768 mnt_flags |= MNT_RELATIME;
2770 /* Separate the per-mountpoint flags */
2771 if (flags & MS_NOSUID)
2772 mnt_flags |= MNT_NOSUID;
2773 if (flags & MS_NODEV)
2774 mnt_flags |= MNT_NODEV;
2775 if (flags & MS_NOEXEC)
2776 mnt_flags |= MNT_NOEXEC;
2777 if (flags & MS_NOATIME)
2778 mnt_flags |= MNT_NOATIME;
2779 if (flags & MS_NODIRATIME)
2780 mnt_flags |= MNT_NODIRATIME;
2781 if (flags & MS_STRICTATIME)
2782 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2783 if (flags & MS_RDONLY)
2784 mnt_flags |= MNT_READONLY;
2786 /* The default atime for remount is preservation */
2787 if ((flags & MS_REMOUNT) &&
2788 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2789 MS_STRICTATIME)) == 0)) {
2790 mnt_flags &= ~MNT_ATIME_MASK;
2791 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2794 sb_flags = flags & (SB_RDONLY |
2803 if (flags & MS_REMOUNT)
2804 retval = do_remount(&path, flags, sb_flags, mnt_flags,
2806 else if (flags & MS_BIND)
2807 retval = do_loopback(&path, dev_name, flags & MS_REC);
2808 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2809 retval = do_change_type(&path, flags);
2810 else if (flags & MS_MOVE)
2811 retval = do_move_mount(&path, dev_name);
2813 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
2814 dev_name, data_page);
2820 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2822 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2825 static void dec_mnt_namespaces(struct ucounts *ucounts)
2827 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2830 static void free_mnt_ns(struct mnt_namespace *ns)
2832 ns_free_inum(&ns->ns);
2833 dec_mnt_namespaces(ns->ucounts);
2834 put_user_ns(ns->user_ns);
2839 * Assign a sequence number so we can detect when we attempt to bind
2840 * mount a reference to an older mount namespace into the current
2841 * mount namespace, preventing reference counting loops. A 64bit
2842 * number incrementing at 10Ghz will take 12,427 years to wrap which
2843 * is effectively never, so we can ignore the possibility.
2845 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2847 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2849 struct mnt_namespace *new_ns;
2850 struct ucounts *ucounts;
2853 ucounts = inc_mnt_namespaces(user_ns);
2855 return ERR_PTR(-ENOSPC);
2857 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2859 dec_mnt_namespaces(ucounts);
2860 return ERR_PTR(-ENOMEM);
2862 ret = ns_alloc_inum(&new_ns->ns);
2865 dec_mnt_namespaces(ucounts);
2866 return ERR_PTR(ret);
2868 new_ns->ns.ops = &mntns_operations;
2869 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2870 atomic_set(&new_ns->count, 1);
2871 new_ns->root = NULL;
2872 INIT_LIST_HEAD(&new_ns->list);
2873 init_waitqueue_head(&new_ns->poll);
2875 new_ns->user_ns = get_user_ns(user_ns);
2876 new_ns->ucounts = ucounts;
2878 new_ns->pending_mounts = 0;
2883 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2884 struct user_namespace *user_ns, struct fs_struct *new_fs)
2886 struct mnt_namespace *new_ns;
2887 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2888 struct mount *p, *q;
2895 if (likely(!(flags & CLONE_NEWNS))) {
2902 new_ns = alloc_mnt_ns(user_ns);
2907 /* First pass: copy the tree topology */
2908 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2909 if (user_ns != ns->user_ns)
2910 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2911 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2914 free_mnt_ns(new_ns);
2915 return ERR_CAST(new);
2918 list_add_tail(&new_ns->list, &new->mnt_list);
2921 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2922 * as belonging to new namespace. We have already acquired a private
2923 * fs_struct, so tsk->fs->lock is not needed.
2931 if (&p->mnt == new_fs->root.mnt) {
2932 new_fs->root.mnt = mntget(&q->mnt);
2935 if (&p->mnt == new_fs->pwd.mnt) {
2936 new_fs->pwd.mnt = mntget(&q->mnt);
2940 p = next_mnt(p, old);
2941 q = next_mnt(q, new);
2944 while (p->mnt.mnt_root != q->mnt.mnt_root)
2945 p = next_mnt(p, old);
2958 * create_mnt_ns - creates a private namespace and adds a root filesystem
2959 * @mnt: pointer to the new root filesystem mountpoint
2961 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2963 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2964 if (!IS_ERR(new_ns)) {
2965 struct mount *mnt = real_mount(m);
2966 mnt->mnt_ns = new_ns;
2969 list_add(&mnt->mnt_list, &new_ns->list);
2976 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2978 struct mnt_namespace *ns;
2979 struct super_block *s;
2983 ns = create_mnt_ns(mnt);
2985 return ERR_CAST(ns);
2987 err = vfs_path_lookup(mnt->mnt_root, mnt,
2988 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2993 return ERR_PTR(err);
2995 /* trade a vfsmount reference for active sb one */
2996 s = path.mnt->mnt_sb;
2997 atomic_inc(&s->s_active);
2999 /* lock the sucker */
3000 down_write(&s->s_umount);
3001 /* ... and return the root of (sub)tree on it */
3004 EXPORT_SYMBOL(mount_subtree);
3006 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3007 unsigned long flags, void __user *data)
3014 kernel_type = copy_mount_string(type);
3015 ret = PTR_ERR(kernel_type);
3016 if (IS_ERR(kernel_type))
3019 kernel_dev = copy_mount_string(dev_name);
3020 ret = PTR_ERR(kernel_dev);
3021 if (IS_ERR(kernel_dev))
3024 options = copy_mount_options(data);
3025 ret = PTR_ERR(options);
3026 if (IS_ERR(options))
3029 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3040 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3041 char __user *, type, unsigned long, flags, void __user *, data)
3043 return ksys_mount(dev_name, dir_name, type, flags, data);
3047 * Return true if path is reachable from root
3049 * namespace_sem or mount_lock is held
3051 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3052 const struct path *root)
3054 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3055 dentry = mnt->mnt_mountpoint;
3056 mnt = mnt->mnt_parent;
3058 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3061 bool path_is_under(const struct path *path1, const struct path *path2)
3064 read_seqlock_excl(&mount_lock);
3065 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3066 read_sequnlock_excl(&mount_lock);
3069 EXPORT_SYMBOL(path_is_under);
3072 * pivot_root Semantics:
3073 * Moves the root file system of the current process to the directory put_old,
3074 * makes new_root as the new root file system of the current process, and sets
3075 * root/cwd of all processes which had them on the current root to new_root.
3078 * The new_root and put_old must be directories, and must not be on the
3079 * same file system as the current process root. The put_old must be
3080 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3081 * pointed to by put_old must yield the same directory as new_root. No other
3082 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3084 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3085 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3086 * in this situation.
3089 * - we don't move root/cwd if they are not at the root (reason: if something
3090 * cared enough to change them, it's probably wrong to force them elsewhere)
3091 * - it's okay to pick a root that isn't the root of a file system, e.g.
3092 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3093 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3096 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3097 const char __user *, put_old)
3099 struct path new, old, parent_path, root_parent, root;
3100 struct mount *new_mnt, *root_mnt, *old_mnt;
3101 struct mountpoint *old_mp, *root_mp;
3107 error = user_path_dir(new_root, &new);
3111 error = user_path_dir(put_old, &old);
3115 error = security_sb_pivotroot(&old, &new);
3119 get_fs_root(current->fs, &root);
3120 old_mp = lock_mount(&old);
3121 error = PTR_ERR(old_mp);
3126 new_mnt = real_mount(new.mnt);
3127 root_mnt = real_mount(root.mnt);
3128 old_mnt = real_mount(old.mnt);
3129 if (IS_MNT_SHARED(old_mnt) ||
3130 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3131 IS_MNT_SHARED(root_mnt->mnt_parent))
3133 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3135 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3138 if (d_unlinked(new.dentry))
3141 if (new_mnt == root_mnt || old_mnt == root_mnt)
3142 goto out4; /* loop, on the same file system */
3144 if (root.mnt->mnt_root != root.dentry)
3145 goto out4; /* not a mountpoint */
3146 if (!mnt_has_parent(root_mnt))
3147 goto out4; /* not attached */
3148 root_mp = root_mnt->mnt_mp;
3149 if (new.mnt->mnt_root != new.dentry)
3150 goto out4; /* not a mountpoint */
3151 if (!mnt_has_parent(new_mnt))
3152 goto out4; /* not attached */
3153 /* make sure we can reach put_old from new_root */
3154 if (!is_path_reachable(old_mnt, old.dentry, &new))
3156 /* make certain new is below the root */
3157 if (!is_path_reachable(new_mnt, new.dentry, &root))
3159 root_mp->m_count++; /* pin it so it won't go away */
3161 detach_mnt(new_mnt, &parent_path);
3162 detach_mnt(root_mnt, &root_parent);
3163 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3164 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3165 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3167 /* mount old root on put_old */
3168 attach_mnt(root_mnt, old_mnt, old_mp);
3169 /* mount new_root on / */
3170 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3171 touch_mnt_namespace(current->nsproxy->mnt_ns);
3172 /* A moved mount should not expire automatically */
3173 list_del_init(&new_mnt->mnt_expire);
3174 put_mountpoint(root_mp);
3175 unlock_mount_hash();
3176 chroot_fs_refs(&root, &new);
3179 unlock_mount(old_mp);
3181 path_put(&root_parent);
3182 path_put(&parent_path);
3194 static void __init init_mount_tree(void)
3196 struct vfsmount *mnt;
3197 struct mnt_namespace *ns;
3199 struct file_system_type *type;
3201 type = get_fs_type("rootfs");
3203 panic("Can't find rootfs type");
3204 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3205 put_filesystem(type);
3207 panic("Can't create rootfs");
3209 ns = create_mnt_ns(mnt);
3211 panic("Can't allocate initial namespace");
3213 init_task.nsproxy->mnt_ns = ns;
3217 root.dentry = mnt->mnt_root;
3218 mnt->mnt_flags |= MNT_LOCKED;
3220 set_fs_pwd(current->fs, &root);
3221 set_fs_root(current->fs, &root);
3224 void __init mnt_init(void)
3228 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3229 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3231 mount_hashtable = alloc_large_system_hash("Mount-cache",
3232 sizeof(struct hlist_head),
3235 &m_hash_shift, &m_hash_mask, 0, 0);
3236 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3237 sizeof(struct hlist_head),
3240 &mp_hash_shift, &mp_hash_mask, 0, 0);
3242 if (!mount_hashtable || !mountpoint_hashtable)
3243 panic("Failed to allocate mount hash table\n");
3249 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3251 fs_kobj = kobject_create_and_add("fs", NULL);
3253 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3258 void put_mnt_ns(struct mnt_namespace *ns)
3260 if (!atomic_dec_and_test(&ns->count))
3262 drop_collected_mounts(&ns->root->mnt);
3266 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3268 struct vfsmount *mnt;
3269 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
3272 * it is a longterm mount, don't release mnt until
3273 * we unmount before file sys is unregistered
3275 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3279 EXPORT_SYMBOL_GPL(kern_mount_data);
3281 void kern_unmount(struct vfsmount *mnt)
3283 /* release long term mount so mount point can be released */
3284 if (!IS_ERR_OR_NULL(mnt)) {
3285 real_mount(mnt)->mnt_ns = NULL;
3286 synchronize_rcu(); /* yecchhh... */
3290 EXPORT_SYMBOL(kern_unmount);
3292 bool our_mnt(struct vfsmount *mnt)
3294 return check_mnt(real_mount(mnt));
3297 bool current_chrooted(void)
3299 /* Does the current process have a non-standard root */
3300 struct path ns_root;
3301 struct path fs_root;
3304 /* Find the namespace root */
3305 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3306 ns_root.dentry = ns_root.mnt->mnt_root;
3308 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3311 get_fs_root(current->fs, &fs_root);
3313 chrooted = !path_equal(&fs_root, &ns_root);
3321 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3324 int new_flags = *new_mnt_flags;
3326 bool visible = false;
3328 down_read(&namespace_sem);
3329 list_for_each_entry(mnt, &ns->list, mnt_list) {
3330 struct mount *child;
3333 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3336 /* This mount is not fully visible if it's root directory
3337 * is not the root directory of the filesystem.
3339 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3342 /* A local view of the mount flags */
3343 mnt_flags = mnt->mnt.mnt_flags;
3345 /* Don't miss readonly hidden in the superblock flags */
3346 if (sb_rdonly(mnt->mnt.mnt_sb))
3347 mnt_flags |= MNT_LOCK_READONLY;
3349 /* Verify the mount flags are equal to or more permissive
3350 * than the proposed new mount.
3352 if ((mnt_flags & MNT_LOCK_READONLY) &&
3353 !(new_flags & MNT_READONLY))
3355 if ((mnt_flags & MNT_LOCK_ATIME) &&
3356 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3359 /* This mount is not fully visible if there are any
3360 * locked child mounts that cover anything except for
3361 * empty directories.
3363 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3364 struct inode *inode = child->mnt_mountpoint->d_inode;
3365 /* Only worry about locked mounts */
3366 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3368 /* Is the directory permanetly empty? */
3369 if (!is_empty_dir_inode(inode))
3372 /* Preserve the locked attributes */
3373 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3380 up_read(&namespace_sem);
3384 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3386 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3387 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3388 unsigned long s_iflags;
3390 if (ns->user_ns == &init_user_ns)
3393 /* Can this filesystem be too revealing? */
3394 s_iflags = mnt->mnt_sb->s_iflags;
3395 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3398 if ((s_iflags & required_iflags) != required_iflags) {
3399 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3404 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3407 bool mnt_may_suid(struct vfsmount *mnt)
3410 * Foreign mounts (accessed via fchdir or through /proc
3411 * symlinks) are always treated as if they are nosuid. This
3412 * prevents namespaces from trusting potentially unsafe
3413 * suid/sgid bits, file caps, or security labels that originate
3414 * in other namespaces.
3416 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3417 current_in_userns(mnt->mnt_sb->s_user_ns);
3420 static struct ns_common *mntns_get(struct task_struct *task)
3422 struct ns_common *ns = NULL;
3423 struct nsproxy *nsproxy;
3426 nsproxy = task->nsproxy;
3428 ns = &nsproxy->mnt_ns->ns;
3429 get_mnt_ns(to_mnt_ns(ns));
3436 static void mntns_put(struct ns_common *ns)
3438 put_mnt_ns(to_mnt_ns(ns));
3441 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3443 struct fs_struct *fs = current->fs;
3444 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3448 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3449 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3450 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3457 old_mnt_ns = nsproxy->mnt_ns;
3458 nsproxy->mnt_ns = mnt_ns;
3461 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3462 "/", LOOKUP_DOWN, &root);
3464 /* revert to old namespace */
3465 nsproxy->mnt_ns = old_mnt_ns;
3470 put_mnt_ns(old_mnt_ns);
3472 /* Update the pwd and root */
3473 set_fs_pwd(fs, &root);
3474 set_fs_root(fs, &root);
3480 static struct user_namespace *mntns_owner(struct ns_common *ns)
3482 return to_mnt_ns(ns)->user_ns;
3485 const struct proc_ns_operations mntns_operations = {
3487 .type = CLONE_NEWNS,
3490 .install = mntns_install,
3491 .owner = mntns_owner,