4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
40 mhash_entries = simple_strtoul(str, &str, 0);
43 __setup("mhash_entries=", set_mhash_entries);
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
50 mphash_entries = simple_strtoul(str, &str, 0);
53 __setup("mphash_entries=", set_mphash_entries);
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount *mnt)
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
117 static void mnt_free_id(struct mount *mnt)
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
124 spin_unlock(&mnt_id_lock);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount *mnt)
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start = mnt->mnt_group_id + 1;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount *mnt)
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount *mnt, int n)
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount *mnt)
180 unsigned int count = 0;
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
189 return mnt->mnt_count;
193 static void drop_mountpoint(struct fs_pin *p)
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
201 static struct mount *alloc_vfsmnt(const char *name)
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 err = mnt_alloc_id(mnt);
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
220 goto out_free_devname;
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
225 mnt->mnt_writers = 0;
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
246 kfree_const(mnt->mnt_devname);
251 kmem_cache_free(mnt_cache, mnt);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount *mnt)
276 if (mnt->mnt_flags & MNT_READONLY)
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
284 static inline void mnt_inc_writers(struct mount *mnt)
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
293 static inline void mnt_dec_writers(struct mount *mnt)
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
302 static unsigned int mnt_get_writers(struct mount *mnt)
305 unsigned int count = 0;
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
314 return mnt->mnt_writers;
318 static int mnt_is_readonly(struct vfsmount *mnt)
320 if (mnt->mnt_sb->s_readonly_remount)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount *m)
345 struct mount *mnt = real_mount(m);
349 mnt_inc_writers(mnt);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount *m)
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
389 sb_end_write(m->mnt_sb);
392 EXPORT_SYMBOL_GPL(mnt_want_write);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount *mnt)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
412 mnt_inc_writers(real_mount(mnt));
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file *file)
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
430 return mnt_clone_write(file->f_path.mnt);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file *file)
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
447 sb_end_write(file->f_path.mnt->mnt_sb);
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount *mnt)
463 mnt_dec_writers(real_mount(mnt));
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount *mnt)
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
482 void __mnt_drop_write_file(struct file *file)
484 __mnt_drop_write(file->f_path.mnt);
487 void mnt_drop_write_file(struct file *file)
489 mnt_drop_write(file->f_path.mnt);
491 EXPORT_SYMBOL(mnt_drop_write_file);
493 static int mnt_make_readonly(struct mount *mnt)
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
521 if (mnt_get_writers(mnt) > 0)
524 mnt->mnt.mnt_flags |= MNT_READONLY;
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
535 static void __mnt_unmake_readonly(struct mount *mnt)
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 int sb_prepare_remount_readonly(struct super_block *sb)
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
556 if (mnt_get_writers(mnt) > 0) {
562 if (!err && atomic_long_read(&sb->s_remove_count))
566 sb->s_readonly_remount = 1;
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
578 static void free_vfsmnt(struct mount *mnt)
580 kfree_const(mnt->mnt_devname);
582 free_percpu(mnt->mnt_pcp);
584 kmem_cache_free(mnt_cache, mnt);
587 static void delayed_free_vfsmnt(struct rcu_head *head)
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
596 if (read_seqretry(&mount_lock, seq))
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
620 struct hlist_head *head = m_hash(mnt, dentry);
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
635 struct mount *p, *res;
636 res = p = __lookup_mnt(mnt, dentry);
639 hlist_for_each_entry_continue(p, mnt_hash) {
640 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
649 * lookup_mnt - Return the first child mount mounted at path
651 * "First" means first mounted chronologically. If you create the
654 * mount /dev/sda1 /mnt
655 * mount /dev/sda2 /mnt
656 * mount /dev/sda3 /mnt
658 * Then lookup_mnt() on the base /mnt dentry in the root mount will
659 * return successively the root dentry and vfsmount of /dev/sda1, then
660 * /dev/sda2, then /dev/sda3, then NULL.
662 * lookup_mnt takes a reference to the found vfsmount.
664 struct vfsmount *lookup_mnt(struct path *path)
666 struct mount *child_mnt;
672 seq = read_seqbegin(&mount_lock);
673 child_mnt = __lookup_mnt(path->mnt, path->dentry);
674 m = child_mnt ? &child_mnt->mnt : NULL;
675 } while (!legitimize_mnt(m, seq));
681 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
682 * current mount namespace.
684 * The common case is dentries are not mountpoints at all and that
685 * test is handled inline. For the slow case when we are actually
686 * dealing with a mountpoint of some kind, walk through all of the
687 * mounts in the current mount namespace and test to see if the dentry
690 * The mount_hashtable is not usable in the context because we
691 * need to identify all mounts that may be in the current mount
692 * namespace not just a mount that happens to have some specified
695 bool __is_local_mountpoint(struct dentry *dentry)
697 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
699 bool is_covered = false;
701 if (!d_mountpoint(dentry))
704 down_read(&namespace_sem);
705 list_for_each_entry(mnt, &ns->list, mnt_list) {
706 is_covered = (mnt->mnt_mountpoint == dentry);
710 up_read(&namespace_sem);
715 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
717 struct hlist_head *chain = mp_hash(dentry);
718 struct mountpoint *mp;
720 hlist_for_each_entry(mp, chain, m_hash) {
721 if (mp->m_dentry == dentry) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
732 static struct mountpoint *new_mountpoint(struct dentry *dentry)
734 struct hlist_head *chain = mp_hash(dentry);
735 struct mountpoint *mp;
738 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
740 return ERR_PTR(-ENOMEM);
742 ret = d_set_mounted(dentry);
748 mp->m_dentry = dentry;
750 hlist_add_head(&mp->m_hash, chain);
751 INIT_HLIST_HEAD(&mp->m_list);
755 static void put_mountpoint(struct mountpoint *mp)
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
759 BUG_ON(!hlist_empty(&mp->m_list));
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
763 hlist_del(&mp->m_hash);
768 static inline int check_mnt(struct mount *mnt)
770 return mnt->mnt_ns == current->nsproxy->mnt_ns;
774 * vfsmount lock must be held for write
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
780 wake_up_interruptible(&ns->poll);
785 * vfsmount lock must be held for write
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
789 if (ns && ns->event != event) {
791 wake_up_interruptible(&ns->poll);
796 * vfsmount lock must be held for write
798 static void detach_mnt(struct mount *mnt, struct path *old_path)
800 old_path->dentry = mnt->mnt_mountpoint;
801 old_path->mnt = &mnt->mnt_parent->mnt;
802 mnt->mnt_parent = mnt;
803 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
804 list_del_init(&mnt->mnt_child);
805 hlist_del_init_rcu(&mnt->mnt_hash);
806 hlist_del_init(&mnt->mnt_mp_list);
807 put_mountpoint(mnt->mnt_mp);
812 * vfsmount lock must be held for write
814 void mnt_set_mountpoint(struct mount *mnt,
815 struct mountpoint *mp,
816 struct mount *child_mnt)
819 mnt_add_count(mnt, 1); /* essentially, that's mntget */
820 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
821 child_mnt->mnt_parent = mnt;
822 child_mnt->mnt_mp = mp;
823 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
827 * vfsmount lock must be held for write
829 static void attach_mnt(struct mount *mnt,
830 struct mount *parent,
831 struct mountpoint *mp)
833 mnt_set_mountpoint(parent, mp, mnt);
834 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
835 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
838 static void attach_shadowed(struct mount *mnt,
839 struct mount *parent,
840 struct mount *shadows)
843 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
844 list_add(&mnt->mnt_child, &shadows->mnt_child);
846 hlist_add_head_rcu(&mnt->mnt_hash,
847 m_hash(&parent->mnt, mnt->mnt_mountpoint));
848 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
853 * vfsmount lock must be held for write
855 static void commit_tree(struct mount *mnt, struct mount *shadows)
857 struct mount *parent = mnt->mnt_parent;
860 struct mnt_namespace *n = parent->mnt_ns;
862 BUG_ON(parent == mnt);
864 list_add_tail(&head, &mnt->mnt_list);
865 list_for_each_entry(m, &head, mnt_list)
868 list_splice(&head, n->list.prev);
870 attach_shadowed(mnt, parent, shadows);
871 touch_mnt_namespace(n);
874 static struct mount *next_mnt(struct mount *p, struct mount *root)
876 struct list_head *next = p->mnt_mounts.next;
877 if (next == &p->mnt_mounts) {
881 next = p->mnt_child.next;
882 if (next != &p->mnt_parent->mnt_mounts)
887 return list_entry(next, struct mount, mnt_child);
890 static struct mount *skip_mnt_tree(struct mount *p)
892 struct list_head *prev = p->mnt_mounts.prev;
893 while (prev != &p->mnt_mounts) {
894 p = list_entry(prev, struct mount, mnt_child);
895 prev = p->mnt_mounts.prev;
901 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
907 return ERR_PTR(-ENODEV);
909 mnt = alloc_vfsmnt(name);
911 return ERR_PTR(-ENOMEM);
913 if (flags & MS_KERNMOUNT)
914 mnt->mnt.mnt_flags = MNT_INTERNAL;
916 root = mount_fs(type, flags, name, data);
920 return ERR_CAST(root);
923 mnt->mnt.mnt_root = root;
924 mnt->mnt.mnt_sb = root->d_sb;
925 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
926 mnt->mnt_parent = mnt;
928 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
932 EXPORT_SYMBOL_GPL(vfs_kern_mount);
934 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
937 struct super_block *sb = old->mnt.mnt_sb;
941 mnt = alloc_vfsmnt(old->mnt_devname);
943 return ERR_PTR(-ENOMEM);
945 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
946 mnt->mnt_group_id = 0; /* not a peer of original */
948 mnt->mnt_group_id = old->mnt_group_id;
950 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
951 err = mnt_alloc_group_id(mnt);
956 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
957 /* Don't allow unprivileged users to change mount flags */
958 if (flag & CL_UNPRIVILEGED) {
959 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
961 if (mnt->mnt.mnt_flags & MNT_READONLY)
962 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
964 if (mnt->mnt.mnt_flags & MNT_NODEV)
965 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
967 if (mnt->mnt.mnt_flags & MNT_NOSUID)
968 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
970 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
971 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
974 /* Don't allow unprivileged users to reveal what is under a mount */
975 if ((flag & CL_UNPRIVILEGED) &&
976 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
977 mnt->mnt.mnt_flags |= MNT_LOCKED;
979 atomic_inc(&sb->s_active);
980 mnt->mnt.mnt_sb = sb;
981 mnt->mnt.mnt_root = dget(root);
982 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
983 mnt->mnt_parent = mnt;
985 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
988 if ((flag & CL_SLAVE) ||
989 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
990 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
991 mnt->mnt_master = old;
992 CLEAR_MNT_SHARED(mnt);
993 } else if (!(flag & CL_PRIVATE)) {
994 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
995 list_add(&mnt->mnt_share, &old->mnt_share);
996 if (IS_MNT_SLAVE(old))
997 list_add(&mnt->mnt_slave, &old->mnt_slave);
998 mnt->mnt_master = old->mnt_master;
1000 if (flag & CL_MAKE_SHARED)
1001 set_mnt_shared(mnt);
1003 /* stick the duplicate mount on the same expiry list
1004 * as the original if that was on one */
1005 if (flag & CL_EXPIRE) {
1006 if (!list_empty(&old->mnt_expire))
1007 list_add(&mnt->mnt_expire, &old->mnt_expire);
1015 return ERR_PTR(err);
1018 static void cleanup_mnt(struct mount *mnt)
1021 * This probably indicates that somebody messed
1022 * up a mnt_want/drop_write() pair. If this
1023 * happens, the filesystem was probably unable
1024 * to make r/w->r/o transitions.
1027 * The locking used to deal with mnt_count decrement provides barriers,
1028 * so mnt_get_writers() below is safe.
1030 WARN_ON(mnt_get_writers(mnt));
1031 if (unlikely(mnt->mnt_pins.first))
1033 fsnotify_vfsmount_delete(&mnt->mnt);
1034 dput(mnt->mnt.mnt_root);
1035 deactivate_super(mnt->mnt.mnt_sb);
1037 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1040 static void __cleanup_mnt(struct rcu_head *head)
1042 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1045 static LLIST_HEAD(delayed_mntput_list);
1046 static void delayed_mntput(struct work_struct *unused)
1048 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1049 struct llist_node *next;
1051 for (; node; node = next) {
1052 next = llist_next(node);
1053 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1056 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1058 static void mntput_no_expire(struct mount *mnt)
1061 mnt_add_count(mnt, -1);
1062 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1067 if (mnt_get_count(mnt)) {
1069 unlock_mount_hash();
1072 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1074 unlock_mount_hash();
1077 mnt->mnt.mnt_flags |= MNT_DOOMED;
1080 list_del(&mnt->mnt_instance);
1081 unlock_mount_hash();
1083 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1084 struct task_struct *task = current;
1085 if (likely(!(task->flags & PF_KTHREAD))) {
1086 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1087 if (!task_work_add(task, &mnt->mnt_rcu, true))
1090 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1091 schedule_delayed_work(&delayed_mntput_work, 1);
1097 void mntput(struct vfsmount *mnt)
1100 struct mount *m = real_mount(mnt);
1101 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1102 if (unlikely(m->mnt_expiry_mark))
1103 m->mnt_expiry_mark = 0;
1104 mntput_no_expire(m);
1107 EXPORT_SYMBOL(mntput);
1109 struct vfsmount *mntget(struct vfsmount *mnt)
1112 mnt_add_count(real_mount(mnt), 1);
1115 EXPORT_SYMBOL(mntget);
1117 struct vfsmount *mnt_clone_internal(struct path *path)
1120 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1123 p->mnt.mnt_flags |= MNT_INTERNAL;
1127 static inline void mangle(struct seq_file *m, const char *s)
1129 seq_escape(m, s, " \t\n\\");
1133 * Simple .show_options callback for filesystems which don't want to
1134 * implement more complex mount option showing.
1136 * See also save_mount_options().
1138 int generic_show_options(struct seq_file *m, struct dentry *root)
1140 const char *options;
1143 options = rcu_dereference(root->d_sb->s_options);
1145 if (options != NULL && options[0]) {
1153 EXPORT_SYMBOL(generic_show_options);
1156 * If filesystem uses generic_show_options(), this function should be
1157 * called from the fill_super() callback.
1159 * The .remount_fs callback usually needs to be handled in a special
1160 * way, to make sure, that previous options are not overwritten if the
1163 * Also note, that if the filesystem's .remount_fs function doesn't
1164 * reset all options to their default value, but changes only newly
1165 * given options, then the displayed options will not reflect reality
1168 void save_mount_options(struct super_block *sb, char *options)
1170 BUG_ON(sb->s_options);
1171 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1173 EXPORT_SYMBOL(save_mount_options);
1175 void replace_mount_options(struct super_block *sb, char *options)
1177 char *old = sb->s_options;
1178 rcu_assign_pointer(sb->s_options, options);
1184 EXPORT_SYMBOL(replace_mount_options);
1186 #ifdef CONFIG_PROC_FS
1187 /* iterator; we want it to have access to namespace_sem, thus here... */
1188 static void *m_start(struct seq_file *m, loff_t *pos)
1190 struct proc_mounts *p = proc_mounts(m);
1192 down_read(&namespace_sem);
1193 if (p->cached_event == p->ns->event) {
1194 void *v = p->cached_mount;
1195 if (*pos == p->cached_index)
1197 if (*pos == p->cached_index + 1) {
1198 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1199 return p->cached_mount = v;
1203 p->cached_event = p->ns->event;
1204 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1205 p->cached_index = *pos;
1206 return p->cached_mount;
1209 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1211 struct proc_mounts *p = proc_mounts(m);
1213 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1214 p->cached_index = *pos;
1215 return p->cached_mount;
1218 static void m_stop(struct seq_file *m, void *v)
1220 up_read(&namespace_sem);
1223 static int m_show(struct seq_file *m, void *v)
1225 struct proc_mounts *p = proc_mounts(m);
1226 struct mount *r = list_entry(v, struct mount, mnt_list);
1227 return p->show(m, &r->mnt);
1230 const struct seq_operations mounts_op = {
1236 #endif /* CONFIG_PROC_FS */
1239 * may_umount_tree - check if a mount tree is busy
1240 * @mnt: root of mount tree
1242 * This is called to check if a tree of mounts has any
1243 * open files, pwds, chroots or sub mounts that are
1246 int may_umount_tree(struct vfsmount *m)
1248 struct mount *mnt = real_mount(m);
1249 int actual_refs = 0;
1250 int minimum_refs = 0;
1254 /* write lock needed for mnt_get_count */
1256 for (p = mnt; p; p = next_mnt(p, mnt)) {
1257 actual_refs += mnt_get_count(p);
1260 unlock_mount_hash();
1262 if (actual_refs > minimum_refs)
1268 EXPORT_SYMBOL(may_umount_tree);
1271 * may_umount - check if a mount point is busy
1272 * @mnt: root of mount
1274 * This is called to check if a mount point has any
1275 * open files, pwds, chroots or sub mounts. If the
1276 * mount has sub mounts this will return busy
1277 * regardless of whether the sub mounts are busy.
1279 * Doesn't take quota and stuff into account. IOW, in some cases it will
1280 * give false negatives. The main reason why it's here is that we need
1281 * a non-destructive way to look for easily umountable filesystems.
1283 int may_umount(struct vfsmount *mnt)
1286 down_read(&namespace_sem);
1288 if (propagate_mount_busy(real_mount(mnt), 2))
1290 unlock_mount_hash();
1291 up_read(&namespace_sem);
1295 EXPORT_SYMBOL(may_umount);
1297 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1299 static void namespace_unlock(void)
1301 struct hlist_head head = unmounted;
1303 if (likely(hlist_empty(&head))) {
1304 up_write(&namespace_sem);
1308 head.first->pprev = &head.first;
1309 INIT_HLIST_HEAD(&unmounted);
1310 up_write(&namespace_sem);
1314 group_pin_kill(&head);
1317 static inline void namespace_lock(void)
1319 down_write(&namespace_sem);
1323 * mount_lock must be held
1324 * namespace_sem must be held for write
1325 * how = 0 => just this tree, don't propagate
1326 * how = 1 => propagate; we know that nobody else has reference to any victims
1327 * how = 2 => lazy umount
1329 void umount_tree(struct mount *mnt, int how)
1331 HLIST_HEAD(tmp_list);
1334 for (p = mnt; p; p = next_mnt(p, mnt)) {
1335 hlist_del_init_rcu(&p->mnt_hash);
1336 hlist_add_head(&p->mnt_hash, &tmp_list);
1339 hlist_for_each_entry(p, &tmp_list, mnt_hash)
1340 list_del_init(&p->mnt_child);
1343 propagate_umount(&tmp_list);
1345 while (!hlist_empty(&tmp_list)) {
1346 p = hlist_entry(tmp_list.first, struct mount, mnt_hash);
1347 hlist_del_init_rcu(&p->mnt_hash);
1348 list_del_init(&p->mnt_expire);
1349 list_del_init(&p->mnt_list);
1350 __touch_mnt_namespace(p->mnt_ns);
1353 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1355 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, &unmounted);
1356 if (mnt_has_parent(p)) {
1357 hlist_del_init(&p->mnt_mp_list);
1358 put_mountpoint(p->mnt_mp);
1359 mnt_add_count(p->mnt_parent, -1);
1360 /* old mountpoint will be dropped when we can do that */
1361 p->mnt_ex_mountpoint = p->mnt_mountpoint;
1362 p->mnt_mountpoint = p->mnt.mnt_root;
1366 change_mnt_propagation(p, MS_PRIVATE);
1370 static void shrink_submounts(struct mount *mnt);
1372 static int do_umount(struct mount *mnt, int flags)
1374 struct super_block *sb = mnt->mnt.mnt_sb;
1377 retval = security_sb_umount(&mnt->mnt, flags);
1382 * Allow userspace to request a mountpoint be expired rather than
1383 * unmounting unconditionally. Unmount only happens if:
1384 * (1) the mark is already set (the mark is cleared by mntput())
1385 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1387 if (flags & MNT_EXPIRE) {
1388 if (&mnt->mnt == current->fs->root.mnt ||
1389 flags & (MNT_FORCE | MNT_DETACH))
1393 * probably don't strictly need the lock here if we examined
1394 * all race cases, but it's a slowpath.
1397 if (mnt_get_count(mnt) != 2) {
1398 unlock_mount_hash();
1401 unlock_mount_hash();
1403 if (!xchg(&mnt->mnt_expiry_mark, 1))
1408 * If we may have to abort operations to get out of this
1409 * mount, and they will themselves hold resources we must
1410 * allow the fs to do things. In the Unix tradition of
1411 * 'Gee thats tricky lets do it in userspace' the umount_begin
1412 * might fail to complete on the first run through as other tasks
1413 * must return, and the like. Thats for the mount program to worry
1414 * about for the moment.
1417 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1418 sb->s_op->umount_begin(sb);
1422 * No sense to grab the lock for this test, but test itself looks
1423 * somewhat bogus. Suggestions for better replacement?
1424 * Ho-hum... In principle, we might treat that as umount + switch
1425 * to rootfs. GC would eventually take care of the old vfsmount.
1426 * Actually it makes sense, especially if rootfs would contain a
1427 * /reboot - static binary that would close all descriptors and
1428 * call reboot(9). Then init(8) could umount root and exec /reboot.
1430 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1432 * Special case for "unmounting" root ...
1433 * we just try to remount it readonly.
1435 if (!capable(CAP_SYS_ADMIN))
1437 down_write(&sb->s_umount);
1438 if (!(sb->s_flags & MS_RDONLY))
1439 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1440 up_write(&sb->s_umount);
1448 if (flags & MNT_DETACH) {
1449 if (!list_empty(&mnt->mnt_list))
1450 umount_tree(mnt, 2);
1453 shrink_submounts(mnt);
1455 if (!propagate_mount_busy(mnt, 2)) {
1456 if (!list_empty(&mnt->mnt_list))
1457 umount_tree(mnt, 1);
1461 unlock_mount_hash();
1467 * __detach_mounts - lazily unmount all mounts on the specified dentry
1469 * During unlink, rmdir, and d_drop it is possible to loose the path
1470 * to an existing mountpoint, and wind up leaking the mount.
1471 * detach_mounts allows lazily unmounting those mounts instead of
1474 * The caller may hold dentry->d_inode->i_mutex.
1476 void __detach_mounts(struct dentry *dentry)
1478 struct mountpoint *mp;
1482 mp = lookup_mountpoint(dentry);
1487 while (!hlist_empty(&mp->m_list)) {
1488 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1489 umount_tree(mnt, 2);
1491 unlock_mount_hash();
1498 * Is the caller allowed to modify his namespace?
1500 static inline bool may_mount(void)
1502 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1506 * Now umount can handle mount points as well as block devices.
1507 * This is important for filesystems which use unnamed block devices.
1509 * We now support a flag for forced unmount like the other 'big iron'
1510 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1513 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1518 int lookup_flags = 0;
1520 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1526 if (!(flags & UMOUNT_NOFOLLOW))
1527 lookup_flags |= LOOKUP_FOLLOW;
1529 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1532 mnt = real_mount(path.mnt);
1534 if (path.dentry != path.mnt->mnt_root)
1536 if (!check_mnt(mnt))
1538 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1541 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1544 retval = do_umount(mnt, flags);
1546 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1548 mntput_no_expire(mnt);
1553 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1556 * The 2.0 compatible umount. No flags.
1558 SYSCALL_DEFINE1(oldumount, char __user *, name)
1560 return sys_umount(name, 0);
1565 static bool is_mnt_ns_file(struct dentry *dentry)
1567 /* Is this a proxy for a mount namespace? */
1568 return dentry->d_op == &ns_dentry_operations &&
1569 dentry->d_fsdata == &mntns_operations;
1572 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1574 return container_of(ns, struct mnt_namespace, ns);
1577 static bool mnt_ns_loop(struct dentry *dentry)
1579 /* Could bind mounting the mount namespace inode cause a
1580 * mount namespace loop?
1582 struct mnt_namespace *mnt_ns;
1583 if (!is_mnt_ns_file(dentry))
1586 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1587 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1590 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1593 struct mount *res, *p, *q, *r, *parent;
1595 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1596 return ERR_PTR(-EINVAL);
1598 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1599 return ERR_PTR(-EINVAL);
1601 res = q = clone_mnt(mnt, dentry, flag);
1605 q->mnt_mountpoint = mnt->mnt_mountpoint;
1608 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1610 if (!is_subdir(r->mnt_mountpoint, dentry))
1613 for (s = r; s; s = next_mnt(s, r)) {
1614 struct mount *t = NULL;
1615 if (!(flag & CL_COPY_UNBINDABLE) &&
1616 IS_MNT_UNBINDABLE(s)) {
1617 s = skip_mnt_tree(s);
1620 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1621 is_mnt_ns_file(s->mnt.mnt_root)) {
1622 s = skip_mnt_tree(s);
1625 while (p != s->mnt_parent) {
1631 q = clone_mnt(p, p->mnt.mnt_root, flag);
1635 list_add_tail(&q->mnt_list, &res->mnt_list);
1636 mnt_set_mountpoint(parent, p->mnt_mp, q);
1637 if (!list_empty(&parent->mnt_mounts)) {
1638 t = list_last_entry(&parent->mnt_mounts,
1639 struct mount, mnt_child);
1640 if (t->mnt_mp != p->mnt_mp)
1643 attach_shadowed(q, parent, t);
1644 unlock_mount_hash();
1651 umount_tree(res, 0);
1652 unlock_mount_hash();
1657 /* Caller should check returned pointer for errors */
1659 struct vfsmount *collect_mounts(struct path *path)
1663 tree = copy_tree(real_mount(path->mnt), path->dentry,
1664 CL_COPY_ALL | CL_PRIVATE);
1667 return ERR_CAST(tree);
1671 void drop_collected_mounts(struct vfsmount *mnt)
1675 umount_tree(real_mount(mnt), 0);
1676 unlock_mount_hash();
1681 * clone_private_mount - create a private clone of a path
1683 * This creates a new vfsmount, which will be the clone of @path. The new will
1684 * not be attached anywhere in the namespace and will be private (i.e. changes
1685 * to the originating mount won't be propagated into this).
1687 * Release with mntput().
1689 struct vfsmount *clone_private_mount(struct path *path)
1691 struct mount *old_mnt = real_mount(path->mnt);
1692 struct mount *new_mnt;
1694 if (IS_MNT_UNBINDABLE(old_mnt))
1695 return ERR_PTR(-EINVAL);
1697 down_read(&namespace_sem);
1698 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1699 up_read(&namespace_sem);
1700 if (IS_ERR(new_mnt))
1701 return ERR_CAST(new_mnt);
1703 return &new_mnt->mnt;
1705 EXPORT_SYMBOL_GPL(clone_private_mount);
1707 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1708 struct vfsmount *root)
1711 int res = f(root, arg);
1714 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1715 res = f(&mnt->mnt, arg);
1722 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1726 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1727 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1728 mnt_release_group_id(p);
1732 static int invent_group_ids(struct mount *mnt, bool recurse)
1736 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1737 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1738 int err = mnt_alloc_group_id(p);
1740 cleanup_group_ids(mnt, p);
1750 * @source_mnt : mount tree to be attached
1751 * @nd : place the mount tree @source_mnt is attached
1752 * @parent_nd : if non-null, detach the source_mnt from its parent and
1753 * store the parent mount and mountpoint dentry.
1754 * (done when source_mnt is moved)
1756 * NOTE: in the table below explains the semantics when a source mount
1757 * of a given type is attached to a destination mount of a given type.
1758 * ---------------------------------------------------------------------------
1759 * | BIND MOUNT OPERATION |
1760 * |**************************************************************************
1761 * | source-->| shared | private | slave | unbindable |
1765 * |**************************************************************************
1766 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1768 * |non-shared| shared (+) | private | slave (*) | invalid |
1769 * ***************************************************************************
1770 * A bind operation clones the source mount and mounts the clone on the
1771 * destination mount.
1773 * (++) the cloned mount is propagated to all the mounts in the propagation
1774 * tree of the destination mount and the cloned mount is added to
1775 * the peer group of the source mount.
1776 * (+) the cloned mount is created under the destination mount and is marked
1777 * as shared. The cloned mount is added to the peer group of the source
1779 * (+++) the mount is propagated to all the mounts in the propagation tree
1780 * of the destination mount and the cloned mount is made slave
1781 * of the same master as that of the source mount. The cloned mount
1782 * is marked as 'shared and slave'.
1783 * (*) the cloned mount is made a slave of the same master as that of the
1786 * ---------------------------------------------------------------------------
1787 * | MOVE MOUNT OPERATION |
1788 * |**************************************************************************
1789 * | source-->| shared | private | slave | unbindable |
1793 * |**************************************************************************
1794 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1796 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1797 * ***************************************************************************
1799 * (+) the mount is moved to the destination. And is then propagated to
1800 * all the mounts in the propagation tree of the destination mount.
1801 * (+*) the mount is moved to the destination.
1802 * (+++) the mount is moved to the destination and is then propagated to
1803 * all the mounts belonging to the destination mount's propagation tree.
1804 * the mount is marked as 'shared and slave'.
1805 * (*) the mount continues to be a slave at the new location.
1807 * if the source mount is a tree, the operations explained above is
1808 * applied to each mount in the tree.
1809 * Must be called without spinlocks held, since this function can sleep
1812 static int attach_recursive_mnt(struct mount *source_mnt,
1813 struct mount *dest_mnt,
1814 struct mountpoint *dest_mp,
1815 struct path *parent_path)
1817 HLIST_HEAD(tree_list);
1818 struct mount *child, *p;
1819 struct hlist_node *n;
1822 if (IS_MNT_SHARED(dest_mnt)) {
1823 err = invent_group_ids(source_mnt, true);
1826 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1829 goto out_cleanup_ids;
1830 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1836 detach_mnt(source_mnt, parent_path);
1837 attach_mnt(source_mnt, dest_mnt, dest_mp);
1838 touch_mnt_namespace(source_mnt->mnt_ns);
1840 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1841 commit_tree(source_mnt, NULL);
1844 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1846 hlist_del_init(&child->mnt_hash);
1847 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1848 child->mnt_mountpoint);
1849 commit_tree(child, q);
1851 unlock_mount_hash();
1856 while (!hlist_empty(&tree_list)) {
1857 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1858 umount_tree(child, 0);
1860 unlock_mount_hash();
1861 cleanup_group_ids(source_mnt, NULL);
1866 static struct mountpoint *lock_mount(struct path *path)
1868 struct vfsmount *mnt;
1869 struct dentry *dentry = path->dentry;
1871 mutex_lock(&dentry->d_inode->i_mutex);
1872 if (unlikely(cant_mount(dentry))) {
1873 mutex_unlock(&dentry->d_inode->i_mutex);
1874 return ERR_PTR(-ENOENT);
1877 mnt = lookup_mnt(path);
1879 struct mountpoint *mp = lookup_mountpoint(dentry);
1881 mp = new_mountpoint(dentry);
1884 mutex_unlock(&dentry->d_inode->i_mutex);
1890 mutex_unlock(&path->dentry->d_inode->i_mutex);
1893 dentry = path->dentry = dget(mnt->mnt_root);
1897 static void unlock_mount(struct mountpoint *where)
1899 struct dentry *dentry = where->m_dentry;
1900 put_mountpoint(where);
1902 mutex_unlock(&dentry->d_inode->i_mutex);
1905 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1907 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1910 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
1911 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1914 return attach_recursive_mnt(mnt, p, mp, NULL);
1918 * Sanity check the flags to change_mnt_propagation.
1921 static int flags_to_propagation_type(int flags)
1923 int type = flags & ~(MS_REC | MS_SILENT);
1925 /* Fail if any non-propagation flags are set */
1926 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1928 /* Only one propagation flag should be set */
1929 if (!is_power_of_2(type))
1935 * recursively change the type of the mountpoint.
1937 static int do_change_type(struct path *path, int flag)
1940 struct mount *mnt = real_mount(path->mnt);
1941 int recurse = flag & MS_REC;
1945 if (path->dentry != path->mnt->mnt_root)
1948 type = flags_to_propagation_type(flag);
1953 if (type == MS_SHARED) {
1954 err = invent_group_ids(mnt, recurse);
1960 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1961 change_mnt_propagation(m, type);
1962 unlock_mount_hash();
1969 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1971 struct mount *child;
1972 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1973 if (!is_subdir(child->mnt_mountpoint, dentry))
1976 if (child->mnt.mnt_flags & MNT_LOCKED)
1983 * do loopback mount.
1985 static int do_loopback(struct path *path, const char *old_name,
1988 struct path old_path;
1989 struct mount *mnt = NULL, *old, *parent;
1990 struct mountpoint *mp;
1992 if (!old_name || !*old_name)
1994 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1999 if (mnt_ns_loop(old_path.dentry))
2002 mp = lock_mount(path);
2007 old = real_mount(old_path.mnt);
2008 parent = real_mount(path->mnt);
2011 if (IS_MNT_UNBINDABLE(old))
2014 if (!check_mnt(parent))
2017 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2020 if (!recurse && has_locked_children(old, old_path.dentry))
2024 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2026 mnt = clone_mnt(old, old_path.dentry, 0);
2033 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2035 err = graft_tree(mnt, parent, mp);
2038 umount_tree(mnt, 0);
2039 unlock_mount_hash();
2044 path_put(&old_path);
2048 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2051 int readonly_request = 0;
2053 if (ms_flags & MS_RDONLY)
2054 readonly_request = 1;
2055 if (readonly_request == __mnt_is_readonly(mnt))
2058 if (readonly_request)
2059 error = mnt_make_readonly(real_mount(mnt));
2061 __mnt_unmake_readonly(real_mount(mnt));
2066 * change filesystem flags. dir should be a physical root of filesystem.
2067 * If you've mounted a non-root directory somewhere and want to do remount
2068 * on it - tough luck.
2070 static int do_remount(struct path *path, int flags, int mnt_flags,
2074 struct super_block *sb = path->mnt->mnt_sb;
2075 struct mount *mnt = real_mount(path->mnt);
2077 if (!check_mnt(mnt))
2080 if (path->dentry != path->mnt->mnt_root)
2083 /* Don't allow changing of locked mnt flags.
2085 * No locks need to be held here while testing the various
2086 * MNT_LOCK flags because those flags can never be cleared
2087 * once they are set.
2089 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2090 !(mnt_flags & MNT_READONLY)) {
2093 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2094 !(mnt_flags & MNT_NODEV)) {
2095 /* Was the nodev implicitly added in mount? */
2096 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2097 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2098 mnt_flags |= MNT_NODEV;
2103 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2104 !(mnt_flags & MNT_NOSUID)) {
2107 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2108 !(mnt_flags & MNT_NOEXEC)) {
2111 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2112 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2116 err = security_sb_remount(sb, data);
2120 down_write(&sb->s_umount);
2121 if (flags & MS_BIND)
2122 err = change_mount_flags(path->mnt, flags);
2123 else if (!capable(CAP_SYS_ADMIN))
2126 err = do_remount_sb(sb, flags, data, 0);
2129 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2130 mnt->mnt.mnt_flags = mnt_flags;
2131 touch_mnt_namespace(mnt->mnt_ns);
2132 unlock_mount_hash();
2134 up_write(&sb->s_umount);
2138 static inline int tree_contains_unbindable(struct mount *mnt)
2141 for (p = mnt; p; p = next_mnt(p, mnt)) {
2142 if (IS_MNT_UNBINDABLE(p))
2148 static int do_move_mount(struct path *path, const char *old_name)
2150 struct path old_path, parent_path;
2153 struct mountpoint *mp;
2155 if (!old_name || !*old_name)
2157 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2161 mp = lock_mount(path);
2166 old = real_mount(old_path.mnt);
2167 p = real_mount(path->mnt);
2170 if (!check_mnt(p) || !check_mnt(old))
2173 if (old->mnt.mnt_flags & MNT_LOCKED)
2177 if (old_path.dentry != old_path.mnt->mnt_root)
2180 if (!mnt_has_parent(old))
2183 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
2184 S_ISDIR(old_path.dentry->d_inode->i_mode))
2187 * Don't move a mount residing in a shared parent.
2189 if (IS_MNT_SHARED(old->mnt_parent))
2192 * Don't move a mount tree containing unbindable mounts to a destination
2193 * mount which is shared.
2195 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2198 for (; mnt_has_parent(p); p = p->mnt_parent)
2202 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2206 /* if the mount is moved, it should no longer be expire
2208 list_del_init(&old->mnt_expire);
2213 path_put(&parent_path);
2214 path_put(&old_path);
2218 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2221 const char *subtype = strchr(fstype, '.');
2230 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2232 if (!mnt->mnt_sb->s_subtype)
2238 return ERR_PTR(err);
2242 * add a mount into a namespace's mount tree
2244 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2246 struct mountpoint *mp;
2247 struct mount *parent;
2250 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2252 mp = lock_mount(path);
2256 parent = real_mount(path->mnt);
2258 if (unlikely(!check_mnt(parent))) {
2259 /* that's acceptable only for automounts done in private ns */
2260 if (!(mnt_flags & MNT_SHRINKABLE))
2262 /* ... and for those we'd better have mountpoint still alive */
2263 if (!parent->mnt_ns)
2267 /* Refuse the same filesystem on the same mount point */
2269 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2270 path->mnt->mnt_root == path->dentry)
2274 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
2277 newmnt->mnt.mnt_flags = mnt_flags;
2278 err = graft_tree(newmnt, parent, mp);
2286 * create a new mount for userspace and request it to be added into the
2289 static int do_new_mount(struct path *path, const char *fstype, int flags,
2290 int mnt_flags, const char *name, void *data)
2292 struct file_system_type *type;
2293 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2294 struct vfsmount *mnt;
2300 type = get_fs_type(fstype);
2304 if (user_ns != &init_user_ns) {
2305 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2306 put_filesystem(type);
2309 /* Only in special cases allow devices from mounts
2310 * created outside the initial user namespace.
2312 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2314 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2318 mnt = vfs_kern_mount(type, flags, name, data);
2319 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2320 !mnt->mnt_sb->s_subtype)
2321 mnt = fs_set_subtype(mnt, fstype);
2323 put_filesystem(type);
2325 return PTR_ERR(mnt);
2327 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2333 int finish_automount(struct vfsmount *m, struct path *path)
2335 struct mount *mnt = real_mount(m);
2337 /* The new mount record should have at least 2 refs to prevent it being
2338 * expired before we get a chance to add it
2340 BUG_ON(mnt_get_count(mnt) < 2);
2342 if (m->mnt_sb == path->mnt->mnt_sb &&
2343 m->mnt_root == path->dentry) {
2348 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2352 /* remove m from any expiration list it may be on */
2353 if (!list_empty(&mnt->mnt_expire)) {
2355 list_del_init(&mnt->mnt_expire);
2364 * mnt_set_expiry - Put a mount on an expiration list
2365 * @mnt: The mount to list.
2366 * @expiry_list: The list to add the mount to.
2368 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2372 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2376 EXPORT_SYMBOL(mnt_set_expiry);
2379 * process a list of expirable mountpoints with the intent of discarding any
2380 * mountpoints that aren't in use and haven't been touched since last we came
2383 void mark_mounts_for_expiry(struct list_head *mounts)
2385 struct mount *mnt, *next;
2386 LIST_HEAD(graveyard);
2388 if (list_empty(mounts))
2394 /* extract from the expiration list every vfsmount that matches the
2395 * following criteria:
2396 * - only referenced by its parent vfsmount
2397 * - still marked for expiry (marked on the last call here; marks are
2398 * cleared by mntput())
2400 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2401 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2402 propagate_mount_busy(mnt, 1))
2404 list_move(&mnt->mnt_expire, &graveyard);
2406 while (!list_empty(&graveyard)) {
2407 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2408 touch_mnt_namespace(mnt->mnt_ns);
2409 umount_tree(mnt, 1);
2411 unlock_mount_hash();
2415 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2418 * Ripoff of 'select_parent()'
2420 * search the list of submounts for a given mountpoint, and move any
2421 * shrinkable submounts to the 'graveyard' list.
2423 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2425 struct mount *this_parent = parent;
2426 struct list_head *next;
2430 next = this_parent->mnt_mounts.next;
2432 while (next != &this_parent->mnt_mounts) {
2433 struct list_head *tmp = next;
2434 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2437 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2440 * Descend a level if the d_mounts list is non-empty.
2442 if (!list_empty(&mnt->mnt_mounts)) {
2447 if (!propagate_mount_busy(mnt, 1)) {
2448 list_move_tail(&mnt->mnt_expire, graveyard);
2453 * All done at this level ... ascend and resume the search
2455 if (this_parent != parent) {
2456 next = this_parent->mnt_child.next;
2457 this_parent = this_parent->mnt_parent;
2464 * process a list of expirable mountpoints with the intent of discarding any
2465 * submounts of a specific parent mountpoint
2467 * mount_lock must be held for write
2469 static void shrink_submounts(struct mount *mnt)
2471 LIST_HEAD(graveyard);
2474 /* extract submounts of 'mountpoint' from the expiration list */
2475 while (select_submounts(mnt, &graveyard)) {
2476 while (!list_empty(&graveyard)) {
2477 m = list_first_entry(&graveyard, struct mount,
2479 touch_mnt_namespace(m->mnt_ns);
2486 * Some copy_from_user() implementations do not return the exact number of
2487 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2488 * Note that this function differs from copy_from_user() in that it will oops
2489 * on bad values of `to', rather than returning a short copy.
2491 static long exact_copy_from_user(void *to, const void __user * from,
2495 const char __user *f = from;
2498 if (!access_ok(VERIFY_READ, from, n))
2502 if (__get_user(c, f)) {
2513 int copy_mount_options(const void __user * data, unsigned long *where)
2523 if (!(page = __get_free_page(GFP_KERNEL)))
2526 /* We only care that *some* data at the address the user
2527 * gave us is valid. Just in case, we'll zero
2528 * the remainder of the page.
2530 /* copy_from_user cannot cross TASK_SIZE ! */
2531 size = TASK_SIZE - (unsigned long)data;
2532 if (size > PAGE_SIZE)
2535 i = size - exact_copy_from_user((void *)page, data, size);
2541 memset((char *)page + i, 0, PAGE_SIZE - i);
2546 char *copy_mount_string(const void __user *data)
2548 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2552 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2553 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2555 * data is a (void *) that can point to any structure up to
2556 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2557 * information (or be NULL).
2559 * Pre-0.97 versions of mount() didn't have a flags word.
2560 * When the flags word was introduced its top half was required
2561 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2562 * Therefore, if this magic number is present, it carries no information
2563 * and must be discarded.
2565 long do_mount(const char *dev_name, const char __user *dir_name,
2566 const char *type_page, unsigned long flags, void *data_page)
2573 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2574 flags &= ~MS_MGC_MSK;
2576 /* Basic sanity checks */
2578 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2580 /* ... and get the mountpoint */
2581 retval = user_path(dir_name, &path);
2585 retval = security_sb_mount(dev_name, &path,
2586 type_page, flags, data_page);
2587 if (!retval && !may_mount())
2592 /* Default to relatime unless overriden */
2593 if (!(flags & MS_NOATIME))
2594 mnt_flags |= MNT_RELATIME;
2596 /* Separate the per-mountpoint flags */
2597 if (flags & MS_NOSUID)
2598 mnt_flags |= MNT_NOSUID;
2599 if (flags & MS_NODEV)
2600 mnt_flags |= MNT_NODEV;
2601 if (flags & MS_NOEXEC)
2602 mnt_flags |= MNT_NOEXEC;
2603 if (flags & MS_NOATIME)
2604 mnt_flags |= MNT_NOATIME;
2605 if (flags & MS_NODIRATIME)
2606 mnt_flags |= MNT_NODIRATIME;
2607 if (flags & MS_STRICTATIME)
2608 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2609 if (flags & MS_RDONLY)
2610 mnt_flags |= MNT_READONLY;
2612 /* The default atime for remount is preservation */
2613 if ((flags & MS_REMOUNT) &&
2614 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2615 MS_STRICTATIME)) == 0)) {
2616 mnt_flags &= ~MNT_ATIME_MASK;
2617 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2620 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2621 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2624 if (flags & MS_REMOUNT)
2625 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2627 else if (flags & MS_BIND)
2628 retval = do_loopback(&path, dev_name, flags & MS_REC);
2629 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2630 retval = do_change_type(&path, flags);
2631 else if (flags & MS_MOVE)
2632 retval = do_move_mount(&path, dev_name);
2634 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2635 dev_name, data_page);
2641 static void free_mnt_ns(struct mnt_namespace *ns)
2643 ns_free_inum(&ns->ns);
2644 put_user_ns(ns->user_ns);
2649 * Assign a sequence number so we can detect when we attempt to bind
2650 * mount a reference to an older mount namespace into the current
2651 * mount namespace, preventing reference counting loops. A 64bit
2652 * number incrementing at 10Ghz will take 12,427 years to wrap which
2653 * is effectively never, so we can ignore the possibility.
2655 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2657 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2659 struct mnt_namespace *new_ns;
2662 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2664 return ERR_PTR(-ENOMEM);
2665 ret = ns_alloc_inum(&new_ns->ns);
2668 return ERR_PTR(ret);
2670 new_ns->ns.ops = &mntns_operations;
2671 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2672 atomic_set(&new_ns->count, 1);
2673 new_ns->root = NULL;
2674 INIT_LIST_HEAD(&new_ns->list);
2675 init_waitqueue_head(&new_ns->poll);
2677 new_ns->user_ns = get_user_ns(user_ns);
2681 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2682 struct user_namespace *user_ns, struct fs_struct *new_fs)
2684 struct mnt_namespace *new_ns;
2685 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2686 struct mount *p, *q;
2693 if (likely(!(flags & CLONE_NEWNS))) {
2700 new_ns = alloc_mnt_ns(user_ns);
2705 /* First pass: copy the tree topology */
2706 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2707 if (user_ns != ns->user_ns)
2708 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2709 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2712 free_mnt_ns(new_ns);
2713 return ERR_CAST(new);
2716 list_add_tail(&new_ns->list, &new->mnt_list);
2719 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2720 * as belonging to new namespace. We have already acquired a private
2721 * fs_struct, so tsk->fs->lock is not needed.
2728 if (&p->mnt == new_fs->root.mnt) {
2729 new_fs->root.mnt = mntget(&q->mnt);
2732 if (&p->mnt == new_fs->pwd.mnt) {
2733 new_fs->pwd.mnt = mntget(&q->mnt);
2737 p = next_mnt(p, old);
2738 q = next_mnt(q, new);
2741 while (p->mnt.mnt_root != q->mnt.mnt_root)
2742 p = next_mnt(p, old);
2755 * create_mnt_ns - creates a private namespace and adds a root filesystem
2756 * @mnt: pointer to the new root filesystem mountpoint
2758 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2760 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2761 if (!IS_ERR(new_ns)) {
2762 struct mount *mnt = real_mount(m);
2763 mnt->mnt_ns = new_ns;
2765 list_add(&mnt->mnt_list, &new_ns->list);
2772 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2774 struct mnt_namespace *ns;
2775 struct super_block *s;
2779 ns = create_mnt_ns(mnt);
2781 return ERR_CAST(ns);
2783 err = vfs_path_lookup(mnt->mnt_root, mnt,
2784 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2789 return ERR_PTR(err);
2791 /* trade a vfsmount reference for active sb one */
2792 s = path.mnt->mnt_sb;
2793 atomic_inc(&s->s_active);
2795 /* lock the sucker */
2796 down_write(&s->s_umount);
2797 /* ... and return the root of (sub)tree on it */
2800 EXPORT_SYMBOL(mount_subtree);
2802 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2803 char __user *, type, unsigned long, flags, void __user *, data)
2808 unsigned long data_page;
2810 kernel_type = copy_mount_string(type);
2811 ret = PTR_ERR(kernel_type);
2812 if (IS_ERR(kernel_type))
2815 kernel_dev = copy_mount_string(dev_name);
2816 ret = PTR_ERR(kernel_dev);
2817 if (IS_ERR(kernel_dev))
2820 ret = copy_mount_options(data, &data_page);
2824 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2825 (void *) data_page);
2827 free_page(data_page);
2837 * Return true if path is reachable from root
2839 * namespace_sem or mount_lock is held
2841 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2842 const struct path *root)
2844 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2845 dentry = mnt->mnt_mountpoint;
2846 mnt = mnt->mnt_parent;
2848 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2851 int path_is_under(struct path *path1, struct path *path2)
2854 read_seqlock_excl(&mount_lock);
2855 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2856 read_sequnlock_excl(&mount_lock);
2859 EXPORT_SYMBOL(path_is_under);
2862 * pivot_root Semantics:
2863 * Moves the root file system of the current process to the directory put_old,
2864 * makes new_root as the new root file system of the current process, and sets
2865 * root/cwd of all processes which had them on the current root to new_root.
2868 * The new_root and put_old must be directories, and must not be on the
2869 * same file system as the current process root. The put_old must be
2870 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2871 * pointed to by put_old must yield the same directory as new_root. No other
2872 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2874 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2875 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2876 * in this situation.
2879 * - we don't move root/cwd if they are not at the root (reason: if something
2880 * cared enough to change them, it's probably wrong to force them elsewhere)
2881 * - it's okay to pick a root that isn't the root of a file system, e.g.
2882 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2883 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2886 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2887 const char __user *, put_old)
2889 struct path new, old, parent_path, root_parent, root;
2890 struct mount *new_mnt, *root_mnt, *old_mnt;
2891 struct mountpoint *old_mp, *root_mp;
2897 error = user_path_dir(new_root, &new);
2901 error = user_path_dir(put_old, &old);
2905 error = security_sb_pivotroot(&old, &new);
2909 get_fs_root(current->fs, &root);
2910 old_mp = lock_mount(&old);
2911 error = PTR_ERR(old_mp);
2916 new_mnt = real_mount(new.mnt);
2917 root_mnt = real_mount(root.mnt);
2918 old_mnt = real_mount(old.mnt);
2919 if (IS_MNT_SHARED(old_mnt) ||
2920 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2921 IS_MNT_SHARED(root_mnt->mnt_parent))
2923 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
2925 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
2928 if (d_unlinked(new.dentry))
2931 if (new_mnt == root_mnt || old_mnt == root_mnt)
2932 goto out4; /* loop, on the same file system */
2934 if (root.mnt->mnt_root != root.dentry)
2935 goto out4; /* not a mountpoint */
2936 if (!mnt_has_parent(root_mnt))
2937 goto out4; /* not attached */
2938 root_mp = root_mnt->mnt_mp;
2939 if (new.mnt->mnt_root != new.dentry)
2940 goto out4; /* not a mountpoint */
2941 if (!mnt_has_parent(new_mnt))
2942 goto out4; /* not attached */
2943 /* make sure we can reach put_old from new_root */
2944 if (!is_path_reachable(old_mnt, old.dentry, &new))
2946 /* make certain new is below the root */
2947 if (!is_path_reachable(new_mnt, new.dentry, &root))
2949 root_mp->m_count++; /* pin it so it won't go away */
2951 detach_mnt(new_mnt, &parent_path);
2952 detach_mnt(root_mnt, &root_parent);
2953 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
2954 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
2955 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2957 /* mount old root on put_old */
2958 attach_mnt(root_mnt, old_mnt, old_mp);
2959 /* mount new_root on / */
2960 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
2961 touch_mnt_namespace(current->nsproxy->mnt_ns);
2962 /* A moved mount should not expire automatically */
2963 list_del_init(&new_mnt->mnt_expire);
2964 unlock_mount_hash();
2965 chroot_fs_refs(&root, &new);
2966 put_mountpoint(root_mp);
2969 unlock_mount(old_mp);
2971 path_put(&root_parent);
2972 path_put(&parent_path);
2984 static void __init init_mount_tree(void)
2986 struct vfsmount *mnt;
2987 struct mnt_namespace *ns;
2989 struct file_system_type *type;
2991 type = get_fs_type("rootfs");
2993 panic("Can't find rootfs type");
2994 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2995 put_filesystem(type);
2997 panic("Can't create rootfs");
2999 ns = create_mnt_ns(mnt);
3001 panic("Can't allocate initial namespace");
3003 init_task.nsproxy->mnt_ns = ns;
3007 root.dentry = mnt->mnt_root;
3008 mnt->mnt_flags |= MNT_LOCKED;
3010 set_fs_pwd(current->fs, &root);
3011 set_fs_root(current->fs, &root);
3014 void __init mnt_init(void)
3019 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3020 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3022 mount_hashtable = alloc_large_system_hash("Mount-cache",
3023 sizeof(struct hlist_head),
3026 &m_hash_shift, &m_hash_mask, 0, 0);
3027 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3028 sizeof(struct hlist_head),
3031 &mp_hash_shift, &mp_hash_mask, 0, 0);
3033 if (!mount_hashtable || !mountpoint_hashtable)
3034 panic("Failed to allocate mount hash table\n");
3036 for (u = 0; u <= m_hash_mask; u++)
3037 INIT_HLIST_HEAD(&mount_hashtable[u]);
3038 for (u = 0; u <= mp_hash_mask; u++)
3039 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3045 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3047 fs_kobj = kobject_create_and_add("fs", NULL);
3049 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3054 void put_mnt_ns(struct mnt_namespace *ns)
3056 if (!atomic_dec_and_test(&ns->count))
3058 drop_collected_mounts(&ns->root->mnt);
3062 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3064 struct vfsmount *mnt;
3065 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3068 * it is a longterm mount, don't release mnt until
3069 * we unmount before file sys is unregistered
3071 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3075 EXPORT_SYMBOL_GPL(kern_mount_data);
3077 void kern_unmount(struct vfsmount *mnt)
3079 /* release long term mount so mount point can be released */
3080 if (!IS_ERR_OR_NULL(mnt)) {
3081 real_mount(mnt)->mnt_ns = NULL;
3082 synchronize_rcu(); /* yecchhh... */
3086 EXPORT_SYMBOL(kern_unmount);
3088 bool our_mnt(struct vfsmount *mnt)
3090 return check_mnt(real_mount(mnt));
3093 bool current_chrooted(void)
3095 /* Does the current process have a non-standard root */
3096 struct path ns_root;
3097 struct path fs_root;
3100 /* Find the namespace root */
3101 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3102 ns_root.dentry = ns_root.mnt->mnt_root;
3104 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3107 get_fs_root(current->fs, &fs_root);
3109 chrooted = !path_equal(&fs_root, &ns_root);
3117 bool fs_fully_visible(struct file_system_type *type)
3119 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3121 bool visible = false;
3126 down_read(&namespace_sem);
3127 list_for_each_entry(mnt, &ns->list, mnt_list) {
3128 struct mount *child;
3129 if (mnt->mnt.mnt_sb->s_type != type)
3132 /* This mount is not fully visible if there are any child mounts
3133 * that cover anything except for empty directories.
3135 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3136 struct inode *inode = child->mnt_mountpoint->d_inode;
3137 if (!S_ISDIR(inode->i_mode))
3139 if (inode->i_nlink > 2)
3147 up_read(&namespace_sem);
3151 static struct ns_common *mntns_get(struct task_struct *task)
3153 struct ns_common *ns = NULL;
3154 struct nsproxy *nsproxy;
3157 nsproxy = task->nsproxy;
3159 ns = &nsproxy->mnt_ns->ns;
3160 get_mnt_ns(to_mnt_ns(ns));
3167 static void mntns_put(struct ns_common *ns)
3169 put_mnt_ns(to_mnt_ns(ns));
3172 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3174 struct fs_struct *fs = current->fs;
3175 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3178 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3179 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3180 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3187 put_mnt_ns(nsproxy->mnt_ns);
3188 nsproxy->mnt_ns = mnt_ns;
3191 root.mnt = &mnt_ns->root->mnt;
3192 root.dentry = mnt_ns->root->mnt.mnt_root;
3194 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3197 /* Update the pwd and root */
3198 set_fs_pwd(fs, &root);
3199 set_fs_root(fs, &root);
3205 const struct proc_ns_operations mntns_operations = {
3207 .type = CLONE_NEWNS,
3210 .install = mntns_install,