1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
52 mhash_entries = simple_strtoul(str, &str, 0);
55 __setup("mhash_entries=", set_mhash_entries);
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
62 mphash_entries = simple_strtoul(str, &str, 0);
65 __setup("mphash_entries=", set_mphash_entries);
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
84 struct user_namespace *mnt_userns;
88 struct kobject *fs_kobj;
89 EXPORT_SYMBOL_GPL(fs_kobj);
92 * vfsmount lock may be taken for read to prevent changes to the
93 * vfsmount hash, ie. during mountpoint lookups or walking back
96 * It should be taken for write in all cases where the vfsmount
97 * tree or hash is modified or when a vfsmount structure is modified.
99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 static inline void lock_mount_hash(void)
103 write_seqlock(&mount_lock);
106 static inline void unlock_mount_hash(void)
108 write_sequnlock(&mount_lock);
111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
115 tmp = tmp + (tmp >> m_hash_shift);
116 return &mount_hashtable[tmp & m_hash_mask];
119 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 tmp = tmp + (tmp >> mp_hash_shift);
123 return &mountpoint_hashtable[tmp & mp_hash_mask];
126 static int mnt_alloc_id(struct mount *mnt)
128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
136 static void mnt_free_id(struct mount *mnt)
138 ida_free(&mnt_id_ida, mnt->mnt_id);
142 * Allocate a new peer group ID
144 static int mnt_alloc_group_id(struct mount *mnt)
146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
150 mnt->mnt_group_id = res;
155 * Release a peer group ID
157 void mnt_release_group_id(struct mount *mnt)
159 ida_free(&mnt_group_ida, mnt->mnt_group_id);
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
178 * vfsmount lock must be held for write
180 int mnt_get_count(struct mount *mnt)
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
192 return mnt->mnt_count;
196 static struct mount *alloc_vfsmnt(const char *name)
198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 err = mnt_alloc_id(mnt);
207 mnt->mnt_devname = kstrdup_const(name,
209 if (!mnt->mnt_devname)
214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 goto out_free_devname;
218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 mnt->mnt_writers = 0;
224 INIT_HLIST_NODE(&mnt->mnt_hash);
225 INIT_LIST_HEAD(&mnt->mnt_child);
226 INIT_LIST_HEAD(&mnt->mnt_mounts);
227 INIT_LIST_HEAD(&mnt->mnt_list);
228 INIT_LIST_HEAD(&mnt->mnt_expire);
229 INIT_LIST_HEAD(&mnt->mnt_share);
230 INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 INIT_LIST_HEAD(&mnt->mnt_slave);
232 INIT_HLIST_NODE(&mnt->mnt_mp_list);
233 INIT_LIST_HEAD(&mnt->mnt_umounting);
234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
235 mnt->mnt.mnt_userns = &init_user_ns;
241 kfree_const(mnt->mnt_devname);
246 kmem_cache_free(mnt_cache, mnt);
251 * Most r/o checks on a fs are for operations that take
252 * discrete amounts of time, like a write() or unlink().
253 * We must keep track of when those operations start
254 * (for permission checks) and when they end, so that
255 * we can determine when writes are able to occur to
259 * __mnt_is_readonly: check whether a mount is read-only
260 * @mnt: the mount to check for its write status
262 * This shouldn't be used directly ouside of the VFS.
263 * It does not guarantee that the filesystem will stay
264 * r/w, just that it is right *now*. This can not and
265 * should not be used in place of IS_RDONLY(inode).
266 * mnt_want/drop_write() will _keep_ the filesystem
269 bool __mnt_is_readonly(struct vfsmount *mnt)
271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 static inline void mnt_inc_writers(struct mount *mnt)
278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 static inline void mnt_dec_writers(struct mount *mnt)
287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 static unsigned int mnt_get_writers(struct mount *mnt)
296 unsigned int count = 0;
299 for_each_possible_cpu(cpu) {
300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
305 return mnt->mnt_writers;
309 static int mnt_is_readonly(struct vfsmount *mnt)
311 if (mnt->mnt_sb->s_readonly_remount)
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 return __mnt_is_readonly(mnt);
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
325 * __mnt_want_write - get write access to a mount without freeze protection
326 * @m: the mount on which to take a write
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
334 int __mnt_want_write(struct vfsmount *m)
336 struct mount *mnt = real_mount(m);
340 mnt_inc_writers(mnt);
342 * The store to mnt_inc_writers must be visible before we pass
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
347 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
350 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
351 * be set to match its requirements. So we must not load that until
352 * MNT_WRITE_HOLD is cleared.
355 if (mnt_is_readonly(m)) {
356 mnt_dec_writers(mnt);
365 * mnt_want_write - get write access to a mount
366 * @m: the mount on which to take a write
368 * This tells the low-level filesystem that a write is about to be performed to
369 * it, and makes sure that writes are allowed (mount is read-write, filesystem
370 * is not frozen) before returning success. When the write operation is
371 * finished, mnt_drop_write() must be called. This is effectively a refcount.
373 int mnt_want_write(struct vfsmount *m)
377 sb_start_write(m->mnt_sb);
378 ret = __mnt_want_write(m);
380 sb_end_write(m->mnt_sb);
383 EXPORT_SYMBOL_GPL(mnt_want_write);
386 * __mnt_want_write_file - get write access to a file's mount
387 * @file: the file who's mount on which to take a write
389 * This is like __mnt_want_write, but if the file is already open for writing it
390 * skips incrementing mnt_writers (since the open file already has a reference)
391 * and instead only does the check for emergency r/o remounts. This must be
392 * paired with __mnt_drop_write_file.
394 int __mnt_want_write_file(struct file *file)
396 if (file->f_mode & FMODE_WRITER) {
398 * Superblock may have become readonly while there are still
399 * writable fd's, e.g. due to a fs error with errors=remount-ro
401 if (__mnt_is_readonly(file->f_path.mnt))
405 return __mnt_want_write(file->f_path.mnt);
409 * mnt_want_write_file - get write access to a file's mount
410 * @file: the file who's mount on which to take a write
412 * This is like mnt_want_write, but if the file is already open for writing it
413 * skips incrementing mnt_writers (since the open file already has a reference)
414 * and instead only does the freeze protection and the check for emergency r/o
415 * remounts. This must be paired with mnt_drop_write_file.
417 int mnt_want_write_file(struct file *file)
421 sb_start_write(file_inode(file)->i_sb);
422 ret = __mnt_want_write_file(file);
424 sb_end_write(file_inode(file)->i_sb);
427 EXPORT_SYMBOL_GPL(mnt_want_write_file);
430 * __mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
433 * Tells the low-level filesystem that we are done
434 * performing writes to it. Must be matched with
435 * __mnt_want_write() call above.
437 void __mnt_drop_write(struct vfsmount *mnt)
440 mnt_dec_writers(real_mount(mnt));
445 * mnt_drop_write - give up write access to a mount
446 * @mnt: the mount on which to give up write access
448 * Tells the low-level filesystem that we are done performing writes to it and
449 * also allows filesystem to be frozen again. Must be matched with
450 * mnt_want_write() call above.
452 void mnt_drop_write(struct vfsmount *mnt)
454 __mnt_drop_write(mnt);
455 sb_end_write(mnt->mnt_sb);
457 EXPORT_SYMBOL_GPL(mnt_drop_write);
459 void __mnt_drop_write_file(struct file *file)
461 if (!(file->f_mode & FMODE_WRITER))
462 __mnt_drop_write(file->f_path.mnt);
465 void mnt_drop_write_file(struct file *file)
467 __mnt_drop_write_file(file);
468 sb_end_write(file_inode(file)->i_sb);
470 EXPORT_SYMBOL(mnt_drop_write_file);
473 * mnt_hold_writers - prevent write access to the given mount
474 * @mnt: mnt to prevent write access to
476 * Prevents write access to @mnt if there are no active writers for @mnt.
477 * This function needs to be called and return successfully before changing
478 * properties of @mnt that need to remain stable for callers with write access
481 * After this functions has been called successfully callers must pair it with
482 * a call to mnt_unhold_writers() in order to stop preventing write access to
485 * Context: This function expects lock_mount_hash() to be held serializing
486 * setting MNT_WRITE_HOLD.
487 * Return: On success 0 is returned.
488 * On error, -EBUSY is returned.
490 static inline int mnt_hold_writers(struct mount *mnt)
492 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
494 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
495 * should be visible before we do.
500 * With writers on hold, if this value is zero, then there are
501 * definitely no active writers (although held writers may subsequently
502 * increment the count, they'll have to wait, and decrement it after
503 * seeing MNT_READONLY).
505 * It is OK to have counter incremented on one CPU and decremented on
506 * another: the sum will add up correctly. The danger would be when we
507 * sum up each counter, if we read a counter before it is incremented,
508 * but then read another CPU's count which it has been subsequently
509 * decremented from -- we would see more decrements than we should.
510 * MNT_WRITE_HOLD protects against this scenario, because
511 * mnt_want_write first increments count, then smp_mb, then spins on
512 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
513 * we're counting up here.
515 if (mnt_get_writers(mnt) > 0)
522 * mnt_unhold_writers - stop preventing write access to the given mount
523 * @mnt: mnt to stop preventing write access to
525 * Stop preventing write access to @mnt allowing callers to gain write access
528 * This function can only be called after a successful call to
529 * mnt_hold_writers().
531 * Context: This function expects lock_mount_hash() to be held.
533 static inline void mnt_unhold_writers(struct mount *mnt)
536 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
537 * that become unheld will see MNT_READONLY.
540 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 static int mnt_make_readonly(struct mount *mnt)
547 ret = mnt_hold_writers(mnt);
549 mnt->mnt.mnt_flags |= MNT_READONLY;
550 mnt_unhold_writers(mnt);
554 int sb_prepare_remount_readonly(struct super_block *sb)
559 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
560 if (atomic_long_read(&sb->s_remove_count))
564 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
565 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
566 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
568 if (mnt_get_writers(mnt) > 0) {
574 if (!err && atomic_long_read(&sb->s_remove_count))
578 sb->s_readonly_remount = 1;
581 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
582 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
583 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
590 static void free_vfsmnt(struct mount *mnt)
592 struct user_namespace *mnt_userns;
594 mnt_userns = mnt_user_ns(&mnt->mnt);
595 if (!initial_idmapping(mnt_userns))
596 put_user_ns(mnt_userns);
597 kfree_const(mnt->mnt_devname);
599 free_percpu(mnt->mnt_pcp);
601 kmem_cache_free(mnt_cache, mnt);
604 static void delayed_free_vfsmnt(struct rcu_head *head)
606 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
609 /* call under rcu_read_lock */
610 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
613 if (read_seqretry(&mount_lock, seq))
617 mnt = real_mount(bastard);
618 mnt_add_count(mnt, 1);
619 smp_mb(); // see mntput_no_expire()
620 if (likely(!read_seqretry(&mount_lock, seq)))
622 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
623 mnt_add_count(mnt, -1);
627 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
628 mnt_add_count(mnt, -1);
633 /* caller will mntput() */
637 /* call under rcu_read_lock */
638 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
640 int res = __legitimize_mnt(bastard, seq);
643 if (unlikely(res < 0)) {
652 * find the first mount at @dentry on vfsmount @mnt.
653 * call under rcu_read_lock()
655 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
657 struct hlist_head *head = m_hash(mnt, dentry);
660 hlist_for_each_entry_rcu(p, head, mnt_hash)
661 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
667 * lookup_mnt - Return the first child mount mounted at path
669 * "First" means first mounted chronologically. If you create the
672 * mount /dev/sda1 /mnt
673 * mount /dev/sda2 /mnt
674 * mount /dev/sda3 /mnt
676 * Then lookup_mnt() on the base /mnt dentry in the root mount will
677 * return successively the root dentry and vfsmount of /dev/sda1, then
678 * /dev/sda2, then /dev/sda3, then NULL.
680 * lookup_mnt takes a reference to the found vfsmount.
682 struct vfsmount *lookup_mnt(const struct path *path)
684 struct mount *child_mnt;
690 seq = read_seqbegin(&mount_lock);
691 child_mnt = __lookup_mnt(path->mnt, path->dentry);
692 m = child_mnt ? &child_mnt->mnt : NULL;
693 } while (!legitimize_mnt(m, seq));
698 static inline void lock_ns_list(struct mnt_namespace *ns)
700 spin_lock(&ns->ns_lock);
703 static inline void unlock_ns_list(struct mnt_namespace *ns)
705 spin_unlock(&ns->ns_lock);
708 static inline bool mnt_is_cursor(struct mount *mnt)
710 return mnt->mnt.mnt_flags & MNT_CURSOR;
714 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
715 * current mount namespace.
717 * The common case is dentries are not mountpoints at all and that
718 * test is handled inline. For the slow case when we are actually
719 * dealing with a mountpoint of some kind, walk through all of the
720 * mounts in the current mount namespace and test to see if the dentry
723 * The mount_hashtable is not usable in the context because we
724 * need to identify all mounts that may be in the current mount
725 * namespace not just a mount that happens to have some specified
728 bool __is_local_mountpoint(struct dentry *dentry)
730 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
732 bool is_covered = false;
734 down_read(&namespace_sem);
736 list_for_each_entry(mnt, &ns->list, mnt_list) {
737 if (mnt_is_cursor(mnt))
739 is_covered = (mnt->mnt_mountpoint == dentry);
744 up_read(&namespace_sem);
749 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
751 struct hlist_head *chain = mp_hash(dentry);
752 struct mountpoint *mp;
754 hlist_for_each_entry(mp, chain, m_hash) {
755 if (mp->m_dentry == dentry) {
763 static struct mountpoint *get_mountpoint(struct dentry *dentry)
765 struct mountpoint *mp, *new = NULL;
768 if (d_mountpoint(dentry)) {
769 /* might be worth a WARN_ON() */
770 if (d_unlinked(dentry))
771 return ERR_PTR(-ENOENT);
773 read_seqlock_excl(&mount_lock);
774 mp = lookup_mountpoint(dentry);
775 read_sequnlock_excl(&mount_lock);
781 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
783 return ERR_PTR(-ENOMEM);
786 /* Exactly one processes may set d_mounted */
787 ret = d_set_mounted(dentry);
789 /* Someone else set d_mounted? */
793 /* The dentry is not available as a mountpoint? */
798 /* Add the new mountpoint to the hash table */
799 read_seqlock_excl(&mount_lock);
800 new->m_dentry = dget(dentry);
802 hlist_add_head(&new->m_hash, mp_hash(dentry));
803 INIT_HLIST_HEAD(&new->m_list);
804 read_sequnlock_excl(&mount_lock);
814 * vfsmount lock must be held. Additionally, the caller is responsible
815 * for serializing calls for given disposal list.
817 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
819 if (!--mp->m_count) {
820 struct dentry *dentry = mp->m_dentry;
821 BUG_ON(!hlist_empty(&mp->m_list));
822 spin_lock(&dentry->d_lock);
823 dentry->d_flags &= ~DCACHE_MOUNTED;
824 spin_unlock(&dentry->d_lock);
825 dput_to_list(dentry, list);
826 hlist_del(&mp->m_hash);
831 /* called with namespace_lock and vfsmount lock */
832 static void put_mountpoint(struct mountpoint *mp)
834 __put_mountpoint(mp, &ex_mountpoints);
837 static inline int check_mnt(struct mount *mnt)
839 return mnt->mnt_ns == current->nsproxy->mnt_ns;
843 * vfsmount lock must be held for write
845 static void touch_mnt_namespace(struct mnt_namespace *ns)
849 wake_up_interruptible(&ns->poll);
854 * vfsmount lock must be held for write
856 static void __touch_mnt_namespace(struct mnt_namespace *ns)
858 if (ns && ns->event != event) {
860 wake_up_interruptible(&ns->poll);
865 * vfsmount lock must be held for write
867 static struct mountpoint *unhash_mnt(struct mount *mnt)
869 struct mountpoint *mp;
870 mnt->mnt_parent = mnt;
871 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
872 list_del_init(&mnt->mnt_child);
873 hlist_del_init_rcu(&mnt->mnt_hash);
874 hlist_del_init(&mnt->mnt_mp_list);
881 * vfsmount lock must be held for write
883 static void umount_mnt(struct mount *mnt)
885 put_mountpoint(unhash_mnt(mnt));
889 * vfsmount lock must be held for write
891 void mnt_set_mountpoint(struct mount *mnt,
892 struct mountpoint *mp,
893 struct mount *child_mnt)
896 mnt_add_count(mnt, 1); /* essentially, that's mntget */
897 child_mnt->mnt_mountpoint = mp->m_dentry;
898 child_mnt->mnt_parent = mnt;
899 child_mnt->mnt_mp = mp;
900 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
903 static void __attach_mnt(struct mount *mnt, struct mount *parent)
905 hlist_add_head_rcu(&mnt->mnt_hash,
906 m_hash(&parent->mnt, mnt->mnt_mountpoint));
907 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
911 * vfsmount lock must be held for write
913 static void attach_mnt(struct mount *mnt,
914 struct mount *parent,
915 struct mountpoint *mp)
917 mnt_set_mountpoint(parent, mp, mnt);
918 __attach_mnt(mnt, parent);
921 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
923 struct mountpoint *old_mp = mnt->mnt_mp;
924 struct mount *old_parent = mnt->mnt_parent;
926 list_del_init(&mnt->mnt_child);
927 hlist_del_init(&mnt->mnt_mp_list);
928 hlist_del_init_rcu(&mnt->mnt_hash);
930 attach_mnt(mnt, parent, mp);
932 put_mountpoint(old_mp);
933 mnt_add_count(old_parent, -1);
937 * vfsmount lock must be held for write
939 static void commit_tree(struct mount *mnt)
941 struct mount *parent = mnt->mnt_parent;
944 struct mnt_namespace *n = parent->mnt_ns;
946 BUG_ON(parent == mnt);
948 list_add_tail(&head, &mnt->mnt_list);
949 list_for_each_entry(m, &head, mnt_list)
952 list_splice(&head, n->list.prev);
954 n->mounts += n->pending_mounts;
955 n->pending_mounts = 0;
957 __attach_mnt(mnt, parent);
958 touch_mnt_namespace(n);
961 static struct mount *next_mnt(struct mount *p, struct mount *root)
963 struct list_head *next = p->mnt_mounts.next;
964 if (next == &p->mnt_mounts) {
968 next = p->mnt_child.next;
969 if (next != &p->mnt_parent->mnt_mounts)
974 return list_entry(next, struct mount, mnt_child);
977 static struct mount *skip_mnt_tree(struct mount *p)
979 struct list_head *prev = p->mnt_mounts.prev;
980 while (prev != &p->mnt_mounts) {
981 p = list_entry(prev, struct mount, mnt_child);
982 prev = p->mnt_mounts.prev;
988 * vfs_create_mount - Create a mount for a configured superblock
989 * @fc: The configuration context with the superblock attached
991 * Create a mount to an already configured superblock. If necessary, the
992 * caller should invoke vfs_get_tree() before calling this.
994 * Note that this does not attach the mount to anything.
996 struct vfsmount *vfs_create_mount(struct fs_context *fc)
999 struct user_namespace *fs_userns;
1002 return ERR_PTR(-EINVAL);
1004 mnt = alloc_vfsmnt(fc->source ?: "none");
1006 return ERR_PTR(-ENOMEM);
1008 if (fc->sb_flags & SB_KERNMOUNT)
1009 mnt->mnt.mnt_flags = MNT_INTERNAL;
1011 atomic_inc(&fc->root->d_sb->s_active);
1012 mnt->mnt.mnt_sb = fc->root->d_sb;
1013 mnt->mnt.mnt_root = dget(fc->root);
1014 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1015 mnt->mnt_parent = mnt;
1017 fs_userns = mnt->mnt.mnt_sb->s_user_ns;
1018 if (!initial_idmapping(fs_userns))
1019 mnt->mnt.mnt_userns = get_user_ns(fs_userns);
1022 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1023 unlock_mount_hash();
1026 EXPORT_SYMBOL(vfs_create_mount);
1028 struct vfsmount *fc_mount(struct fs_context *fc)
1030 int err = vfs_get_tree(fc);
1032 up_write(&fc->root->d_sb->s_umount);
1033 return vfs_create_mount(fc);
1035 return ERR_PTR(err);
1037 EXPORT_SYMBOL(fc_mount);
1039 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1040 int flags, const char *name,
1043 struct fs_context *fc;
1044 struct vfsmount *mnt;
1048 return ERR_PTR(-EINVAL);
1050 fc = fs_context_for_mount(type, flags);
1052 return ERR_CAST(fc);
1055 ret = vfs_parse_fs_string(fc, "source",
1056 name, strlen(name));
1058 ret = parse_monolithic_mount_data(fc, data);
1067 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1070 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1071 const char *name, void *data)
1073 /* Until it is worked out how to pass the user namespace
1074 * through from the parent mount to the submount don't support
1075 * unprivileged mounts with submounts.
1077 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1078 return ERR_PTR(-EPERM);
1080 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1082 EXPORT_SYMBOL_GPL(vfs_submount);
1084 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1087 struct super_block *sb = old->mnt.mnt_sb;
1091 mnt = alloc_vfsmnt(old->mnt_devname);
1093 return ERR_PTR(-ENOMEM);
1095 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1096 mnt->mnt_group_id = 0; /* not a peer of original */
1098 mnt->mnt_group_id = old->mnt_group_id;
1100 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1101 err = mnt_alloc_group_id(mnt);
1106 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1107 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1109 atomic_inc(&sb->s_active);
1110 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1111 if (!initial_idmapping(mnt->mnt.mnt_userns))
1112 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1113 mnt->mnt.mnt_sb = sb;
1114 mnt->mnt.mnt_root = dget(root);
1115 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1116 mnt->mnt_parent = mnt;
1118 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1119 unlock_mount_hash();
1121 if ((flag & CL_SLAVE) ||
1122 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1123 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1124 mnt->mnt_master = old;
1125 CLEAR_MNT_SHARED(mnt);
1126 } else if (!(flag & CL_PRIVATE)) {
1127 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1128 list_add(&mnt->mnt_share, &old->mnt_share);
1129 if (IS_MNT_SLAVE(old))
1130 list_add(&mnt->mnt_slave, &old->mnt_slave);
1131 mnt->mnt_master = old->mnt_master;
1133 CLEAR_MNT_SHARED(mnt);
1135 if (flag & CL_MAKE_SHARED)
1136 set_mnt_shared(mnt);
1138 /* stick the duplicate mount on the same expiry list
1139 * as the original if that was on one */
1140 if (flag & CL_EXPIRE) {
1141 if (!list_empty(&old->mnt_expire))
1142 list_add(&mnt->mnt_expire, &old->mnt_expire);
1150 return ERR_PTR(err);
1153 static void cleanup_mnt(struct mount *mnt)
1155 struct hlist_node *p;
1158 * The warning here probably indicates that somebody messed
1159 * up a mnt_want/drop_write() pair. If this happens, the
1160 * filesystem was probably unable to make r/w->r/o transitions.
1161 * The locking used to deal with mnt_count decrement provides barriers,
1162 * so mnt_get_writers() below is safe.
1164 WARN_ON(mnt_get_writers(mnt));
1165 if (unlikely(mnt->mnt_pins.first))
1167 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1168 hlist_del(&m->mnt_umount);
1171 fsnotify_vfsmount_delete(&mnt->mnt);
1172 dput(mnt->mnt.mnt_root);
1173 deactivate_super(mnt->mnt.mnt_sb);
1175 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1178 static void __cleanup_mnt(struct rcu_head *head)
1180 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1183 static LLIST_HEAD(delayed_mntput_list);
1184 static void delayed_mntput(struct work_struct *unused)
1186 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1187 struct mount *m, *t;
1189 llist_for_each_entry_safe(m, t, node, mnt_llist)
1192 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1194 static void mntput_no_expire(struct mount *mnt)
1200 if (likely(READ_ONCE(mnt->mnt_ns))) {
1202 * Since we don't do lock_mount_hash() here,
1203 * ->mnt_ns can change under us. However, if it's
1204 * non-NULL, then there's a reference that won't
1205 * be dropped until after an RCU delay done after
1206 * turning ->mnt_ns NULL. So if we observe it
1207 * non-NULL under rcu_read_lock(), the reference
1208 * we are dropping is not the final one.
1210 mnt_add_count(mnt, -1);
1216 * make sure that if __legitimize_mnt() has not seen us grab
1217 * mount_lock, we'll see their refcount increment here.
1220 mnt_add_count(mnt, -1);
1221 count = mnt_get_count(mnt);
1225 unlock_mount_hash();
1228 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1230 unlock_mount_hash();
1233 mnt->mnt.mnt_flags |= MNT_DOOMED;
1236 list_del(&mnt->mnt_instance);
1238 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1239 struct mount *p, *tmp;
1240 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1241 __put_mountpoint(unhash_mnt(p), &list);
1242 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1245 unlock_mount_hash();
1246 shrink_dentry_list(&list);
1248 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1249 struct task_struct *task = current;
1250 if (likely(!(task->flags & PF_KTHREAD))) {
1251 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1252 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1255 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1256 schedule_delayed_work(&delayed_mntput_work, 1);
1262 void mntput(struct vfsmount *mnt)
1265 struct mount *m = real_mount(mnt);
1266 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1267 if (unlikely(m->mnt_expiry_mark))
1268 m->mnt_expiry_mark = 0;
1269 mntput_no_expire(m);
1272 EXPORT_SYMBOL(mntput);
1274 struct vfsmount *mntget(struct vfsmount *mnt)
1277 mnt_add_count(real_mount(mnt), 1);
1280 EXPORT_SYMBOL(mntget);
1283 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1284 * @path: path to check
1286 * d_mountpoint() can only be used reliably to establish if a dentry is
1287 * not mounted in any namespace and that common case is handled inline.
1288 * d_mountpoint() isn't aware of the possibility there may be multiple
1289 * mounts using a given dentry in a different namespace. This function
1290 * checks if the passed in path is a mountpoint rather than the dentry
1293 bool path_is_mountpoint(const struct path *path)
1298 if (!d_mountpoint(path->dentry))
1303 seq = read_seqbegin(&mount_lock);
1304 res = __path_is_mountpoint(path);
1305 } while (read_seqretry(&mount_lock, seq));
1310 EXPORT_SYMBOL(path_is_mountpoint);
1312 struct vfsmount *mnt_clone_internal(const struct path *path)
1315 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1318 p->mnt.mnt_flags |= MNT_INTERNAL;
1322 #ifdef CONFIG_PROC_FS
1323 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1324 struct list_head *p)
1326 struct mount *mnt, *ret = NULL;
1329 list_for_each_continue(p, &ns->list) {
1330 mnt = list_entry(p, typeof(*mnt), mnt_list);
1331 if (!mnt_is_cursor(mnt)) {
1341 /* iterator; we want it to have access to namespace_sem, thus here... */
1342 static void *m_start(struct seq_file *m, loff_t *pos)
1344 struct proc_mounts *p = m->private;
1345 struct list_head *prev;
1347 down_read(&namespace_sem);
1349 prev = &p->ns->list;
1351 prev = &p->cursor.mnt_list;
1353 /* Read after we'd reached the end? */
1354 if (list_empty(prev))
1358 return mnt_list_next(p->ns, prev);
1361 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1363 struct proc_mounts *p = m->private;
1364 struct mount *mnt = v;
1367 return mnt_list_next(p->ns, &mnt->mnt_list);
1370 static void m_stop(struct seq_file *m, void *v)
1372 struct proc_mounts *p = m->private;
1373 struct mount *mnt = v;
1375 lock_ns_list(p->ns);
1377 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1379 list_del_init(&p->cursor.mnt_list);
1380 unlock_ns_list(p->ns);
1381 up_read(&namespace_sem);
1384 static int m_show(struct seq_file *m, void *v)
1386 struct proc_mounts *p = m->private;
1387 struct mount *r = v;
1388 return p->show(m, &r->mnt);
1391 const struct seq_operations mounts_op = {
1398 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1400 down_read(&namespace_sem);
1402 list_del(&cursor->mnt_list);
1404 up_read(&namespace_sem);
1406 #endif /* CONFIG_PROC_FS */
1409 * may_umount_tree - check if a mount tree is busy
1410 * @m: root of mount tree
1412 * This is called to check if a tree of mounts has any
1413 * open files, pwds, chroots or sub mounts that are
1416 int may_umount_tree(struct vfsmount *m)
1418 struct mount *mnt = real_mount(m);
1419 int actual_refs = 0;
1420 int minimum_refs = 0;
1424 /* write lock needed for mnt_get_count */
1426 for (p = mnt; p; p = next_mnt(p, mnt)) {
1427 actual_refs += mnt_get_count(p);
1430 unlock_mount_hash();
1432 if (actual_refs > minimum_refs)
1438 EXPORT_SYMBOL(may_umount_tree);
1441 * may_umount - check if a mount point is busy
1442 * @mnt: root of mount
1444 * This is called to check if a mount point has any
1445 * open files, pwds, chroots or sub mounts. If the
1446 * mount has sub mounts this will return busy
1447 * regardless of whether the sub mounts are busy.
1449 * Doesn't take quota and stuff into account. IOW, in some cases it will
1450 * give false negatives. The main reason why it's here is that we need
1451 * a non-destructive way to look for easily umountable filesystems.
1453 int may_umount(struct vfsmount *mnt)
1456 down_read(&namespace_sem);
1458 if (propagate_mount_busy(real_mount(mnt), 2))
1460 unlock_mount_hash();
1461 up_read(&namespace_sem);
1465 EXPORT_SYMBOL(may_umount);
1467 static void namespace_unlock(void)
1469 struct hlist_head head;
1470 struct hlist_node *p;
1474 hlist_move_list(&unmounted, &head);
1475 list_splice_init(&ex_mountpoints, &list);
1477 up_write(&namespace_sem);
1479 shrink_dentry_list(&list);
1481 if (likely(hlist_empty(&head)))
1484 synchronize_rcu_expedited();
1486 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1487 hlist_del(&m->mnt_umount);
1492 static inline void namespace_lock(void)
1494 down_write(&namespace_sem);
1497 enum umount_tree_flags {
1499 UMOUNT_PROPAGATE = 2,
1500 UMOUNT_CONNECTED = 4,
1503 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1505 /* Leaving mounts connected is only valid for lazy umounts */
1506 if (how & UMOUNT_SYNC)
1509 /* A mount without a parent has nothing to be connected to */
1510 if (!mnt_has_parent(mnt))
1513 /* Because the reference counting rules change when mounts are
1514 * unmounted and connected, umounted mounts may not be
1515 * connected to mounted mounts.
1517 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1520 /* Has it been requested that the mount remain connected? */
1521 if (how & UMOUNT_CONNECTED)
1524 /* Is the mount locked such that it needs to remain connected? */
1525 if (IS_MNT_LOCKED(mnt))
1528 /* By default disconnect the mount */
1533 * mount_lock must be held
1534 * namespace_sem must be held for write
1536 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1538 LIST_HEAD(tmp_list);
1541 if (how & UMOUNT_PROPAGATE)
1542 propagate_mount_unlock(mnt);
1544 /* Gather the mounts to umount */
1545 for (p = mnt; p; p = next_mnt(p, mnt)) {
1546 p->mnt.mnt_flags |= MNT_UMOUNT;
1547 list_move(&p->mnt_list, &tmp_list);
1550 /* Hide the mounts from mnt_mounts */
1551 list_for_each_entry(p, &tmp_list, mnt_list) {
1552 list_del_init(&p->mnt_child);
1555 /* Add propogated mounts to the tmp_list */
1556 if (how & UMOUNT_PROPAGATE)
1557 propagate_umount(&tmp_list);
1559 while (!list_empty(&tmp_list)) {
1560 struct mnt_namespace *ns;
1562 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1563 list_del_init(&p->mnt_expire);
1564 list_del_init(&p->mnt_list);
1568 __touch_mnt_namespace(ns);
1571 if (how & UMOUNT_SYNC)
1572 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1574 disconnect = disconnect_mount(p, how);
1575 if (mnt_has_parent(p)) {
1576 mnt_add_count(p->mnt_parent, -1);
1578 /* Don't forget about p */
1579 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1584 change_mnt_propagation(p, MS_PRIVATE);
1586 hlist_add_head(&p->mnt_umount, &unmounted);
1590 static void shrink_submounts(struct mount *mnt);
1592 static int do_umount_root(struct super_block *sb)
1596 down_write(&sb->s_umount);
1597 if (!sb_rdonly(sb)) {
1598 struct fs_context *fc;
1600 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1605 ret = parse_monolithic_mount_data(fc, NULL);
1607 ret = reconfigure_super(fc);
1611 up_write(&sb->s_umount);
1615 static int do_umount(struct mount *mnt, int flags)
1617 struct super_block *sb = mnt->mnt.mnt_sb;
1620 retval = security_sb_umount(&mnt->mnt, flags);
1625 * Allow userspace to request a mountpoint be expired rather than
1626 * unmounting unconditionally. Unmount only happens if:
1627 * (1) the mark is already set (the mark is cleared by mntput())
1628 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1630 if (flags & MNT_EXPIRE) {
1631 if (&mnt->mnt == current->fs->root.mnt ||
1632 flags & (MNT_FORCE | MNT_DETACH))
1636 * probably don't strictly need the lock here if we examined
1637 * all race cases, but it's a slowpath.
1640 if (mnt_get_count(mnt) != 2) {
1641 unlock_mount_hash();
1644 unlock_mount_hash();
1646 if (!xchg(&mnt->mnt_expiry_mark, 1))
1651 * If we may have to abort operations to get out of this
1652 * mount, and they will themselves hold resources we must
1653 * allow the fs to do things. In the Unix tradition of
1654 * 'Gee thats tricky lets do it in userspace' the umount_begin
1655 * might fail to complete on the first run through as other tasks
1656 * must return, and the like. Thats for the mount program to worry
1657 * about for the moment.
1660 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1661 sb->s_op->umount_begin(sb);
1665 * No sense to grab the lock for this test, but test itself looks
1666 * somewhat bogus. Suggestions for better replacement?
1667 * Ho-hum... In principle, we might treat that as umount + switch
1668 * to rootfs. GC would eventually take care of the old vfsmount.
1669 * Actually it makes sense, especially if rootfs would contain a
1670 * /reboot - static binary that would close all descriptors and
1671 * call reboot(9). Then init(8) could umount root and exec /reboot.
1673 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1675 * Special case for "unmounting" root ...
1676 * we just try to remount it readonly.
1678 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1680 return do_umount_root(sb);
1686 /* Recheck MNT_LOCKED with the locks held */
1688 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1692 if (flags & MNT_DETACH) {
1693 if (!list_empty(&mnt->mnt_list))
1694 umount_tree(mnt, UMOUNT_PROPAGATE);
1697 shrink_submounts(mnt);
1699 if (!propagate_mount_busy(mnt, 2)) {
1700 if (!list_empty(&mnt->mnt_list))
1701 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1706 unlock_mount_hash();
1712 * __detach_mounts - lazily unmount all mounts on the specified dentry
1714 * During unlink, rmdir, and d_drop it is possible to loose the path
1715 * to an existing mountpoint, and wind up leaking the mount.
1716 * detach_mounts allows lazily unmounting those mounts instead of
1719 * The caller may hold dentry->d_inode->i_mutex.
1721 void __detach_mounts(struct dentry *dentry)
1723 struct mountpoint *mp;
1728 mp = lookup_mountpoint(dentry);
1733 while (!hlist_empty(&mp->m_list)) {
1734 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1735 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1737 hlist_add_head(&mnt->mnt_umount, &unmounted);
1739 else umount_tree(mnt, UMOUNT_CONNECTED);
1743 unlock_mount_hash();
1748 * Is the caller allowed to modify his namespace?
1750 static inline bool may_mount(void)
1752 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1755 static void warn_mandlock(void)
1757 pr_warn_once("=======================================================\n"
1758 "WARNING: The mand mount option has been deprecated and\n"
1759 " and is ignored by this kernel. Remove the mand\n"
1760 " option from the mount to silence this warning.\n"
1761 "=======================================================\n");
1764 static int can_umount(const struct path *path, int flags)
1766 struct mount *mnt = real_mount(path->mnt);
1770 if (path->dentry != path->mnt->mnt_root)
1772 if (!check_mnt(mnt))
1774 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1776 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1781 // caller is responsible for flags being sane
1782 int path_umount(struct path *path, int flags)
1784 struct mount *mnt = real_mount(path->mnt);
1787 ret = can_umount(path, flags);
1789 ret = do_umount(mnt, flags);
1791 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1793 mntput_no_expire(mnt);
1797 static int ksys_umount(char __user *name, int flags)
1799 int lookup_flags = LOOKUP_MOUNTPOINT;
1803 // basic validity checks done first
1804 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1807 if (!(flags & UMOUNT_NOFOLLOW))
1808 lookup_flags |= LOOKUP_FOLLOW;
1809 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1812 return path_umount(&path, flags);
1815 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1817 return ksys_umount(name, flags);
1820 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1823 * The 2.0 compatible umount. No flags.
1825 SYSCALL_DEFINE1(oldumount, char __user *, name)
1827 return ksys_umount(name, 0);
1832 static bool is_mnt_ns_file(struct dentry *dentry)
1834 /* Is this a proxy for a mount namespace? */
1835 return dentry->d_op == &ns_dentry_operations &&
1836 dentry->d_fsdata == &mntns_operations;
1839 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1841 return container_of(ns, struct mnt_namespace, ns);
1844 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1849 static bool mnt_ns_loop(struct dentry *dentry)
1851 /* Could bind mounting the mount namespace inode cause a
1852 * mount namespace loop?
1854 struct mnt_namespace *mnt_ns;
1855 if (!is_mnt_ns_file(dentry))
1858 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1859 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1862 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1865 struct mount *res, *p, *q, *r, *parent;
1867 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1868 return ERR_PTR(-EINVAL);
1870 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1871 return ERR_PTR(-EINVAL);
1873 res = q = clone_mnt(mnt, dentry, flag);
1877 q->mnt_mountpoint = mnt->mnt_mountpoint;
1880 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1882 if (!is_subdir(r->mnt_mountpoint, dentry))
1885 for (s = r; s; s = next_mnt(s, r)) {
1886 if (!(flag & CL_COPY_UNBINDABLE) &&
1887 IS_MNT_UNBINDABLE(s)) {
1888 if (s->mnt.mnt_flags & MNT_LOCKED) {
1889 /* Both unbindable and locked. */
1890 q = ERR_PTR(-EPERM);
1893 s = skip_mnt_tree(s);
1897 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1898 is_mnt_ns_file(s->mnt.mnt_root)) {
1899 s = skip_mnt_tree(s);
1902 while (p != s->mnt_parent) {
1908 q = clone_mnt(p, p->mnt.mnt_root, flag);
1912 list_add_tail(&q->mnt_list, &res->mnt_list);
1913 attach_mnt(q, parent, p->mnt_mp);
1914 unlock_mount_hash();
1921 umount_tree(res, UMOUNT_SYNC);
1922 unlock_mount_hash();
1927 /* Caller should check returned pointer for errors */
1929 struct vfsmount *collect_mounts(const struct path *path)
1933 if (!check_mnt(real_mount(path->mnt)))
1934 tree = ERR_PTR(-EINVAL);
1936 tree = copy_tree(real_mount(path->mnt), path->dentry,
1937 CL_COPY_ALL | CL_PRIVATE);
1940 return ERR_CAST(tree);
1944 static void free_mnt_ns(struct mnt_namespace *);
1945 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1947 void dissolve_on_fput(struct vfsmount *mnt)
1949 struct mnt_namespace *ns;
1952 ns = real_mount(mnt)->mnt_ns;
1955 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1959 unlock_mount_hash();
1965 void drop_collected_mounts(struct vfsmount *mnt)
1969 umount_tree(real_mount(mnt), 0);
1970 unlock_mount_hash();
1974 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1976 struct mount *child;
1978 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1979 if (!is_subdir(child->mnt_mountpoint, dentry))
1982 if (child->mnt.mnt_flags & MNT_LOCKED)
1989 * clone_private_mount - create a private clone of a path
1990 * @path: path to clone
1992 * This creates a new vfsmount, which will be the clone of @path. The new mount
1993 * will not be attached anywhere in the namespace and will be private (i.e.
1994 * changes to the originating mount won't be propagated into this).
1996 * Release with mntput().
1998 struct vfsmount *clone_private_mount(const struct path *path)
2000 struct mount *old_mnt = real_mount(path->mnt);
2001 struct mount *new_mnt;
2003 down_read(&namespace_sem);
2004 if (IS_MNT_UNBINDABLE(old_mnt))
2007 if (!check_mnt(old_mnt))
2010 if (has_locked_children(old_mnt, path->dentry))
2013 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2014 up_read(&namespace_sem);
2016 if (IS_ERR(new_mnt))
2017 return ERR_CAST(new_mnt);
2019 /* Longterm mount to be removed by kern_unmount*() */
2020 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2022 return &new_mnt->mnt;
2025 up_read(&namespace_sem);
2026 return ERR_PTR(-EINVAL);
2028 EXPORT_SYMBOL_GPL(clone_private_mount);
2030 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2031 struct vfsmount *root)
2034 int res = f(root, arg);
2037 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2038 res = f(&mnt->mnt, arg);
2045 static void lock_mnt_tree(struct mount *mnt)
2049 for (p = mnt; p; p = next_mnt(p, mnt)) {
2050 int flags = p->mnt.mnt_flags;
2051 /* Don't allow unprivileged users to change mount flags */
2052 flags |= MNT_LOCK_ATIME;
2054 if (flags & MNT_READONLY)
2055 flags |= MNT_LOCK_READONLY;
2057 if (flags & MNT_NODEV)
2058 flags |= MNT_LOCK_NODEV;
2060 if (flags & MNT_NOSUID)
2061 flags |= MNT_LOCK_NOSUID;
2063 if (flags & MNT_NOEXEC)
2064 flags |= MNT_LOCK_NOEXEC;
2065 /* Don't allow unprivileged users to reveal what is under a mount */
2066 if (list_empty(&p->mnt_expire))
2067 flags |= MNT_LOCKED;
2068 p->mnt.mnt_flags = flags;
2072 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2076 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2077 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2078 mnt_release_group_id(p);
2082 static int invent_group_ids(struct mount *mnt, bool recurse)
2086 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2087 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2088 int err = mnt_alloc_group_id(p);
2090 cleanup_group_ids(mnt, p);
2099 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2101 unsigned int max = READ_ONCE(sysctl_mount_max);
2102 unsigned int mounts = 0, old, pending, sum;
2105 for (p = mnt; p; p = next_mnt(p, mnt))
2109 pending = ns->pending_mounts;
2110 sum = old + pending;
2114 (mounts > (max - sum)))
2117 ns->pending_mounts = pending + mounts;
2122 * @source_mnt : mount tree to be attached
2123 * @nd : place the mount tree @source_mnt is attached
2124 * @parent_nd : if non-null, detach the source_mnt from its parent and
2125 * store the parent mount and mountpoint dentry.
2126 * (done when source_mnt is moved)
2128 * NOTE: in the table below explains the semantics when a source mount
2129 * of a given type is attached to a destination mount of a given type.
2130 * ---------------------------------------------------------------------------
2131 * | BIND MOUNT OPERATION |
2132 * |**************************************************************************
2133 * | source-->| shared | private | slave | unbindable |
2137 * |**************************************************************************
2138 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2140 * |non-shared| shared (+) | private | slave (*) | invalid |
2141 * ***************************************************************************
2142 * A bind operation clones the source mount and mounts the clone on the
2143 * destination mount.
2145 * (++) the cloned mount is propagated to all the mounts in the propagation
2146 * tree of the destination mount and the cloned mount is added to
2147 * the peer group of the source mount.
2148 * (+) the cloned mount is created under the destination mount and is marked
2149 * as shared. The cloned mount is added to the peer group of the source
2151 * (+++) the mount is propagated to all the mounts in the propagation tree
2152 * of the destination mount and the cloned mount is made slave
2153 * of the same master as that of the source mount. The cloned mount
2154 * is marked as 'shared and slave'.
2155 * (*) the cloned mount is made a slave of the same master as that of the
2158 * ---------------------------------------------------------------------------
2159 * | MOVE MOUNT OPERATION |
2160 * |**************************************************************************
2161 * | source-->| shared | private | slave | unbindable |
2165 * |**************************************************************************
2166 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2168 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2169 * ***************************************************************************
2171 * (+) the mount is moved to the destination. And is then propagated to
2172 * all the mounts in the propagation tree of the destination mount.
2173 * (+*) the mount is moved to the destination.
2174 * (+++) the mount is moved to the destination and is then propagated to
2175 * all the mounts belonging to the destination mount's propagation tree.
2176 * the mount is marked as 'shared and slave'.
2177 * (*) the mount continues to be a slave at the new location.
2179 * if the source mount is a tree, the operations explained above is
2180 * applied to each mount in the tree.
2181 * Must be called without spinlocks held, since this function can sleep
2184 static int attach_recursive_mnt(struct mount *source_mnt,
2185 struct mount *dest_mnt,
2186 struct mountpoint *dest_mp,
2189 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2190 HLIST_HEAD(tree_list);
2191 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2192 struct mountpoint *smp;
2193 struct mount *child, *p;
2194 struct hlist_node *n;
2197 /* Preallocate a mountpoint in case the new mounts need
2198 * to be tucked under other mounts.
2200 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2202 return PTR_ERR(smp);
2204 /* Is there space to add these mounts to the mount namespace? */
2206 err = count_mounts(ns, source_mnt);
2211 if (IS_MNT_SHARED(dest_mnt)) {
2212 err = invent_group_ids(source_mnt, true);
2215 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2218 goto out_cleanup_ids;
2219 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2225 unhash_mnt(source_mnt);
2226 attach_mnt(source_mnt, dest_mnt, dest_mp);
2227 touch_mnt_namespace(source_mnt->mnt_ns);
2229 if (source_mnt->mnt_ns) {
2230 /* move from anon - the caller will destroy */
2231 list_del_init(&source_mnt->mnt_ns->list);
2233 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2234 commit_tree(source_mnt);
2237 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2239 hlist_del_init(&child->mnt_hash);
2240 q = __lookup_mnt(&child->mnt_parent->mnt,
2241 child->mnt_mountpoint);
2243 mnt_change_mountpoint(child, smp, q);
2244 /* Notice when we are propagating across user namespaces */
2245 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2246 lock_mnt_tree(child);
2247 child->mnt.mnt_flags &= ~MNT_LOCKED;
2250 put_mountpoint(smp);
2251 unlock_mount_hash();
2256 while (!hlist_empty(&tree_list)) {
2257 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2258 child->mnt_parent->mnt_ns->pending_mounts = 0;
2259 umount_tree(child, UMOUNT_SYNC);
2261 unlock_mount_hash();
2262 cleanup_group_ids(source_mnt, NULL);
2264 ns->pending_mounts = 0;
2266 read_seqlock_excl(&mount_lock);
2267 put_mountpoint(smp);
2268 read_sequnlock_excl(&mount_lock);
2273 static struct mountpoint *lock_mount(struct path *path)
2275 struct vfsmount *mnt;
2276 struct dentry *dentry = path->dentry;
2278 inode_lock(dentry->d_inode);
2279 if (unlikely(cant_mount(dentry))) {
2280 inode_unlock(dentry->d_inode);
2281 return ERR_PTR(-ENOENT);
2284 mnt = lookup_mnt(path);
2286 struct mountpoint *mp = get_mountpoint(dentry);
2289 inode_unlock(dentry->d_inode);
2295 inode_unlock(path->dentry->d_inode);
2298 dentry = path->dentry = dget(mnt->mnt_root);
2302 static void unlock_mount(struct mountpoint *where)
2304 struct dentry *dentry = where->m_dentry;
2306 read_seqlock_excl(&mount_lock);
2307 put_mountpoint(where);
2308 read_sequnlock_excl(&mount_lock);
2311 inode_unlock(dentry->d_inode);
2314 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2316 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2319 if (d_is_dir(mp->m_dentry) !=
2320 d_is_dir(mnt->mnt.mnt_root))
2323 return attach_recursive_mnt(mnt, p, mp, false);
2327 * Sanity check the flags to change_mnt_propagation.
2330 static int flags_to_propagation_type(int ms_flags)
2332 int type = ms_flags & ~(MS_REC | MS_SILENT);
2334 /* Fail if any non-propagation flags are set */
2335 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2337 /* Only one propagation flag should be set */
2338 if (!is_power_of_2(type))
2344 * recursively change the type of the mountpoint.
2346 static int do_change_type(struct path *path, int ms_flags)
2349 struct mount *mnt = real_mount(path->mnt);
2350 int recurse = ms_flags & MS_REC;
2354 if (path->dentry != path->mnt->mnt_root)
2357 type = flags_to_propagation_type(ms_flags);
2362 if (type == MS_SHARED) {
2363 err = invent_group_ids(mnt, recurse);
2369 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2370 change_mnt_propagation(m, type);
2371 unlock_mount_hash();
2378 static struct mount *__do_loopback(struct path *old_path, int recurse)
2380 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2382 if (IS_MNT_UNBINDABLE(old))
2385 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2388 if (!recurse && has_locked_children(old, old_path->dentry))
2392 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2394 mnt = clone_mnt(old, old_path->dentry, 0);
2397 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2403 * do loopback mount.
2405 static int do_loopback(struct path *path, const char *old_name,
2408 struct path old_path;
2409 struct mount *mnt = NULL, *parent;
2410 struct mountpoint *mp;
2412 if (!old_name || !*old_name)
2414 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2419 if (mnt_ns_loop(old_path.dentry))
2422 mp = lock_mount(path);
2428 parent = real_mount(path->mnt);
2429 if (!check_mnt(parent))
2432 mnt = __do_loopback(&old_path, recurse);
2438 err = graft_tree(mnt, parent, mp);
2441 umount_tree(mnt, UMOUNT_SYNC);
2442 unlock_mount_hash();
2447 path_put(&old_path);
2451 static struct file *open_detached_copy(struct path *path, bool recursive)
2453 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2454 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2455 struct mount *mnt, *p;
2459 return ERR_CAST(ns);
2462 mnt = __do_loopback(path, recursive);
2466 return ERR_CAST(mnt);
2470 for (p = mnt; p; p = next_mnt(p, mnt)) {
2475 list_add_tail(&ns->list, &mnt->mnt_list);
2477 unlock_mount_hash();
2481 path->mnt = &mnt->mnt;
2482 file = dentry_open(path, O_PATH, current_cred());
2484 dissolve_on_fput(path->mnt);
2486 file->f_mode |= FMODE_NEED_UNMOUNT;
2490 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2494 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2495 bool detached = flags & OPEN_TREE_CLONE;
2499 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2501 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2502 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2506 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2509 if (flags & AT_NO_AUTOMOUNT)
2510 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2511 if (flags & AT_SYMLINK_NOFOLLOW)
2512 lookup_flags &= ~LOOKUP_FOLLOW;
2513 if (flags & AT_EMPTY_PATH)
2514 lookup_flags |= LOOKUP_EMPTY;
2516 if (detached && !may_mount())
2519 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2523 error = user_path_at(dfd, filename, lookup_flags, &path);
2524 if (unlikely(error)) {
2525 file = ERR_PTR(error);
2528 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2530 file = dentry_open(&path, O_PATH, current_cred());
2535 return PTR_ERR(file);
2537 fd_install(fd, file);
2542 * Don't allow locked mount flags to be cleared.
2544 * No locks need to be held here while testing the various MNT_LOCK
2545 * flags because those flags can never be cleared once they are set.
2547 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2549 unsigned int fl = mnt->mnt.mnt_flags;
2551 if ((fl & MNT_LOCK_READONLY) &&
2552 !(mnt_flags & MNT_READONLY))
2555 if ((fl & MNT_LOCK_NODEV) &&
2556 !(mnt_flags & MNT_NODEV))
2559 if ((fl & MNT_LOCK_NOSUID) &&
2560 !(mnt_flags & MNT_NOSUID))
2563 if ((fl & MNT_LOCK_NOEXEC) &&
2564 !(mnt_flags & MNT_NOEXEC))
2567 if ((fl & MNT_LOCK_ATIME) &&
2568 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2574 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2576 bool readonly_request = (mnt_flags & MNT_READONLY);
2578 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2581 if (readonly_request)
2582 return mnt_make_readonly(mnt);
2584 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2588 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2590 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2591 mnt->mnt.mnt_flags = mnt_flags;
2592 touch_mnt_namespace(mnt->mnt_ns);
2595 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2597 struct super_block *sb = mnt->mnt_sb;
2599 if (!__mnt_is_readonly(mnt) &&
2600 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2601 char *buf = (char *)__get_free_page(GFP_KERNEL);
2602 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2605 time64_to_tm(sb->s_time_max, 0, &tm);
2607 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2609 is_mounted(mnt) ? "remounted" : "mounted",
2611 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2613 free_page((unsigned long)buf);
2618 * Handle reconfiguration of the mountpoint only without alteration of the
2619 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2622 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2624 struct super_block *sb = path->mnt->mnt_sb;
2625 struct mount *mnt = real_mount(path->mnt);
2628 if (!check_mnt(mnt))
2631 if (path->dentry != mnt->mnt.mnt_root)
2634 if (!can_change_locked_flags(mnt, mnt_flags))
2638 * We're only checking whether the superblock is read-only not
2639 * changing it, so only take down_read(&sb->s_umount).
2641 down_read(&sb->s_umount);
2643 ret = change_mount_ro_state(mnt, mnt_flags);
2645 set_mount_attributes(mnt, mnt_flags);
2646 unlock_mount_hash();
2647 up_read(&sb->s_umount);
2649 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2655 * change filesystem flags. dir should be a physical root of filesystem.
2656 * If you've mounted a non-root directory somewhere and want to do remount
2657 * on it - tough luck.
2659 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2660 int mnt_flags, void *data)
2663 struct super_block *sb = path->mnt->mnt_sb;
2664 struct mount *mnt = real_mount(path->mnt);
2665 struct fs_context *fc;
2667 if (!check_mnt(mnt))
2670 if (path->dentry != path->mnt->mnt_root)
2673 if (!can_change_locked_flags(mnt, mnt_flags))
2676 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2681 err = parse_monolithic_mount_data(fc, data);
2683 down_write(&sb->s_umount);
2685 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2686 err = reconfigure_super(fc);
2689 set_mount_attributes(mnt, mnt_flags);
2690 unlock_mount_hash();
2693 up_write(&sb->s_umount);
2696 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2702 static inline int tree_contains_unbindable(struct mount *mnt)
2705 for (p = mnt; p; p = next_mnt(p, mnt)) {
2706 if (IS_MNT_UNBINDABLE(p))
2713 * Check that there aren't references to earlier/same mount namespaces in the
2714 * specified subtree. Such references can act as pins for mount namespaces
2715 * that aren't checked by the mount-cycle checking code, thereby allowing
2716 * cycles to be made.
2718 static bool check_for_nsfs_mounts(struct mount *subtree)
2724 for (p = subtree; p; p = next_mnt(p, subtree))
2725 if (mnt_ns_loop(p->mnt.mnt_root))
2730 unlock_mount_hash();
2734 static int do_set_group(struct path *from_path, struct path *to_path)
2736 struct mount *from, *to;
2739 from = real_mount(from_path->mnt);
2740 to = real_mount(to_path->mnt);
2745 /* To and From must be mounted */
2746 if (!is_mounted(&from->mnt))
2748 if (!is_mounted(&to->mnt))
2752 /* We should be allowed to modify mount namespaces of both mounts */
2753 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2755 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2759 /* To and From paths should be mount roots */
2760 if (from_path->dentry != from_path->mnt->mnt_root)
2762 if (to_path->dentry != to_path->mnt->mnt_root)
2765 /* Setting sharing groups is only allowed across same superblock */
2766 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2769 /* From mount root should be wider than To mount root */
2770 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2773 /* From mount should not have locked children in place of To's root */
2774 if (has_locked_children(from, to->mnt.mnt_root))
2777 /* Setting sharing groups is only allowed on private mounts */
2778 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2781 /* From should not be private */
2782 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2785 if (IS_MNT_SLAVE(from)) {
2786 struct mount *m = from->mnt_master;
2788 list_add(&to->mnt_slave, &m->mnt_slave_list);
2792 if (IS_MNT_SHARED(from)) {
2793 to->mnt_group_id = from->mnt_group_id;
2794 list_add(&to->mnt_share, &from->mnt_share);
2797 unlock_mount_hash();
2806 static int do_move_mount(struct path *old_path, struct path *new_path)
2808 struct mnt_namespace *ns;
2811 struct mount *parent;
2812 struct mountpoint *mp, *old_mp;
2816 mp = lock_mount(new_path);
2820 old = real_mount(old_path->mnt);
2821 p = real_mount(new_path->mnt);
2822 parent = old->mnt_parent;
2823 attached = mnt_has_parent(old);
2824 old_mp = old->mnt_mp;
2828 /* The mountpoint must be in our namespace. */
2832 /* The thing moved must be mounted... */
2833 if (!is_mounted(&old->mnt))
2836 /* ... and either ours or the root of anon namespace */
2837 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2840 if (old->mnt.mnt_flags & MNT_LOCKED)
2843 if (old_path->dentry != old_path->mnt->mnt_root)
2846 if (d_is_dir(new_path->dentry) !=
2847 d_is_dir(old_path->dentry))
2850 * Don't move a mount residing in a shared parent.
2852 if (attached && IS_MNT_SHARED(parent))
2855 * Don't move a mount tree containing unbindable mounts to a destination
2856 * mount which is shared.
2858 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2861 if (!check_for_nsfs_mounts(old))
2863 for (; mnt_has_parent(p); p = p->mnt_parent)
2867 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2872 /* if the mount is moved, it should no longer be expire
2874 list_del_init(&old->mnt_expire);
2876 put_mountpoint(old_mp);
2881 mntput_no_expire(parent);
2888 static int do_move_mount_old(struct path *path, const char *old_name)
2890 struct path old_path;
2893 if (!old_name || !*old_name)
2896 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2900 err = do_move_mount(&old_path, path);
2901 path_put(&old_path);
2906 * add a mount into a namespace's mount tree
2908 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2909 struct path *path, int mnt_flags)
2911 struct mount *parent = real_mount(path->mnt);
2913 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2915 if (unlikely(!check_mnt(parent))) {
2916 /* that's acceptable only for automounts done in private ns */
2917 if (!(mnt_flags & MNT_SHRINKABLE))
2919 /* ... and for those we'd better have mountpoint still alive */
2920 if (!parent->mnt_ns)
2924 /* Refuse the same filesystem on the same mount point */
2925 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2926 path->mnt->mnt_root == path->dentry)
2929 if (d_is_symlink(newmnt->mnt.mnt_root))
2932 newmnt->mnt.mnt_flags = mnt_flags;
2933 return graft_tree(newmnt, parent, mp);
2936 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2939 * Create a new mount using a superblock configuration and request it
2940 * be added to the namespace tree.
2942 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2943 unsigned int mnt_flags)
2945 struct vfsmount *mnt;
2946 struct mountpoint *mp;
2947 struct super_block *sb = fc->root->d_sb;
2950 error = security_sb_kern_mount(sb);
2951 if (!error && mount_too_revealing(sb, &mnt_flags))
2954 if (unlikely(error)) {
2959 up_write(&sb->s_umount);
2961 mnt = vfs_create_mount(fc);
2963 return PTR_ERR(mnt);
2965 mnt_warn_timestamp_expiry(mountpoint, mnt);
2967 mp = lock_mount(mountpoint);
2972 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2980 * create a new mount for userspace and request it to be added into the
2983 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2984 int mnt_flags, const char *name, void *data)
2986 struct file_system_type *type;
2987 struct fs_context *fc;
2988 const char *subtype = NULL;
2994 type = get_fs_type(fstype);
2998 if (type->fs_flags & FS_HAS_SUBTYPE) {
2999 subtype = strchr(fstype, '.');
3003 put_filesystem(type);
3009 fc = fs_context_for_mount(type, sb_flags);
3010 put_filesystem(type);
3015 err = vfs_parse_fs_string(fc, "subtype",
3016 subtype, strlen(subtype));
3018 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3020 err = parse_monolithic_mount_data(fc, data);
3021 if (!err && !mount_capable(fc))
3024 err = vfs_get_tree(fc);
3026 err = do_new_mount_fc(fc, path, mnt_flags);
3032 int finish_automount(struct vfsmount *m, struct path *path)
3034 struct dentry *dentry = path->dentry;
3035 struct mountpoint *mp;
3044 mnt = real_mount(m);
3045 /* The new mount record should have at least 2 refs to prevent it being
3046 * expired before we get a chance to add it
3048 BUG_ON(mnt_get_count(mnt) < 2);
3050 if (m->mnt_sb == path->mnt->mnt_sb &&
3051 m->mnt_root == dentry) {
3057 * we don't want to use lock_mount() - in this case finding something
3058 * that overmounts our mountpoint to be means "quitely drop what we've
3059 * got", not "try to mount it on top".
3061 inode_lock(dentry->d_inode);
3063 if (unlikely(cant_mount(dentry))) {
3065 goto discard_locked;
3068 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3071 goto discard_locked;
3074 mp = get_mountpoint(dentry);
3077 goto discard_locked;
3080 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3089 inode_unlock(dentry->d_inode);
3091 /* remove m from any expiration list it may be on */
3092 if (!list_empty(&mnt->mnt_expire)) {
3094 list_del_init(&mnt->mnt_expire);
3103 * mnt_set_expiry - Put a mount on an expiration list
3104 * @mnt: The mount to list.
3105 * @expiry_list: The list to add the mount to.
3107 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3111 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3115 EXPORT_SYMBOL(mnt_set_expiry);
3118 * process a list of expirable mountpoints with the intent of discarding any
3119 * mountpoints that aren't in use and haven't been touched since last we came
3122 void mark_mounts_for_expiry(struct list_head *mounts)
3124 struct mount *mnt, *next;
3125 LIST_HEAD(graveyard);
3127 if (list_empty(mounts))
3133 /* extract from the expiration list every vfsmount that matches the
3134 * following criteria:
3135 * - only referenced by its parent vfsmount
3136 * - still marked for expiry (marked on the last call here; marks are
3137 * cleared by mntput())
3139 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3140 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3141 propagate_mount_busy(mnt, 1))
3143 list_move(&mnt->mnt_expire, &graveyard);
3145 while (!list_empty(&graveyard)) {
3146 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3147 touch_mnt_namespace(mnt->mnt_ns);
3148 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3150 unlock_mount_hash();
3154 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3157 * Ripoff of 'select_parent()'
3159 * search the list of submounts for a given mountpoint, and move any
3160 * shrinkable submounts to the 'graveyard' list.
3162 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3164 struct mount *this_parent = parent;
3165 struct list_head *next;
3169 next = this_parent->mnt_mounts.next;
3171 while (next != &this_parent->mnt_mounts) {
3172 struct list_head *tmp = next;
3173 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3176 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3179 * Descend a level if the d_mounts list is non-empty.
3181 if (!list_empty(&mnt->mnt_mounts)) {
3186 if (!propagate_mount_busy(mnt, 1)) {
3187 list_move_tail(&mnt->mnt_expire, graveyard);
3192 * All done at this level ... ascend and resume the search
3194 if (this_parent != parent) {
3195 next = this_parent->mnt_child.next;
3196 this_parent = this_parent->mnt_parent;
3203 * process a list of expirable mountpoints with the intent of discarding any
3204 * submounts of a specific parent mountpoint
3206 * mount_lock must be held for write
3208 static void shrink_submounts(struct mount *mnt)
3210 LIST_HEAD(graveyard);
3213 /* extract submounts of 'mountpoint' from the expiration list */
3214 while (select_submounts(mnt, &graveyard)) {
3215 while (!list_empty(&graveyard)) {
3216 m = list_first_entry(&graveyard, struct mount,
3218 touch_mnt_namespace(m->mnt_ns);
3219 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3224 static void *copy_mount_options(const void __user * data)
3227 unsigned left, offset;
3232 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3234 return ERR_PTR(-ENOMEM);
3236 left = copy_from_user(copy, data, PAGE_SIZE);
3239 * Not all architectures have an exact copy_from_user(). Resort to
3242 offset = PAGE_SIZE - left;
3245 if (get_user(c, (const char __user *)data + offset))
3252 if (left == PAGE_SIZE) {
3254 return ERR_PTR(-EFAULT);
3260 static char *copy_mount_string(const void __user *data)
3262 return data ? strndup_user(data, PATH_MAX) : NULL;
3266 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3267 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3269 * data is a (void *) that can point to any structure up to
3270 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3271 * information (or be NULL).
3273 * Pre-0.97 versions of mount() didn't have a flags word.
3274 * When the flags word was introduced its top half was required
3275 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3276 * Therefore, if this magic number is present, it carries no information
3277 * and must be discarded.
3279 int path_mount(const char *dev_name, struct path *path,
3280 const char *type_page, unsigned long flags, void *data_page)
3282 unsigned int mnt_flags = 0, sb_flags;
3286 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3287 flags &= ~MS_MGC_MSK;
3289 /* Basic sanity checks */
3291 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3293 if (flags & MS_NOUSER)
3296 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3301 if (flags & SB_MANDLOCK)
3304 /* Default to relatime unless overriden */
3305 if (!(flags & MS_NOATIME))
3306 mnt_flags |= MNT_RELATIME;
3308 /* Separate the per-mountpoint flags */
3309 if (flags & MS_NOSUID)
3310 mnt_flags |= MNT_NOSUID;
3311 if (flags & MS_NODEV)
3312 mnt_flags |= MNT_NODEV;
3313 if (flags & MS_NOEXEC)
3314 mnt_flags |= MNT_NOEXEC;
3315 if (flags & MS_NOATIME)
3316 mnt_flags |= MNT_NOATIME;
3317 if (flags & MS_NODIRATIME)
3318 mnt_flags |= MNT_NODIRATIME;
3319 if (flags & MS_STRICTATIME)
3320 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3321 if (flags & MS_RDONLY)
3322 mnt_flags |= MNT_READONLY;
3323 if (flags & MS_NOSYMFOLLOW)
3324 mnt_flags |= MNT_NOSYMFOLLOW;
3326 /* The default atime for remount is preservation */
3327 if ((flags & MS_REMOUNT) &&
3328 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3329 MS_STRICTATIME)) == 0)) {
3330 mnt_flags &= ~MNT_ATIME_MASK;
3331 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3334 sb_flags = flags & (SB_RDONLY |
3343 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3344 return do_reconfigure_mnt(path, mnt_flags);
3345 if (flags & MS_REMOUNT)
3346 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3347 if (flags & MS_BIND)
3348 return do_loopback(path, dev_name, flags & MS_REC);
3349 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3350 return do_change_type(path, flags);
3351 if (flags & MS_MOVE)
3352 return do_move_mount_old(path, dev_name);
3354 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3358 long do_mount(const char *dev_name, const char __user *dir_name,
3359 const char *type_page, unsigned long flags, void *data_page)
3364 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3367 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3372 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3374 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3377 static void dec_mnt_namespaces(struct ucounts *ucounts)
3379 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3382 static void free_mnt_ns(struct mnt_namespace *ns)
3384 if (!is_anon_ns(ns))
3385 ns_free_inum(&ns->ns);
3386 dec_mnt_namespaces(ns->ucounts);
3387 put_user_ns(ns->user_ns);
3392 * Assign a sequence number so we can detect when we attempt to bind
3393 * mount a reference to an older mount namespace into the current
3394 * mount namespace, preventing reference counting loops. A 64bit
3395 * number incrementing at 10Ghz will take 12,427 years to wrap which
3396 * is effectively never, so we can ignore the possibility.
3398 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3400 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3402 struct mnt_namespace *new_ns;
3403 struct ucounts *ucounts;
3406 ucounts = inc_mnt_namespaces(user_ns);
3408 return ERR_PTR(-ENOSPC);
3410 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3412 dec_mnt_namespaces(ucounts);
3413 return ERR_PTR(-ENOMEM);
3416 ret = ns_alloc_inum(&new_ns->ns);
3419 dec_mnt_namespaces(ucounts);
3420 return ERR_PTR(ret);
3423 new_ns->ns.ops = &mntns_operations;
3425 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3426 refcount_set(&new_ns->ns.count, 1);
3427 INIT_LIST_HEAD(&new_ns->list);
3428 init_waitqueue_head(&new_ns->poll);
3429 spin_lock_init(&new_ns->ns_lock);
3430 new_ns->user_ns = get_user_ns(user_ns);
3431 new_ns->ucounts = ucounts;
3436 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3437 struct user_namespace *user_ns, struct fs_struct *new_fs)
3439 struct mnt_namespace *new_ns;
3440 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3441 struct mount *p, *q;
3448 if (likely(!(flags & CLONE_NEWNS))) {
3455 new_ns = alloc_mnt_ns(user_ns, false);
3460 /* First pass: copy the tree topology */
3461 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3462 if (user_ns != ns->user_ns)
3463 copy_flags |= CL_SHARED_TO_SLAVE;
3464 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3467 free_mnt_ns(new_ns);
3468 return ERR_CAST(new);
3470 if (user_ns != ns->user_ns) {
3473 unlock_mount_hash();
3476 list_add_tail(&new_ns->list, &new->mnt_list);
3479 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3480 * as belonging to new namespace. We have already acquired a private
3481 * fs_struct, so tsk->fs->lock is not needed.
3489 if (&p->mnt == new_fs->root.mnt) {
3490 new_fs->root.mnt = mntget(&q->mnt);
3493 if (&p->mnt == new_fs->pwd.mnt) {
3494 new_fs->pwd.mnt = mntget(&q->mnt);
3498 p = next_mnt(p, old);
3499 q = next_mnt(q, new);
3502 while (p->mnt.mnt_root != q->mnt.mnt_root)
3503 p = next_mnt(p, old);
3515 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3517 struct mount *mnt = real_mount(m);
3518 struct mnt_namespace *ns;
3519 struct super_block *s;
3523 ns = alloc_mnt_ns(&init_user_ns, true);
3526 return ERR_CAST(ns);
3531 list_add(&mnt->mnt_list, &ns->list);
3533 err = vfs_path_lookup(m->mnt_root, m,
3534 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3539 return ERR_PTR(err);
3541 /* trade a vfsmount reference for active sb one */
3542 s = path.mnt->mnt_sb;
3543 atomic_inc(&s->s_active);
3545 /* lock the sucker */
3546 down_write(&s->s_umount);
3547 /* ... and return the root of (sub)tree on it */
3550 EXPORT_SYMBOL(mount_subtree);
3552 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3553 char __user *, type, unsigned long, flags, void __user *, data)
3560 kernel_type = copy_mount_string(type);
3561 ret = PTR_ERR(kernel_type);
3562 if (IS_ERR(kernel_type))
3565 kernel_dev = copy_mount_string(dev_name);
3566 ret = PTR_ERR(kernel_dev);
3567 if (IS_ERR(kernel_dev))
3570 options = copy_mount_options(data);
3571 ret = PTR_ERR(options);
3572 if (IS_ERR(options))
3575 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3586 #define FSMOUNT_VALID_FLAGS \
3587 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3588 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3589 MOUNT_ATTR_NOSYMFOLLOW)
3591 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3593 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3594 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3596 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3598 unsigned int mnt_flags = 0;
3600 if (attr_flags & MOUNT_ATTR_RDONLY)
3601 mnt_flags |= MNT_READONLY;
3602 if (attr_flags & MOUNT_ATTR_NOSUID)
3603 mnt_flags |= MNT_NOSUID;
3604 if (attr_flags & MOUNT_ATTR_NODEV)
3605 mnt_flags |= MNT_NODEV;
3606 if (attr_flags & MOUNT_ATTR_NOEXEC)
3607 mnt_flags |= MNT_NOEXEC;
3608 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3609 mnt_flags |= MNT_NODIRATIME;
3610 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3611 mnt_flags |= MNT_NOSYMFOLLOW;
3617 * Create a kernel mount representation for a new, prepared superblock
3618 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3620 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3621 unsigned int, attr_flags)
3623 struct mnt_namespace *ns;
3624 struct fs_context *fc;
3626 struct path newmount;
3629 unsigned int mnt_flags = 0;
3635 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3638 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3641 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3643 switch (attr_flags & MOUNT_ATTR__ATIME) {
3644 case MOUNT_ATTR_STRICTATIME:
3646 case MOUNT_ATTR_NOATIME:
3647 mnt_flags |= MNT_NOATIME;
3649 case MOUNT_ATTR_RELATIME:
3650 mnt_flags |= MNT_RELATIME;
3661 if (f.file->f_op != &fscontext_fops)
3664 fc = f.file->private_data;
3666 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3670 /* There must be a valid superblock or we can't mount it */
3676 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3677 pr_warn("VFS: Mount too revealing\n");
3682 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3685 if (fc->sb_flags & SB_MANDLOCK)
3688 newmount.mnt = vfs_create_mount(fc);
3689 if (IS_ERR(newmount.mnt)) {
3690 ret = PTR_ERR(newmount.mnt);
3693 newmount.dentry = dget(fc->root);
3694 newmount.mnt->mnt_flags = mnt_flags;
3696 /* We've done the mount bit - now move the file context into more or
3697 * less the same state as if we'd done an fspick(). We don't want to
3698 * do any memory allocation or anything like that at this point as we
3699 * don't want to have to handle any errors incurred.
3701 vfs_clean_context(fc);
3703 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3708 mnt = real_mount(newmount.mnt);
3712 list_add(&mnt->mnt_list, &ns->list);
3713 mntget(newmount.mnt);
3715 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3716 * it, not just simply put it.
3718 file = dentry_open(&newmount, O_PATH, fc->cred);
3720 dissolve_on_fput(newmount.mnt);
3721 ret = PTR_ERR(file);
3724 file->f_mode |= FMODE_NEED_UNMOUNT;
3726 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3728 fd_install(ret, file);
3733 path_put(&newmount);
3735 mutex_unlock(&fc->uapi_mutex);
3742 * Move a mount from one place to another. In combination with
3743 * fsopen()/fsmount() this is used to install a new mount and in combination
3744 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3747 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3749 SYSCALL_DEFINE5(move_mount,
3750 int, from_dfd, const char __user *, from_pathname,
3751 int, to_dfd, const char __user *, to_pathname,
3752 unsigned int, flags)
3754 struct path from_path, to_path;
3755 unsigned int lflags;
3761 if (flags & ~MOVE_MOUNT__MASK)
3764 /* If someone gives a pathname, they aren't permitted to move
3765 * from an fd that requires unmount as we can't get at the flag
3766 * to clear it afterwards.
3769 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3770 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3771 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3773 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3778 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3779 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3780 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3782 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3786 ret = security_move_mount(&from_path, &to_path);
3790 if (flags & MOVE_MOUNT_SET_GROUP)
3791 ret = do_set_group(&from_path, &to_path);
3793 ret = do_move_mount(&from_path, &to_path);
3798 path_put(&from_path);
3803 * Return true if path is reachable from root
3805 * namespace_sem or mount_lock is held
3807 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3808 const struct path *root)
3810 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3811 dentry = mnt->mnt_mountpoint;
3812 mnt = mnt->mnt_parent;
3814 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3817 bool path_is_under(const struct path *path1, const struct path *path2)
3820 read_seqlock_excl(&mount_lock);
3821 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3822 read_sequnlock_excl(&mount_lock);
3825 EXPORT_SYMBOL(path_is_under);
3828 * pivot_root Semantics:
3829 * Moves the root file system of the current process to the directory put_old,
3830 * makes new_root as the new root file system of the current process, and sets
3831 * root/cwd of all processes which had them on the current root to new_root.
3834 * The new_root and put_old must be directories, and must not be on the
3835 * same file system as the current process root. The put_old must be
3836 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3837 * pointed to by put_old must yield the same directory as new_root. No other
3838 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3840 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3841 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3842 * in this situation.
3845 * - we don't move root/cwd if they are not at the root (reason: if something
3846 * cared enough to change them, it's probably wrong to force them elsewhere)
3847 * - it's okay to pick a root that isn't the root of a file system, e.g.
3848 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3849 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3852 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3853 const char __user *, put_old)
3855 struct path new, old, root;
3856 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3857 struct mountpoint *old_mp, *root_mp;
3863 error = user_path_at(AT_FDCWD, new_root,
3864 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3868 error = user_path_at(AT_FDCWD, put_old,
3869 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3873 error = security_sb_pivotroot(&old, &new);
3877 get_fs_root(current->fs, &root);
3878 old_mp = lock_mount(&old);
3879 error = PTR_ERR(old_mp);
3884 new_mnt = real_mount(new.mnt);
3885 root_mnt = real_mount(root.mnt);
3886 old_mnt = real_mount(old.mnt);
3887 ex_parent = new_mnt->mnt_parent;
3888 root_parent = root_mnt->mnt_parent;
3889 if (IS_MNT_SHARED(old_mnt) ||
3890 IS_MNT_SHARED(ex_parent) ||
3891 IS_MNT_SHARED(root_parent))
3893 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3895 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3898 if (d_unlinked(new.dentry))
3901 if (new_mnt == root_mnt || old_mnt == root_mnt)
3902 goto out4; /* loop, on the same file system */
3904 if (root.mnt->mnt_root != root.dentry)
3905 goto out4; /* not a mountpoint */
3906 if (!mnt_has_parent(root_mnt))
3907 goto out4; /* not attached */
3908 if (new.mnt->mnt_root != new.dentry)
3909 goto out4; /* not a mountpoint */
3910 if (!mnt_has_parent(new_mnt))
3911 goto out4; /* not attached */
3912 /* make sure we can reach put_old from new_root */
3913 if (!is_path_reachable(old_mnt, old.dentry, &new))
3915 /* make certain new is below the root */
3916 if (!is_path_reachable(new_mnt, new.dentry, &root))
3919 umount_mnt(new_mnt);
3920 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3921 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3922 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3923 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3925 /* mount old root on put_old */
3926 attach_mnt(root_mnt, old_mnt, old_mp);
3927 /* mount new_root on / */
3928 attach_mnt(new_mnt, root_parent, root_mp);
3929 mnt_add_count(root_parent, -1);
3930 touch_mnt_namespace(current->nsproxy->mnt_ns);
3931 /* A moved mount should not expire automatically */
3932 list_del_init(&new_mnt->mnt_expire);
3933 put_mountpoint(root_mp);
3934 unlock_mount_hash();
3935 chroot_fs_refs(&root, &new);
3938 unlock_mount(old_mp);
3940 mntput_no_expire(ex_parent);
3951 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3953 unsigned int flags = mnt->mnt.mnt_flags;
3955 /* flags to clear */
3956 flags &= ~kattr->attr_clr;
3957 /* flags to raise */
3958 flags |= kattr->attr_set;
3963 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3965 struct vfsmount *m = &mnt->mnt;
3966 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3968 if (!kattr->mnt_userns)
3972 * Creating an idmapped mount with the filesystem wide idmapping
3973 * doesn't make sense so block that. We don't allow mushy semantics.
3975 if (kattr->mnt_userns == fs_userns)
3979 * Once a mount has been idmapped we don't allow it to change its
3980 * mapping. It makes things simpler and callers can just create
3981 * another bind-mount they can idmap if they want to.
3983 if (is_idmapped_mnt(m))
3986 /* The underlying filesystem doesn't support idmapped mounts yet. */
3987 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
3990 /* We're not controlling the superblock. */
3991 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
3994 /* Mount has already been visible in the filesystem hierarchy. */
3995 if (!is_anon_ns(mnt->mnt_ns))
4001 static struct mount *mount_setattr_prepare(struct mount_kattr *kattr,
4002 struct mount *mnt, int *err)
4004 struct mount *m = mnt, *last = NULL;
4006 if (!is_mounted(&m->mnt)) {
4011 if (!(mnt_has_parent(m) ? check_mnt(m) : is_anon_ns(m->mnt_ns))) {
4019 flags = recalc_flags(kattr, m);
4020 if (!can_change_locked_flags(m, flags)) {
4025 *err = can_idmap_mount(kattr, m);
4031 if ((kattr->attr_set & MNT_READONLY) &&
4032 !(m->mnt.mnt_flags & MNT_READONLY)) {
4033 *err = mnt_hold_writers(m);
4037 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4043 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4045 struct user_namespace *mnt_userns, *old_mnt_userns;
4047 if (!kattr->mnt_userns)
4051 * We're the only ones able to change the mount's idmapping. So
4052 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4054 old_mnt_userns = mnt->mnt.mnt_userns;
4056 mnt_userns = get_user_ns(kattr->mnt_userns);
4057 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4058 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4061 * If this is an idmapped filesystem drop the reference we've taken
4062 * in vfs_create_mount() before.
4064 if (!initial_idmapping(old_mnt_userns))
4065 put_user_ns(old_mnt_userns);
4068 static void mount_setattr_commit(struct mount_kattr *kattr,
4069 struct mount *mnt, struct mount *last,
4072 struct mount *m = mnt;
4078 do_idmap_mount(kattr, m);
4079 flags = recalc_flags(kattr, m);
4080 WRITE_ONCE(m->mnt.mnt_flags, flags);
4084 * We either set MNT_READONLY above so make it visible
4085 * before ~MNT_WRITE_HOLD or we failed to recursively
4086 * apply mount options.
4088 if ((kattr->attr_set & MNT_READONLY) &&
4089 (m->mnt.mnt_flags & MNT_WRITE_HOLD))
4090 mnt_unhold_writers(m);
4092 if (!err && kattr->propagation)
4093 change_mnt_propagation(m, kattr->propagation);
4096 * On failure, only cleanup until we found the first mount
4097 * we failed to handle.
4099 if (err && m == last)
4101 } while (kattr->recurse && (m = next_mnt(m, mnt)));
4104 touch_mnt_namespace(mnt->mnt_ns);
4107 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4109 struct mount *mnt = real_mount(path->mnt), *last = NULL;
4112 if (path->dentry != mnt->mnt.mnt_root)
4115 if (kattr->propagation) {
4117 * Only take namespace_lock() if we're actually changing
4121 if (kattr->propagation == MS_SHARED) {
4122 err = invent_group_ids(mnt, kattr->recurse);
4133 * Get the mount tree in a shape where we can change mount
4134 * properties without failure.
4136 last = mount_setattr_prepare(kattr, mnt, &err);
4137 if (last) /* Commit all changes or revert to the old state. */
4138 mount_setattr_commit(kattr, mnt, last, err);
4140 unlock_mount_hash();
4142 if (kattr->propagation) {
4145 cleanup_group_ids(mnt, NULL);
4151 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4152 struct mount_kattr *kattr, unsigned int flags)
4155 struct ns_common *ns;
4156 struct user_namespace *mnt_userns;
4159 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4163 * We currently do not support clearing an idmapped mount. If this ever
4164 * is a use-case we can revisit this but for now let's keep it simple
4167 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4170 if (attr->userns_fd > INT_MAX)
4173 file = fget(attr->userns_fd);
4177 if (!proc_ns_file(file)) {
4182 ns = get_proc_ns(file_inode(file));
4183 if (ns->ops->type != CLONE_NEWUSER) {
4189 * The initial idmapping cannot be used to create an idmapped
4190 * mount. We use the initial idmapping as an indicator of a mount
4191 * that is not idmapped. It can simply be passed into helpers that
4192 * are aware of idmapped mounts as a convenient shortcut. A user
4193 * can just create a dedicated identity mapping to achieve the same
4196 mnt_userns = container_of(ns, struct user_namespace, ns);
4197 if (initial_idmapping(mnt_userns)) {
4201 kattr->mnt_userns = get_user_ns(mnt_userns);
4208 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4209 struct mount_kattr *kattr, unsigned int flags)
4211 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4213 if (flags & AT_NO_AUTOMOUNT)
4214 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4215 if (flags & AT_SYMLINK_NOFOLLOW)
4216 lookup_flags &= ~LOOKUP_FOLLOW;
4217 if (flags & AT_EMPTY_PATH)
4218 lookup_flags |= LOOKUP_EMPTY;
4220 *kattr = (struct mount_kattr) {
4221 .lookup_flags = lookup_flags,
4222 .recurse = !!(flags & AT_RECURSIVE),
4225 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4227 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4229 kattr->propagation = attr->propagation;
4231 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4234 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4235 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4238 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4239 * users wanting to transition to a different atime setting cannot
4240 * simply specify the atime setting in @attr_set, but must also
4241 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4242 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4243 * @attr_clr and that @attr_set can't have any atime bits set if
4244 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4246 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4247 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4251 * Clear all previous time settings as they are mutually
4254 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4255 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4256 case MOUNT_ATTR_RELATIME:
4257 kattr->attr_set |= MNT_RELATIME;
4259 case MOUNT_ATTR_NOATIME:
4260 kattr->attr_set |= MNT_NOATIME;
4262 case MOUNT_ATTR_STRICTATIME:
4268 if (attr->attr_set & MOUNT_ATTR__ATIME)
4272 return build_mount_idmapped(attr, usize, kattr, flags);
4275 static void finish_mount_kattr(struct mount_kattr *kattr)
4277 put_user_ns(kattr->mnt_userns);
4278 kattr->mnt_userns = NULL;
4281 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4282 unsigned int, flags, struct mount_attr __user *, uattr,
4287 struct mount_attr attr;
4288 struct mount_kattr kattr;
4290 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4292 if (flags & ~(AT_EMPTY_PATH |
4294 AT_SYMLINK_NOFOLLOW |
4298 if (unlikely(usize > PAGE_SIZE))
4300 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4306 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4310 /* Don't bother walking through the mounts if this is a nop. */
4311 if (attr.attr_set == 0 &&
4312 attr.attr_clr == 0 &&
4313 attr.propagation == 0)
4316 err = build_mount_kattr(&attr, usize, &kattr, flags);
4320 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4322 err = do_mount_setattr(&target, &kattr);
4325 finish_mount_kattr(&kattr);
4329 static void __init init_mount_tree(void)
4331 struct vfsmount *mnt;
4333 struct mnt_namespace *ns;
4336 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4338 panic("Can't create rootfs");
4340 ns = alloc_mnt_ns(&init_user_ns, false);
4342 panic("Can't allocate initial namespace");
4343 m = real_mount(mnt);
4347 list_add(&m->mnt_list, &ns->list);
4348 init_task.nsproxy->mnt_ns = ns;
4352 root.dentry = mnt->mnt_root;
4353 mnt->mnt_flags |= MNT_LOCKED;
4355 set_fs_pwd(current->fs, &root);
4356 set_fs_root(current->fs, &root);
4359 void __init mnt_init(void)
4363 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4364 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4366 mount_hashtable = alloc_large_system_hash("Mount-cache",
4367 sizeof(struct hlist_head),
4370 &m_hash_shift, &m_hash_mask, 0, 0);
4371 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4372 sizeof(struct hlist_head),
4375 &mp_hash_shift, &mp_hash_mask, 0, 0);
4377 if (!mount_hashtable || !mountpoint_hashtable)
4378 panic("Failed to allocate mount hash table\n");
4384 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4386 fs_kobj = kobject_create_and_add("fs", NULL);
4388 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4394 void put_mnt_ns(struct mnt_namespace *ns)
4396 if (!refcount_dec_and_test(&ns->ns.count))
4398 drop_collected_mounts(&ns->root->mnt);
4402 struct vfsmount *kern_mount(struct file_system_type *type)
4404 struct vfsmount *mnt;
4405 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4408 * it is a longterm mount, don't release mnt until
4409 * we unmount before file sys is unregistered
4411 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4415 EXPORT_SYMBOL_GPL(kern_mount);
4417 void kern_unmount(struct vfsmount *mnt)
4419 /* release long term mount so mount point can be released */
4420 if (!IS_ERR_OR_NULL(mnt)) {
4421 real_mount(mnt)->mnt_ns = NULL;
4422 synchronize_rcu(); /* yecchhh... */
4426 EXPORT_SYMBOL(kern_unmount);
4428 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4432 for (i = 0; i < num; i++)
4434 real_mount(mnt[i])->mnt_ns = NULL;
4435 synchronize_rcu_expedited();
4436 for (i = 0; i < num; i++)
4439 EXPORT_SYMBOL(kern_unmount_array);
4441 bool our_mnt(struct vfsmount *mnt)
4443 return check_mnt(real_mount(mnt));
4446 bool current_chrooted(void)
4448 /* Does the current process have a non-standard root */
4449 struct path ns_root;
4450 struct path fs_root;
4453 /* Find the namespace root */
4454 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4455 ns_root.dentry = ns_root.mnt->mnt_root;
4457 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4460 get_fs_root(current->fs, &fs_root);
4462 chrooted = !path_equal(&fs_root, &ns_root);
4470 static bool mnt_already_visible(struct mnt_namespace *ns,
4471 const struct super_block *sb,
4474 int new_flags = *new_mnt_flags;
4476 bool visible = false;
4478 down_read(&namespace_sem);
4480 list_for_each_entry(mnt, &ns->list, mnt_list) {
4481 struct mount *child;
4484 if (mnt_is_cursor(mnt))
4487 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4490 /* This mount is not fully visible if it's root directory
4491 * is not the root directory of the filesystem.
4493 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4496 /* A local view of the mount flags */
4497 mnt_flags = mnt->mnt.mnt_flags;
4499 /* Don't miss readonly hidden in the superblock flags */
4500 if (sb_rdonly(mnt->mnt.mnt_sb))
4501 mnt_flags |= MNT_LOCK_READONLY;
4503 /* Verify the mount flags are equal to or more permissive
4504 * than the proposed new mount.
4506 if ((mnt_flags & MNT_LOCK_READONLY) &&
4507 !(new_flags & MNT_READONLY))
4509 if ((mnt_flags & MNT_LOCK_ATIME) &&
4510 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4513 /* This mount is not fully visible if there are any
4514 * locked child mounts that cover anything except for
4515 * empty directories.
4517 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4518 struct inode *inode = child->mnt_mountpoint->d_inode;
4519 /* Only worry about locked mounts */
4520 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4522 /* Is the directory permanetly empty? */
4523 if (!is_empty_dir_inode(inode))
4526 /* Preserve the locked attributes */
4527 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4535 up_read(&namespace_sem);
4539 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4541 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4542 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4543 unsigned long s_iflags;
4545 if (ns->user_ns == &init_user_ns)
4548 /* Can this filesystem be too revealing? */
4549 s_iflags = sb->s_iflags;
4550 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4553 if ((s_iflags & required_iflags) != required_iflags) {
4554 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4559 return !mnt_already_visible(ns, sb, new_mnt_flags);
4562 bool mnt_may_suid(struct vfsmount *mnt)
4565 * Foreign mounts (accessed via fchdir or through /proc
4566 * symlinks) are always treated as if they are nosuid. This
4567 * prevents namespaces from trusting potentially unsafe
4568 * suid/sgid bits, file caps, or security labels that originate
4569 * in other namespaces.
4571 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4572 current_in_userns(mnt->mnt_sb->s_user_ns);
4575 static struct ns_common *mntns_get(struct task_struct *task)
4577 struct ns_common *ns = NULL;
4578 struct nsproxy *nsproxy;
4581 nsproxy = task->nsproxy;
4583 ns = &nsproxy->mnt_ns->ns;
4584 get_mnt_ns(to_mnt_ns(ns));
4591 static void mntns_put(struct ns_common *ns)
4593 put_mnt_ns(to_mnt_ns(ns));
4596 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4598 struct nsproxy *nsproxy = nsset->nsproxy;
4599 struct fs_struct *fs = nsset->fs;
4600 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4601 struct user_namespace *user_ns = nsset->cred->user_ns;
4605 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4606 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4607 !ns_capable(user_ns, CAP_SYS_ADMIN))
4610 if (is_anon_ns(mnt_ns))
4617 old_mnt_ns = nsproxy->mnt_ns;
4618 nsproxy->mnt_ns = mnt_ns;
4621 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4622 "/", LOOKUP_DOWN, &root);
4624 /* revert to old namespace */
4625 nsproxy->mnt_ns = old_mnt_ns;
4630 put_mnt_ns(old_mnt_ns);
4632 /* Update the pwd and root */
4633 set_fs_pwd(fs, &root);
4634 set_fs_root(fs, &root);
4640 static struct user_namespace *mntns_owner(struct ns_common *ns)
4642 return to_mnt_ns(ns)->user_ns;
4645 const struct proc_ns_operations mntns_operations = {
4647 .type = CLONE_NEWNS,
4650 .install = mntns_install,
4651 .owner = mntns_owner,
4654 #ifdef CONFIG_SYSCTL
4655 static struct ctl_table fs_namespace_sysctls[] = {
4657 .procname = "mount-max",
4658 .data = &sysctl_mount_max,
4659 .maxlen = sizeof(unsigned int),
4661 .proc_handler = proc_dointvec_minmax,
4662 .extra1 = SYSCTL_ONE,
4667 static int __init init_fs_namespace_sysctls(void)
4669 register_sysctl_init("fs", fs_namespace_sysctls);
4672 fs_initcall(init_fs_namespace_sysctls);
4674 #endif /* CONFIG_SYSCTL */