1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32 #include <linux/shmem_fs.h>
37 /* Maximum number of mounts in a mount namespace */
38 unsigned int sysctl_mount_max __read_mostly = 100000;
40 static unsigned int m_hash_mask __read_mostly;
41 static unsigned int m_hash_shift __read_mostly;
42 static unsigned int mp_hash_mask __read_mostly;
43 static unsigned int mp_hash_shift __read_mostly;
45 static __initdata unsigned long mhash_entries;
46 static int __init set_mhash_entries(char *str)
50 mhash_entries = simple_strtoul(str, &str, 0);
53 __setup("mhash_entries=", set_mhash_entries);
55 static __initdata unsigned long mphash_entries;
56 static int __init set_mphash_entries(char *str)
60 mphash_entries = simple_strtoul(str, &str, 0);
63 __setup("mphash_entries=", set_mphash_entries);
66 static DEFINE_IDA(mnt_id_ida);
67 static DEFINE_IDA(mnt_group_ida);
69 static struct hlist_head *mount_hashtable __read_mostly;
70 static struct hlist_head *mountpoint_hashtable __read_mostly;
71 static struct kmem_cache *mnt_cache __read_mostly;
72 static DECLARE_RWSEM(namespace_sem);
73 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
77 struct kobject *fs_kobj;
78 EXPORT_SYMBOL_GPL(fs_kobj);
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
88 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
90 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
98 static inline struct hlist_head *mp_hash(struct dentry *dentry)
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
105 static int mnt_alloc_id(struct mount *mnt)
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
115 static void mnt_free_id(struct mount *mnt)
117 ida_free(&mnt_id_ida, mnt->mnt_id);
121 * Allocate a new peer group ID
123 static int mnt_alloc_group_id(struct mount *mnt)
125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
129 mnt->mnt_group_id = res;
134 * Release a peer group ID
136 void mnt_release_group_id(struct mount *mnt)
138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
139 mnt->mnt_group_id = 0;
143 * vfsmount lock must be held for read
145 static inline void mnt_add_count(struct mount *mnt, int n)
148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
157 * vfsmount lock must be held for write
159 unsigned int mnt_get_count(struct mount *mnt)
162 unsigned int count = 0;
165 for_each_possible_cpu(cpu) {
166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
171 return mnt->mnt_count;
175 static struct mount *alloc_vfsmnt(const char *name)
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
181 err = mnt_alloc_id(mnt);
186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
194 goto out_free_devname;
196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
199 mnt->mnt_writers = 0;
202 INIT_HLIST_NODE(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
211 INIT_LIST_HEAD(&mnt->mnt_umounting);
212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
218 kfree_const(mnt->mnt_devname);
223 kmem_cache_free(mnt_cache, mnt);
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
246 bool __mnt_is_readonly(struct vfsmount *mnt)
248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
250 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
252 static inline void mnt_inc_writers(struct mount *mnt)
255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
261 static inline void mnt_dec_writers(struct mount *mnt)
264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
270 static unsigned int mnt_get_writers(struct mount *mnt)
273 unsigned int count = 0;
276 for_each_possible_cpu(cpu) {
277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
282 return mnt->mnt_writers;
286 static int mnt_is_readonly(struct vfsmount *mnt)
288 if (mnt->mnt_sb->s_readonly_remount)
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
292 return __mnt_is_readonly(mnt);
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
302 * __mnt_want_write - get write access to a mount without freeze protection
303 * @m: the mount on which to take a write
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
311 int __mnt_want_write(struct vfsmount *m)
313 struct mount *mnt = real_mount(m);
317 mnt_inc_writers(mnt);
319 * The store to mnt_inc_writers must be visible before we pass
320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
332 if (mnt_is_readonly(m)) {
333 mnt_dec_writers(mnt);
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
350 int mnt_want_write(struct vfsmount *m)
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
357 sb_end_write(m->mnt_sb);
360 EXPORT_SYMBOL_GPL(mnt_want_write);
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
374 int mnt_clone_write(struct vfsmount *mnt)
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
380 mnt_inc_writers(real_mount(mnt));
384 EXPORT_SYMBOL_GPL(mnt_clone_write);
387 * __mnt_want_write_file - get write access to a file's mount
388 * @file: the file who's mount on which to take a write
390 * This is like __mnt_want_write, but it takes a file and can
391 * do some optimisations if the file is open for write already
393 int __mnt_want_write_file(struct file *file)
395 if (!(file->f_mode & FMODE_WRITER))
396 return __mnt_want_write(file->f_path.mnt);
398 return mnt_clone_write(file->f_path.mnt);
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
408 int mnt_want_write_file(struct file *file)
412 sb_start_write(file_inode(file)->i_sb);
413 ret = __mnt_want_write_file(file);
415 sb_end_write(file_inode(file)->i_sb);
418 EXPORT_SYMBOL_GPL(mnt_want_write_file);
421 * __mnt_drop_write - give up write access to a mount
422 * @mnt: the mount on which to give up write access
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
426 * __mnt_want_write() call above.
428 void __mnt_drop_write(struct vfsmount *mnt)
431 mnt_dec_writers(real_mount(mnt));
436 * mnt_drop_write - give up write access to a mount
437 * @mnt: the mount on which to give up write access
439 * Tells the low-level filesystem that we are done performing writes to it and
440 * also allows filesystem to be frozen again. Must be matched with
441 * mnt_want_write() call above.
443 void mnt_drop_write(struct vfsmount *mnt)
445 __mnt_drop_write(mnt);
446 sb_end_write(mnt->mnt_sb);
448 EXPORT_SYMBOL_GPL(mnt_drop_write);
450 void __mnt_drop_write_file(struct file *file)
452 __mnt_drop_write(file->f_path.mnt);
455 void mnt_drop_write_file(struct file *file)
457 __mnt_drop_write_file(file);
458 sb_end_write(file_inode(file)->i_sb);
460 EXPORT_SYMBOL(mnt_drop_write_file);
462 static int mnt_make_readonly(struct mount *mnt)
467 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
469 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
470 * should be visible before we do.
475 * With writers on hold, if this value is zero, then there are
476 * definitely no active writers (although held writers may subsequently
477 * increment the count, they'll have to wait, and decrement it after
478 * seeing MNT_READONLY).
480 * It is OK to have counter incremented on one CPU and decremented on
481 * another: the sum will add up correctly. The danger would be when we
482 * sum up each counter, if we read a counter before it is incremented,
483 * but then read another CPU's count which it has been subsequently
484 * decremented from -- we would see more decrements than we should.
485 * MNT_WRITE_HOLD protects against this scenario, because
486 * mnt_want_write first increments count, then smp_mb, then spins on
487 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
488 * we're counting up here.
490 if (mnt_get_writers(mnt) > 0)
493 mnt->mnt.mnt_flags |= MNT_READONLY;
495 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
496 * that become unheld will see MNT_READONLY.
499 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
504 static int __mnt_unmake_readonly(struct mount *mnt)
507 mnt->mnt.mnt_flags &= ~MNT_READONLY;
512 int sb_prepare_remount_readonly(struct super_block *sb)
517 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
518 if (atomic_long_read(&sb->s_remove_count))
522 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
523 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
524 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 if (mnt_get_writers(mnt) > 0) {
532 if (!err && atomic_long_read(&sb->s_remove_count))
536 sb->s_readonly_remount = 1;
539 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
540 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
541 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
548 static void free_vfsmnt(struct mount *mnt)
550 kfree_const(mnt->mnt_devname);
552 free_percpu(mnt->mnt_pcp);
554 kmem_cache_free(mnt_cache, mnt);
557 static void delayed_free_vfsmnt(struct rcu_head *head)
559 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
562 /* call under rcu_read_lock */
563 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
566 if (read_seqretry(&mount_lock, seq))
570 mnt = real_mount(bastard);
571 mnt_add_count(mnt, 1);
572 smp_mb(); // see mntput_no_expire()
573 if (likely(!read_seqretry(&mount_lock, seq)))
575 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
576 mnt_add_count(mnt, -1);
580 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
581 mnt_add_count(mnt, -1);
586 /* caller will mntput() */
590 /* call under rcu_read_lock */
591 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593 int res = __legitimize_mnt(bastard, seq);
596 if (unlikely(res < 0)) {
605 * find the first mount at @dentry on vfsmount @mnt.
606 * call under rcu_read_lock()
608 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
610 struct hlist_head *head = m_hash(mnt, dentry);
613 hlist_for_each_entry_rcu(p, head, mnt_hash)
614 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620 * lookup_mnt - Return the first child mount mounted at path
622 * "First" means first mounted chronologically. If you create the
625 * mount /dev/sda1 /mnt
626 * mount /dev/sda2 /mnt
627 * mount /dev/sda3 /mnt
629 * Then lookup_mnt() on the base /mnt dentry in the root mount will
630 * return successively the root dentry and vfsmount of /dev/sda1, then
631 * /dev/sda2, then /dev/sda3, then NULL.
633 * lookup_mnt takes a reference to the found vfsmount.
635 struct vfsmount *lookup_mnt(const struct path *path)
637 struct mount *child_mnt;
643 seq = read_seqbegin(&mount_lock);
644 child_mnt = __lookup_mnt(path->mnt, path->dentry);
645 m = child_mnt ? &child_mnt->mnt : NULL;
646 } while (!legitimize_mnt(m, seq));
651 static inline void lock_ns_list(struct mnt_namespace *ns)
653 spin_lock(&ns->ns_lock);
656 static inline void unlock_ns_list(struct mnt_namespace *ns)
658 spin_unlock(&ns->ns_lock);
661 static inline bool mnt_is_cursor(struct mount *mnt)
663 return mnt->mnt.mnt_flags & MNT_CURSOR;
667 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
668 * current mount namespace.
670 * The common case is dentries are not mountpoints at all and that
671 * test is handled inline. For the slow case when we are actually
672 * dealing with a mountpoint of some kind, walk through all of the
673 * mounts in the current mount namespace and test to see if the dentry
676 * The mount_hashtable is not usable in the context because we
677 * need to identify all mounts that may be in the current mount
678 * namespace not just a mount that happens to have some specified
681 bool __is_local_mountpoint(struct dentry *dentry)
683 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
685 bool is_covered = false;
687 down_read(&namespace_sem);
689 list_for_each_entry(mnt, &ns->list, mnt_list) {
690 if (mnt_is_cursor(mnt))
692 is_covered = (mnt->mnt_mountpoint == dentry);
697 up_read(&namespace_sem);
702 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
704 struct hlist_head *chain = mp_hash(dentry);
705 struct mountpoint *mp;
707 hlist_for_each_entry(mp, chain, m_hash) {
708 if (mp->m_dentry == dentry) {
716 static struct mountpoint *get_mountpoint(struct dentry *dentry)
718 struct mountpoint *mp, *new = NULL;
721 if (d_mountpoint(dentry)) {
722 /* might be worth a WARN_ON() */
723 if (d_unlinked(dentry))
724 return ERR_PTR(-ENOENT);
726 read_seqlock_excl(&mount_lock);
727 mp = lookup_mountpoint(dentry);
728 read_sequnlock_excl(&mount_lock);
734 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
736 return ERR_PTR(-ENOMEM);
739 /* Exactly one processes may set d_mounted */
740 ret = d_set_mounted(dentry);
742 /* Someone else set d_mounted? */
746 /* The dentry is not available as a mountpoint? */
751 /* Add the new mountpoint to the hash table */
752 read_seqlock_excl(&mount_lock);
753 new->m_dentry = dget(dentry);
755 hlist_add_head(&new->m_hash, mp_hash(dentry));
756 INIT_HLIST_HEAD(&new->m_list);
757 read_sequnlock_excl(&mount_lock);
767 * vfsmount lock must be held. Additionally, the caller is responsible
768 * for serializing calls for given disposal list.
770 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
772 if (!--mp->m_count) {
773 struct dentry *dentry = mp->m_dentry;
774 BUG_ON(!hlist_empty(&mp->m_list));
775 spin_lock(&dentry->d_lock);
776 dentry->d_flags &= ~DCACHE_MOUNTED;
777 spin_unlock(&dentry->d_lock);
778 dput_to_list(dentry, list);
779 hlist_del(&mp->m_hash);
784 /* called with namespace_lock and vfsmount lock */
785 static void put_mountpoint(struct mountpoint *mp)
787 __put_mountpoint(mp, &ex_mountpoints);
790 static inline int check_mnt(struct mount *mnt)
792 return mnt->mnt_ns == current->nsproxy->mnt_ns;
796 * vfsmount lock must be held for write
798 static void touch_mnt_namespace(struct mnt_namespace *ns)
802 wake_up_interruptible(&ns->poll);
807 * vfsmount lock must be held for write
809 static void __touch_mnt_namespace(struct mnt_namespace *ns)
811 if (ns && ns->event != event) {
813 wake_up_interruptible(&ns->poll);
818 * vfsmount lock must be held for write
820 static struct mountpoint *unhash_mnt(struct mount *mnt)
822 struct mountpoint *mp;
823 mnt->mnt_parent = mnt;
824 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
825 list_del_init(&mnt->mnt_child);
826 hlist_del_init_rcu(&mnt->mnt_hash);
827 hlist_del_init(&mnt->mnt_mp_list);
834 * vfsmount lock must be held for write
836 static void umount_mnt(struct mount *mnt)
838 put_mountpoint(unhash_mnt(mnt));
842 * vfsmount lock must be held for write
844 void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
846 struct mount *child_mnt)
849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
850 child_mnt->mnt_mountpoint = mp->m_dentry;
851 child_mnt->mnt_parent = mnt;
852 child_mnt->mnt_mp = mp;
853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
856 static void __attach_mnt(struct mount *mnt, struct mount *parent)
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
864 * vfsmount lock must be held for write
866 static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
870 mnt_set_mountpoint(parent, mp, mnt);
871 __attach_mnt(mnt, parent);
874 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
876 struct mountpoint *old_mp = mnt->mnt_mp;
877 struct mount *old_parent = mnt->mnt_parent;
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
883 attach_mnt(mnt, parent, mp);
885 put_mountpoint(old_mp);
886 mnt_add_count(old_parent, -1);
890 * vfsmount lock must be held for write
892 static void commit_tree(struct mount *mnt)
894 struct mount *parent = mnt->mnt_parent;
897 struct mnt_namespace *n = parent->mnt_ns;
899 BUG_ON(parent == mnt);
901 list_add_tail(&head, &mnt->mnt_list);
902 list_for_each_entry(m, &head, mnt_list)
905 list_splice(&head, n->list.prev);
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
910 __attach_mnt(mnt, parent);
911 touch_mnt_namespace(n);
914 static struct mount *next_mnt(struct mount *p, struct mount *root)
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
927 return list_entry(next, struct mount, mnt_child);
930 static struct mount *skip_mnt_tree(struct mount *p)
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
947 * Note that this does not attach the mount to anything.
949 struct vfsmount *vfs_create_mount(struct fs_context *fc)
954 return ERR_PTR(-EINVAL);
956 mnt = alloc_vfsmnt(fc->source ?: "none");
958 return ERR_PTR(-ENOMEM);
960 if (fc->sb_flags & SB_KERNMOUNT)
961 mnt->mnt.mnt_flags = MNT_INTERNAL;
963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
974 EXPORT_SYMBOL(vfs_create_mount);
976 struct vfsmount *fc_mount(struct fs_context *fc)
978 int err = vfs_get_tree(fc);
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
985 EXPORT_SYMBOL(fc_mount);
987 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
991 struct fs_context *fc;
992 struct vfsmount *mnt;
996 return ERR_PTR(-EINVAL);
998 fc = fs_context_for_mount(type, flags);
1000 return ERR_CAST(fc);
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
1006 ret = parse_monolithic_mount_data(fc, data);
1015 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1018 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1030 EXPORT_SYMBOL_GPL(vfs_submount);
1032 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1035 struct super_block *sb = old->mnt.mnt_sb;
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1041 return ERR_PTR(-ENOMEM);
1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1046 mnt->mnt_group_id = old->mnt_group_id;
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1064 unlock_mount_hash();
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
1078 CLEAR_MNT_SHARED(mnt);
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1095 return ERR_PTR(err);
1098 static void cleanup_mnt(struct mount *mnt)
1100 struct hlist_node *p;
1103 * The warning here probably indicates that somebody messed
1104 * up a mnt_want/drop_write() pair. If this happens, the
1105 * filesystem was probably unable to make r/w->r/o transitions.
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1112 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1113 hlist_del(&m->mnt_umount);
1116 fsnotify_vfsmount_delete(&mnt->mnt);
1117 dput(mnt->mnt.mnt_root);
1118 deactivate_super(mnt->mnt.mnt_sb);
1120 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1123 static void __cleanup_mnt(struct rcu_head *head)
1125 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1128 static LLIST_HEAD(delayed_mntput_list);
1129 static void delayed_mntput(struct work_struct *unused)
1131 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1132 struct mount *m, *t;
1134 llist_for_each_entry_safe(m, t, node, mnt_llist)
1137 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1139 static void mntput_no_expire(struct mount *mnt)
1144 if (likely(READ_ONCE(mnt->mnt_ns))) {
1146 * Since we don't do lock_mount_hash() here,
1147 * ->mnt_ns can change under us. However, if it's
1148 * non-NULL, then there's a reference that won't
1149 * be dropped until after an RCU delay done after
1150 * turning ->mnt_ns NULL. So if we observe it
1151 * non-NULL under rcu_read_lock(), the reference
1152 * we are dropping is not the final one.
1154 mnt_add_count(mnt, -1);
1160 * make sure that if __legitimize_mnt() has not seen us grab
1161 * mount_lock, we'll see their refcount increment here.
1164 mnt_add_count(mnt, -1);
1165 if (mnt_get_count(mnt)) {
1167 unlock_mount_hash();
1170 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1172 unlock_mount_hash();
1175 mnt->mnt.mnt_flags |= MNT_DOOMED;
1178 list_del(&mnt->mnt_instance);
1180 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181 struct mount *p, *tmp;
1182 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1183 __put_mountpoint(unhash_mnt(p), &list);
1184 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1187 unlock_mount_hash();
1188 shrink_dentry_list(&list);
1190 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1191 struct task_struct *task = current;
1192 if (likely(!(task->flags & PF_KTHREAD))) {
1193 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1194 if (!task_work_add(task, &mnt->mnt_rcu, true))
1197 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1198 schedule_delayed_work(&delayed_mntput_work, 1);
1204 void mntput(struct vfsmount *mnt)
1207 struct mount *m = real_mount(mnt);
1208 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1209 if (unlikely(m->mnt_expiry_mark))
1210 m->mnt_expiry_mark = 0;
1211 mntput_no_expire(m);
1214 EXPORT_SYMBOL(mntput);
1216 struct vfsmount *mntget(struct vfsmount *mnt)
1219 mnt_add_count(real_mount(mnt), 1);
1222 EXPORT_SYMBOL(mntget);
1224 /* path_is_mountpoint() - Check if path is a mount in the current
1227 * d_mountpoint() can only be used reliably to establish if a dentry is
1228 * not mounted in any namespace and that common case is handled inline.
1229 * d_mountpoint() isn't aware of the possibility there may be multiple
1230 * mounts using a given dentry in a different namespace. This function
1231 * checks if the passed in path is a mountpoint rather than the dentry
1234 bool path_is_mountpoint(const struct path *path)
1239 if (!d_mountpoint(path->dentry))
1244 seq = read_seqbegin(&mount_lock);
1245 res = __path_is_mountpoint(path);
1246 } while (read_seqretry(&mount_lock, seq));
1251 EXPORT_SYMBOL(path_is_mountpoint);
1253 struct vfsmount *mnt_clone_internal(const struct path *path)
1256 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1259 p->mnt.mnt_flags |= MNT_INTERNAL;
1263 #ifdef CONFIG_PROC_FS
1264 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1265 struct list_head *p)
1267 struct mount *mnt, *ret = NULL;
1270 list_for_each_continue(p, &ns->list) {
1271 mnt = list_entry(p, typeof(*mnt), mnt_list);
1272 if (!mnt_is_cursor(mnt)) {
1282 /* iterator; we want it to have access to namespace_sem, thus here... */
1283 static void *m_start(struct seq_file *m, loff_t *pos)
1285 struct proc_mounts *p = m->private;
1286 struct list_head *prev;
1288 down_read(&namespace_sem);
1290 prev = &p->ns->list;
1292 prev = &p->cursor.mnt_list;
1294 /* Read after we'd reached the end? */
1295 if (list_empty(prev))
1299 return mnt_list_next(p->ns, prev);
1302 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1304 struct proc_mounts *p = m->private;
1305 struct mount *mnt = v;
1308 return mnt_list_next(p->ns, &mnt->mnt_list);
1311 static void m_stop(struct seq_file *m, void *v)
1313 struct proc_mounts *p = m->private;
1314 struct mount *mnt = v;
1316 lock_ns_list(p->ns);
1318 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1320 list_del_init(&p->cursor.mnt_list);
1321 unlock_ns_list(p->ns);
1322 up_read(&namespace_sem);
1325 static int m_show(struct seq_file *m, void *v)
1327 struct proc_mounts *p = m->private;
1328 struct mount *r = v;
1329 return p->show(m, &r->mnt);
1332 const struct seq_operations mounts_op = {
1339 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1341 down_read(&namespace_sem);
1343 list_del(&cursor->mnt_list);
1345 up_read(&namespace_sem);
1347 #endif /* CONFIG_PROC_FS */
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1357 int may_umount_tree(struct vfsmount *m)
1359 struct mount *mnt = real_mount(m);
1360 int actual_refs = 0;
1361 int minimum_refs = 0;
1365 /* write lock needed for mnt_get_count */
1367 for (p = mnt; p; p = next_mnt(p, mnt)) {
1368 actual_refs += mnt_get_count(p);
1371 unlock_mount_hash();
1373 if (actual_refs > minimum_refs)
1379 EXPORT_SYMBOL(may_umount_tree);
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1394 int may_umount(struct vfsmount *mnt)
1397 down_read(&namespace_sem);
1399 if (propagate_mount_busy(real_mount(mnt), 2))
1401 unlock_mount_hash();
1402 up_read(&namespace_sem);
1406 EXPORT_SYMBOL(may_umount);
1408 static void namespace_unlock(void)
1410 struct hlist_head head;
1411 struct hlist_node *p;
1415 hlist_move_list(&unmounted, &head);
1416 list_splice_init(&ex_mountpoints, &list);
1418 up_write(&namespace_sem);
1420 shrink_dentry_list(&list);
1422 if (likely(hlist_empty(&head)))
1425 synchronize_rcu_expedited();
1427 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1428 hlist_del(&m->mnt_umount);
1433 static inline void namespace_lock(void)
1435 down_write(&namespace_sem);
1438 enum umount_tree_flags {
1440 UMOUNT_PROPAGATE = 2,
1441 UMOUNT_CONNECTED = 4,
1444 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1446 /* Leaving mounts connected is only valid for lazy umounts */
1447 if (how & UMOUNT_SYNC)
1450 /* A mount without a parent has nothing to be connected to */
1451 if (!mnt_has_parent(mnt))
1454 /* Because the reference counting rules change when mounts are
1455 * unmounted and connected, umounted mounts may not be
1456 * connected to mounted mounts.
1458 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1461 /* Has it been requested that the mount remain connected? */
1462 if (how & UMOUNT_CONNECTED)
1465 /* Is the mount locked such that it needs to remain connected? */
1466 if (IS_MNT_LOCKED(mnt))
1469 /* By default disconnect the mount */
1474 * mount_lock must be held
1475 * namespace_sem must be held for write
1477 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1479 LIST_HEAD(tmp_list);
1482 if (how & UMOUNT_PROPAGATE)
1483 propagate_mount_unlock(mnt);
1485 /* Gather the mounts to umount */
1486 for (p = mnt; p; p = next_mnt(p, mnt)) {
1487 p->mnt.mnt_flags |= MNT_UMOUNT;
1488 list_move(&p->mnt_list, &tmp_list);
1491 /* Hide the mounts from mnt_mounts */
1492 list_for_each_entry(p, &tmp_list, mnt_list) {
1493 list_del_init(&p->mnt_child);
1496 /* Add propogated mounts to the tmp_list */
1497 if (how & UMOUNT_PROPAGATE)
1498 propagate_umount(&tmp_list);
1500 while (!list_empty(&tmp_list)) {
1501 struct mnt_namespace *ns;
1503 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1504 list_del_init(&p->mnt_expire);
1505 list_del_init(&p->mnt_list);
1509 __touch_mnt_namespace(ns);
1512 if (how & UMOUNT_SYNC)
1513 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1515 disconnect = disconnect_mount(p, how);
1516 if (mnt_has_parent(p)) {
1517 mnt_add_count(p->mnt_parent, -1);
1519 /* Don't forget about p */
1520 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1525 change_mnt_propagation(p, MS_PRIVATE);
1527 hlist_add_head(&p->mnt_umount, &unmounted);
1531 static void shrink_submounts(struct mount *mnt);
1533 static int do_umount_root(struct super_block *sb)
1537 down_write(&sb->s_umount);
1538 if (!sb_rdonly(sb)) {
1539 struct fs_context *fc;
1541 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1546 ret = parse_monolithic_mount_data(fc, NULL);
1548 ret = reconfigure_super(fc);
1552 up_write(&sb->s_umount);
1556 static int do_umount(struct mount *mnt, int flags)
1558 struct super_block *sb = mnt->mnt.mnt_sb;
1561 retval = security_sb_umount(&mnt->mnt, flags);
1566 * Allow userspace to request a mountpoint be expired rather than
1567 * unmounting unconditionally. Unmount only happens if:
1568 * (1) the mark is already set (the mark is cleared by mntput())
1569 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1571 if (flags & MNT_EXPIRE) {
1572 if (&mnt->mnt == current->fs->root.mnt ||
1573 flags & (MNT_FORCE | MNT_DETACH))
1577 * probably don't strictly need the lock here if we examined
1578 * all race cases, but it's a slowpath.
1581 if (mnt_get_count(mnt) != 2) {
1582 unlock_mount_hash();
1585 unlock_mount_hash();
1587 if (!xchg(&mnt->mnt_expiry_mark, 1))
1592 * If we may have to abort operations to get out of this
1593 * mount, and they will themselves hold resources we must
1594 * allow the fs to do things. In the Unix tradition of
1595 * 'Gee thats tricky lets do it in userspace' the umount_begin
1596 * might fail to complete on the first run through as other tasks
1597 * must return, and the like. Thats for the mount program to worry
1598 * about for the moment.
1601 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1602 sb->s_op->umount_begin(sb);
1606 * No sense to grab the lock for this test, but test itself looks
1607 * somewhat bogus. Suggestions for better replacement?
1608 * Ho-hum... In principle, we might treat that as umount + switch
1609 * to rootfs. GC would eventually take care of the old vfsmount.
1610 * Actually it makes sense, especially if rootfs would contain a
1611 * /reboot - static binary that would close all descriptors and
1612 * call reboot(9). Then init(8) could umount root and exec /reboot.
1614 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1616 * Special case for "unmounting" root ...
1617 * we just try to remount it readonly.
1619 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1621 return do_umount_root(sb);
1627 /* Recheck MNT_LOCKED with the locks held */
1629 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1633 if (flags & MNT_DETACH) {
1634 if (!list_empty(&mnt->mnt_list))
1635 umount_tree(mnt, UMOUNT_PROPAGATE);
1638 shrink_submounts(mnt);
1640 if (!propagate_mount_busy(mnt, 2)) {
1641 if (!list_empty(&mnt->mnt_list))
1642 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1647 unlock_mount_hash();
1653 * __detach_mounts - lazily unmount all mounts on the specified dentry
1655 * During unlink, rmdir, and d_drop it is possible to loose the path
1656 * to an existing mountpoint, and wind up leaking the mount.
1657 * detach_mounts allows lazily unmounting those mounts instead of
1660 * The caller may hold dentry->d_inode->i_mutex.
1662 void __detach_mounts(struct dentry *dentry)
1664 struct mountpoint *mp;
1669 mp = lookup_mountpoint(dentry);
1674 while (!hlist_empty(&mp->m_list)) {
1675 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1676 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1678 hlist_add_head(&mnt->mnt_umount, &unmounted);
1680 else umount_tree(mnt, UMOUNT_CONNECTED);
1684 unlock_mount_hash();
1689 * Is the caller allowed to modify his namespace?
1691 static inline bool may_mount(void)
1693 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1696 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1697 static inline bool may_mandlock(void)
1699 return capable(CAP_SYS_ADMIN);
1702 static inline bool may_mandlock(void)
1704 pr_warn("VFS: \"mand\" mount option not supported");
1709 static int can_umount(const struct path *path, int flags)
1711 struct mount *mnt = real_mount(path->mnt);
1713 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1717 if (path->dentry != path->mnt->mnt_root)
1719 if (!check_mnt(mnt))
1721 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1723 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1728 int path_umount(struct path *path, int flags)
1730 struct mount *mnt = real_mount(path->mnt);
1733 ret = can_umount(path, flags);
1735 ret = do_umount(mnt, flags);
1737 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1739 mntput_no_expire(mnt);
1743 static int ksys_umount(char __user *name, int flags)
1745 int lookup_flags = LOOKUP_MOUNTPOINT;
1749 if (!(flags & UMOUNT_NOFOLLOW))
1750 lookup_flags |= LOOKUP_FOLLOW;
1751 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1754 return path_umount(&path, flags);
1757 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1759 return ksys_umount(name, flags);
1762 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1765 * The 2.0 compatible umount. No flags.
1767 SYSCALL_DEFINE1(oldumount, char __user *, name)
1769 return ksys_umount(name, 0);
1774 static bool is_mnt_ns_file(struct dentry *dentry)
1776 /* Is this a proxy for a mount namespace? */
1777 return dentry->d_op == &ns_dentry_operations &&
1778 dentry->d_fsdata == &mntns_operations;
1781 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1783 return container_of(ns, struct mnt_namespace, ns);
1786 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1791 static bool mnt_ns_loop(struct dentry *dentry)
1793 /* Could bind mounting the mount namespace inode cause a
1794 * mount namespace loop?
1796 struct mnt_namespace *mnt_ns;
1797 if (!is_mnt_ns_file(dentry))
1800 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1801 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1804 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1807 struct mount *res, *p, *q, *r, *parent;
1809 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1810 return ERR_PTR(-EINVAL);
1812 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1813 return ERR_PTR(-EINVAL);
1815 res = q = clone_mnt(mnt, dentry, flag);
1819 q->mnt_mountpoint = mnt->mnt_mountpoint;
1822 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1824 if (!is_subdir(r->mnt_mountpoint, dentry))
1827 for (s = r; s; s = next_mnt(s, r)) {
1828 if (!(flag & CL_COPY_UNBINDABLE) &&
1829 IS_MNT_UNBINDABLE(s)) {
1830 if (s->mnt.mnt_flags & MNT_LOCKED) {
1831 /* Both unbindable and locked. */
1832 q = ERR_PTR(-EPERM);
1835 s = skip_mnt_tree(s);
1839 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1840 is_mnt_ns_file(s->mnt.mnt_root)) {
1841 s = skip_mnt_tree(s);
1844 while (p != s->mnt_parent) {
1850 q = clone_mnt(p, p->mnt.mnt_root, flag);
1854 list_add_tail(&q->mnt_list, &res->mnt_list);
1855 attach_mnt(q, parent, p->mnt_mp);
1856 unlock_mount_hash();
1863 umount_tree(res, UMOUNT_SYNC);
1864 unlock_mount_hash();
1869 /* Caller should check returned pointer for errors */
1871 struct vfsmount *collect_mounts(const struct path *path)
1875 if (!check_mnt(real_mount(path->mnt)))
1876 tree = ERR_PTR(-EINVAL);
1878 tree = copy_tree(real_mount(path->mnt), path->dentry,
1879 CL_COPY_ALL | CL_PRIVATE);
1882 return ERR_CAST(tree);
1886 static void free_mnt_ns(struct mnt_namespace *);
1887 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1889 void dissolve_on_fput(struct vfsmount *mnt)
1891 struct mnt_namespace *ns;
1894 ns = real_mount(mnt)->mnt_ns;
1897 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1901 unlock_mount_hash();
1907 void drop_collected_mounts(struct vfsmount *mnt)
1911 umount_tree(real_mount(mnt), 0);
1912 unlock_mount_hash();
1917 * clone_private_mount - create a private clone of a path
1919 * This creates a new vfsmount, which will be the clone of @path. The new will
1920 * not be attached anywhere in the namespace and will be private (i.e. changes
1921 * to the originating mount won't be propagated into this).
1923 * Release with mntput().
1925 struct vfsmount *clone_private_mount(const struct path *path)
1927 struct mount *old_mnt = real_mount(path->mnt);
1928 struct mount *new_mnt;
1930 if (IS_MNT_UNBINDABLE(old_mnt))
1931 return ERR_PTR(-EINVAL);
1933 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1934 if (IS_ERR(new_mnt))
1935 return ERR_CAST(new_mnt);
1937 /* Longterm mount to be removed by kern_unmount*() */
1938 new_mnt->mnt_ns = MNT_NS_INTERNAL;
1940 return &new_mnt->mnt;
1942 EXPORT_SYMBOL_GPL(clone_private_mount);
1944 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1945 struct vfsmount *root)
1948 int res = f(root, arg);
1951 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1952 res = f(&mnt->mnt, arg);
1959 static void lock_mnt_tree(struct mount *mnt)
1963 for (p = mnt; p; p = next_mnt(p, mnt)) {
1964 int flags = p->mnt.mnt_flags;
1965 /* Don't allow unprivileged users to change mount flags */
1966 flags |= MNT_LOCK_ATIME;
1968 if (flags & MNT_READONLY)
1969 flags |= MNT_LOCK_READONLY;
1971 if (flags & MNT_NODEV)
1972 flags |= MNT_LOCK_NODEV;
1974 if (flags & MNT_NOSUID)
1975 flags |= MNT_LOCK_NOSUID;
1977 if (flags & MNT_NOEXEC)
1978 flags |= MNT_LOCK_NOEXEC;
1979 /* Don't allow unprivileged users to reveal what is under a mount */
1980 if (list_empty(&p->mnt_expire))
1981 flags |= MNT_LOCKED;
1982 p->mnt.mnt_flags = flags;
1986 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1990 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1991 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1992 mnt_release_group_id(p);
1996 static int invent_group_ids(struct mount *mnt, bool recurse)
2000 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2001 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2002 int err = mnt_alloc_group_id(p);
2004 cleanup_group_ids(mnt, p);
2013 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2015 unsigned int max = READ_ONCE(sysctl_mount_max);
2016 unsigned int mounts = 0, old, pending, sum;
2019 for (p = mnt; p; p = next_mnt(p, mnt))
2023 pending = ns->pending_mounts;
2024 sum = old + pending;
2028 (mounts > (max - sum)))
2031 ns->pending_mounts = pending + mounts;
2036 * @source_mnt : mount tree to be attached
2037 * @nd : place the mount tree @source_mnt is attached
2038 * @parent_nd : if non-null, detach the source_mnt from its parent and
2039 * store the parent mount and mountpoint dentry.
2040 * (done when source_mnt is moved)
2042 * NOTE: in the table below explains the semantics when a source mount
2043 * of a given type is attached to a destination mount of a given type.
2044 * ---------------------------------------------------------------------------
2045 * | BIND MOUNT OPERATION |
2046 * |**************************************************************************
2047 * | source-->| shared | private | slave | unbindable |
2051 * |**************************************************************************
2052 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2054 * |non-shared| shared (+) | private | slave (*) | invalid |
2055 * ***************************************************************************
2056 * A bind operation clones the source mount and mounts the clone on the
2057 * destination mount.
2059 * (++) the cloned mount is propagated to all the mounts in the propagation
2060 * tree of the destination mount and the cloned mount is added to
2061 * the peer group of the source mount.
2062 * (+) the cloned mount is created under the destination mount and is marked
2063 * as shared. The cloned mount is added to the peer group of the source
2065 * (+++) the mount is propagated to all the mounts in the propagation tree
2066 * of the destination mount and the cloned mount is made slave
2067 * of the same master as that of the source mount. The cloned mount
2068 * is marked as 'shared and slave'.
2069 * (*) the cloned mount is made a slave of the same master as that of the
2072 * ---------------------------------------------------------------------------
2073 * | MOVE MOUNT OPERATION |
2074 * |**************************************************************************
2075 * | source-->| shared | private | slave | unbindable |
2079 * |**************************************************************************
2080 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2082 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2083 * ***************************************************************************
2085 * (+) the mount is moved to the destination. And is then propagated to
2086 * all the mounts in the propagation tree of the destination mount.
2087 * (+*) the mount is moved to the destination.
2088 * (+++) the mount is moved to the destination and is then propagated to
2089 * all the mounts belonging to the destination mount's propagation tree.
2090 * the mount is marked as 'shared and slave'.
2091 * (*) the mount continues to be a slave at the new location.
2093 * if the source mount is a tree, the operations explained above is
2094 * applied to each mount in the tree.
2095 * Must be called without spinlocks held, since this function can sleep
2098 static int attach_recursive_mnt(struct mount *source_mnt,
2099 struct mount *dest_mnt,
2100 struct mountpoint *dest_mp,
2103 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2104 HLIST_HEAD(tree_list);
2105 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2106 struct mountpoint *smp;
2107 struct mount *child, *p;
2108 struct hlist_node *n;
2111 /* Preallocate a mountpoint in case the new mounts need
2112 * to be tucked under other mounts.
2114 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2116 return PTR_ERR(smp);
2118 /* Is there space to add these mounts to the mount namespace? */
2120 err = count_mounts(ns, source_mnt);
2125 if (IS_MNT_SHARED(dest_mnt)) {
2126 err = invent_group_ids(source_mnt, true);
2129 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2132 goto out_cleanup_ids;
2133 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2139 unhash_mnt(source_mnt);
2140 attach_mnt(source_mnt, dest_mnt, dest_mp);
2141 touch_mnt_namespace(source_mnt->mnt_ns);
2143 if (source_mnt->mnt_ns) {
2144 /* move from anon - the caller will destroy */
2145 list_del_init(&source_mnt->mnt_ns->list);
2147 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2148 commit_tree(source_mnt);
2151 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2153 hlist_del_init(&child->mnt_hash);
2154 q = __lookup_mnt(&child->mnt_parent->mnt,
2155 child->mnt_mountpoint);
2157 mnt_change_mountpoint(child, smp, q);
2158 /* Notice when we are propagating across user namespaces */
2159 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2160 lock_mnt_tree(child);
2161 child->mnt.mnt_flags &= ~MNT_LOCKED;
2164 put_mountpoint(smp);
2165 unlock_mount_hash();
2170 while (!hlist_empty(&tree_list)) {
2171 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2172 child->mnt_parent->mnt_ns->pending_mounts = 0;
2173 umount_tree(child, UMOUNT_SYNC);
2175 unlock_mount_hash();
2176 cleanup_group_ids(source_mnt, NULL);
2178 ns->pending_mounts = 0;
2180 read_seqlock_excl(&mount_lock);
2181 put_mountpoint(smp);
2182 read_sequnlock_excl(&mount_lock);
2187 static struct mountpoint *lock_mount(struct path *path)
2189 struct vfsmount *mnt;
2190 struct dentry *dentry = path->dentry;
2192 inode_lock(dentry->d_inode);
2193 if (unlikely(cant_mount(dentry))) {
2194 inode_unlock(dentry->d_inode);
2195 return ERR_PTR(-ENOENT);
2198 mnt = lookup_mnt(path);
2200 struct mountpoint *mp = get_mountpoint(dentry);
2203 inode_unlock(dentry->d_inode);
2209 inode_unlock(path->dentry->d_inode);
2212 dentry = path->dentry = dget(mnt->mnt_root);
2216 static void unlock_mount(struct mountpoint *where)
2218 struct dentry *dentry = where->m_dentry;
2220 read_seqlock_excl(&mount_lock);
2221 put_mountpoint(where);
2222 read_sequnlock_excl(&mount_lock);
2225 inode_unlock(dentry->d_inode);
2228 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2230 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2233 if (d_is_dir(mp->m_dentry) !=
2234 d_is_dir(mnt->mnt.mnt_root))
2237 return attach_recursive_mnt(mnt, p, mp, false);
2241 * Sanity check the flags to change_mnt_propagation.
2244 static int flags_to_propagation_type(int ms_flags)
2246 int type = ms_flags & ~(MS_REC | MS_SILENT);
2248 /* Fail if any non-propagation flags are set */
2249 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2251 /* Only one propagation flag should be set */
2252 if (!is_power_of_2(type))
2258 * recursively change the type of the mountpoint.
2260 static int do_change_type(struct path *path, int ms_flags)
2263 struct mount *mnt = real_mount(path->mnt);
2264 int recurse = ms_flags & MS_REC;
2268 if (path->dentry != path->mnt->mnt_root)
2271 type = flags_to_propagation_type(ms_flags);
2276 if (type == MS_SHARED) {
2277 err = invent_group_ids(mnt, recurse);
2283 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2284 change_mnt_propagation(m, type);
2285 unlock_mount_hash();
2292 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2294 struct mount *child;
2295 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2296 if (!is_subdir(child->mnt_mountpoint, dentry))
2299 if (child->mnt.mnt_flags & MNT_LOCKED)
2305 static struct mount *__do_loopback(struct path *old_path, int recurse)
2307 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2309 if (IS_MNT_UNBINDABLE(old))
2312 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2315 if (!recurse && has_locked_children(old, old_path->dentry))
2319 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2321 mnt = clone_mnt(old, old_path->dentry, 0);
2324 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2330 * do loopback mount.
2332 static int do_loopback(struct path *path, const char *old_name,
2335 struct path old_path;
2336 struct mount *mnt = NULL, *parent;
2337 struct mountpoint *mp;
2339 if (!old_name || !*old_name)
2341 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2346 if (mnt_ns_loop(old_path.dentry))
2349 mp = lock_mount(path);
2355 parent = real_mount(path->mnt);
2356 if (!check_mnt(parent))
2359 mnt = __do_loopback(&old_path, recurse);
2365 err = graft_tree(mnt, parent, mp);
2368 umount_tree(mnt, UMOUNT_SYNC);
2369 unlock_mount_hash();
2374 path_put(&old_path);
2378 static struct file *open_detached_copy(struct path *path, bool recursive)
2380 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2381 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2382 struct mount *mnt, *p;
2386 return ERR_CAST(ns);
2389 mnt = __do_loopback(path, recursive);
2393 return ERR_CAST(mnt);
2397 for (p = mnt; p; p = next_mnt(p, mnt)) {
2402 list_add_tail(&ns->list, &mnt->mnt_list);
2404 unlock_mount_hash();
2408 path->mnt = &mnt->mnt;
2409 file = dentry_open(path, O_PATH, current_cred());
2411 dissolve_on_fput(path->mnt);
2413 file->f_mode |= FMODE_NEED_UNMOUNT;
2417 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2421 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2422 bool detached = flags & OPEN_TREE_CLONE;
2426 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2428 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2429 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2433 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2436 if (flags & AT_NO_AUTOMOUNT)
2437 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2438 if (flags & AT_SYMLINK_NOFOLLOW)
2439 lookup_flags &= ~LOOKUP_FOLLOW;
2440 if (flags & AT_EMPTY_PATH)
2441 lookup_flags |= LOOKUP_EMPTY;
2443 if (detached && !may_mount())
2446 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2450 error = user_path_at(dfd, filename, lookup_flags, &path);
2451 if (unlikely(error)) {
2452 file = ERR_PTR(error);
2455 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2457 file = dentry_open(&path, O_PATH, current_cred());
2462 return PTR_ERR(file);
2464 fd_install(fd, file);
2469 * Don't allow locked mount flags to be cleared.
2471 * No locks need to be held here while testing the various MNT_LOCK
2472 * flags because those flags can never be cleared once they are set.
2474 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2476 unsigned int fl = mnt->mnt.mnt_flags;
2478 if ((fl & MNT_LOCK_READONLY) &&
2479 !(mnt_flags & MNT_READONLY))
2482 if ((fl & MNT_LOCK_NODEV) &&
2483 !(mnt_flags & MNT_NODEV))
2486 if ((fl & MNT_LOCK_NOSUID) &&
2487 !(mnt_flags & MNT_NOSUID))
2490 if ((fl & MNT_LOCK_NOEXEC) &&
2491 !(mnt_flags & MNT_NOEXEC))
2494 if ((fl & MNT_LOCK_ATIME) &&
2495 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2501 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2503 bool readonly_request = (mnt_flags & MNT_READONLY);
2505 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2508 if (readonly_request)
2509 return mnt_make_readonly(mnt);
2511 return __mnt_unmake_readonly(mnt);
2515 * Update the user-settable attributes on a mount. The caller must hold
2516 * sb->s_umount for writing.
2518 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2521 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2522 mnt->mnt.mnt_flags = mnt_flags;
2523 touch_mnt_namespace(mnt->mnt_ns);
2524 unlock_mount_hash();
2527 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2529 struct super_block *sb = mnt->mnt_sb;
2531 if (!__mnt_is_readonly(mnt) &&
2532 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2533 char *buf = (char *)__get_free_page(GFP_KERNEL);
2534 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2537 time64_to_tm(sb->s_time_max, 0, &tm);
2539 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2541 is_mounted(mnt) ? "remounted" : "mounted",
2543 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2545 free_page((unsigned long)buf);
2550 * Handle reconfiguration of the mountpoint only without alteration of the
2551 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2554 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2556 struct super_block *sb = path->mnt->mnt_sb;
2557 struct mount *mnt = real_mount(path->mnt);
2560 if (!check_mnt(mnt))
2563 if (path->dentry != mnt->mnt.mnt_root)
2566 if (!can_change_locked_flags(mnt, mnt_flags))
2569 down_write(&sb->s_umount);
2570 ret = change_mount_ro_state(mnt, mnt_flags);
2572 set_mount_attributes(mnt, mnt_flags);
2573 up_write(&sb->s_umount);
2575 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2581 * change filesystem flags. dir should be a physical root of filesystem.
2582 * If you've mounted a non-root directory somewhere and want to do remount
2583 * on it - tough luck.
2585 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2586 int mnt_flags, void *data)
2589 struct super_block *sb = path->mnt->mnt_sb;
2590 struct mount *mnt = real_mount(path->mnt);
2591 struct fs_context *fc;
2593 if (!check_mnt(mnt))
2596 if (path->dentry != path->mnt->mnt_root)
2599 if (!can_change_locked_flags(mnt, mnt_flags))
2602 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2607 err = parse_monolithic_mount_data(fc, data);
2609 down_write(&sb->s_umount);
2611 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2612 err = reconfigure_super(fc);
2614 set_mount_attributes(mnt, mnt_flags);
2616 up_write(&sb->s_umount);
2619 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2625 static inline int tree_contains_unbindable(struct mount *mnt)
2628 for (p = mnt; p; p = next_mnt(p, mnt)) {
2629 if (IS_MNT_UNBINDABLE(p))
2636 * Check that there aren't references to earlier/same mount namespaces in the
2637 * specified subtree. Such references can act as pins for mount namespaces
2638 * that aren't checked by the mount-cycle checking code, thereby allowing
2639 * cycles to be made.
2641 static bool check_for_nsfs_mounts(struct mount *subtree)
2647 for (p = subtree; p; p = next_mnt(p, subtree))
2648 if (mnt_ns_loop(p->mnt.mnt_root))
2653 unlock_mount_hash();
2657 static int do_move_mount(struct path *old_path, struct path *new_path)
2659 struct mnt_namespace *ns;
2662 struct mount *parent;
2663 struct mountpoint *mp, *old_mp;
2667 mp = lock_mount(new_path);
2671 old = real_mount(old_path->mnt);
2672 p = real_mount(new_path->mnt);
2673 parent = old->mnt_parent;
2674 attached = mnt_has_parent(old);
2675 old_mp = old->mnt_mp;
2679 /* The mountpoint must be in our namespace. */
2683 /* The thing moved must be mounted... */
2684 if (!is_mounted(&old->mnt))
2687 /* ... and either ours or the root of anon namespace */
2688 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2691 if (old->mnt.mnt_flags & MNT_LOCKED)
2694 if (old_path->dentry != old_path->mnt->mnt_root)
2697 if (d_is_dir(new_path->dentry) !=
2698 d_is_dir(old_path->dentry))
2701 * Don't move a mount residing in a shared parent.
2703 if (attached && IS_MNT_SHARED(parent))
2706 * Don't move a mount tree containing unbindable mounts to a destination
2707 * mount which is shared.
2709 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2712 if (!check_for_nsfs_mounts(old))
2714 for (; mnt_has_parent(p); p = p->mnt_parent)
2718 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2723 /* if the mount is moved, it should no longer be expire
2725 list_del_init(&old->mnt_expire);
2727 put_mountpoint(old_mp);
2732 mntput_no_expire(parent);
2739 static int do_move_mount_old(struct path *path, const char *old_name)
2741 struct path old_path;
2744 if (!old_name || !*old_name)
2747 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2751 err = do_move_mount(&old_path, path);
2752 path_put(&old_path);
2757 * add a mount into a namespace's mount tree
2759 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2760 struct path *path, int mnt_flags)
2762 struct mount *parent = real_mount(path->mnt);
2764 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2766 if (unlikely(!check_mnt(parent))) {
2767 /* that's acceptable only for automounts done in private ns */
2768 if (!(mnt_flags & MNT_SHRINKABLE))
2770 /* ... and for those we'd better have mountpoint still alive */
2771 if (!parent->mnt_ns)
2775 /* Refuse the same filesystem on the same mount point */
2776 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2777 path->mnt->mnt_root == path->dentry)
2780 if (d_is_symlink(newmnt->mnt.mnt_root))
2783 newmnt->mnt.mnt_flags = mnt_flags;
2784 return graft_tree(newmnt, parent, mp);
2787 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2790 * Create a new mount using a superblock configuration and request it
2791 * be added to the namespace tree.
2793 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2794 unsigned int mnt_flags)
2796 struct vfsmount *mnt;
2797 struct mountpoint *mp;
2798 struct super_block *sb = fc->root->d_sb;
2801 error = security_sb_kern_mount(sb);
2802 if (!error && mount_too_revealing(sb, &mnt_flags))
2805 if (unlikely(error)) {
2810 up_write(&sb->s_umount);
2812 mnt = vfs_create_mount(fc);
2814 return PTR_ERR(mnt);
2816 mnt_warn_timestamp_expiry(mountpoint, mnt);
2818 mp = lock_mount(mountpoint);
2823 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2831 * create a new mount for userspace and request it to be added into the
2834 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2835 int mnt_flags, const char *name, void *data)
2837 struct file_system_type *type;
2838 struct fs_context *fc;
2839 const char *subtype = NULL;
2845 type = get_fs_type(fstype);
2849 if (type->fs_flags & FS_HAS_SUBTYPE) {
2850 subtype = strchr(fstype, '.');
2854 put_filesystem(type);
2860 fc = fs_context_for_mount(type, sb_flags);
2861 put_filesystem(type);
2866 err = vfs_parse_fs_string(fc, "subtype",
2867 subtype, strlen(subtype));
2869 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2871 err = parse_monolithic_mount_data(fc, data);
2872 if (!err && !mount_capable(fc))
2875 err = vfs_get_tree(fc);
2877 err = do_new_mount_fc(fc, path, mnt_flags);
2883 int finish_automount(struct vfsmount *m, struct path *path)
2885 struct dentry *dentry = path->dentry;
2886 struct mountpoint *mp;
2895 mnt = real_mount(m);
2896 /* The new mount record should have at least 2 refs to prevent it being
2897 * expired before we get a chance to add it
2899 BUG_ON(mnt_get_count(mnt) < 2);
2901 if (m->mnt_sb == path->mnt->mnt_sb &&
2902 m->mnt_root == dentry) {
2908 * we don't want to use lock_mount() - in this case finding something
2909 * that overmounts our mountpoint to be means "quitely drop what we've
2910 * got", not "try to mount it on top".
2912 inode_lock(dentry->d_inode);
2914 if (unlikely(cant_mount(dentry))) {
2916 goto discard_locked;
2919 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
2922 goto discard_locked;
2925 mp = get_mountpoint(dentry);
2928 goto discard_locked;
2931 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2940 inode_unlock(dentry->d_inode);
2942 /* remove m from any expiration list it may be on */
2943 if (!list_empty(&mnt->mnt_expire)) {
2945 list_del_init(&mnt->mnt_expire);
2954 * mnt_set_expiry - Put a mount on an expiration list
2955 * @mnt: The mount to list.
2956 * @expiry_list: The list to add the mount to.
2958 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2962 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2966 EXPORT_SYMBOL(mnt_set_expiry);
2969 * process a list of expirable mountpoints with the intent of discarding any
2970 * mountpoints that aren't in use and haven't been touched since last we came
2973 void mark_mounts_for_expiry(struct list_head *mounts)
2975 struct mount *mnt, *next;
2976 LIST_HEAD(graveyard);
2978 if (list_empty(mounts))
2984 /* extract from the expiration list every vfsmount that matches the
2985 * following criteria:
2986 * - only referenced by its parent vfsmount
2987 * - still marked for expiry (marked on the last call here; marks are
2988 * cleared by mntput())
2990 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2991 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2992 propagate_mount_busy(mnt, 1))
2994 list_move(&mnt->mnt_expire, &graveyard);
2996 while (!list_empty(&graveyard)) {
2997 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2998 touch_mnt_namespace(mnt->mnt_ns);
2999 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3001 unlock_mount_hash();
3005 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3008 * Ripoff of 'select_parent()'
3010 * search the list of submounts for a given mountpoint, and move any
3011 * shrinkable submounts to the 'graveyard' list.
3013 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3015 struct mount *this_parent = parent;
3016 struct list_head *next;
3020 next = this_parent->mnt_mounts.next;
3022 while (next != &this_parent->mnt_mounts) {
3023 struct list_head *tmp = next;
3024 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3027 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3030 * Descend a level if the d_mounts list is non-empty.
3032 if (!list_empty(&mnt->mnt_mounts)) {
3037 if (!propagate_mount_busy(mnt, 1)) {
3038 list_move_tail(&mnt->mnt_expire, graveyard);
3043 * All done at this level ... ascend and resume the search
3045 if (this_parent != parent) {
3046 next = this_parent->mnt_child.next;
3047 this_parent = this_parent->mnt_parent;
3054 * process a list of expirable mountpoints with the intent of discarding any
3055 * submounts of a specific parent mountpoint
3057 * mount_lock must be held for write
3059 static void shrink_submounts(struct mount *mnt)
3061 LIST_HEAD(graveyard);
3064 /* extract submounts of 'mountpoint' from the expiration list */
3065 while (select_submounts(mnt, &graveyard)) {
3066 while (!list_empty(&graveyard)) {
3067 m = list_first_entry(&graveyard, struct mount,
3069 touch_mnt_namespace(m->mnt_ns);
3070 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3075 void *copy_mount_options(const void __user * data)
3083 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3085 return ERR_PTR(-ENOMEM);
3087 size = PAGE_SIZE - offset_in_page(data);
3089 if (copy_from_user(copy, data, size)) {
3091 return ERR_PTR(-EFAULT);
3093 if (size != PAGE_SIZE) {
3094 if (copy_from_user(copy + size, data + size, PAGE_SIZE - size))
3095 memset(copy + size, 0, PAGE_SIZE - size);
3100 char *copy_mount_string(const void __user *data)
3102 return data ? strndup_user(data, PATH_MAX) : NULL;
3106 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3107 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3109 * data is a (void *) that can point to any structure up to
3110 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3111 * information (or be NULL).
3113 * Pre-0.97 versions of mount() didn't have a flags word.
3114 * When the flags word was introduced its top half was required
3115 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3116 * Therefore, if this magic number is present, it carries no information
3117 * and must be discarded.
3119 int path_mount(const char *dev_name, struct path *path,
3120 const char *type_page, unsigned long flags, void *data_page)
3122 unsigned int mnt_flags = 0, sb_flags;
3126 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3127 flags &= ~MS_MGC_MSK;
3129 /* Basic sanity checks */
3131 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3133 if (flags & MS_NOUSER)
3136 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3141 if ((flags & SB_MANDLOCK) && !may_mandlock())
3144 /* Default to relatime unless overriden */
3145 if (!(flags & MS_NOATIME))
3146 mnt_flags |= MNT_RELATIME;
3148 /* Separate the per-mountpoint flags */
3149 if (flags & MS_NOSUID)
3150 mnt_flags |= MNT_NOSUID;
3151 if (flags & MS_NODEV)
3152 mnt_flags |= MNT_NODEV;
3153 if (flags & MS_NOEXEC)
3154 mnt_flags |= MNT_NOEXEC;
3155 if (flags & MS_NOATIME)
3156 mnt_flags |= MNT_NOATIME;
3157 if (flags & MS_NODIRATIME)
3158 mnt_flags |= MNT_NODIRATIME;
3159 if (flags & MS_STRICTATIME)
3160 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3161 if (flags & MS_RDONLY)
3162 mnt_flags |= MNT_READONLY;
3164 /* The default atime for remount is preservation */
3165 if ((flags & MS_REMOUNT) &&
3166 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3167 MS_STRICTATIME)) == 0)) {
3168 mnt_flags &= ~MNT_ATIME_MASK;
3169 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3172 sb_flags = flags & (SB_RDONLY |
3181 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3182 return do_reconfigure_mnt(path, mnt_flags);
3183 if (flags & MS_REMOUNT)
3184 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3185 if (flags & MS_BIND)
3186 return do_loopback(path, dev_name, flags & MS_REC);
3187 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3188 return do_change_type(path, flags);
3189 if (flags & MS_MOVE)
3190 return do_move_mount_old(path, dev_name);
3192 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3196 long do_mount(const char *dev_name, const char __user *dir_name,
3197 const char *type_page, unsigned long flags, void *data_page)
3202 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3205 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3210 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3212 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3215 static void dec_mnt_namespaces(struct ucounts *ucounts)
3217 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3220 static void free_mnt_ns(struct mnt_namespace *ns)
3222 if (!is_anon_ns(ns))
3223 ns_free_inum(&ns->ns);
3224 dec_mnt_namespaces(ns->ucounts);
3225 put_user_ns(ns->user_ns);
3230 * Assign a sequence number so we can detect when we attempt to bind
3231 * mount a reference to an older mount namespace into the current
3232 * mount namespace, preventing reference counting loops. A 64bit
3233 * number incrementing at 10Ghz will take 12,427 years to wrap which
3234 * is effectively never, so we can ignore the possibility.
3236 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3238 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3240 struct mnt_namespace *new_ns;
3241 struct ucounts *ucounts;
3244 ucounts = inc_mnt_namespaces(user_ns);
3246 return ERR_PTR(-ENOSPC);
3248 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3250 dec_mnt_namespaces(ucounts);
3251 return ERR_PTR(-ENOMEM);
3254 ret = ns_alloc_inum(&new_ns->ns);
3257 dec_mnt_namespaces(ucounts);
3258 return ERR_PTR(ret);
3261 new_ns->ns.ops = &mntns_operations;
3263 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3264 atomic_set(&new_ns->count, 1);
3265 INIT_LIST_HEAD(&new_ns->list);
3266 init_waitqueue_head(&new_ns->poll);
3267 spin_lock_init(&new_ns->ns_lock);
3268 new_ns->user_ns = get_user_ns(user_ns);
3269 new_ns->ucounts = ucounts;
3274 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3275 struct user_namespace *user_ns, struct fs_struct *new_fs)
3277 struct mnt_namespace *new_ns;
3278 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3279 struct mount *p, *q;
3286 if (likely(!(flags & CLONE_NEWNS))) {
3293 new_ns = alloc_mnt_ns(user_ns, false);
3298 /* First pass: copy the tree topology */
3299 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3300 if (user_ns != ns->user_ns)
3301 copy_flags |= CL_SHARED_TO_SLAVE;
3302 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3305 free_mnt_ns(new_ns);
3306 return ERR_CAST(new);
3308 if (user_ns != ns->user_ns) {
3311 unlock_mount_hash();
3314 list_add_tail(&new_ns->list, &new->mnt_list);
3317 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3318 * as belonging to new namespace. We have already acquired a private
3319 * fs_struct, so tsk->fs->lock is not needed.
3327 if (&p->mnt == new_fs->root.mnt) {
3328 new_fs->root.mnt = mntget(&q->mnt);
3331 if (&p->mnt == new_fs->pwd.mnt) {
3332 new_fs->pwd.mnt = mntget(&q->mnt);
3336 p = next_mnt(p, old);
3337 q = next_mnt(q, new);
3340 while (p->mnt.mnt_root != q->mnt.mnt_root)
3341 p = next_mnt(p, old);
3353 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3355 struct mount *mnt = real_mount(m);
3356 struct mnt_namespace *ns;
3357 struct super_block *s;
3361 ns = alloc_mnt_ns(&init_user_ns, true);
3364 return ERR_CAST(ns);
3369 list_add(&mnt->mnt_list, &ns->list);
3371 err = vfs_path_lookup(m->mnt_root, m,
3372 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3377 return ERR_PTR(err);
3379 /* trade a vfsmount reference for active sb one */
3380 s = path.mnt->mnt_sb;
3381 atomic_inc(&s->s_active);
3383 /* lock the sucker */
3384 down_write(&s->s_umount);
3385 /* ... and return the root of (sub)tree on it */
3388 EXPORT_SYMBOL(mount_subtree);
3390 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3391 char __user *, type, unsigned long, flags, void __user *, data)
3398 kernel_type = copy_mount_string(type);
3399 ret = PTR_ERR(kernel_type);
3400 if (IS_ERR(kernel_type))
3403 kernel_dev = copy_mount_string(dev_name);
3404 ret = PTR_ERR(kernel_dev);
3405 if (IS_ERR(kernel_dev))
3408 options = copy_mount_options(data);
3409 ret = PTR_ERR(options);
3410 if (IS_ERR(options))
3413 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3425 * Create a kernel mount representation for a new, prepared superblock
3426 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3428 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3429 unsigned int, attr_flags)
3431 struct mnt_namespace *ns;
3432 struct fs_context *fc;
3434 struct path newmount;
3437 unsigned int mnt_flags = 0;
3443 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3446 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3451 MOUNT_ATTR_NODIRATIME))
3454 if (attr_flags & MOUNT_ATTR_RDONLY)
3455 mnt_flags |= MNT_READONLY;
3456 if (attr_flags & MOUNT_ATTR_NOSUID)
3457 mnt_flags |= MNT_NOSUID;
3458 if (attr_flags & MOUNT_ATTR_NODEV)
3459 mnt_flags |= MNT_NODEV;
3460 if (attr_flags & MOUNT_ATTR_NOEXEC)
3461 mnt_flags |= MNT_NOEXEC;
3462 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3463 mnt_flags |= MNT_NODIRATIME;
3465 switch (attr_flags & MOUNT_ATTR__ATIME) {
3466 case MOUNT_ATTR_STRICTATIME:
3468 case MOUNT_ATTR_NOATIME:
3469 mnt_flags |= MNT_NOATIME;
3471 case MOUNT_ATTR_RELATIME:
3472 mnt_flags |= MNT_RELATIME;
3483 if (f.file->f_op != &fscontext_fops)
3486 fc = f.file->private_data;
3488 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3492 /* There must be a valid superblock or we can't mount it */
3498 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3499 pr_warn("VFS: Mount too revealing\n");
3504 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3508 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3511 newmount.mnt = vfs_create_mount(fc);
3512 if (IS_ERR(newmount.mnt)) {
3513 ret = PTR_ERR(newmount.mnt);
3516 newmount.dentry = dget(fc->root);
3517 newmount.mnt->mnt_flags = mnt_flags;
3519 /* We've done the mount bit - now move the file context into more or
3520 * less the same state as if we'd done an fspick(). We don't want to
3521 * do any memory allocation or anything like that at this point as we
3522 * don't want to have to handle any errors incurred.
3524 vfs_clean_context(fc);
3526 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3531 mnt = real_mount(newmount.mnt);
3535 list_add(&mnt->mnt_list, &ns->list);
3536 mntget(newmount.mnt);
3538 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3539 * it, not just simply put it.
3541 file = dentry_open(&newmount, O_PATH, fc->cred);
3543 dissolve_on_fput(newmount.mnt);
3544 ret = PTR_ERR(file);
3547 file->f_mode |= FMODE_NEED_UNMOUNT;
3549 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3551 fd_install(ret, file);
3556 path_put(&newmount);
3558 mutex_unlock(&fc->uapi_mutex);
3565 * Move a mount from one place to another. In combination with
3566 * fsopen()/fsmount() this is used to install a new mount and in combination
3567 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3570 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3572 SYSCALL_DEFINE5(move_mount,
3573 int, from_dfd, const char __user *, from_pathname,
3574 int, to_dfd, const char __user *, to_pathname,
3575 unsigned int, flags)
3577 struct path from_path, to_path;
3578 unsigned int lflags;
3584 if (flags & ~MOVE_MOUNT__MASK)
3587 /* If someone gives a pathname, they aren't permitted to move
3588 * from an fd that requires unmount as we can't get at the flag
3589 * to clear it afterwards.
3592 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3593 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3594 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3596 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3601 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3602 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3603 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3605 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3609 ret = security_move_mount(&from_path, &to_path);
3613 ret = do_move_mount(&from_path, &to_path);
3618 path_put(&from_path);
3623 * Return true if path is reachable from root
3625 * namespace_sem or mount_lock is held
3627 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3628 const struct path *root)
3630 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3631 dentry = mnt->mnt_mountpoint;
3632 mnt = mnt->mnt_parent;
3634 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3637 bool path_is_under(const struct path *path1, const struct path *path2)
3640 read_seqlock_excl(&mount_lock);
3641 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3642 read_sequnlock_excl(&mount_lock);
3645 EXPORT_SYMBOL(path_is_under);
3648 * pivot_root Semantics:
3649 * Moves the root file system of the current process to the directory put_old,
3650 * makes new_root as the new root file system of the current process, and sets
3651 * root/cwd of all processes which had them on the current root to new_root.
3654 * The new_root and put_old must be directories, and must not be on the
3655 * same file system as the current process root. The put_old must be
3656 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3657 * pointed to by put_old must yield the same directory as new_root. No other
3658 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3660 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3661 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3662 * in this situation.
3665 * - we don't move root/cwd if they are not at the root (reason: if something
3666 * cared enough to change them, it's probably wrong to force them elsewhere)
3667 * - it's okay to pick a root that isn't the root of a file system, e.g.
3668 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3669 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3672 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3673 const char __user *, put_old)
3675 struct path new, old, root;
3676 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3677 struct mountpoint *old_mp, *root_mp;
3683 error = user_path_at(AT_FDCWD, new_root,
3684 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3688 error = user_path_at(AT_FDCWD, put_old,
3689 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3693 error = security_sb_pivotroot(&old, &new);
3697 get_fs_root(current->fs, &root);
3698 old_mp = lock_mount(&old);
3699 error = PTR_ERR(old_mp);
3704 new_mnt = real_mount(new.mnt);
3705 root_mnt = real_mount(root.mnt);
3706 old_mnt = real_mount(old.mnt);
3707 ex_parent = new_mnt->mnt_parent;
3708 root_parent = root_mnt->mnt_parent;
3709 if (IS_MNT_SHARED(old_mnt) ||
3710 IS_MNT_SHARED(ex_parent) ||
3711 IS_MNT_SHARED(root_parent))
3713 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3715 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3718 if (d_unlinked(new.dentry))
3721 if (new_mnt == root_mnt || old_mnt == root_mnt)
3722 goto out4; /* loop, on the same file system */
3724 if (root.mnt->mnt_root != root.dentry)
3725 goto out4; /* not a mountpoint */
3726 if (!mnt_has_parent(root_mnt))
3727 goto out4; /* not attached */
3728 if (new.mnt->mnt_root != new.dentry)
3729 goto out4; /* not a mountpoint */
3730 if (!mnt_has_parent(new_mnt))
3731 goto out4; /* not attached */
3732 /* make sure we can reach put_old from new_root */
3733 if (!is_path_reachable(old_mnt, old.dentry, &new))
3735 /* make certain new is below the root */
3736 if (!is_path_reachable(new_mnt, new.dentry, &root))
3739 umount_mnt(new_mnt);
3740 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3741 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3742 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3743 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3745 /* mount old root on put_old */
3746 attach_mnt(root_mnt, old_mnt, old_mp);
3747 /* mount new_root on / */
3748 attach_mnt(new_mnt, root_parent, root_mp);
3749 mnt_add_count(root_parent, -1);
3750 touch_mnt_namespace(current->nsproxy->mnt_ns);
3751 /* A moved mount should not expire automatically */
3752 list_del_init(&new_mnt->mnt_expire);
3753 put_mountpoint(root_mp);
3754 unlock_mount_hash();
3755 chroot_fs_refs(&root, &new);
3758 unlock_mount(old_mp);
3760 mntput_no_expire(ex_parent);
3771 static void __init init_mount_tree(void)
3773 struct vfsmount *mnt;
3775 struct mnt_namespace *ns;
3778 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
3780 panic("Can't create rootfs");
3782 ns = alloc_mnt_ns(&init_user_ns, false);
3784 panic("Can't allocate initial namespace");
3785 m = real_mount(mnt);
3789 list_add(&m->mnt_list, &ns->list);
3790 init_task.nsproxy->mnt_ns = ns;
3794 root.dentry = mnt->mnt_root;
3795 mnt->mnt_flags |= MNT_LOCKED;
3797 set_fs_pwd(current->fs, &root);
3798 set_fs_root(current->fs, &root);
3801 void __init mnt_init(void)
3805 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3806 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3808 mount_hashtable = alloc_large_system_hash("Mount-cache",
3809 sizeof(struct hlist_head),
3812 &m_hash_shift, &m_hash_mask, 0, 0);
3813 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3814 sizeof(struct hlist_head),
3817 &mp_hash_shift, &mp_hash_mask, 0, 0);
3819 if (!mount_hashtable || !mountpoint_hashtable)
3820 panic("Failed to allocate mount hash table\n");
3826 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3828 fs_kobj = kobject_create_and_add("fs", NULL);
3830 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3836 void put_mnt_ns(struct mnt_namespace *ns)
3838 if (!atomic_dec_and_test(&ns->count))
3840 drop_collected_mounts(&ns->root->mnt);
3844 struct vfsmount *kern_mount(struct file_system_type *type)
3846 struct vfsmount *mnt;
3847 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3850 * it is a longterm mount, don't release mnt until
3851 * we unmount before file sys is unregistered
3853 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3857 EXPORT_SYMBOL_GPL(kern_mount);
3859 void kern_unmount(struct vfsmount *mnt)
3861 /* release long term mount so mount point can be released */
3862 if (!IS_ERR_OR_NULL(mnt)) {
3863 real_mount(mnt)->mnt_ns = NULL;
3864 synchronize_rcu(); /* yecchhh... */
3868 EXPORT_SYMBOL(kern_unmount);
3870 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
3874 for (i = 0; i < num; i++)
3876 real_mount(mnt[i])->mnt_ns = NULL;
3877 synchronize_rcu_expedited();
3878 for (i = 0; i < num; i++)
3881 EXPORT_SYMBOL(kern_unmount_array);
3883 bool our_mnt(struct vfsmount *mnt)
3885 return check_mnt(real_mount(mnt));
3888 bool current_chrooted(void)
3890 /* Does the current process have a non-standard root */
3891 struct path ns_root;
3892 struct path fs_root;
3895 /* Find the namespace root */
3896 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
3897 ns_root.dentry = ns_root.mnt->mnt_root;
3899 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3902 get_fs_root(current->fs, &fs_root);
3904 chrooted = !path_equal(&fs_root, &ns_root);
3912 static bool mnt_already_visible(struct mnt_namespace *ns,
3913 const struct super_block *sb,
3916 int new_flags = *new_mnt_flags;
3918 bool visible = false;
3920 down_read(&namespace_sem);
3922 list_for_each_entry(mnt, &ns->list, mnt_list) {
3923 struct mount *child;
3926 if (mnt_is_cursor(mnt))
3929 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3932 /* This mount is not fully visible if it's root directory
3933 * is not the root directory of the filesystem.
3935 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3938 /* A local view of the mount flags */
3939 mnt_flags = mnt->mnt.mnt_flags;
3941 /* Don't miss readonly hidden in the superblock flags */
3942 if (sb_rdonly(mnt->mnt.mnt_sb))
3943 mnt_flags |= MNT_LOCK_READONLY;
3945 /* Verify the mount flags are equal to or more permissive
3946 * than the proposed new mount.
3948 if ((mnt_flags & MNT_LOCK_READONLY) &&
3949 !(new_flags & MNT_READONLY))
3951 if ((mnt_flags & MNT_LOCK_ATIME) &&
3952 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3955 /* This mount is not fully visible if there are any
3956 * locked child mounts that cover anything except for
3957 * empty directories.
3959 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3960 struct inode *inode = child->mnt_mountpoint->d_inode;
3961 /* Only worry about locked mounts */
3962 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3964 /* Is the directory permanetly empty? */
3965 if (!is_empty_dir_inode(inode))
3968 /* Preserve the locked attributes */
3969 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3977 up_read(&namespace_sem);
3981 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3983 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3984 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3985 unsigned long s_iflags;
3987 if (ns->user_ns == &init_user_ns)
3990 /* Can this filesystem be too revealing? */
3991 s_iflags = sb->s_iflags;
3992 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3995 if ((s_iflags & required_iflags) != required_iflags) {
3996 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4001 return !mnt_already_visible(ns, sb, new_mnt_flags);
4004 bool mnt_may_suid(struct vfsmount *mnt)
4007 * Foreign mounts (accessed via fchdir or through /proc
4008 * symlinks) are always treated as if they are nosuid. This
4009 * prevents namespaces from trusting potentially unsafe
4010 * suid/sgid bits, file caps, or security labels that originate
4011 * in other namespaces.
4013 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4014 current_in_userns(mnt->mnt_sb->s_user_ns);
4017 static struct ns_common *mntns_get(struct task_struct *task)
4019 struct ns_common *ns = NULL;
4020 struct nsproxy *nsproxy;
4023 nsproxy = task->nsproxy;
4025 ns = &nsproxy->mnt_ns->ns;
4026 get_mnt_ns(to_mnt_ns(ns));
4033 static void mntns_put(struct ns_common *ns)
4035 put_mnt_ns(to_mnt_ns(ns));
4038 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4040 struct nsproxy *nsproxy = nsset->nsproxy;
4041 struct fs_struct *fs = nsset->fs;
4042 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4043 struct user_namespace *user_ns = nsset->cred->user_ns;
4047 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4048 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4049 !ns_capable(user_ns, CAP_SYS_ADMIN))
4052 if (is_anon_ns(mnt_ns))
4059 old_mnt_ns = nsproxy->mnt_ns;
4060 nsproxy->mnt_ns = mnt_ns;
4063 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4064 "/", LOOKUP_DOWN, &root);
4066 /* revert to old namespace */
4067 nsproxy->mnt_ns = old_mnt_ns;
4072 put_mnt_ns(old_mnt_ns);
4074 /* Update the pwd and root */
4075 set_fs_pwd(fs, &root);
4076 set_fs_root(fs, &root);
4082 static struct user_namespace *mntns_owner(struct ns_common *ns)
4084 return to_mnt_ns(ns)->user_ns;
4087 const struct proc_ns_operations mntns_operations = {
4089 .type = CLONE_NEWNS,
4092 .install = mntns_install,
4093 .owner = mntns_owner,